説明

プレート式熱交換器、及びこれを備えた熱交換ユニット

【課題】 冷媒と被冷却体とを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることのできるプレート式熱交換器を提供する。
【解決手段】 各伝熱プレートを境にして冷媒用流路と被冷却体用流路とが交互に形成され、冷媒流入路及び冷媒流出路が形成されるとともに、被冷却体流入路及び被冷却体流出路が形成されたプレート式熱交換器であって、複数の冷媒用流路は、積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路がブロックの数に対応して二つ以上形成され、二つ以上の冷媒流入路は、それぞれ異なるブロックの冷媒用流路に繋がるように形成される一方、冷媒流出路が前記積層方向の全ての冷媒用流路に連通するように形成されていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冷凍機の蒸発器として用いられるプレート式熱交換器、及びこれを備えた熱交換ユニットに関する。
【背景技術】
【0002】
従来から、冷凍機の蒸発器に用いられる熱交換器として、プレート式熱交換器が多用されている。
【0003】
かかるプレート式熱交換器は、図9に示す如く、積層された複数の伝熱プレート100’…を備えている。そして、該プレート式熱交換器10’は、図10(a)及び図10(b)に示す如く、複数の伝熱プレート100’…間に各伝熱プレート100’…を境にしてフロンやアンモニア等の冷媒Mを流通させる冷媒用流路101’…と、水やブライン等の被冷却体Wを流通させる被冷却体用流路102’…とが交互に形成され、各伝熱プレート100’…に形成された貫通穴H1’…,H2’…,H3’…,H4’…が連なって各冷媒用流路101’…に冷媒Mを流出入させる冷媒流入路103’及び冷媒流出路104’が形成されるとともに、各被冷却体用流路102’…に被冷却体Wを流出入させる被冷却体流入路105’及び被冷却体流出路106’が形成されている。
【0004】
上記構成のプレート式熱交換器10’は、図11(a)及び図11(b)に示す如く、冷媒流入路103’から冷媒用流路101’…に冷媒Mを流入させて冷媒流出路104’に流出させるのに併せて、被冷却体流入路105’から被冷却体用流路102’…に被冷却体Wを流入させて被冷却体流出路106’に流出させることで、伝熱プレート100’…(伝熱面)を介して冷媒Mと被冷却体Wとを熱交換させるようになっている。
【0005】
そして、この種のプレート式熱交換器10’は、積層する伝熱プレート100’…の枚数を多くすることで、冷媒用流路101’…及び被冷却体用流路102’…の数が多くなる上に伝熱面積が広くなることから、熱交換能力が高くなるとされている。
【0006】
ところで、上記構成のプレート式熱交換器10’は、各伝熱プレート100’…に形成された貫通穴H1’を連ねることで冷媒流入路103’を形成するようにしているため、積層する伝熱プレート100’…の枚数が多くなると、冷媒流入路103’の全長が必然的に長くなって冷媒Mの流通抵抗が大きくなってしまう。そのため、この種のプレート式熱交換器10’は、冷媒流入路103’の入口側(一次側)にある冷媒用流路101’よりも奥側にある冷媒用流路101’に冷媒Mが流入しにくくなる結果、伝熱プレート100’…の積層方向において冷媒Mの分配ムラが発生し、熱交換効率を低下させてしまうといった問題がある。
【0007】
そこで、複数の冷媒流入路103’のそれぞれに冷媒Mを効率的に流入させるべく、図12(a)に示す如く、複数のノズルN…が軸線方向に間隔をあけて取り付けられたシャワーパイプPを冷媒流入路103’として複数の伝熱プレート100’…に挿通し、各ノズルNから各冷媒用流路101’…に冷媒Mを送り込むようにしたものや、図12(b)に示す如く、冷媒流入路103’を分割して冷媒用流路101’…と直交方向に延びる複数の分割流入路103’’…を形成し、各分割流入路103’’…で異なった位置にある冷媒用流路101’…に冷媒Mを流入させるようにしたもの等が提案されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2002−303499号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、シャワーパイプPを設けたプレート式熱交換器10’は、ノズルNの存在で冷媒Mの流通抵抗が大きくなり、冷媒Mの流れを規制してしまうため、冷媒Mの流入が冷凍機の負荷変動に追従できないといった問題がある。
【0010】
これに対し、単一な冷媒流入路103’を分割して複数の分割流入路103’’…が形成されたプレート式熱交換器10’は、ノズルNがない分、冷媒Mの流通抵抗が不必要に大きくなることを抑えることができるが、各分割流入路103’’…は、冷媒Mを供給する対象(冷媒用流路101’…)の配置が異なることから冷媒Mの流通経路の長さが異なる結果、伝熱プレート100’…の積層方向の奥側の冷媒用流路101’…を対象とする分割流入路103’’…での冷媒Mの流通抵抗が一次側(入口側)の冷媒用流路101’…を対象とする分割流入路103’’…での冷媒Mの流通抵抗よりも大きくなってしまう。また、該プレート式熱交換器10’は、冷媒流入路103’を介して全ての冷媒用流路101’…が連通状態にあるため、それぞれの冷媒用流路101’…で流通する冷媒Mが他の冷媒用流路101’…での冷媒Mの流体圧に影響を受けてしまう。
【0011】
そのため、上記構成のプレート式熱交換器10’は、冷媒Mの供給の対象を異にする分割流入路103’’…毎に流入する冷媒Mの流体圧にバラツキが生じる上に、伝熱プレート100’…の積層方向において奥側の冷媒用流路101’…ほど、冷媒Mが流れ込みにくくなってしまう結果、冷媒用流路101’…の配置によって熱交換効率(被冷却体Mに対する冷却効率)が異なり、装置全体として本来あるべき熱交換性能を発揮させることができないといった問題がある。
【0012】
そこで、本発明は、斯かる実情に鑑み、冷媒と被冷却体とを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることのできるプレート式熱交換器及びこれを備えた熱交換ユニットを提供することを課題とする。
【課題を解決するための手段】
【0013】
本発明に係るプレート式熱交換器は、積層された複数枚の伝熱プレート間に各伝熱プレートを境にして冷媒を流通させる冷媒用流路と被冷却体を流通させる被冷却体用流路とが交互に形成され、各伝熱プレートに形成された貫通穴が連なって冷媒用流路に冷媒を流出入させる冷媒流入路及び冷媒流出路が形成されるとともに、被冷却体用流路に被冷却体を流出入させる被冷却体流入路及び被冷却体流出路が形成されたプレート式熱交換器であって、伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成されていることを特徴とする。
【0014】
上記構成のプレート式熱交換器によれば、伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成されているので、他のブロックの圧力状態に影響を受けることなく、各ブロックの冷媒用流路で冷媒を流通させることができる。
【0015】
そして、上記構成のプレート式熱交換器は、各冷媒流入路に対して冷媒の流体圧を減圧する減圧手段を取り付けることができ、その減圧手段で冷媒流入路毎に冷媒の流体圧を減圧して冷媒を供給することで、伝熱プレートの積層方向で区画された各ブロック(各冷媒用流路)で冷媒を適正に流通させることができる。
【0016】
具体的には、上記構成のプレート式熱交換器は、ブロック毎に冷媒流入路が設けられるのに対して、冷媒流出路が全ての冷媒用流路に連通して共通の流路を構成しているため、各冷媒流入路で流通する冷媒の流体圧と冷媒流出路で流通する冷媒の流体圧との差圧は、冷媒流入路の長さ(流通抵抗)と対応して、見かけ上、伝熱プレートの積層方向において奥側にあるブロック(冷媒用流路)に繋がる冷媒流入路ほど大きくなる。
【0017】
しかしながら、上記構成のプレート式熱交換器は、各冷媒流入路に減圧手段を取り付けて冷媒の流体圧を二次側で大きく減圧することで、減圧手段の一次側における冷媒の流体圧(減圧手段で減圧される前の冷媒の流体圧)と冷媒流出路の二次側における冷媒の流体圧(プレート式熱交換器から流出した冷媒の流体圧)との差圧の大部分が、減圧手段による減圧によるものとなり、各ブロックにおける冷媒流入路と冷媒流出路との間の差圧(冷媒流入路の長さ(流通抵抗)に関連する差圧)が殆ど無視できる状態になる。その結果、各ブロックで伝熱プレートの積層方向における位置の相違による差圧の影響が殆どなくなり、各ブロックでの冷媒の流体圧(冷媒の流通状態)が略等しくなる。
【0018】
そのため、上記構成のプレート式熱交換器によれば、伝熱プレートの積層方向の異なる位置(冷媒用流路)毎に冷媒の流体圧の差圧に大きな違いがなくなる結果、各冷媒用流路で冷媒がバランス良く流通することになり、冷媒と被冷却体とを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができる。
【0019】
本発明の熱交換ユニットは、積層された複数枚の伝熱プレート間に各伝熱プレートを境にして冷媒を流通させる冷媒用流路と被冷却体を流通させる被冷却体用流路とが交互に形成され、各伝熱プレートに形成された貫通穴が連なって冷媒用流路に冷媒を流出入させる冷媒流入路及び冷媒流出路が形成されるとともに、被冷却体用流路に被冷却体を流出入させる被冷却体流入路及び被冷却体流出路が形成されたプレート式熱交換器を備えた熱交換ユニットであって、冷媒を一次側の流体圧から減圧して二次側に供給可能に構成された減圧手段をさらに備え、前記プレート式熱交換器は、伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成され、前記減圧手段は、冷媒流入路毎に設けられて各冷媒流入路に対して直接的又は間接的に接続されていることを特徴とする。
【0020】
上記構成の熱交換ユニットによれば、プレート式熱交換器における伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成されているので、他のブロック(冷媒流入路)における冷媒の流体圧の影響を受けることなく、各ブロックの冷媒用流路で冷媒を適正に流通させることができる。
【0021】
そして、上記構成の熱交換ユニットは、冷媒を一次側の流体圧から減圧して二次側に供給可能に構成された減圧手段をさらに備え、前記減圧手段は、冷媒流入路毎に設けられて各冷媒流入路に対して直接的又は間接的に接続されているため、冷媒流入路毎に減圧手段で冷媒の流体圧を減圧して冷媒を供給することで、伝熱プレートの積層方向で区画された各ブロック(各冷媒用流路)で冷媒を適正に流通させることができる。
【0022】
具体的には、上記構成のプレート式熱交換器は、ブロック毎に第一入流路が設けられるのに対して、冷媒流出路が全ての冷媒用流路に連通して共通の流路を構成しているため、各冷媒流入路で流通する冷媒の流体圧と冷媒流出路で流通する冷媒の流体圧との差圧は、冷媒流入路の長さ(流通抵抗)と対応して、見かけ上、伝熱プレートの積層方向において奥側にあるブロック(冷媒用流路)に繋がる冷媒流入路ほど大きくなる。
【0023】
しかしながら、上記構成の熱交換ユニットは、各冷媒流入路に直接的又は間接的に接続された減圧手段で冷媒の流体圧を二次側で大きく減圧することで、減圧手段の一次側における冷媒の流体圧(減圧手段で減圧される前の冷媒の流体圧)と冷媒流出路の二次側における冷媒の流体圧(プレート式熱交換器から流出した冷媒の流体圧)との差圧の大部分が、減圧手段による減圧によるものとなり、各ブロックにおける冷媒流入路と冷媒流出路との間の差圧(冷媒流入路の長さ(流通抵抗)に関連する差圧)が殆ど無視できる状態になる。その結果、各ブロックで伝熱プレートの積層方向における位置の相違による差圧の影響が殆どなくなり、各ブロックでの冷媒の流体圧(冷媒の流通状態)が略等しくなる。
【0024】
そのため、上記構成の熱交換ユニット(プレート式熱交換器)によれば、伝熱プレートの積層方向の異なる位置(冷媒用流路)毎に冷媒の流体圧の差圧に大きな違いがなくなる結果、各冷媒用流路で冷媒がバランス良く流通することになり、冷媒と被冷却体とを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができる。
【0025】
本発明の一態様として、前記減圧手段は、冷媒の流量調整可能な流量調整弁で構成されていることが好ましい。このようにすれば、ブロック毎に冷媒の流体圧力の調整を行うことができる。すなわち、冷媒の流量を調整すると、流量の変化に応じて冷媒の流体圧も変動することになるので、各冷媒流入路に流量調整弁を取り付けることで、ブロック毎で冷媒の流体圧を適正な状態にすることができる。
【発明の効果】
【0026】
以上のように、本発明に係るプレート式熱交換器によれば、冷媒と被冷却体とを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができるという優れた効果を奏し得る。
【0027】
また、本発明に係る熱交換ユニットによっても、冷媒と被冷却体とを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができるという優れた効果を奏し得る。
【図面の簡単な説明】
【0028】
【図1】本発明の一実施形態に係る熱交換ユニットの概念図を示す。
【図2】同実施形態に係る熱交換ユニットに用いられるプレート式熱交換器の全体斜視図であって、複数の冷媒流入路が伝熱プレートの積層方向と直交する方向(伝熱プレートの長手方向)に並んで形成されたプレート式熱交換器の全体斜視図を示す。
【図3】同実施形態に係るプレート式熱交換器の冷媒の流通経路を説明するための縦断面図を示す。
【図4】同実施形態に係るプレート式熱交換器の被冷却体の流通経路を説明するための縦断面図を示す。
【図5】同実施形態に係るプレート式熱交換器内での冷媒及び被冷却体の流れを説明するための概略断面図であって、(a)は、第一ブロックでの冷媒の流れを説明するための断面図を示し、(b)は、第一ブロックよりも伝熱プレートの積層方向の奥側にある第二ブロックでの冷媒の流れを説明するための断面図を示し、(c)は、第二ブロックよりも伝熱プレートの積層方向の奥側にある第三ブロックでの冷媒の流れを説明するための断面図を示し、(d)は、被冷却体流入路から被冷却体流出路に向けての被冷却体の流れを説明するための断面図を示す。
【図6】本発明の他実施形態に係る熱交換ユニットに用いられるプレート式熱交換器の全体斜視図であって、複数の冷媒流入路が伝熱プレートの積層方向と直交する方向(伝熱プレートの短手方向)に並んで形成されたプレート式熱交換器の斜視図を示す。
【図7】図6に示すプレート式熱交換器内での冷媒及び被冷却体の流れを説明するための概略断面図であって、(a)は、第一ブロックでの冷媒の流れを説明するための断面図を示し、(b)は、第一ブロックよりも伝熱プレートの積層方向の奥側にある第二ブロックでの冷媒の流れを説明するための断面図を示し、(c)は、第二ブロックよりも伝熱プレートの積層方向の奥側にある第三ブロックでの冷媒の流れを説明するための断面図を示し、(d)は、被冷却体流入路から被冷却体流出路に向けての被冷却体の流れを説明するための断面図を示す。
【図8】本発明の別の実施形態に係るプレート式熱交換器の冷媒の流通経路を説明するための縦断面図を示す。
【図9】従来のプレート式熱交換器の全体斜視図を示す。
【図10】図9のプレート式熱交換器の縦断面図であって、(a)は、冷媒の流通経路を説明するための縦断面図を示し、(b)は、被冷却体の流通経路を説明するための縦断面図を示す。
【図11】図9のプレート式熱交換器内での冷媒及び被冷却体の流れを説明するための概略断面図であって、(a)は、冷媒流入路から冷媒流出路に向けての冷媒の流れを説明するための断面図を示し、(b)は、被冷却体流入路から被冷却体流出路に向けての被冷却体の流れを説明するための断面図を示す。
【図12】従来のプレート式熱交換器の部分断面図であって、(a)は、冷媒流入路としてシャワーパイプを備えたプレート式熱交換器の部分縦断面図を示し、(b)は、冷媒流入路が複数の分割流入路に分割されたプレート式熱交換器の部分縦断面図を示す。
【発明を実施するための形態】
【0029】
以下、本発明の一実施形態に係る熱交換ユニットについて添付図面を参照して説明する。
【0030】
本実施形態に係る熱交換ユニットは、図1に示す如く、冷媒Mと被冷却体Wとを熱交換させるプレート式熱交換器10と、冷媒Mを一次側の流体圧から減圧して二次側に供給可能に構成された減圧手段20a,20b,20cとを備えている。
【0031】
前記プレート式熱交換器10は、図2に示す如く、積層された複数の伝熱プレート100…と、該複数の伝熱プレート100…を挟み込むように設けられた一対のフレーム110,120とを備えている。
【0032】
本実施形態に係るプレート式熱交換器10は、図3及び図4に示す如く、積層された複数枚の伝熱プレート100…間に各伝熱プレート100…を境にして冷媒Mを流通させる冷媒用流路101…と被冷却体Wを流通させる被冷却体用流路102…とが交互に形成され、各伝熱プレート100…に形成された貫通穴H1a,H1b,H1c,H2,H3,H4が連なって冷媒用流路101…に冷媒Mを流出入させる冷媒流入路103a,103b,103c及び冷媒流出路104が形成されるとともに、被冷却体用流路102…に被冷却体Wを流出入させる被冷却体流入路105及び被冷却体流出路106が形成されている。
【0033】
そして、本実施形態に係るプレート式熱交換器10は、図3に示す如く、伝熱プレート100…の積層方向に形成された複数の冷媒用流路101…が伝熱プレート100…の積層方向で所定の数毎に液密又は気密に仕切られて二つ以上(本実施形態では三つ)のブロックA,B,Cに区画されるとともに、前記冷媒流入路103a,103b,103cが前記ブロックA,B,Cの数に対応して二つ以上(本実施形態では三つ)形成されている。そして、各冷媒流入路103a,103b,103cは、それぞれ異なるブロックA,B,Cの冷媒用流路101…に連通するように形成されている。
【0034】
ここで、本実施形態に係るプレート式熱交換器10について具体的に説明すると、前記複数の伝熱プレート100…は、図5に示す如く、正面視矩形状(長方形状)に形成されている。伝熱プレート100…は、それぞれプレス成形されており、表裏に複数の凸条(図示しない)及び凹条(図示しない)が交互に形成されている。なお、本実施形態において、各伝熱プレート100…の表裏に凸条及び凹条を形成することで、隣り合う伝熱プレート100…の凹条及び凸条が正面から見て交差した状態になりつつ、凸条同士が点接触するようになっている。
【0035】
そして、各伝熱プレート100…は、図3乃至図5に示す如く、異なる適宜位置に複数の貫通穴H1a,H1b,H1c,H2,H3,H4が設けられている。本実施形態に係るプレート式熱交換器10における伝熱プレート100…は、正面視における四隅のうちの三つの隅部のそれぞれに一つの貫通穴H2,H3,H4が設けられており、残りの一つの隅部に一つ乃至複数の貫通穴H1a,H1b,H1cが設けられている。
【0036】
各伝熱プレート100…は、各貫通穴H1a,H1b,H1c,H2,H3,H4の配置が対応しており、積層した状態(重ね合わせた状態)で隣り合う伝熱プレート100…の貫通穴H1a,H1b,H1c,H2,H3,H4が連なり、冷媒Mを流出入させる冷媒流入路103a,103b,103c及び冷媒流出路104を形成でき、また、被冷却体Wを流出入させる被冷却体流入路105及び被冷却体流出路106を形成できるようになっている。
【0037】
本実施形態に係るプレート式熱交換器10は、各伝熱プレート100…の四隅部分のうちの三つの隅部に冷媒流出路104、被冷却体流入路105、及び被冷却体流出路106を形成するための貫通穴H2,H3,H4が一つずつ設けられている。各伝熱プレート100…は、長手方向の一端側にある二つの隅部のうちの一方(長手方向と直交する方向(以下、短手方向という)の一端側にある隅部)に、冷媒流出路104を形成するための貫通穴H2が設けられ、他方(短手方向の他端側にある隅部)に被冷却体流入路105を形成するための貫通穴H3が設けられている。また、各伝熱プレート100…は、長手方向の他端側にある二つ隅部のうち、一方の隅部(短手方向の他端側にある隅部)に、被冷却体流出路106を形成するための貫通穴H4が穿設されている。
【0038】
さらに、各伝熱プレート100…は、長手方向の他端側にある二つ隅部のうち、他方の隅部(短手方向の一端側にある隅部)に、冷媒流入路103a,103b,103cを形成するための貫通穴H1a,H1b,H1cが穿設されている。
【0039】
本実施形態に係るプレート式熱交換器10は、上述の如く、伝熱プレート100…の積層方向において、複数の冷媒用流路101…が所定の数毎で複数のブロックA,B,Cに区画され、ブロックA,B,Cの数に対応して複数の冷媒入流路103a,103b,103cが形成されるため、図3及び図5に示す如く、冷媒用流路101…の入口側(後述する接続部J1a,J1b,J1c,J2,J3,J4の設けられた一方のフレーム110側)にあるブロックAを構成する伝熱プレート100…には、冷媒流入路103a,103b,103cを形成するための貫通穴H1a,H1b,H1cがブロックA,B,C数に応じた数で設けられている。これに対し、冷媒用流路101…の奥側(非貫通状態にある他方のフレーム120側)にあるブロックB,Cを構成する伝熱プレート100…には、冷媒流入路103b,103cを形成するための貫通穴H1b,H1cが区画されたブロックA,B,Cの数よりも少ない数で設けられている。
【0040】
すなわち、複数に区画したブロックA,B,Cを冷媒流入路103a,103b,103cの一次側(入口側)から奥側に向けて一から順に順位を付けると、冷媒流入路103a,103b,103cの入口側にある最小順位(第一順位)のブロックAを構成する伝熱プレート100…には、ブロックA,B,Cの最大順位の数(区画したブロックA,B,Cの数)に対応する数の貫通穴H1a,H1b,H1cが形成され、伝熱プレート100…の構成するブロックB,Cの順位が一つずつ下がるにつれて、そのブロックB,Cを構成する伝熱プレート100…に形成される冷媒流入路103b,103cとなる貫通穴H1b,H1cの数が一つずつ少なくなっている。
【0041】
従って、本実施形態において、三つのブロックA,B,Cに区画しているため、第一順位のブロック(以下、第一ブロックという)Aを構成する伝熱プレート100…には、三つの冷媒流入路103a,103b,103cを形成するための貫通穴H1a,H1b,H1cが三つ設けられ、その次の順位のブロック(以下、第二ブロックという)Bを構成する伝熱プレート100…には、二つの冷媒用流路101…を形成するための貫通穴,H1b,H1cが二つ設けられ、その次の順位(最大順位)のブロック(以下、第三ブロックという)Cを構成する伝熱プレート100…には、一つの冷媒流入路103cを形成するための貫通穴H1cが一つ設けられている。
【0042】
そして、第一ブロックA及び第二ブロックBを構成する伝熱プレート100…(貫通穴H1a,H1b,H1cが複数設けられた伝熱プレート100…)において、複数の貫通穴H1a,H1b,H1cは一列をなすように配置されている。本実施形態において、第一ブロックA及び第二ブロックBを構成する伝熱プレート100…は、複数の貫通穴H1a,H1b,H1cが長手方向に一列をなすように設けられている。
【0043】
これにより、本実施形態に係るプレート式熱交換器10は、複数の伝熱プレート100…を積層した状態(被冷却体流入路105、被冷却体流出路106、及び冷媒流出路104を形成するための貫通穴H2,H3,H4が連なった状態)で、第一ブロックA、第二ブロックB及び第三ブロックCを構成する伝熱プレート100…に形成された貫通穴H1cが連なり、第三ブロックCの冷媒用流路101…に連通する冷媒流入路(以下、第三ブロック冷媒流入路という)103cが形成され、第一ブロックA、及び第二ブロックBを構成する伝熱プレート100…に形成された貫通穴H1bが連なり、第二ブロックBの冷媒用流路101…に連通する冷媒流入路(以下、第二ブロック冷媒流入路という)103bが形成され、さらに、第一ブロックAを構成する伝熱プレート100…に形成された貫通穴H1aが連なり、第一ブロックAの冷媒用流路101…に連通する冷媒流入路(以下、第一ブロック冷媒流入路という)103aが形成されるようになっている。
【0044】
本実施形態に係るプレート式熱交換器10は、上述の如く、第一ブロックA及び第二ブロックBを構成する伝熱プレート100…に対し、長手方向の他端側にある二つ隅部のうち、他方の隅部(短手方向の一端側にある隅部)にある複数の貫通穴H1a,H1b,H1cが長手方向で一列に形成されているため、前記第一〜第三ブロック冷媒流入路103a,103b,103cは、伝熱プレート100…の長手方向に間隔をあけて配置成されている。
【0045】
このように本実施形態に係るプレート式熱交換器10は、順位の高い(順位数の小さい)ブロックA,Bを構成する伝熱プレート100…ほど、冷媒流入路103a,103b,103cを形成するための貫通穴H1a,H1b,H1cの数が多くなるため、各ブロックA,B,Cの境界にある伝熱プレート100…は、順位の低いブロックB,C側の伝熱プレート100…の貫通穴H1a,H1bの形成されていない部分(非貫通部分)が隣り合う順位の高いブロックA,Bの伝熱プレート100…の貫通穴H1a,H1bと対向するようになっている。
【0046】
そして、本実施形態に係るプレート式熱交換器10は、隣り合う伝熱プレート100…の短手方向の一端側にある貫通穴H1a,H1b,H1c,H2回りで隣り合う伝熱プレート100…同士が液密又は気密にシールされることで、該貫通穴H1a,H1b,H1c,H2で形成された冷媒流入路103a,103b,103c及び冷媒流出路104を流通する冷媒Mが伝熱プレート100…間に形成される被冷却体用流路102…に流れ込むことが防止されている。また、該プレート式熱交換器10は、隣り合う伝熱プレート100…の短手方向の他端側にある貫通穴H3,4回りで隣り合う伝熱プレート100…同士が液密又は気密にシールされることで、該貫通穴H3,H4で形成された被冷却体流入路105及び被冷却体流出路106を流通する被冷却体Wが伝熱プレート100…間に形成される冷媒用流路101…に流れ込むことが防止されている。
【0047】
すなわち、本実施形態に係るプレート式熱交換器10は、隣り合う伝熱プレート100…の冷媒用流路101…を形成する一方の面間が該冷媒用流路101…を画定してシールされ、隣り合う伝熱プレート100…の被冷却体用流路102…を形成する他方の面間が該被冷却体用流路102…を画定してシールされている。
【0048】
なお、伝熱プレート100…間のシールは、ゴム等で構成されるガスケットを隣り合う伝熱プレート100…で挟み込んだり、隣り合う伝熱プレート100…同士を溶接したりすることで行われるが、本実施形態に係るプレート式熱交換器10は、何れの方法で伝熱プレート100…間をシールしてもよいため、ここでのシール構造についての説明は割愛することとする。
【0049】
そして、本実施形態に係るプレート式熱交換器10は、上述の如く、伝熱プレート100…の積層方向で複数の冷媒用流路101…を所定の数毎のブロックA,B,Cに区画するようにしているため、第一ブロックAを構成する複数枚の伝熱プレート100…は、図5(a)及び図5(d)に示す如く、第一ブロックAの冷媒用流路101…に連通する第一ブロック冷媒流入路103aとなる貫通穴H1aと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103a,103b,103c及び冷媒流出路104となる貫通穴H1a,H1b,H1c,H2を避けた領域を画定するように対向する他方の面間にシールSが施されている。
【0050】
また、第二ブロックBを構成する複数枚の伝熱プレート100…は、図5(b)及び図5(d)に示す如く、第二ブロックBの冷媒用流路101…に連通する第二ブロック冷媒流入路103bとなる貫通穴H1bと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103a,103b,103c及び冷媒流出路104となる貫通穴H3,H4を避けた領域を画定するように対向する他方の面間にシールSが施されている。
【0051】
さらに、第三ブロックCを構成する複数枚の伝熱プレート100…は、図5(c)及び図5(d)に示す如く、第三ブロックCの冷媒用流路101…に連通する第三ブロック冷媒流入路103cとなる貫通穴H1cと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103a,103b,103c及び冷媒流出路104となる貫通穴H1a,H1b,H1c,H2を避けた領域を画定するように対向する他方の面間にシールSが施されている。
【0052】
そして、該プレート式熱交換器10は、第一〜第三のブロックA,B,Cにおいて、冷媒用流路101…においては冷媒流入路103a,103b,103c側から冷媒流出路104側に冷媒Mが円滑に流通でき、また、被冷却体用流路102…においては被冷却体流入路105側から被冷却体流出路106側に被冷却体Wが円滑に流通できるようにした上で、伝熱プレート100…を介して隣り合う冷媒用流路101…と被冷却体用流路102…との重なりをできるだけ多くできるように、伝熱プレート100…間にシールSが施されて冷媒用流路101…及び被冷却体用流路102…を画定するようにしている。
【0053】
本実施形態に係るプレート式熱交換器10は、図5(a)〜(d)に示す如く、冷媒用流路101…において冷媒Mが冷媒流入路103a,103b,103c(第一〜第三ブロック冷媒流入路103a,103b,103c)側から冷媒流出路104側に向けて流通するに際し、冷媒Mが長手方向の中間位置に向けて短手方向に拡がった後に冷媒流出路104の一箇所に向けて流れる、いわゆる、台形流を形成し、被冷却体用流路102…において被冷却体Wが被冷却体流入路105側から被冷却体流出路106側に向けて流通するに際し、冷媒Mが長手方向の中間位置に向けて短手方向に拡がった後に被冷却体流出路106の一箇所に向けて流れる、いわゆる、台形流を形成するように、冷媒用流路101…及び被冷却体用流路102…を画定するようになっている。
【0054】
図2〜図4に示す如く、一対のフレーム110,120は、何れも厚板で構成されている。本実施形態に係るプレート式熱交換器10は、何れのフレーム110,120も正面視矩形状に形成されており、伝熱プレート100…の全面に対向できるように伝熱プレート100…と同寸或いはそれ以上のサイズに設定される。そして、一方のフレーム110には、伝熱プレート100…の各貫通穴H1a,H1b,H1c,H2,H3,H4の配置に対応した位置に貫通した穴が形成されている。すなわち、一方のフレーム110には、複数の冷媒流入路103a,103b,103c(第一〜第三ブロック冷媒流入路103a,103b,103c)、単一な冷媒流出路104、被冷却体流入路105、及び被冷却体流出路106と対応する穴(採番しない)が穿設されている。そして、該一方のフレーム110は、外側になる面(伝熱プレート100…と対向する面の反対側の面)に筒状の接続部J1a,J1b,J1c,J2,J3,J4が液密又は気密に接続されている。接続部J1a,J1b,J1c,J2,J3,J4は、伝熱プレート100…の貫通穴H1a,H1b,H1c,H2,H3,H4に対応して設けられている。すなわち、接続部J1a,J1b,J1c,J2,J3,J4は、フレーム110に形成された穴と同心又は略同心になるようにフレーム110に固設されており、該フレーム110の外側になる面から突出した態様をなしている。
【0055】
そして、本実施形態においては、冷媒流入路103a,103b,103cと連通する接続部J1a,J1b,J1cは、減圧手段20a,20b,20cを直接的又は間接的に接続されるようになっている。
【0056】
これに対し、他方のフレーム120は、穴の開いていない(非貫通)の平板で構成されている。そして、一対のフレーム110,120は、積層した複数の伝熱プレート100…を両側から挟み込むように、直接的又は間接的に互いに連結される。なお、この種のプレート式熱交換器10は、大型のものである場合、一対のフレーム110,120は伝熱プレート100…を挟み込んだ状態で、互いの端部同士がボルト締結されるが、小型のものである場合には、一対のフレーム110,120は伝熱プレート100…を挟み込んだ状態で、互いの端部同士がボルト締結されたり、両フレームが隣り合う伝熱プレート100…に対して溶接等で直接固定されたりすることもある。
【0057】
そして、一対のフレーム110,120で伝熱プレート100…を挟み込むことで、一方のフレーム110の各接続部J1a,J1b,J1c,J2,J3,J4が伝熱プレート100…の貫通穴H1a,H1b,H1c,H2,H3,H4(複数の冷媒流入路103a,103b,103c、単一な冷媒流出路104、被冷却体流入路105、及び被冷却体流出路106)と流体的に接続された状態になっている。なお、フレーム110,120と伝熱プレート100…との間においても、冷媒Mや被冷却体Wが漏れることのないように適正なシールが施される。
【0058】
図1に戻り、前記減圧手段20a,20b,20cは、冷媒流入路103a,103b,103cに接続された接続部J1a,J1b,J1cに対して直接的又は間接的に接続される。すなわち、減圧手段20a,20b,20cは、プレート式熱交換器10の設置場所等の環境に応じ、接続部J1a,J1b,J1cに流体的に接続された配管に接続されたり、接続部J1a,J1b,J1cに直接接続されたりする。そして、各減圧手段20a,20b,20cは、一次側における冷媒Mの流体圧に対して二次側における冷媒Mの流体圧が1/10〜1/2(10%〜50%)に減圧できるものが採用される。具体例を挙げると、例えば、冷媒Mをフロン(R134a)とし、減圧手段20a,20b,20cの一次側で冷媒Mの流体圧が0.8MPa〜2.0MPaに設定される場合、減圧手段20a,20b,20cは、冷媒Mの流体圧を0.2MPa〜0.4MPaに減圧して該冷媒Mを冷媒流入路103a,103b,103cに流入(供給)させることができるものが採用される。
【0059】
そして、減圧手段20a,20b,20cは、冷媒Mの流体圧を一定の圧力に減圧する固定式のものや、冷媒Mの流体圧を任意の圧力に減圧可能な可変式のものを採用することができるが、本実施形態においては、冷媒Mの流体圧の減圧が可変な可変式のものが採用されている。本実施形態に係る熱交換ユニット1は、減圧手段20a,20b,20cとして、冷媒Mの流量調整可能な流量調整弁で構成されており、冷媒Mの流量調整を行うことで該冷媒Mの流体圧を減圧させるようになっている。なお、減圧手段20a,20b,20cには、例えば、ニードル弁やオリフィス弁等を採用することが好ましい。
【0060】
この種の熱交換ユニット1は、一般的に冷媒流出路104から流出した冷媒Mを再度冷媒流入路103a,103b,103cに戻す循環系の一構成として採用されるため、通常、冷媒流出路104で気体になっている冷媒Mを液化させるべく、冷媒流出路104と冷媒流入路103a,103b,103cとの間に圧縮器と別の熱交換器(凝縮器)とが設置されることになり、各冷媒流入路103a,103b,103cは、該別の熱交換器(凝縮器)に接続されることになる。そのため、各冷媒流入路103a,103b,103cは、減圧手段20a,20b,20cを介してそれぞれ独立した配管系で別の熱交換器(凝縮器)に接続することも可能であるが、本実施形態においては、別の熱交換器(凝縮器)に接続された単一な配管を複数(三つ)に分岐させた上で、その分岐させた配管を各減圧手段20a,20b,20cの一次側に接続させている。
【0061】
本実施形態に係る熱交換ユニット1は、以上の構成からなり、次に、上記構成の熱交換ユニット1の作動について説明する。
【0062】
まず、各減圧手段20a,20b,20c(流量調整弁)を調整し、一次側における冷媒Mの流体圧の1/10〜1/2(10%〜50%)に減圧した状態で冷媒Mを第一〜第三ブロック冷媒流入路103a,103b,103cのそれぞれに供給する。また、これに併せて被冷却体流入路105に被冷却体Wを供給する。
【0063】
そうすると、図5に示す如く、第一〜第三ブロックA,B,Cのそれぞれの冷媒用流路101…において、冷媒流入路103a,103b,103c(第一〜第三ブロック冷媒流入路103a,103b,103c)から冷媒流出路104に向けて冷媒Mが流通する一方、被冷却体用流路102…において、被冷却体流入路105から被冷却体流出路106に向けて被冷却体Wが流通する。この状態で、冷媒M及び被冷却体Wは、伝熱プレート100…を挟んで対向した状態で流通するため、互いに熱交換し、被冷却体Wが被冷却体流出路106に向かうにつれて冷却されることになる。
【0064】
本実施形態に係る熱交換ユニット1は、プレート式熱交換器10における伝熱プレート100…の積層方向に形成された複数の冷媒用流路101…が伝熱プレート100…の積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックA,B,Cに区画されているため、上述の如く、第一〜第三ブロックA,B,Cのそれぞれの冷媒流入路103a,103b,103cで冷媒Mが流通するとき、他のブロックA,B,Cの冷媒流路101や冷媒流入路103a,103b,103cにおける冷媒Mの流体圧の影響を受けることなく、各ブロックA,B,Cの冷媒用流路101…で冷媒Mが流通することになる。
【0065】
そして、上記構成の熱交換ユニット1は、冷媒Mを一次側の流体圧から減圧して二次側に供給可能に構成された減圧手段20a,20b,20cを各冷媒流入路103a,103b,103cの一次側に接続しているため、冷媒流入路103a,103b,103c毎に減圧手段20a,20b,20cで冷媒Mの流体圧を減圧して冷媒Mを供給することで、伝熱プレート100…の積層方向で区画された各ブロックA,B,C(各冷媒用流路101…)で冷媒Mが適正に流通することになる。
【0066】
具体的には、上記構成のプレート式熱交換器10は、図1に示す如く、ブロックA,B,C毎に冷媒流入路103a,103b,103cが設けられるのに対して、冷媒流出路104が全ての冷媒用流路101…に連通して共通の流路を構成しているため、各冷媒流入路103a,103b,103cで流通する冷媒Mの流体圧P1a’P1b’P1c’と冷媒流出路104(及び冷媒流出路104に繋がる配管)で流通する冷媒Mの流体圧P2との差圧ΔPa’,ΔPb’,ΔPc’は、冷媒流入路103a,103b,103cの長さ(流通抵抗)と対応して、見かけ上、伝熱プレート100…の積層方向の奥側(他方のフレーム120側)ほど大きくなる(ΔPa’’<ΔPb’’<ΔPc’’)。
【0067】
しかしながら、減圧手段20a,20b,20cに接続された一次側の配管(採番しない)内における冷媒Mの流体圧P1a,P1b,P1cと、冷媒流出路104に接続された配管(図示しない)内における冷媒Mの流体圧P2との差圧ΔPa,ΔPb,ΔPcは、各冷媒流入路103a,103b,103cの長さ(流通抵抗)と対応する上述の差圧ΔPa’,ΔPb’,ΔPc’と、減圧手段20a,20b,20cによる減圧による差圧ΔPa’’,ΔPb’’,ΔPc’’との合計になる。
【0068】
そのため、冷媒流入路103a,103b,103cのそれぞれに別個独立で接続された減圧手段20a,20b,20cで冷媒Mの流体圧を大きく減圧した上で各冷媒流入路103a,103b,103cに冷媒Mを供給することで、減圧手段20a,20b,20cの一次側における冷媒Mの流体圧(減圧手段20a,20b,20cで減圧される前の冷媒Mの流体圧)P1a,P1b,P1cと冷媒流出路104の二次側における冷媒Mの流体圧(プレート式熱交換器10から流出した冷媒Mの流体圧)P2との差圧ΔPa,ΔPb,ΔPcの大部分を、減圧手段20a,20b,20cによる減圧による差圧成分ΔPa’’,ΔPb’’,ΔPc’’が占めることになり(ΔPa’≪ΔPa’’,ΔPb’≪ΔPb’’,ΔPc’≪ΔPc’’)、各ブロックA,B,Cにおける冷媒流入路103a,103b,103cと冷媒流出路104との間の差圧(冷媒流入路の長さ(流通抵抗)に関連する差圧)ΔPa’,ΔPb’,ΔPc’を殆ど無視できる状態になる。
【0069】
その結果、各ブロックA,B,Cで伝熱プレート100…の積層方向における位置の相違による差圧の影響が殆どなくなり、各ブロックA,B,Cでの冷媒Mの流体圧(冷媒Mの流通状態)が略等しくなる。
【0070】
そのため、上記構成の熱交換ユニット1(プレート式熱交換器10)によれば、伝熱プレート100…の積層方向の異なる位置(冷媒用流路103a,103b,103c)毎に冷媒Mの流体圧の差圧ΔPa,ΔPb,ΔPcに大きな違いがなくなる結果、各冷媒用流路103a,103b,103cで冷媒Mがバランス良く流通することになり、冷媒Mと被冷却体Wとを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができる。
【0071】
以上のように、本実施形態に係る熱交換ユニット1(プレート式熱交換器10)は、他のブロックA,B,Cの圧力状態に影響を受けることなく、各ブロックA,B,Cの冷媒用流路101…で冷媒Mを流通させることができる。また、上記構成のプレート式熱交換器10は、各冷媒流入路103a,103b,103cに対して減圧手段20a,20b,20cを取り付ける(接続する)ようにしているため、冷媒流入路103a,103b,103c毎に冷媒Mの流体圧を減圧して冷媒Mを供給することで、伝熱プレート100…の積層方向で区画された各ブロックA,B,C(各冷媒用流路101…)で冷媒Mを適正に流通させることができ、冷媒Mと被冷却体Wとが熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができる。
【0072】
また、本実施形態に係る熱交換ユニット1は、記減圧手段20a,20b,20cとして冷媒Mの流量調整可能な流量調整弁を採用しているため、ブロックA,B,C毎に冷媒Mの流体圧力の調整を行うことができる。
【0073】
尚、本発明に係るプレート式熱交換器及びこれを備えた熱交換ユニットは、上記実施形態にも限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0074】
例えば、上記実施形態において、第一〜第三ブロック冷媒流入路103a,103b,103cを伝熱プレート100…の長手方向で一列に並ぶように配置したが、これに限定されるものではなく、例えば、図6に示す如く、第一〜第三ブロック冷媒流入路103a,103b,103cを伝熱プレート100…の長手方向と直交する短手方向で一列に並ぶように配置してもよい。この場合においても、図7に示す如く、プレート式熱交換器10は、上記実施形態と同様、伝熱プレート100…の積層方向で複数の冷媒用流路101…を所定の数毎のブロックA,B,Cに区画するようにしているため、第一ブロックAを構成する複数枚の伝熱プレート100…は、第一ブロックAの冷媒用流路101…に連通する第一ブロック冷媒流入路103aとなる貫通穴H1aと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103a及び冷媒流出路104となる貫通穴H1a,H2を避けた領域を画定するように対向する他方の面間にシールSが施される。
【0075】
また、第二ブロックBを構成する複数枚の伝熱プレート100…は、第二ブロックBの冷媒用流路101…に連通する第二ブロック冷媒流入路103bとなる貫通穴H1bと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103b及び冷媒流出路104となる貫通穴H1b,H2を避けた領域を画定するように対向する他方の面間にシールSが施される。
【0076】
さらに、第三ブロックCを構成する複数枚の伝熱プレート100…は、第三ブロックCの冷媒用流路101…に連通する第三ブロック冷媒流入路103cとなる貫通穴H1cと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103c及び冷媒流出路104となる貫通穴H1c,H2を避けた領域を画定するように対向する他方の面間にシールSが施される。このようにすることで、上記実施形態と同様に、各ブロックA,B,Cの冷媒用流路101…で冷媒Mを流通させつつ、各被冷却体用流路102…で被冷却体Wを流通させることができる。
【0077】
また、上記実施形態において、伝熱プレート100…の積層方向に形成される複数の冷媒流入路103a,103b,103cを該積層方向で三つのブロックA,B,Cに区画するようにしたが、これに限定されるものではなく、例えば、二つのブロックに区画したり、四つ以上のブロックに区画したりしてもよい。すなわち、伝熱プレート100…の積層枚数(冷媒用流路101…の数)に応じて、複数の冷媒用流路101…を複数のブロックに区画すればよい。
【0078】
上記実施形態において、冷媒流出路104を一つ設けるようにしたが、これに限定されるものではなく、二つ以上設けるようにしてもよい。但し、冷媒流出路104は、ブロックA,B,Cに関係なく全ての冷媒用流路101…に連通していることが前提である。
【0079】
上記実施形態において、プレート式熱交換器10を熱交換ユニット1の一構成として説明したが、これに限定されるものではなく、例えば、プレート式熱交換器10を単体の構成としてもよい。但し、各冷媒流入路103a,103b,103cに対して減圧手段20a,20b,20cが取付可能であることは言うまでもない。
【0080】
上記実施形態において、冷媒用流路101及び被冷却体用流路102で台形流を形成するように、冷媒流入路103a,103b,103c、冷媒流出路104、被冷却体流入路105、及び被冷却体流出路106を配置するようにしたが、これに限定されるものではなく、例えば、冷媒流入路103a,103b,103c、及び冷媒流出路104を伝熱プレート100の四隅のうちの対角位置にある二つの隅部に設けるとともに、被冷却体流入路105、及び被冷却体流出路106を伝熱プレート100の四隅のうちの残りの二つの隅部に設け、冷媒用流路101及び被冷却体用流路102で冷媒M及び被冷却体Wを斜め方向に流通させる、いわゆる斜行流を形成するようにしてもよい。また、上記実施形態において、被冷却体Wを伝熱プレート100の長手方向の一端側から流入させる一方、冷媒Mを伝熱プレート100の長手方向の他端側から流入させるようにしたが、これに限定されるものではなく、例えば、被冷却体W及び冷媒Mを伝熱プレート100の長手方向一端側又は他端側から流入させるようにしてもよい。なお、言うまでもないが、冷媒Mを流入させる位置を変更しても、複数の冷媒流路101…を伝熱プレート100…の積層方向で二つ以上のブロックA,B,Cに区画するとともに、該ブロックA,B,Cの数に対応した冷媒流入路103a,103b,103cを形成し、各冷媒流入路103a,103b,103cに対して減圧手段20a,20b,20cを直接的又は間接的に接続させることは勿論のことである。
【0081】
また、上記実施形態において、一方のフレーム110に接続部J1a,J1b,J1cを取り付け、該一方のフレーム110側から冷媒Mを流入させるようにしたが、これに限定されるものではなく、例えば、図8に示す如く、両方のフレーム110,120側から冷媒Mを流入させるようにしてもよい。
【0082】
具体的には、伝熱プレート100…の積層方向に形成された複数の冷媒用流路101…を伝熱プレート100…の積層方向で所定の数毎に液密又は気密に仕切って二つ以上(図においては四つ)のブロックA,B,C,Dに区画するとともに、冷媒流入路103a,103b,103c,103dをブロックA,B,C,Dの数に対応して二つ以上(図においては四つ)形成し、その二つ以上の冷媒流入路103a,103b,103c,103dのうちの所定数の冷媒流入路103a,103bを一方のフレーム110側から冷媒Mを流入させるように形成し、残りの冷媒流入路103c,103dを他方のフレーム120側から冷媒Mを流入させるように形成するようにしてもよい。この場合においても、各冷媒流入路103a,103b,103cは、それぞれ異なるブロックA,B,C,Dの冷媒用流路101…に連通するように形成するとともに、冷媒流入路103a,103b,103c,103dと連通するようにフレーム110,120に取り付けられた接続部J1a,J1b,J1c,J1dに対して減圧手段が直接的又は間接的に接続されることは勿論のことである。また、冷媒流出路104は、異なるブロックA,B,C,Dを貫通するように形成されることも勿論のことである。
【符号の説明】
【0083】
1…熱交換ユニット、10…プレート式熱交換器、20a,20b,20c…減圧手段、100…伝熱プレート、101…冷媒用流路、102…被冷却体用流路、103a…第一ブロック冷媒流入路(冷媒流入路)、103b…第二ブロック冷媒流入路(冷媒流入路)、103c…第三ブロック冷媒流入路(冷媒流入路)、104…冷媒流出路、105…被冷却体流入路、106…被冷却体流出路、110,120…フレーム、A…第一ブロック(ブロック)、B…第二ブロック(ブロック)、C…第三ブロック(ブロック)、H1a,H1b,H1c,H2,H3,H4…貫通穴、J1a,J1b,J1c,J2,J3,J4…接続部、M…冷媒、W…被冷却体

【特許請求の範囲】
【請求項1】
積層された複数枚の伝熱プレート間に各伝熱プレートを境にして冷媒を流通させる冷媒用流路と被冷却体を流通させる被冷却体用流路とが交互に形成され、各伝熱プレートに形成された貫通穴が連なって冷媒用流路に冷媒を流出入させる冷媒流入路及び冷媒流出路が形成されるとともに、被冷却体用流路に被冷却体を流出入させる被冷却体流入路及び被冷却体流出路が形成されたプレート式熱交換器であって、伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成されていることを特徴とするプレート式熱交換器。
【請求項2】
積層された複数枚の伝熱プレート間に各伝熱プレートを境にして冷媒を流通させる冷媒用流路と被冷却体を流通させる被冷却体用流路とが交互に形成され、各伝熱プレートに形成された貫通穴が連なって冷媒用流路に冷媒を流出入させる冷媒流入路及び冷媒流出路が形成されるとともに、被冷却体用流路に被冷却体を流出入させる被冷却体流入路及び被冷却体流出路が形成されたプレート式熱交換器を備えた熱交換ユニットであって、冷媒を一次側の流体圧から減圧して二次側に供給可能に構成された減圧手段をさらに備え、前記プレート式熱交換器は、伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成され、前記減圧手段は、冷媒流入路毎に設けられて各冷媒流入路に対して直接的又は間接的に接続されていることを特徴とする熱交換ユニット。
【請求項3】
前記減圧手段は、冷媒の流量調整可能な流量調整弁で構成されている請求項2記載の熱交換ユニット。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2010−261662(P2010−261662A)
【公開日】平成22年11月18日(2010.11.18)
【国際特許分類】
【出願番号】特願2009−113448(P2009−113448)
【出願日】平成21年5月8日(2009.5.8)
【出願人】(000152480)株式会社日阪製作所 (60)
【Fターム(参考)】