説明

プロトン伝導性膜を製造する方法

プロトン伝導性膜を製造するためのプロセスであって、このプロセスが、(i)良好な酸吸収容量を有する電気的に非伝導性の無機粉末5体積%〜60体積%であって、この粉末が本質的にナノサイズ粒子を含む粉末;(ii)酸、酸素及び燃料と化学的に適合性であるポリマーバインダ5体積%〜50体積%;及び(iii)酸又は酸水溶液10〜90体積%を混合する工程であって、ここでこの混合が種々の割合の工程にて行われることによってプロトン伝導性混合物を生じる工程;このプロトン伝導性混合物をロール紙、不織布マトリックスなど上に周囲温度にて連続的にキャスティングを行う工程;このキャスティングされたプロトン伝導性混合物を100℃を超える温度でおおよそ5〜30分間乾燥させることによって、乾燥フィルムを形成する工程;及び複数のこれらの乾燥フィルムを共に圧力下で積層させ、その後これらの乾燥フィルムの孔から孔形成剤を抽出することによって、30ナノメートル未満の平均孔サイズを有するプロトン伝導性膜を形成する工程を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般にプロトン伝導性膜(PCMs)、例えば無機セラミック酸化物を有するコンポジットポリマーフィルムを製造するためのプロセスに関する。
【背景技術】
【0002】
プロトン伝導性膜(PCMs)は、燃料電池、電解装置、スーパーキャパシタ、センサ及びバッテリを含む多くの電気化学用途に見出される。ナフィオンは、室温に近い温度(100℃まで)にて操作される燃料電池に最も一般的に使用される膜である。固体ポリマー電解質のナフィオンは、それは非常に高価であり、プロトンにより水が引っ張られる結果として燃料電池操作中に乾燥するという2つの主な不利益を有する。近年においては、ナフィオンに代わる低コストの固体ポリマー電解質を開発するために相当な努力がなされており、大きく進展しつつある。室温でプロトン伝導性の材料が、Emanuel Peledによりいくつかの論文及び特許、例えばUS6447943、US6492047において議論されている。加えて、電気化学用途のためのナノ多孔質プロトン伝導性膜(NP−PCM)、例えばUS6811911、US6447943、US7413824及びEP141045381が知られており、これら全体を参考として本明細書に組み込む。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国特許第6447943号公報
【特許文献2】米国特許第6492047号公報
【特許文献3】米国特許第6811911号公報
【特許文献4】米国特許第6447943号公報
【特許文献5】米国特許第7413824号公報
【特許文献6】欧州特許第141045381号公報
【特許文献7】米国特許第4119836号公報
【特許文献8】米国特許第5599638号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
高度に伝導性のPCMを製造するための新規な低コストの効率の良い手順。実施形態の1つでは、この手順は、大規模プロセスにて行われる。すなわち、実際の用途のために燃料電池開発における最も重要な課題は、許容可能な寿命及び性能と併せて低コストの構成成分を使用して経済性を改善することである。
【0005】
プロトン伝導性膜を製造するためのプロセスであって、このプロセスは:(i)良好な酸吸収容量を有する電気的に非伝導性の無機粉末5体積%〜60体積%であって、この粉末が本質的にナノサイズ粒子を含む粉末;(ii)酸、酸化剤及び燃料に対して化学的に適合性であるポリマーバインダ5体積%〜50体積%;及び(iii)酸又は酸水溶液10〜90体積%を混合する工程であって、ここでこの混合が種々の割合の工程にて行われることによってプロトン伝導性混合物を生じる工程;このプロトン伝導性混合物をロール紙、不織布マトリックス又はその他のコーティング可能な材料上に周囲温度にて連続的にキャスティングを行う工程;このキャスティングされたプロトン伝導性混合物を100℃を超える温度で約5〜60分間乾燥させることによって、乾燥フィルムを形成する工程;複数の乾燥フィルムを共に圧力下で積層させ、その後この乾燥フィルムの孔から孔形成剤を抽出することによって、30ナノメートル未満の平均孔サイズを有するプロトン伝導性膜を形成する工程を含む、プロセス。
【0006】
本開示の新規なPCMは、良好な酸吸着容量を有するナノサイズのセラミック粉末、ポリマーバインダ、及びナノサイズの孔に吸収された酸を含む。このPCMは、再生可能な燃料電池(RFC)用途に特に有用である。
【0007】
PCMの主要構成成分は、ポリマーバインダ、無機ナノサイズ粉末、及び酸性溶液又は酸である。PCMの孔の典型的な直径は、約1.5〜30nm、好ましくは3nmである。孔は遊離酸分子で満たされており、酸性電解質を使用するエネルギー貯蔵システムの用途(例えばRFC用途)にとって大きな利点である。
【0008】
以前から議論されているPCMとは異なり、本開示の試薬(すなわち粉末及び溶媒)は、溶液の質を改善する添加剤と混合され、キャストフィルムの良好な機械的及び物理的特性をもたらす。次いでこの溶液は、機械的コーターを用いてキャスティングし、これはより効率の良いプロセス及びより均質なプロセスである。
【0009】
本開示の特異なプロセスに従って、少なくとも2〜6つ、好ましくは4つの乾燥フィルムが共に積層される。混合工程の種々の割合の工程は:室温で約100〜500rpmの混合割合にて1〜5時間混合する工程;約30〜50℃の範囲の温度にて約400〜700rpmの混合割合にて10〜20時間混合する工程;室温にて約100〜400rpmの混合割合にて10〜20時間混合する工程;及び約30〜50℃の範囲の温度にて5〜30分間脱気する工程を含む。プロトン伝導性混合物を連続的にキャスティングする工程は、ロール紙、不織布マトリックスなど、ロール・ツー・ロールキャリア支持体にわたって溶液を適用するためのコーター機を用いて行われる。
【0010】
キャリア支持体は、シリコン処理された紙であり、キャリア支持体の回転速度は、プロトン伝導性混合物の比重に従って設定される。
【0011】
乾燥フィルムは、約40〜60マイクロメートル、より好ましくは約50〜55マイクロメートルの厚さを有する。
【0012】
好ましくは、乾燥フィルムを積層する工程は、約5〜約20kg/cmの範囲の圧力、及び約130〜150℃の範囲の温度にて、約3〜約10分の間行われる。
【0013】
プロトン伝導性膜は、3nm未満の平均孔サイズ、より好ましくは1.5nm未満の平均孔サイズを有する。
【0014】
混合の前に少なくとも1つのレオロジー制御剤を追加する工程をさらに含むプロセス。レオロジー制御剤は:SPAN80(一般的な化学名ソルビタンモノオレエート、C2444を備える)及びZonyl(登録商標)FSN(一般的な化学名(CO)(CFFO、非イオン性フルオロ界面活性剤を備える)からなる群から選択される少なくとも1つである。
【0015】
抽出工程は:(a)プロトン伝導性膜の孔から孔形成剤を除去するのに十分な期間、エーテル/エタノール混合物中に、孔形成剤を有するプロトン伝導性膜を含浸する工程;(b)残存する孔形成剤及び他の溶媒を除去するために、工程(a)からのプロトン伝導性膜をエタノール中に含浸する工程;及び(c)孔からエタノールを除去するために、水中にプロトン伝導性膜を含浸する工程を含む。
【0016】
エーテル/エタノール混合物は、約1:9〜3:7の比を有する。含浸する工程(a)は、約1〜5時間行われる。含浸工程(b)は、約1〜5時間行われる。
【0017】
無機粉末は、SiO、ZrO、B、TiO、Al、及び水酸化物及びTi、Al、B及びZrのオキシ水酸化物からなる群から選択される少なくとも1つの粉末である。
【0018】
ポリマーバインダは、ポリ(ビニリデンフルオリド)、ポリ(ビニリデンフルオリド)ヘキサフルオロプロピレン、ポリ(テトラフルオロエチレン)、ポリ(メチルメタクリレート)、ポリ(スルホンアミド)、ポリ(アシルアミド)、ポリ(ビニルクロリド)、アクリロニトリル、ポリ(ビニルフルオリド)、及びKelF(商標)、(すなわちクロロトリフルオロエチレン)のホモポリマーから選択される少なくとも1つのバインダである。
【0019】
酸は、ポリフルオロオレフィンスルホン酸、ペルフルオロオレフィンスルホン酸、ポリフルオロアリールスルホン酸、ペルフルオロアリールスルホン酸、(ここで水素又はフッ素原子の50%までを、塩素原子によって置き換えた)、CF(CFSOH、HOS(CFCHSOH、CF3(CFCHSOH、HOS(CFSOH、ここでnは1から9の値を有する整数である、ナフィオン(商標)アイオノマー(すなわち、ペルフルオロスルホン酸−PTFEコポリマー)、HCl、HBr、リン酸及び硫酸からなる群から選択される少なくとも1つである。
【0020】
ポリフルオロアリールスルホン酸は、ポリフルオロベンゼン、ポリフルオロトルエン、及びポリフルオロスチレンスルホン酸からなる群から選択される少なくとも1つである。ペルフルオロアリールスルホン酸は、ペルフルオロベンゼン、ペルフルオロトルエン及びペルフルオロスチレンスルホン酸からなる群から選択される少なくとも1つである。
【0021】
プロセスはさらに、DBP(すなわちジブチルフタレート)、ジエチルフタレート、ジメチルフタレート、プロピレンカーボネート、エチレンカーボネートなど又はこれらのいずれかの組み合わせからなる群から選択される孔形成剤を含む。
【0022】
プロセスはさらに、酸又は酸水溶液を再捕捉する工程を含む。
【発明を実施するための形態】
【0023】
電気化学デバイスの中でも:RFCs、燃料電池、電解装置、バッテリ、電気化学センサなどが種々のタイプのイオン伝導性膜を使用している。
【0024】
開示された膜は、コポリマーマトリックス(例えば2つ(以上)のモノマー種から誘導されるポリマー)、セラミック粉末(例えば無機又は非金属性材料)の組み合わせである。大部分のセラミックは、金属元素と非金属元素との間の化合物であり、ここで原子間結合が完全にイオン性又は主にイオン性のいずれかであるが、特定の共有結合特徴を有し、適合性の有機溶媒可塑剤を有し、可撓性の自立型フィルムの形態の均質組成物を維持する。
【0025】
PCM製造のための改善された大規模なプロセスは、以降詳細に記載されるように、大量の材料、良好な懸濁液形成のための添加剤、業務用混合設備及び産業コーティング機の使用を含む。
【0026】
プロセス中の必須化学物質は、無機粉末、例えばセラミック粉末、より詳細にはSiO、ZrO、B、TiO、Al、ならびにTi、Al、B及びZrの水酸化物及びオキシ水酸化物、及びポリ−[フッ化ビニリデン](PVDF)のようなポリマーバインダなどであり、これらは溶媒及び添加剤の混合物中にブレンドされる。混合物中の二酸化ケイ素(silicone−dioxide)の体積%は、5〜50%、好ましくは15〜40%で変動し、より詳細な範囲は20〜30%である。膜フィルムは、上記範囲内のいくつかの組成物において次のプロセスにより製造された。溶媒と固形分の比は、10:1より小さく、好ましくは4:1以下である。その全体を参考として本明細書に組み込む米国特許第6811911号を参照のこと。
【0027】
記述したように、固形分、溶媒及び添加剤は、以降の工程に従って、様々な速度及び温度において、テフロン(登録商標)コーティングされた撹拌器を備える大容量のフラスコ(3〜10リットル、好ましくは5リットル)中で混合される。混合工程は、次のように記載される:
1.すべての液体物質及びすべての固形分を別々にプレブレンドする工程;
2.別の速度及び温度で数時間撹拌しながら、溶媒中に固形分を分散させる工程;及び
3.得られた溶液は、ここでキャスティング準備が整い、数週間密閉容器に保存できる。
【0028】
手動コーター又は半自動コーター(RK print社のKコントロールコーター又は同様のデバイス)を使用する以前から議論されている技術は、変動及び不一致を生じ易い。上記方法とは異なり、フィルムのキャスティングは、この実施形態では、好適な連続「ロール・ツー・ロール」支持体上にわたる溶液の適用について、その全体が参考として本明細書に組み込まれる米国特許第4119836号に記載されるように「Doctor Knife」方法を使用するコーターパイロット機を用いて行われる。使用されるキャリア支持体は、膜を容易に丸くすることができるシリコン処理された紙、織布、不織布炭素支持体又はその他の支持体であることができ、機械中の紙の回転速度は、溶液パラメータ(比重、粘度など)に従って設定される。ナイフギャップは、溶液特性に従って所望のフィルム厚さに適合するように調節し、溶液により紙を連続的にコーティングしながら、アニーリングオーブンになだれ込ませる。オーブンのフロント部分の温度は、90〜110℃で変動する。オーブン中の総滞留時間は、回転速度及びフィルム厚さによって決定される。
【0029】
(プロトン伝導性膜)
好ましい固体電解質膜は、30nmより本質的に小さい直径サイズを有する孔を有するプロトン伝導性膜であり、(i)良好な酸吸収容量を有する電気的に非伝導性の無機粉末5体積%〜60体積%であって、本質的にナノサイズの粒子を含む粉末;(ii)酸、酸素及び前記燃料と化学的に適合性のポリマーバインダ5体積%〜50体積%;及び(iii)酸又は酸水溶液10〜90体積%を含む。
【0030】
燃料電池に使用される固体プロトン伝導性膜は、その全体が参考として本明細書に組み込まれる米国特許第6,447,943号明細書及び米国特許第6,492,047号明細書に記載される。これらの膜に使用されるポリマー性バインダは:ポリ(ビニリデンフルオリド)、ポリ(ビニリデンフルオリド)ヘキサフルオロプロピレン、ポリ(テトラフルオロエチレン)、ポリ(メチルメタクリレート)、ポリ(スルホンアミド)、ポリ(アクリルアミド)、ポリ(ビニルクロリド)、アクリロニトリル、ポリ(ビニルフルオリド)、KelF(商標)、及びこれらのいずれかの組み合わせからなる群から選択される。
【0031】
固体プロトン伝導性膜を調製するために使用される無機ナノサイズ粉末は、SiO、ZrO、B、TiO、Al、Ti、Al、B及びZrの水酸化物及びオキシ水酸化物、ならびにこれらのいずれかの組み合わせからなる群から選択される。
【0032】
開示の燃料電池に使用されるプロトン伝導性膜はまた、酸を含む。例えばその全体が参考として本明細書に組み込まれる米国特許第5,599,638号明細書に記載される、酸が遊離形態では存在しない固体の電解質膜とは対照的に、本明細書で議論されている固体電解質膜は、燃料電池に使用される場合、膜の孔に捕捉される遊離酸分子を含有する。あるいは、無機粉末に結合される酸分子を含有してもよい。これらの孔の典型的な直径は、本質的に30nmより小さく、好ましくは20nmより小さく、及びより好ましくは3nmより小さい。
【0033】
電池ハードウェア及び両方の電極における触媒と適合性の多様な低蒸気圧酸が使用でき、特定の用途に採用できる。例えば次に酸のリストを示す:ポリフルオロオレフィンスルホン酸、ペルフルオロオレフィンスルホン酸、ポリフルオロアリールスルホン酸、例えばポリフルオロベンゼン、ポリフルオロトルエン又はポリフルオロスチレンスルホン酸、ペルフルオロアリールスルホン酸、例えばペルフルオロベンゼン、ペルフルオロトルエン又はペルフルオロスチレンスルホン酸、50%までの水素又はフッ素原子が塩素原子で置き換えられた同様の酸、CF(CFSOH、HOS(CFCHSOH、CF3(CFCHSOH、HOS(CFSOH(式中、nは1〜9の値を有する整数である)、ナフィオン(商標)アイオノマー、HCl、HBr、リン酸、硫酸及びこれらの混合物である。
【0034】
あるいは、固体の電解質膜は、プロトン伝導性膜(PCM)であり、それは、50nmより本質的に小さく、好ましくは3nmより小さく、より好ましくは1.5nmより小さい典型的な直径サイズを有する孔を含む。
【0035】
本開示に従うさらなる膜は、その全体が参考として本明細書に組み込まれる米国特許第6,811,911号明細書に記載されるようなプロトン伝導性マトリックスで製造されるフィルムである。イオン伝導性マトリックスは:(i)良好な水性電解質吸収容量を有する無機粉末5体積%〜60体積%;(ii)水性電解質と化学的に適合性のポリマーバインダ5体積%〜50体積%;及び(iii)水性電解質10〜90体積%を含み、ここで無機粉末は、本質的にサブミクロン粒子、好ましくは約5〜約150nmのサイズを含む。本開示のマトリックスは、場合により、マトリックスのすべての構成成分と化学的に適合性の非揮発性液体潤滑剤約0.1〜約25%を含んでいてもよい。
【0036】
本開示の好ましい実施形態に従って、無機粉末は、少なくとも10m/gの表面積を有し、水性電解質のための良好な吸収能力を保持することを特徴とする。
【0037】
好ましくは本開示のマトリックスの無機粉末は、SiO、ZrO、B、TiO、Alなどからなる群から選択される粉末である。
【0038】
本開示のマトリックスに使用されるポリマーバインダは、使用される水性電解質と化学的に適合性であり、すなわちその電解質に不溶性である材料であり、ポリビニリデンフルオリド(PVDF)、PVDF−ヘキサフルオロプロピレン(PVDHFP)、ポリ(テトラフルオロエチレン)(PTFE)、ポリ(メチルメタクリレート)(PMMA)、ポリスルホンアミド、ポリ(アクリルアミド)、ポリビニルクロリド(PVC)、ポリ(アクリロニトリル)、ポリビニルフルオリド及びいずれかのこれらの組み合わせからなる群から選択される材料である。
【0039】
酸の混合物であってもよい本開示に従う酸は、当該技術分野においてこれ自体既知である純粋な酸又は水中又は別の好適な非水性溶媒中に溶解する酸であってもよい。本開示に従う好適な酸は:CF3(CFSOH、HOS(CFSOH(式中、nは0〜9の値を有する整数である)、硫酸、HCl、HBr、リン酸、HNOなどである。好ましい酸は、CF(CFSOH又はHOS(CFSOH(式中、nは0、1、2、3又は4に等しい)である。これらの好ましい酸は、純粋な形態又は10〜99%のモル濃度、好ましくは25%〜99%のモル濃度を有する水溶液のいずれかで使用できる。
【0040】
本開示のPCMは、良好な機械的特性を有するプラスチックフィルムの一般的な外観を有する。それは、通常、実質的に破砕を生じることなく、約180°まで曲げることができ、約10〜約1000ミクロン以上の範囲の厚さに調製できる。その安定性及び良好なイオン伝導率のために、それを、氷点下から約150℃の広範囲の温度で使用できる。
【0041】
本開示の好ましい実施形態によれば、マトリックスが膜の調製中に存在する場合、マトリックスに含まれる無機粉末は非常に細かく、好ましくは150nm未満の粒径を有する電気的に非伝導性の粉末である。この実施形態によれば、水性電解質が吸収されるPCMの孔は、非常に小さく、それらの特徴的な寸法は本質的に50nmより小さい。
【0042】
使用される酸又は水性電解質のための膜の吸収容量又は保持容量は、いくつかのパラメータに依存し、それらには組成、及び無機粉末のタイプ、ポリマーバインダ及び溶解した酸又は電解質のタイプがある。これらのパラメータの組み合わせは、各用途のための製品を調整するために最適化されるべきである。こうした最適化を行うと同時に、無機粉末の含有量が最高になると、機械的特性が劣化するという事実が考慮されるべきである。マトリックスの無機粉末含有量が増大すると、その電解質保持特徴が増大するが、同時に、その機械的強度が低下する。一方、マトリックス中のポリマーバインダを増大させることが、それらの強度を増大させるが、マトリックスの湿潤性が低下するので、それらが低伝導性になる。
【0043】
本開示のさらなる別の実施形態によれば、マトリックスの湿潤性及び結果としての電解質保持の改善は、Al、Zr、B、Tiなどのような多価金属塩を膜に添加することによって達成される。
【0044】
本開示の別の実施形態によれば、マトリックス湿潤性及び結果としての電解質保持の改善は、膜の調製の前に酸又は塩基により無機粉末を予備処理することによって達成される。
【実施例】
【0045】
(実施例1)(28−12バージョン、60%孔体積):
200グラムのPVDF及び400m/gの面積を有する105.6gの二酸化ケイ素(「シリカ」)を混合する。異なるフラスコにおいて、処理溶媒(241.6グラムのDBP及び1320グラムのDMF)及びレオロジー制御剤(10グラムのSPAN80及び0.6グラムのZonil)を混合する。粉末を低混合割合(200rpm)にて室温で溶媒中に3時間分散させる。混合割合を500rpmまで上昇させながら、40℃で16時間加熱する。室温で300rpmにてさらに16時間脱気のために撹拌し(混合物中に捕捉された空気を除去)、続いて35℃で混合することなく、制御された温度環境に6時間おく。次いで溶液を、NIR−LNR−0063R−01タイプのシリコン処理された紙が充填されたコーティング機(http://www.dixontechnologies.com/marketspilot.htmlに記載されるDixon Model 160 Mk2)に移す。ナイフギャップは、180マイクロメートルに設定し、回転速度を毎分0.5メートルにした。
【0046】
得られた乾燥フィルムは40〜60マイクロメートル厚さ、好ましくは50〜55マイクロメートル厚さであり、孔形成剤(高粘度を有する油状物質である)として作用する液体物質DBP、及び一部の他の残留溶媒と共に含有される。5〜20kg/cmの圧力下、140〜145℃にて3〜10分間、2〜6つのフィルムを共に積層させることにより、良好な機械的特性を有する膜を得る。抽出プロセスは、孔から孔形成剤を「排出させる」ために、積層の後に続き、小さい孔、30ナノメートル未満、好ましくは3nm未満、より詳細には1.5nm未満の孔を有する多孔質フィルムを創出する。抽出段階はいくつかの工程を含む:
・エーテル:エタノール浴は、こうした溶媒を1:9の比で含有し、膜は、孔のDBPを抽出するために2時間浴に含浸される;
・DBPの残り及び他の潜在溶媒を除去するために2時間にわたってエタノール浴に含浸させ;及び
・水浴(脱イオン水)−孔からエタノールを除去するために含浸される。
【0047】
(実施例2)(32−8バージョン、60%孔体積):
混合及びキャスティング手順は、材料の量が次の式に従って変更されている以外、実施例1に記載される手順と同一である。
(数1)284.8グラムのPVDF、88グラムのシリカ、311.8グラムのDBP、12.5グラムのSPAN80、1377.4グラムのDMF、0.2グラムのZonil
【0048】
(実施例3)
3Mの硫酸で1時間沸騰させた後、室温での伝導率について実施例1及び2の膜をSolartron 1260を用いて試験した。伝導率は、実施例1及び2についてそれぞれ0.144S/cm−1及び0.102S/cm−1であった。それは良好な酸吸収性を有するので伝導性は充分である。以下の表1は、ここで使用されている最新の自動化プロセスに対して、以前の手動小規模プロセスにて製造されるいくつかの膜の伝導率を示す。全体として、大規模プロセスは、0.1〜0.2S/cm−1の許容可能な範囲内で膜の伝導率特性を保持する。
【表1】

i−Electrochemical and Solid−State Letters,1(5)210−211(1998)
ii−Electrochemical and Solid−State Letters,3(12)(2000)
iii−Journal of Power Sources 161(2006)1187−1191
iv−Electrochemical and Solid−State Letters,7(12)(2004)507
v−Electrochemical and Solid−State Letters,6(12)A268−A271(2003)
【0049】
(実施例4)
以下の表2は、本開示のプロトン伝導性膜を製造するプロセスと従来のプロセス工程における相違を要約した。
大部分の改善により、時間と労力が節約される、すなわち得られたフィルムの良好な質を伴う効率の良いプロセスである。プロセスの再現性は、信頼でき、簡便である;フィルムは均質でより強靭であり、表1に示されるように、許容できる範囲内及び統計学的エラーの範囲内において、膜の物理的特性に微量の無視できる程度の影響を与えるだけである。
【0050】
【表2】


【特許請求の範囲】
【請求項1】
プロトン伝導性膜を製造するためのプロセスであって、前記プロセスが:
(i)良好な酸吸収容量を有する電気的に非伝導性の無機粉末5体積%〜60体積%であって、前記粉末が本質的にナノサイズ粒子を含む粉末;(ii)酸、酸化剤及び燃料と化学的に適合性であるポリマーバインダ5体積%〜50体積%;及び(iii)酸又は酸水溶液10〜90体積%を混合する工程であって、ここで前記混合が種々の割合の工程にて行われることによって混合物を生じる工程;
前記混合物をロール紙、不織布マトリックス上に周囲温度にて連続的にキャスティングを行う工程;
前記キャスティングされた混合物を100℃を超える温度で乾燥させることによって、乾燥フィルムを形成する工程;及び
複数の前記乾燥フィルムを共に圧力下で積層させ、その後前記乾燥フィルムの孔から孔形成剤を抽出することによって、30ナノメートル未満の平均孔サイズを有するプロトン伝導性膜を形成する工程
を含む、プロセス。
【請求項2】
少なくとも4つの前記乾燥フィルムを共に積層させる、請求項1に記載のプロセス。
【請求項3】
前記混合工程の前記種々の割合の工程が、
約100〜500rpmの混合割合にて室温で1〜5時間混合する工程;
約400〜700rpmの混合割合にて約30〜50℃の範囲の温度で10〜20時間混合する工程;
約100〜400rpmの混合割合にて室温で10〜20時間混合する工程;及び
約30〜50℃の範囲の温度にて5〜30時間脱気する工程
を含む、請求項1に記載のプロセス。
【請求項4】
前記乾燥フィルムが、約40〜60マイクロメートルの厚さを有する、請求項1に記載のプロセス。
【請求項5】
前記乾燥フィルムが、約50〜55マイクロメートルの厚さを有する、請求項4に記載のプロセス。
【請求項6】
前記乾燥フィルムの前記積層工程が、約5〜20kg/cmの範囲の圧力下、約140〜145℃の範囲の温度にて約3〜10分間行われる、請求項1に記載のプロセス。
【請求項7】
前記プロトン伝導性膜が、3nm未満の平均孔サイズを有する、請求項1に記載のプロセス。
【請求項8】
前記プロトン伝導性膜が、1.5nm未満の平均孔サイズを有する、請求項7に記載のプロセス。
【請求項9】
前記乾燥工程が、約5〜60分間行われる、請求項1に記載のプロセス。
【請求項10】
前記プロトン伝導性膜が実質的にクラックを含まない、請求項1に記載のプロセス。
【請求項11】
少なくとも1つのレオロジー制御剤が混合前に添加される工程をさらに含む、請求項1に記載のプロセス。
【請求項12】
前記抽出工程が:
(a)前記プロトン伝導性膜の孔から前記孔形成剤を除去するのに十分な期間、エーテル/エタノール混合物中、孔形成剤を有するプロトン伝導性膜を含浸する工程;
(b)残存する孔形成剤及び他の溶媒を除去するために工程(a)からの前記プロトン伝導性膜をエタノール中に含浸する工程;及び
(c)前記孔から前記エタノールを除去するために水中に前記プロトン伝導性膜を含浸する工程
を含む、請求項1に記載のプロセス。
【請求項13】
前記エーテル/エタノール混合物が、約1:9〜3:7の比を有する、請求項12に記載のプロセス。
【請求項14】
前記含浸工程(a)が、約1〜5時間行われる、請求項12に記載のプロセス。
【請求項15】
前記含浸工程(b)が、約1〜5時間行われる、請求項12に記載のプロセス。
【請求項16】
前記無機粉末が、SiO、ZrO、B、TiO、Al、ならびにTi、Al、B及びZrの水酸化物及びオキシ水酸化物からなる群から選択される少なくとも1つの粉末である、請求項1に記載のプロセス。
【請求項17】
前記ポリマーバインダが、ポリ(ビニリデンフルオリド)、ポリ(ビニリデンフルオリド)ヘキサフルオロプロピレン、ポリ(テトラフルオロエチレン)、ポリ(メチルメタクリレート)、ポリ(スルホンアミド)、ポリ(アクリルアミド)、ポリ(ビニルクロリド)、アクリロニトリル、ポリ(ビニルフルオリド)、及びクロロトリフルオロエチレンのホモポリマーからなる群から選択される少なくとも1つのバインダである、請求項1に記載のプロセス。
【請求項18】
前記酸が、ポリフルオロオレフィンスルホン酸、ペルフルオロオレフィンスルホン酸、ポリフルオロアリールスルホン酸、ペルフルオロアリールスルホン酸、(ここで水素又はフッ素原子の50%までが、塩素原子によって置き換えられている)、CF(CFSOH、HOS(CFCHSOH、CF3(CFCHSOH、HOS(CFSOH、ここでnは1から9の値を有する整数である、ペルフルオロスルホン酸コポリマー、HCl、HBr、リン酸及び硫酸からなる群から選択される少なくとも1つである、請求項1に記載のプロセス。
【請求項19】
前記ポリフルオロアリールスルホン酸が、ポリフルオロベンゼン、ポリフルオロトルエン、及びポリフルオロスチレンスルホン酸からなる群から選択される少なくとも1つである、請求項18に記載のプロセス。
【請求項20】
前記ペルフルオロアリールスルホン酸が、ペルフルオロベンゼン、ペルフルオロトルエン及びペルフルオロスチレンスルホン酸からなる群から選択される少なくとも1つである、請求項18に記載のプロセス。
【請求項21】
ジブチルフタレート、ジエチルフタレート、ジメチルフタレート、プロピレンカーボネート、及びエチレンカーボネートからなる群から選択される少なくとも1つの孔形成剤をさらに含む、請求項1に記載のプロセス。
【請求項22】
前記レオロジー制御剤は:ソルビタンモノオレエート、C2444、及び非イオン性フルオロ界面活性剤(CO)(CFFOからなる群から選択される少なくとも1つである、請求項11に記載のプロセス。
【請求項23】
前記酸又は酸水溶液を再捕捉する工程をさらに含む、請求項1に記載のプロセス。
【請求項24】
前記プロトン伝導性混合物を連続的にキャスティングする前記工程が、ロール紙、不織布マトリックスなど、ロール・ツー・ロールキャリア支持体にわたって溶液適用するためのコーター機を用いて行われる、請求項1に記載のプロセス。
【請求項25】
前記キャリア支持体が、シリコン処理された紙であり、前記キャリア支持体の回転速度が、前記プロトン伝導性混合物の比重に従って設定される、請求項24に記載のプロセス。
【請求項26】
請求項1のプロセスによって形成されるプロトン伝導性膜。


【公表番号】特表2013−518365(P2013−518365A)
【公表日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2012−549439(P2012−549439)
【出願日】平成23年1月24日(2011.1.24)
【国際出願番号】PCT/IB2011/000102
【国際公開番号】WO2011/089521
【国際公開日】平成23年7月28日(2011.7.28)
【出願人】(512188018)ラモット アット テル−アヴィヴ ユニヴァーシテイ リミテッド (5)
【氏名又は名称原語表記】RAMOT AT TEL−AVIV UNIVERSITY LTD
【住所又は居所原語表記】P.O. Box 39296, Tel Aviv 61392, Israel
【Fターム(参考)】