説明

プロピレン系共重合体、及び該共重合体からなる樹脂組成物並びに成形体

【課題】べたつきが少なく、軟質性及び透明性に優れた成形体を与えるプロピレン系重合体提供すること。
【解決手段】下記(1)及び(2)を満たすプロピレン系重合体。
(1)25℃のヘキサンへの溶出成分量が0〜80質量%及び(2)DSC測定において、融点(Tm(℃))を示さないか、或いはTmと融解吸熱量ΔHがΔH≧6×(Tm−140)の関係を満たす

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プロピレン系重合体、及び該重合体からなる樹脂組成物並びに成形体及び樹脂改質剤に関し、さらに詳しくは、べたつきが少なく、軟質性及び透明性に優れた成形体を与えるプロピレン系重合体、及び該重合体からなる樹脂組成物並びに成形体及び樹脂改質剤に関するものである。
【背景技術】
【0002】
従来、軟質樹脂として塩化ビニル樹脂が広く用いられているが、塩化ビニル樹脂は、その燃焼過程において有害な物質を発生させることが知られており、代替品の開発が強く望まれている。軟質塩化ビニル樹脂の代替品としてプロピレン系重合体がある。プロピレン系重合体は各種触媒の存在下に製造されるが、従来の触媒系を用いて製造されたプロピレン系重合体は、軟質(すなわち弾性率の低いもの)にしようとすると、べたつき成分が多くなってしまうという欠点があった。べたつき成分の原因であるAPP成分が増加し、得られる成形体の表面特性が悪化する。また、シートやフィルム等の形態の成形体を食品、医療用途等へ展開する場合、様々な問題が生じる恐れがある。そこで、弾性率の低さとべたつき成分の量とのバランスが改善されたプロピレン系重合体が望まれている。
【発明の開示】
【発明が解決しようとする課題】
【0003】
本発明は、べたつきが少なく、軟質性及び透明性に優れた成形体を与えるプロピレン系重合体、及び該重合体からなる樹脂組成物並びに成形体及び樹脂改質剤を提供することを目的とするものである。
【課題を解決するための手段】
【0004】
本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、(1)25℃のヘキサンに溶出する成分量が特定の範囲にあり、かつ(2)DSC測定において、融点を示さないか、或いは融点を示す場合は融点と融解吸熱量が特定の関係を満たすプロピレン系重合体が、べたつき成分の量と弾性率の低さと透明性のバランスに優れていることを見出し、本発明を完成するに至った。即ち、本発明は、以下のプロピレン系重合体、及び該重合体からなる樹脂組成物並びに成形体及び樹脂改質剤を提供するものでる。
【0005】
1.下記の(1)〜(4)を満たすプロピレン系共重合体。
(1)25℃のヘキサンに溶出する成分量(H25)が0〜80質量%である、
(2)DSC測定において、融点(Tm(℃))を示さないか、或いはTmを示す場合はTmと融解吸熱量ΔH(J/g)が下記の関係を満たす、
ΔH≧6×(Tm−140)
(3)昇温クロマトグラフィーにおける25℃以下で溶出する成分量(W25)が20〜100質量%である、
(4)13C−NMR測定による立体規則性指標(P)が55〜90モル%である
2.ゲルパーミエイションクロマトグラフ(GPC)法により測定した分子量分布(Mw/Mn)が4以下である上記1に記載のプロピレン系共重合体、
3.テトラリン溶媒中135℃にて測定した極限粘度[η]が0.5〜15.0デシリットル/gである上記1又は2に記載のプロピレン系共重合体、
4.DSC測定による融解吸熱量ΔHが20J/g以下である上記1〜3のいずれかに記載のプロピレン系共重合体、
5.DSC測定によるTmが100℃以下である上記1〜4のいずれかに記載のプロピレン系共重合体、
6.沸騰ジエチルエーテル抽出量が5質量%以上である上記1〜5のいずれかに記載のプロピレン系共重合体、
7.引張弾性率が100MPa以下である上記1〜6のいずれかに記載のプロピレン系共重合体、
8.プロピレン系共重合体がランダム共重合体である上記1〜7のいずれかに記載のプロピレン系共重合体、
9.プロピレンから得られる構造単位が90モル%以上である上記1〜8のいずれかに記載のプロピレン系共重合体、
10.(A)下記一般式(I)で表される遷移金属化合物、及び(B)(B−1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる成分を含有する重合用触媒の存在下、プロピレンとエチレン及び/又は炭素数4〜20のα−オレフィンを共重合させることにより得られる上記1〜9のいずれかに記載のプロピレン系共重合体。
【化1】

〔式中、Mはチタン、ジルコニウム、ハフニウムから選ばれる金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基、インデニル基、置換インデニル基、ヘテロシクロペンタジエニル基、置換ヘテロシクロペンタジエニル基、アミド基、ホスフィド基、炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、またそれらはたがいに同一でも異なっていてもよく、Xはα結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX、E1、E2又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY、E1、E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕、
11.上記1〜10に記載のプロピレン系共重合体と造核剤を含有する樹脂組成物、
12.造核剤の含有量が10ppm以上である上記11に記載の樹脂組成物、
13.上記11又は12に記載の樹脂組成物がさらに酸化防止剤、中和剤、スリップ剤、アンチロッキング剤、防曇剤、帯電防止剤から選ばれる添加剤を含有する樹脂組成物、
14.上記1〜10のいずれかに記載のプロピレン系共重合体又は上記11〜13のいずれかに記載のプロピレン系樹脂組成物を成形してなる成形体、
15.上記1〜10のいずれかに記載のプロピレン系共重合体からなるプロピレン系樹脂改質剤
【発明の効果】
【0006】
本発明のプロピレン系重合体及び該重合体からなる樹脂組成物並びに成形体は、べたつきが少なく、軟質性及び透明性に優れ、フィルム、シート、容器、自動車内装材、家電製品のハウジング材等として好適である。フィルムとしては、食品包装用フィルムや農業用フィルム、容器としては、透明ケース、透明ボックス、化粧箱等が挙げられる。また、軟質塩化ビニル樹脂代替樹脂として好適に使用できる。本発明の樹脂改質剤は、軟質性があり、べとつきが少なくポリレフィン樹脂との相溶性に優れた成形体を与える。
【発明を実施するための形態】
【0007】
以下、本発明のプロピレン系重合体[1]、その製造方法[2]、プロピレン系樹脂組成物[3]並びに成形体[4]及びプロピレン系樹脂改質剤[5]について詳しく説明する。
[1]プロピレン系重合体
本発明のプロピレン系重合体は、下記の(1)及び(2)を要件とする重合体である。
(1)25℃のヘキサンに溶出する成分量(H25)が0〜80質量%である
(2)DSC測定において、融点(Tm(℃))を示さないか、或いはTmを示す場合はTmと融解吸熱量ΔH(J/g)が下記の関係を満たす
ΔH≧6×(Tm−140)
本発明のプロピレン系重合体は、25℃のヘキサンに溶出する成分量(H25)が0〜80質量%である。好ましくは、0〜50質量%、特に好ましくは、0〜25質量%である。H25は、べたつき、透明性低下等の原因となるいわゆるべたつき成分の量が多いか少ないかを表す指標であり、この値が高いほどべたつき成分の量が多いことを意味する。H25が80質量%を超えると、べたつき成分の量が多く、耐ブロッキング性の低下や透明性の低下が起こり、食品用途や医療品用途に使えない。
【0008】
なお、H25とは、プロピレン系重合体の質量(W0)と該重合体を200mLのヘキサン中に、25℃、3日間以上静置後、乾燥した後の質量(W1)を測定し、次式により計算して求めた質量減少率である。H25=〔(W0−W1)/W0〕×100(%)
さらに、本発明のプロピレン系重合体は、DSC測定において、融点(Tm(℃))を示さないか、或いはTmを示す場合はTmと融解吸熱量ΔHが下記の関係を満たす。
【0009】
ΔH≧6×(Tm−140)
さらに好ましくは、
ΔH≧3×(Tm−120)
特に好ましくは、
ΔH≧2×(Tm−100)
を満たす。
【0010】
なお、Tm及びΔHは、DSC測定により求める。すなわち、示差走査型熱量計(パーキン・エルマー社製、DSC−7)を用い、試料10mgを窒素雰囲気下230℃で3分間溶融した後、10℃/分で0℃まで降温する。さらに、0℃で3分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最大ピークのピークトップが融点:Tmであり、この場合の融解吸熱量がΔHである。
【0011】
本発明のプロピレン系重合体は、上記の関係を満たすことにより、得られる成形体等のべたつき成分の量と弾性率の低さと透明性のバランスが優れる。すなわち、弾性率が低く軟質性(柔軟性とも言う)に優れ、べたつき成分が少なく表面特性(例えば、ブリードや他の製品へのべたつき成分の移行が少ない等に代表される)にも優れ、かつ透明性にも優れるという利点がある。
【0012】
本発明のプロピレン系重合体としては、上記の要件の他に昇温クロマトグラフィーにおける25℃以下で溶出するプロピレン系重合体の成分量(W25)が20〜100質量%であることが好ましい。さらに好ましくは、30〜100質量%、特に好ましくは、50〜100質量%である。W25は、プロピレン系重合体が軟質であるか否かを表す指標である。この値が大きくなると弾性率の高い成分が多くなったり、及び/又は立体規則性分布の不均一さが広がっていることを意味する。本発明においては、W25が20%未満では、柔軟性がなくなり好ましくないことがある。なお、W25とは、以下のような操作法、装置構成及び測定条件の昇温クロマトグラフィーにより測定して求めた溶出曲線におけるTREFのカラム温度25℃において充填剤に吸着されないで溶出する成分の量(質量%)である。
(a)操作法
試料溶液を温度135℃に調節したTREFカラムに導入し、次いで降温速度5℃/時間にて徐々に0℃まで降温し、30分間ホールドし、試料を充填剤表面に結晶化させる。その後、昇温速度40℃/時間にてカラムを135℃まで昇温し、溶出曲線を得る。
(b)装置構成
TREFカラム :GLサイエンス社製 シリカゲルカラム(4.6φ×150mm)
フローセル :GLサイエンス社製 光路長1mm KBrセル
送液ポンプ :センシュウ科学社製 SSC−3100ポンプ
バルブオーブン :GLサイエンス社製 MODEL554オーブン(高温型)
TREFオーブン:GLサイエンス社製
二系列温調器 :理学工業社製 REX−C100温調器
検出器 :液体クロマトグラフィー用赤外検出器
FOXBORO社製 MIRAN 1A CVF
10方バルブ :バルコ社製 電動バルブ
ループ :バルコ社製 500マイクロリットルループ
(c)測定条件
溶媒 :o−ジクロロベンゼン
試料濃度 :7.5g/リットル
注入量 :500マイクロリットル
ポンプ流量 :2.0ミリリットル/分
検出波数 :3.41μm
カラム充填剤 :クロモソルブP(30〜60メッシュ)
カラム温度分布 :±0.2℃以内
本発明のプロピレン系重合体としては、前記の要件を満たすものであれば特に制限はなく、プロピレン単独重合体やプロピレン系共重合体が挙げられる。なかでも、前記した本発明のプロピレン系重合体は、より具体的には、下記の[a]プロピレン単独重合体又は[a']プロピレン共重合体により好適に実現される。
【0013】
[a]プロピレン単独重合体
本発明のプロピレン単独重合体は、下記の(1)〜(3)を要件とする重合体である。
(1)メソペンタッド分率(mmmm)が20〜60モル%であり、
(2)ラセミペンタッド分率(rrrr)と(1−mmmm)が下記の関係を満たし、かつ、
[rrrr/(1−mmmm)]≦0.1
(3)昇温クロマトグラフィーにおける25℃以下で溶出する成分量(W25)が20〜100質量%である
本発明のプロピレン単独重合体が、上記の関係を満たすと、得られる成形体等のべたつき成分の量と弾性率の低さと透明性のバランスが優れる。すなわち、弾性率が低く軟質性(柔軟性とも言う)に優れ、べたつき成分が少なく表面特性(例えば、ブリードや他の製品へのべたつき成分の移行が少ない等に代表される)にも優れ、かつ透明性にも優れるという利点がある。
【0014】
本発明で用いられるメソペンダッド分率(mmmm分率)とは、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,6,925(1973)」で提案された方法に準拠し、13C−NMRスペクトルのメチル基のシグナルにより測定されるポリプロピレン分子鎖中のペンタッド単位でのメソ分率である。これが大きくなると、立体規則性が高くなることを意味する。本発明のプロピレン単独重合体のメソペンタッド分率(mmmm)が20モル%未満では、べたつきの原因となる。60モル%を超えると弾性率が高くなり好ましくない。同じくラセミペンダッド分率(rrrr分率)とは、ポリプロピレン分子鎖中のペンタッド単位でのラセミ分率である。[rrrr/(1−mmmm)]は、上記のペンタッド単位の分率から求められ、プロピレン単独重合体の規則性分布の均一さをあらわす指標である。この値が大きくなると規則性分布が広がり、既存触媒系を用いて製造される従来のポリプロピレンのように高規則性PPとAPPの混合物となり、べたつきが増し、透明性が低下することを意味する。本発明のプロピレン単独重合体の[rrrr/(1−mmmm)]が0.1を超えるとべたつきの原因となる。なお、13C−NMRスペクトルの測定は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,8,687(1975)」で提案されたピークの帰属に従い、下記の装置及び条件にて行う。
【0015】
装置:日本電子(株)製JNM−EX400型13C−NMR装置
方法:プロトン完全デカップリング法
濃度:220mg/ミリリットル
溶媒:1,2,4−トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
温度:130℃
パルス幅:45°
パルス繰り返し時間:4秒
積算:10000回
次に、本発明におけるプロピレン単独重合体に関するW25の意味及び測定方法については、前記のプロピレン系重合体[1]におけるものと同じである。本発明におけるプロピレン単独重合体のW25が20%未満では、柔軟性がなくなる。
【0016】
本発明のプロピレン単独重合体が、前記の要件の中で下記の(4)メソペンタッド分率(mmmm)が30〜50%であり、(5)ラセミペンタッド分率(rrrr)と(1−mmmm)が下記の関係を満たし、
[rrrr/(1−mmmm)]≦0.08
かつ、(6)昇温クロマトグラフィーにおける25℃以下で溶出する成分量(W25)が30〜100質量%であることを満たすとさらに好ましく、(7)ラセミペンタッド分率(rrrr)と(1−mmmm)が下記の関係を満たし、
[rrrr/(1−mmmm)]≦0.06かつ、(8)昇温クロマトグラフィーにおける25℃以下で溶出する成分量(W25)が50〜100質量%であることを満たすと特に好ましい。(9)ラセミペンタッド分率(rrrr)と(1−mmmm)が下記の関係を満たし、
[rrrr/(1−mmmm)]≦0.05
かつ、(10)昇温クロマトグラフィーにおける25℃以下で溶出する成分量(W25)が60〜100質量%であることを満たすと最も好ましい。
【0017】
また、本発明のプロピレン単独重合体としては、ペンタッド分率(rmrm)が2.5モル%を超えるものが好ましい。ペンタッド分率(rmrm)が2.5モル%を超えるとランダム性が増し透明性がさらに向上する。さらに、メソトリアッド分率(mm)、ラセミトリアッド分率(rr)、トリアッド分率(mr)が下記の関係を満たすものが好ましい。
(mm)×(rr)/(mr)2≦2.0
【0018】
この関係は、重合体のランダム性の指標を表し、1に近いほどランダム性が高くなり、透明で、柔軟性と弾性回復率のバランスに優れる。本発明のプロピレン単独重合体としては、上式の左辺の値が通常2以下、好ましくは1.8〜0.5、さらに好ましくは1.5〜0.5の範囲である。なお、トリアッド分率は前記のペンタッド分率と同様な方法で求める。
【0019】
本発明のプロピレン単独重合体は、上記の要件の他にゲルパーミエイション(GPC)法により測定した分子量分布(Mw/Mn)が4以下及び/又はテトラリン溶媒中135℃にて測定した極限粘度[η]が0.5〜15.0デシリットル/gが好ましく、Mw/Mnが3.5以下及び/又は[η]が1.0〜5.0デシリットル/gがさらに好ましく、Mw/Mnが3以下及び/又は[η]が1.0〜3.0デシリットル/gが特に好ましい。なかでもより好ましくは[η]が1.5〜3.0デシリットル/g、特に好ましくは2.0〜2.5デシリットル/gである。分子量分布(Mw/Mn)が4を超えるとべたつきが発生したり、極限粘度[η]が0.5デシリットル/g未満では、べたつきが発生することがある。また15.0デシリットル/gを超えると、流動性が低下するため成形性が不良となることがある。
【0020】
なお、上記Mw/Mnは、ゲルパーミエーションクロマトグラフ(GPC)法により、下記の装置及び条件で測定したポリエチレン換算の質量平均分子量Mw及び数平均分子量Mnより算出した値である。
GPC測定装置
カラム :TOSO GMHHR−H(S)HT
検出器 :液体クロマトグラム用RI検出器 WATERS 150C
測定条件
溶媒 :1,2,4−トリクロロベンゼン
測定温度 :145℃
流速 :1.0ミリリットル/分
試料濃度 :2.2mg/ミリリットル
注入量 :160マイクロリットル
検量線 :Universal Calibration
解析プログラム:HT−GPC(Ver.1.0)
さらに、本発明のプロピレン単独重合体は、上記の要件の他に、DSC測定による融解吸熱量ΔHが20J/g以下であると柔軟性が優れ好ましい。ΔHは、軟質であるかないかを表す指標でこの値が大きくなると弾性率が高く、軟質性が低下していることを意味する。なお、ΔHは前記の方法により求める。
【0021】
さらに、本発明におけるプロピレン単独重合体は、融点(Tm)及び結晶化温度(Tc)があってもなくてもよいが、軟質性の点からないこと或いは低い値、特にTmについては100℃以下であることが好ましい。なお、Tm及びTcは、DSC測定により求める。すなわち、示差走査型熱量計(パーキン・エルマー社製、DSC−7)を用い、試料10mgを窒素雰囲気下230℃で3分間溶融した後、10℃/分で0℃まで降温する。このときに得られた結晶化発熱カーブの最大ピークのピークトップが結晶化温度:Tcである。さらに、0℃で3分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最大ピークのピークトップが融点:Tmである。
【0022】
ところで、一般にプロピレンの重合時においては、プロピレンモノマーのメチレン側の炭素原子が触媒の活性点と結合し、順次同じようにプロピレンモノマ−が配位して重合してゆくいわゆる1,2挿入の重合が通常行われるが、まれに2,1挿入又は1,3挿入すること(異常挿入とも言う)がある。本発明の単独重合体は、この2,1挿入又は1,3挿入が少ないと好ましい。また、これらの挿入の割合が、下記の関係式(1)
〔(m−2,1)+(r−2,1)+(1,3)〕≦5.0(%)・・・(1)
[式中、(m−2,1)は13C−NMRで測定したメソ−2,1挿入含有率(%)、(r−2,1)は13C−NMRで測定したラセミ−2,1挿入含有率(%)、(1,3)は13C−NMRで測定した1,3挿入含有率(%)を示す。〕
を満足するものが好ましく、さらに関係式(2)
〔(m−2,1)+(r−2,1)+(1,3)〕≦1.0(%)・・・(2)
を満足するものがより好ましい。特に関係式(3)
〔(m−2,1)+(r−2,1)+(1,3)〕≦0.1(%)・・・(3)
を満足するものが最も好ましい。この関係式(1)を満足しないと、予想以上に結晶性が低下し、べたつきの原因となる場合がある。
【0023】
なお、(m−2,1)、(r−2,1)及び(1,3)はGrassiらの報告(Macromolucules,21,p.617(1988))及びBusicoらの報告(Macromolucules,27,p.7538(1994))に基づいて13C−NMRスペクトルのピークの帰属を決定し、各ピークの積分強度から求めた各挿入含有率である。すなわち、(m−2,1)は、全メチル炭素領域における積分強度に対する17.2ppm付近に現れるPα、γthreoに帰属するピークの積分強度の比から算出されるメソ−2,1挿入含有率(%)である。(r−2,1)は、全メチル炭素領域における積分強度に対する15.0ppm付近に現れるPα、γthreoに帰属するピークの積分強度の比から算出されるラセミ−2,1挿入含有率(%)である。(1,3)は、全メチン炭素領域における積分強度に対する31.0ppm付近に現れるTβ、γ+に帰属するピークの積分強度の比から算出される1,3挿入含有率(%)である。
【0024】
さらに、本発明のプロピレン単独重合体は13C−NMRスペクトルの測定において、2,1挿入に由来する分子鎖未端(n−ブチル基)に帰属するピークが実質的に観測されないものがより好ましい。この2,1挿入に由来する分子鎖末端に関しては、Junglingらの報告(J.Polym.Sci.:PartA:Po1ym.Chem.,33,p1305(1995))に基づいて13C−NMRスペクトルのピークの帰属を決定し、各ピークの積分強度から各挿入含有率を算出する。なお、アイソタクチックポリプロピレンでは、18.9ppm付近に現れるピークがn−ブチル基の未端メチル基炭素に帰属される。また、異常挿入又は分子鎖末端測定に関する13C−NMRの測定は、前記の装置及び条件で行えばよい。
【0025】
また、本発明におけるプロピレン単独重合体は、上記の要件に加えてさらに、弾性率の指標である沸騰ジエチルエーテル抽出量が5質量%以上であることが好ましい。なお、沸騰ジエチルエーテル抽出量の測定は、ソックスレー抽出器を用い、以下の条件で測定する。
【0026】
抽出試料:1〜2g
試料形状:パウダー状(ペレット化したものは粉砕し、パウダー化して用いる)
抽出溶媒:ジエチルエーテル抽出
時間:10時間
抽出回数:180回以上
抽出量の算出方法:以下の式により算出する。
〔ジエチルエーテルへの抽出量(g)/仕込みパウダー質量(g)〕×100
また、本発明におけるプロピレン単独重合体は、上記に加えてさらに、引張弾性率が100MPa以下であることが好ましく、より好ましくは70MPa以下である。
【0027】
[a']プロピレン系共重合体
本発明のプロピレン系共重合体は、下記の(1)〜(2)を要件とするプロピレンとエチレン及び/又は炭素数4〜20のα−オレフィンの共重合体である。
(1)13C−NMR測定による立体規則性指標(P)が55〜90モル%であり、かつ(2)昇温クロマトグラフィーにおける25℃以下で溶出する成分量(W25)が20〜100質量%である
本発明のプロピレン系共重合体が、前記の関係を満たすと、得られる成形体のべたつき成分の量と弾性率の低さと透明性のバランスが優れる。すなわち、弾性率が低く軟質性(柔軟性とも言う)に優れ、べたつき成分が少なく表面特性(例えば、ブリードや他の製品へのべたつき成分の移行が少ない等に代表される)にも優れ、かつ透明性にも優れるという特徴がある。本発明における立体規則性指標(P)は、前記の日本電子社製のJNM−EX400型NMR装置を用い、13C−NMRスペクトルを前記の条件と同様に測定し、プロピレン連鎖のメソトリアッド(mm)分率を測定して求めた値である。この値が大きいほど、立体規則性が高いことを意味する。本発明のプロピレン系共重合体としては、立体規則性指標(P)が65〜80モル%であるとさらに好ましい。立体規則性指標(P)が55モル%未満では、弾性率が低下しすぎるため成形性が不良となる。また90モル%を超えると硬質となり軟質でなくなる。また、W25が30〜100質量%であるとさらに好ましく、50〜100質量%であると特に好ましい。W25が20%未満では、柔軟性がなくなる。なお、W25の意味及び測定方法は、前記と同じである。
【0028】
さらに、本発明のプロピレン系共重合体は、上記の要件の他にゲルパーミエイション(GPC)法により測定した分子量分布(Mw/Mn)が4以下及び/又はテトラリン溶媒中135℃にて測定した極限粘度[η]が0.5〜15.0デシリットル/gが好ましく、Mw/Mnが3.5以下及び/又は[η]が1.0〜5.0デシリットル/gがさらに好ましく、Mw/Mnが3以下及び/又は[η]が1.0〜3.0デシリットル/gが特に好ましい。分子量分布(Mw/Mn)が4を超えると、べたつきが発生することがある。極限粘度[η]が0.5デシリットル/g未満では、べたつきが発生したり、また15.0デシリットル/gを超えると、流動性が低下するため成形性が不良となることがある。なお、上記Mw/Mnの測定方法は前記と同様である。
【0029】
さらに、本発明のプロピレン系共重合体は、上記の要件の他に、DSC測定による融解吸熱量ΔHが20J/g以下であると柔軟性が優れ好ましい。さらに、融点(Tm)及び結晶化温度(Tc)があってもなくてもよいが、軟質性の点からないこと或いは低い値、特にTmについては100℃以下であることが好ましい。なお、ΔH、Tm及びTcの測定方法は前記と同じである。
【0030】
本発明のプロピレン系共重合体は、上記の要件に加えてさらに、弾性率の指標である沸騰ジエチルエーテル抽出量が5質量%以上であることが好ましい。なお、沸騰ジエチルエーテル抽出量の測定は、前記と同じである。
【0031】
また、引張弾性率が100MPa以下であることが好ましく、より好ましくは70MPa以下である。
【0032】
本発明におけるプロピレン系共重合体に関し、炭素数4〜20のα−オレフィンとしては、エチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどが挙げられ、本発明においては、これらのうち一種又は二種以上を用いることができる。
【0033】
さらに、本発明のプロピレン系共重合体は、ランダム共重合体であるものが好ましい。また、プロピレンから得られる構造単位は90モル%以上であることが好ましく、より好ましくは95モル%以上である。
【0034】
[プロピレン単独重合体(a)及びプロピレン系共重合体(a')の製造方法]
本発明におけるプロピレン単独重合体(a)及びプロピレン系共重合体(a')の製造方法としては、メタロセン触媒と呼ばれる触媒系を用いてプロピレンを単独重合する方法又はプロピレンとエチレン及び/又は炭素数4〜20のα−オレフィンを共重合する方法が挙げられる。メタロセン系触媒としては、特開昭58−19309号公報、特開昭61−130314号公報、特開平3−163088号公報、特開平4−300887号公報、特開平4−211694号公報、特表平1−502036号公報等に記載されるようなシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基、置換インデニル基等を1又は2個配位子とする遷移金属化合物、及び該配位子が幾何学的に制御された遷移金属化合物と助触媒を組み合わせて得られる触媒が挙げられる。
【0035】
本発明においては、メタロセン触媒のなかでも、配位子が架橋基を介して架橋構造を形成している遷移金属化合物からなる場合が好ましく、なかでも、2個の架橋基を介して架橋構造を形成している遷移金属化合物と助触媒を組み合わせて得られるメタロセン触媒を用いてプロピレンを単独重合する方法又はプロピレンとエチレン及び/又は炭素数4〜20のα−オレフィンを共重合する方法がさらに好ましい。
【0036】
具体的に例示すれば、(A)一般式(I)
【化2】

【0037】
〔式中、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基、インデニル基,置換インデニル基、ヘテロシクロペンタジエニル基、置換ヘテロシクロペンタジエニル基、アミド基、ホスフィド基、炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、またそれらはたがいに同一でも異なっていてもよく、Xはα結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX、E1、E2又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY、E1、E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕で表される遷移金属化合物、及び(B)該(B−1)(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる成分を含有する重合用触媒の存在下、プロピレンを単独重合させる方法、またはプロピレンとエチレン及び/又は炭素数4〜20のα−オレフィンを共重合させる方法が挙げられる。
【0038】
上記一般式(I)において、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、具体例としてはチタン,ジルコニウム,ハフニウム,イットリウム,バナジウム,クロム,マンガン,ニッケル,コバルト,パラジウム及びランタノイド系金属などが挙げられるが、これらの中ではオレフィン重合活性などの点からチタン,ジルコニウム及びハフニウムが好適である。E1及びE2はそれぞれ、置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基(−N<),ホスフィン基(−P<),炭化水素基〔>CR−,>C<〕及び珪素含有基〔>SiR−,>Si<〕(但し、Rは水素または炭素数1〜20の炭化水素基あるいはヘテロ原子含有基である)の中から選ばれた配位子を示し、A1及びA2を介して架橋構造を形成している。また、E1及びE2はたがいに同一でも異なっていてもよい。このE1及びE2としては、置換シクロペンタジエニル基,インデニル基及び置換インデニル基が好ましい。
【0039】
また、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。該Xの具体例としては、ハロゲン原子,炭素数1〜20の炭化水素基,炭素数1〜20のアルコキシ基,炭素数6〜20のアリールオキシ基,炭素数1〜20のアミド基,炭素数1〜20の珪素含有基,炭素数1〜20のホスフィド基,炭素数1〜20のスルフィド基,炭素数1〜20のアシル基などが挙げられる。一方、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のYやE1,E2又はXと架橋していてもよい。該Yのルイス塩基の具体例としては、アミン類,エーテル類,ホスフィン類,チオエーテル類などを挙げることができる。
【0040】
次に、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子又は炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。
【0041】
このような架橋基としては、例えば、一般式
【化3】

【0042】
(R2及びR3はそれぞれ水素原子又は炭素数1〜20の炭化水素基で、それらはたがいに同一でも異なっていてもよく、またたがいに結合して環構造を形成していてもよい。eは1〜4の整数を示す。)
で表されるものが挙げられ、その具体例としては、メチレン基,エチレン基,エチリデン基,プロピリデン基,イソプロピリデン基,シクロヘキシリデン基,1,2−シクロヘキシレン基,ビニリデン基(CH2=C=),ジメチルシリレン基,ジフェニルシリレン基,メチルフェニルシリレン基,ジメチルゲルミレン基,ジメチルスタニレン基,テトラメチルジシリレン基,ジフェニルジシリレン基などを挙げることができる。これらの中で、エチレン基,イソプロピリデン基及びジメチルシリレン基が好適である。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。
【0043】
この一般式(I)で表される遷移金属化合物において、E1及びE2が置換シクロペンタジエニル基,インデニル基又は置換インデニル基である場合、A1及びA2の架橋基の結合は、(1,2')(2,1')二重架橋型が好ましい。
【0044】
このような一般式(I)で表される遷移金属化合物の中では、一般式(II)
【化4】

で表される二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物が好ましい。
【0045】
上記一般式(II)において、M,A1,A2,q及びrは上記と同じである。X1はσ結合性の配位子を示し、X1が複数ある場合、複数のX1は同じでも異なっていてもよく、他のX1又はY1と架橋していてもよい。このX1の具体例としては、一般式(I)のXの説明で例示したものと同じものを挙げることができる。Y1はルイス塩基を示し、Y1が複数ある場合、複数のY1は同じでも異なっていてもよく、他のY1又はX1と架橋していてもよい。このY1の具体例としては、一般式(I)のYの説明で例示したものと同じものを挙げることができる。R4〜R9はそれぞれ水素原子,ハロゲン原子,炭素数1〜20の炭化水素基,炭素数1〜20のハロゲン含有炭化水素基,珪素含有基又はヘテロ原子含有基を示すが、その少なくとも一つは水素原子でないことが必要である。また、R4〜R9はたがいに同一でも異なっていてもよく、隣接する基同士がたがいに結合して環を形成していてもよい。なかでも、R6とR7は環を形成していること及びR8とR9は環を形成していることが好ましい。R4及びR5としては、酸素、ハロゲン、珪素等のヘテロ原子を含有する基が重合活性が高くなり好ましい。
【0046】
この二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物は、配位子が(1,2')(2,1')二重架橋型が好ましい。一般式(I)で表される遷移金属化合物の具体例としては、(1,2'−エチレン)(2,1'−エチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2'−メチレン)(2,1'−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2'−イソプロピリデン)(2,1'−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−エチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−エチレン)−ビス(4,5−ベンゾインデニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−エチレン)−ビス(4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−エチレン)−ビス(5,6−ジメチルインデニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−エチレン)−ビス(4,7−ジイソプロピルインデニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−エチレン)−ビス(4−フェニルインデニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−エチレン)−ビス(3−メチル−4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−エチレン)−ビス(5,6−ベンゾインデニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2'−メチレン)(2,1'−エチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2'−メチレン)(2,1'−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(インデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(3−フェニルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(4,5−ベンゾインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(5,6−ジメチルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(4,7−ジ−i−プロピルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(4−フェニルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(3−メチル−4−i−プロピルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)ビス(5,6−ベンゾインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)−ビス(3−フェニルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−メチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−メチレン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−メチレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−メチレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−メチレン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2'−ジフェニルシリレン)(2,1'−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2'−ジフェニルシリレン)(2,1'−メチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2'−ジフェニルシリレン)(2,1'−メチレン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2'−ジフェニルシリレン)(2,1'−メチレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2'−ジフェニルシリレン)(2,1'−メチレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2'−ジフェニルシリレン)(2,1'−メチレン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)(3−メチルシクロペンタジエニル)(3'−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)(3−メチルシクロペンタジエニル)(3'−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−エチレン)(3−メチルシクロペンタジエニル)(3'−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−メチレン)(3−メチルシクロペンタジエニル)(3'−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−イソプロピリデン)(3−メチルシクロペンタジエニル)(3'−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−メチレン)(2,1'−メチレン)(3−メチルシクロペンタジエニル)(3'−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−メチレン)(2,1'−イソプロピリデン)(3−メチルシクロペンタジエニル)(3'−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−イソプロピリデン)(2,1'−イソプロピリデン)(3−メチルシクロペンタジエニル)(3'−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)(3,4−ジメチルシクロペンタジエニル)(3',4'−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3',4'−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−エチレン)(3,4−ジメチルシクロペンタジエニル)(3',4'−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−メチレン)(3,4−ジメチルシクロペンタジエニル)(3',4'−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3',4'−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−メチレン)(2,1'−メチレン)(3,4−ジメチルシクロペンタジエニル)(3',4'−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−メチレン)(2,1'−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3',4'−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−イソプロピリデン)(2,1'−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3',4'−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)(3−メチル−5−エチルシクロペンタジエニル)(3'−メチル−5'−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)(3−メチル−5−エチルシクロペンタジエニル)(3'−メチル−5'−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)(3−メチル−5−イソプロピルシクロペンタジエニル)(3'−メチル−5'−イソプロピルシクロペンタジエニル)ジルコニウムジクロリド、(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3'−メチル−5'−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)(3−メチル−5−フェニルシクロペンジエニル)(3'−メチル−5'−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)(3−メチル−5−エチルシクロペンタジエニル)(3'−メチル−5'−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3'−メチル−5'−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3'−メチル−5'−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−イソプロピリデン)(3−メチル−5−フェニルシクロペンタジエニル)(3'−メチル−5'−フェニルシクロペンジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−エチレン)(3−メチル−5−エチルシクロペンタジエニル)(3'−メチル−5'−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−エチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3'−メチル−5'−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−エチレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3'−メチル−5'−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−エチレン)(3−メチル−5−フェニルシクロペンタジエニル)(3'−メチル−5'−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−メチレン)(3−メチル−5−エチルシクロペンタジエニル)(3'−メチル−5'−エチルシクロペンジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−メチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3'−メチル−5'−i−プロピルシクロペンタジエニル)ジルコニウ



ムジクロリド,(1,2'−ジメチルシリレン)(2,1'−メチレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3'−メチル−5'−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−ジメチルシリレン)(2,1'−メチレン)(3−メチル−5−フェニルシクロペンタジエニル)(3'−メチル−5'−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−メチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3'−メチル−5'−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−エチレン)(2,1'−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3'−メチル−5'−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−メチレン)(2,1'−メチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3'−メチル−5'−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2'−メチレン)(2,1'−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3'−メチル−5'−i−プロピルシクロペンタジエニル)ジルコニウムジクロリドなど及びこれらの化合物におけるジルコニウムをチタン又はハフニウムに置換したものを挙げることができる。もちろんこれらに限定されるものではない。また、他の族又はランタノイド系列の金属元素の類似化合物であってもよい。
【0047】
次に、(B)成分のうちの(B−1)成分としては、上記(A)成分の遷移金属化合物と反応して、イオン性の錯体を形成しうる化合物であれば、いずれのものでも使用できるが、次の一般式(III),(IV)
(〔L1−R10k+a(〔Z〕-b・・・(III)
(〔L2k+a(〔Z〕-b ・・・(IV)
(ただし、L2はM2、R11123、R133C又はR143である。)
〔(III),(IV)式中、L1はルイス塩基、〔Z〕-は、非配位性アニオン〔Z1-及び〔Z2-、ここで〔Z1-は複数の基が元素に結合したアニオンすなわち〔M112・・・Gf-(ここで、M1は周期律表第5〜15族元素、好ましくは周期律表第13〜15族元素を示す。G1〜Gfはそれぞれ水素原子,ハロゲン原子,炭素数1〜20のアルキル基,炭素数2〜40のジアルキルアミノ基,炭素数1〜20のアルコキシ基,炭素数6〜20のアリール基,炭素数6〜20のアリールオキシ基,炭素数7〜40のアルキルアリール基,炭素数7〜40のアリールアルキル基,炭素数1〜20のハロゲン置換炭化水素基,炭素数1〜20のアシルオキシ基,有機メタロイド基、又は炭素数2〜20のヘテロ原子含有炭化水素基を示す。G1〜Gfのうち2つ以上が環を形成していてもよい。fは〔(中心金属M1の原子価)+1〕の整数を示す。)、〔Z2-は、酸解離定数の逆数の対数(pKa)が−10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基、あるいは一般的に超強酸と定義される酸の共役塩基を示す。また、ルイス塩基が配位していてもよい。また、R10は水素原子,炭素数1〜20のアルキル基,炭素数6〜20のアリール基,アルキルアリール基又はアリールアルキル基を示し、R11及びR12はそれぞれシクロペンタジエニル基,置換シクロペンタジエニル基,インデニル基又はフルオレニル基、R13は炭素数1〜20のアルキル基,アリール基,アルキルアリール基又はアリールアルキル基を示す。R14はテトラフェニルポルフィリン,フタロシアニン等の大環状配位子を示す。kは〔L1−R10〕,〔L2〕のイオン価数で1〜3の整数、aは1以上の整数、b=(k×a)である。M2は、周期律表第1〜3、11〜13、17族元素を含むものであり、M3は、周期律表第7〜12族元素を示す。〕で表されるものを好適に使用することができる。
【0048】
ここで、L1の具体例としては、アンモニア,メチルアミン,アニリン,ジメチルアミン,ジエチルアミン,N−メチルアニリン,ジフェニルアミン,N,N−ジメチルアニリン,トリメチルアミン,トリエチルアミン,トリ−n−ブチルアミン,メチルジフェニルアミン,ピリジン,p−ブロモ−N,N−ジメチルアニリン,p−ニトロ−N,N−ジメチルアニリンなどのアミン類、トリエチルホスフィン,トリフェニルホスフィン,ジフェニルホスフィンなどのホスフィン類、テトラヒドロチオフェンなどのチオエーテル類、安息香酸エチルなどのエステル類、アセトニトリル,ベンゾニトリルなどのニトリル類などを挙げることができる。
【0049】
10の具体例としては水素,メチル基,エチル基,ベンジル基,トリチル基などを挙げることができ、R11、R12の具体例としては、シクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基などを挙げることができる。R13の具体例としては、フェニル基、p−トリル基、p−メトキシフェニル基などを挙げることができ、R14の具体例としてはテトラフェニルポルフィン、フタロシアニン、アリル、メタリルなどを挙げることができる。また、M2の具体例としては、Li、Na、K、Ag、Cu、Br、I、I3などを挙げることができ、M3の具体例としては、Mn、Fe、Co、Ni、Znなどを挙げることができる。
【0050】
また、〔Z1-、すなわち〔M112・・・Gf〕において、M1の具体例としてはB,Al,Si ,P,As,Sbなど、好ましくはB及びAlが挙げられる。また、G1,G2〜Gfの具体例としては、ジアルキルアミノ基としてジメチルアミノ基,ジエチルアミノ基など、アルコキシ基若しくはアリールオキシ基としてメトキシ基,エトキシ基,n−ブトキシ基,フェノキシ基など、炭化水素基としてメチル基,エチル基,n−プロピル基,イソプロピル基,n−ブチル基,イソブチル基,n−オクチル基,n−エイコシル基,フェニル基,p−トリル基,ベンジル基,4−t−ブチルフェニル基,3,5−ジメチルフェニル基など、ハロゲン原子としてフッ素,塩素,臭素,ヨウ素,ヘテロ原子含有炭化水素基としてp−フルオロフェニル基,3,5−ジフルオロフェニル基,ペンタクロロフェニル基,3,4,5−トリフルオロフェニル基,ペンタフルオロフェニル基,3,5−ビス(トリフルオロメチル)フェニル基,ビス(トリメチルシリル)メチル基など、有機メタロイド基としてペンタメチルアンチモン基、トリメチルシリル基,トリメチルゲルミル基,ジフェニルアルシン基,ジシクロヘキシルアンチモン基,ジフェニル硼素などが挙げられる。
【0051】
また、非配位性のアニオン、すなわち、pKaが−10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基〔Z2-の具体例としてはトリフルオロメタンスルホン酸アニオン(CF3SO3-,ビス(トリフルオロメタンスルホニル)メチルアニオン,ビス(トリフルオロメタンスルホニル)ベンジルアニオン,ビス(トリフルオロメタンスルホニル)アミド,過塩素酸アニオン(ClO4-,トリフルオロ酢酸アニオン(CF3CO2-,ヘキサフルオロアンチモンアニオン(SbF6-,フルオロスルホン酸アニオン(FSO3-,クロロスルホン酸アニオン(ClSO3-,フルオロスルホン酸アニオン/5−フッ化アンチモン(FSO3/SbF5-,フルオロスルホン酸アニオン/5−フッ化砒素(FSO3/AsF5-,トリフルオロメタンスルホン酸/5−フッ化アンチモン(CF3SO3/SbF5-などを挙げることができる。
【0052】
このような前記(A)成分の遷移金属化合物と反応してイオン性の錯体を形成するイオン性化合物、すなわち、(B−1)成分化合物の具体例としては、テトラフェニル硼酸トリエチルアンモニウム,テトラフェニル硼酸トリ−n−ブチルアンモニウム,テトラフェニル硼酸トリメチルアンモニウム,テトラフェニル硼酸テトラエチルアンモニウム,テトラフェニル硼酸メチル(トリ−n−ブチル)アンモニウム,テトラフェニル硼酸ベンジル(トリ−n−ブチル)アンモニウム,テトラフェニル硼酸ジメチルジフェニルアンモニウム,テトラフェニル硼酸トリフェニル(メチル)アンモニウム,テトラフェニル硼酸トリメチルアニリニウム,テトラフェニル硼酸メチルピリジニウム,テトラフェニル硼酸ベンジルピリジニウム,テトラフェニル硼酸メチル(2−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリ−n−ブチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリフェニルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸テトラ−n−ブチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸テトラエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸ベンジル(トリ−n−ブチル)アンモニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリフェニル(メチル)アンモニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸ジメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸トリメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸ベンジルピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸メチル(2−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸ベンジル(2−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸メチル(4−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸トリフェニルホスホニウム,テトラキス〔ビス(3,5−ジトリフルオロメチル)フェニル〕硼酸ジメチルアニリニウム,テトラフェニル硼酸フェロセニウム,テトラフェニル硼酸銀,テトラフェニル硼酸トリチル,テトラフェニル硼酸テトラフェニルポルフィリンマンガン,テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸(1,1'−ジメチルフェロセニウム),テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸銀、テトラキス(ペンタフルオロフェニル)硼酸トリチル,テトラキス(ペンタフルオロフェニル)硼酸リチウム,テトラキス(ペンタフルオロフェニル)硼酸ナトリウム,テトラキス(ペンタフルオロフェニル)硼酸テオラフェニルポルフィリンマンガン,テトラフルオロ硼酸銀,ヘキサフルオロ燐酸銀,ヘキサフルオロ砒素酸銀,過塩素酸銀,トリフルオロ酢酸銀,トリフルオロメタンスルホン酸銀などを挙げることができる。
(B−1)は一種用いてもよく、また、二種以上を組み合わせて用いてもよい。
【0053】
一方、(B−2)成分のアルミノキサンとしては、
一般式(V)
【化5】

【0054】
(式中、R15は炭素数1〜20、好ましくは1〜12のアルキル基,アルケニル基,アリール基,アリールアルキル基などの炭化水素基あるいはハロゲン原子を示し、wは平均重合度を示し、通常2〜50、好ましくは2〜40の整数である。なお、各R15は同じでも異なっていてもよい。)
で示される鎖状アルミノキサン、及び
【0055】
一般式(VI)
【化6】

【0056】
(式中、R15及びwは前記一般式(V)におけるものと同じである。)
で示される環状アルミノキサンを挙げることができる。
【0057】
前記アルミノキサンの製造法としては、アルキルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。例えば、(1)有機アルミニウム化合物を有機溶剤に溶解しておき、これを水と接触させる方法、(2)重合時に当初有機アルミニウム化合物を加えておき、後に水を添加する方法、(3)金属塩などに含有されている結晶水、無機物や有機物への吸着水を有機アルミニウム化合物と反応させる方法、(4)テトラアルキルジアルミノキサンにトリアルキルアルミニウムを反応させ、さらに水を反応させる方法などがある。なお、アルミノキサンとしては、トルエン不溶性のものであってもよい。
これらのアルミノキサンは一種用いてもよく、二種以上を組み合わせて用いてもよい。
【0058】
(A)触媒成分と(B)触媒成分との使用割合は、(B)触媒成分として(B−1)化合物を用いた場合には、モル比で好ましくは10:1〜1:100、より好ましくは2:1〜1:10の範囲が望ましく、上記範囲を逸脱する場合は、単位質量ポリマーあたりの触媒コストが高くなり、実用的でない。また(B−2)化合物を用いた場合には、モル比で好ましくは1:1〜1:1000000、より好ましくは1:10〜1:10000の範囲が望ましい。この範囲を逸脱する場合は単位質量ポリマーあたりの触媒コストが高くなり、実用的でない。また、触媒成分(B)としては(B−1),(B−2)を単独または二種以上組み合わせて用いることもできる。
【0059】
本発明の製造方法における重合用触媒は、上記(A)成分及び(B)成分に加えて(C)成分として有機アルミニウム化合物を用いることができる。ここで、(C)成分の有機アルミニウム化合物としては、一般式(VII)
16vAlJ3-v・・・(VII)
〔式中、R16は炭素数1〜10のアルキル基、Jは水素原子、炭素数1〜20のアルコキシ基、炭素数6〜20のアリール基又はハロゲン原子を示し、vは1〜3の整数である〕
で示される化合物が用いられる。
【0060】
前記一般式(VII)で示される化合物の具体例としては、トリメチルアルミニウム,トリエチルアルミニウム,トリイソプロピルアルミニウム,トリイソブチルアルミニウム,ジメチルアルミニウムクロリド,ジエチルアルミニウムクロリド,メチルアルミニウムジクロリド,エチルアルミニウムジクロリド,ジメチルアルミニウムフルオリド,ジイソブチルアルミニウムヒドリド,ジエチルアルミニウムヒドリド,エチルアルミニウムセスキクロリド等が挙げられる。
【0061】
これらの有機アルミニウム化合物は一種用いてもよく、二種以上を組合せて用いてもよい。本発明の製造方法においては、上述した(A)成分、(B)成分及び(C)成分を用いて予備接触を行なう事もできる。予備接触は、(A)成分に、例えば、(B)成分を接触させる事により行なう事ができるが、その方法に特に制限はなく、公知の方法を用いることができる。これら予備接触により触媒活性の向上や、助触媒である(B)使用割合の低減など、触媒コストの低減に効果的である。また、さらに、(A)成分と(B−2)成分を接触させる事により、上記効果と伴に、分子量向上効果も見られる。また、予備接触温度は、通常−20℃〜200℃、好ましくは−10℃〜150℃、より好ましくは、0℃〜80℃である。予備接触においては、溶媒として不活性炭化水素、脂肪族炭化水素、芳香族炭化水素、などを用いる事ができる。これらの中で特に好ましいものは、脂肪族炭化水素である。
【0062】
前記(A)触媒成分と(C)触媒成分との使用割合は、モル比で好ましくは1:1〜1:10000、より好ましくは1:5〜1:2000、さらに好ましくは1:10ないし1:1000の範囲が望ましい。該(C)触媒成分を用いることにより、遷移金属当たりの重合活性を向上させることができるが、あまり多いと有機アルミニウム化合物が無駄になるとともに、重合体中に多量に残存し、好ましくない。
【0063】
本発明においては、触媒成分の少なくとも一種を適当な担体に担持して用いることができる。該担体の種類については特に制限はなく、無機酸化物担体、それ以外の無機担体及び有機担体のいずれも用いることができるが、特に無機酸化物担体あるいはそれ以外の無機担体が好ましい。
【0064】
無機酸化物担体としては、具体的には、SiO2,Al23,MgO,ZrO2,TiO2,Fe23,B23,CaO,ZnO,BaO,ThO2やこれらの混合物、例えばシリカアルミナ,ゼオライト,フェライト,グラスファイバーなどが挙げられる。これらの中では、特にSiO2,Al23が好ましい。なお、上記無機酸化物担体は、少量の炭酸塩,硝酸塩,硫酸塩などを含有してもよい。
【0065】
一方、上記以外の担体として、MgCl2,Mg(OC25)2などで代表される一般式MgR17x1yで表されるマグネシウム化合物やその錯塩などを挙げることができる。ここで、R17は炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基又は炭素数6〜20のアリール基、X1はハロゲン原子又は炭素数1〜20のアルキル基を示し、xは0〜2、yは0〜2でり、かつx+y=2である。各R17及び各X1はそれぞれ同一でもよく、また異なってもいてもよい。
【0066】
また、有機担体としては、ポリスチレン,スチレン−ジビニルベンゼン共重合体,ポリエチレン,ポリプロピレン,置換ポリスチレン,ポリアリレートなどの重合体やスターチ,カーボンなどを挙げることができる。
【0067】
本発明において用いられる担体としては、MgCl2,MgCl(OC25),Mg(OC25)2,SiO2,Al23などが好ましい。また担体の性状は、その種類及び製法により異なるが、平均粒径は通常1〜300μm、好ましくは10〜200μm、より好ましくは20〜100μmである。
【0068】
粒径が小さいと重合体中の微粉が増大し、粒径が大きいと重合体中の粗大粒子が増大し嵩密度の低下やホッパーの詰まりの原因になる。また、担体の比表面積は、通常1〜1000m2/g、好ましくは50〜500m2/g、細孔容積は通常0.1〜5cm3/g、好ましくは0.3〜3cm3/gである。
【0069】
比表面積又は細孔容積のいずれかが上記範囲を逸脱すると、触媒活性が低下することがある。なお、比表面積及び細孔容積は、例えば、BET法に従って吸着された窒素ガスの体積から求めることができる(ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサィエティ,第60巻,第309ページ(1983年)参照)。
【0070】
さらに、上記担体は、通常150〜1000℃、好ましくは200〜800℃で焼成して用いることが望ましい。触媒成分の少なくとも一種を前記担体に担持させる場合、(A)触媒成分及び(B)触媒成分の少なくとも一方を、好ましくは(A)触媒成分及び(B)触媒成分の両方を担持させるのが望ましい。
【0071】
該担体に、(A)成分及び(B)成分の少なくとも一方を担持させる方法については、特に制限されないが、例えば(A)成分及び(B)成分の少なくとも一方と担体とを混合する方法、担体を有機アルミニウム化合物又はハロゲン含有ケイ素化合物で処理したのち、不活性溶媒中で(A)成分及び(B)成分の少なくとも一方と混合する方法、担体と(A)成分及び/又は(B)成分と有機アルミニウム化合物又はハロゲン含有ケイ素化合物とを反応させる方法、(A)成分又は(B)成分を担体に担持させたのち、(B)成分又は(A)成分と混合する方法、(A)成分と(B)成分との接触反応物を担体と混合する方法、(A)成分と(B)成分との接触反応に際して、担体を共存させる方法などを用いることができる。
【0072】
なお、上記、及びの反応において、(C)成分の有機アルミニウム化合物を添加することもできる。本発明においては、前記(A),(B),(C)を接触させる際に、弾性波を照射させて触媒を調製してもよい。弾性波としては、通常音波、特に好ましくは超音波が挙げられる。具体的には、周波数が1〜1000kHzの超音波、好ましくは10〜500kHzの超音波が挙げられる。
【0073】
このようにして得られた触媒は、いったん、溶媒留去を行って固体として取り出してから重合に用いてもよいし、そのまま重合に用いてもよい。また、本発明においては、(A)成分及び(B)成分の少なくとも一方の担体への担持操作を重合系内で行うことにより触媒を生成させることができる。例えば、(A)成分及び(B)成分の少なくとも一方と担体とさらに必要により前記(C)成分の有機アルミニウム化合物を加え、エチレンなどのオレフィンを常圧〜2MPa(gauge)加えて、−20〜200℃で1分〜2時間程度予備重合を行い触媒粒子を生成させる方法を用いることができる。
【0074】
本発明においては、(B−1)成分と担体との使用割合は、質量比で好ましくは1:5〜1:10000、より好ましくは1:10〜1:500とするのが望ましく、(B−2)成分と担体との使用割合は、質量比で好ましくは1:0.5〜1:1000、より好ましくは1:1〜1:50とするのが望ましい。(B)成分として二種以上を混合して用いる場合は、各(B)成分と担体との使用割合が質量比で上記範囲内にあることが望ましい。また、(A)成分と担体との使用割合は、質量比で、好ましくは1:5〜1:10000、より好ましくは1:10〜1:500とするのが望ましい。
【0075】
(B)成分〔(B−1)成分又は(B−2)成分〕と担体との使用割合、又は(A)成分と担体との使用割合が上記範囲を逸脱すると、活性が低下することがある。このようにして調製された本発明の重合用触媒の平均粒径は、通常2〜200μm、好ましくは10〜150μm、特に好ましくは20〜100μmであり、比表面積は、通常20〜1000m2/g、好ましくは50〜500m2/gである。平均粒径が2μm未満であると重合体中の微粉が増大することがあり、200μmを超えると重合体中の粗大粒子が増大することがある。比表面積が20m2/g未満であると活性が低下することがあり、1000m2/gを超えると重合体の嵩密度が低下することがある。また、本発明の触媒において、担体100g中の遷移金属量は、通常0.05〜10g、特に0.1〜2gであることが好ましい。遷移金属量が上記範囲外であると、活性が低くなることがある。
【0076】
このように担体に担持することによって工業的に有利な高い嵩密度と優れた粒径分布を有する重合体を得ることができる。本発明で用いるプロピレン系重合体は、上述した重合用触媒を用いて、プロピレンを単独重合、またはプロピレン並びにエチレン及び/又は炭素数4〜20のα−オレフィンとを共重合させることにより製造される。
【0077】
この場合、重合方法は特に制限されず、スラリー重合法,気相重合法,塊状重合法,溶液重合法,懸濁重合法などのいずれの方法を用いてもよいが、スラリー重合法,気相重合法が特に好ましい。
【0078】
重合条件については、重合温度は通常−100〜250℃、好ましくは−50〜200℃、より好ましくは0〜130℃である。また、反応原料に対する触媒の使用割合は、原料モノマー/上記(A)成分(モル比)が好ましくは1〜108、特に100〜105となることが好ましい。さらに、重合時間は通常5分〜10時間、反応圧力は好ましくは常圧〜20MPa(gauge)さらに好ましくは常圧〜10MPa(gauge)である。
【0079】
重合体の分子量の調節方法としては、各触媒成分の種類,使用量,重合温度の選択、さらには水素存在下での重合などがある。重合溶媒を用いる場合、例えば、ベンゼン,トルエン,キシレン,エチルベンゼンなどの芳香族炭化水素、シクロペンタン,シクロヘキサン,メチルシクロヘキサンなどの脂環式炭化水素、ペンタン,ヘキサン,ヘプタン,オクタンなどの脂肪族炭化水素、クロロホルム,ジクロロメタンなどのハロゲン化炭化水素などを用いることができる。これらの溶媒は一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。また、α−オレフィンなどのモノマーを溶媒として用いてもよい。なお、重合方法によっては無溶媒で行うことができる。
【0080】
重合に際しては、前記重合用触媒を用いて予備重合を行うことができる。予備重合は、固体触媒成分に、例えば、少量のオレフィンを接触させることにより行うことができるが、その方法に特に制限はなく、公知の方法を用いることができる。予備重合に用いるオレフィンについては特に制限はなく、前記に例示したものと同様のもの、例えばエチレン、炭素数3〜20のα−オレフィン、あるいはこれらの混合物などを挙げることができるが、該重合において用いるオレフィンと同じオレフィンを用いることが有利である。
【0081】
また、予備重合温度は、通常−20〜200℃、好ましくは−10〜130℃、より好ましくは0〜80℃である。予備重合においては、溶媒として、不活性炭化水素,脂肪族炭化水素,芳香族炭化水素,モノマーなどを用いることができる。これらの中で特に好ましいのは脂肪族炭化水素である。また、予備重合は無溶媒で行ってもよい。
【0082】
予備重合においては、予備重合生成物の極限粘度〔η〕(135℃デカリン中で測定)が0.2デシリットル/g以上、特に0.5デシリットル/g以上、触媒中の遷移金属成分1ミリモル当たりに対する予備重合生成物の量が1〜10000g、特に10〜1000gとなるように条件を調整することが望ましい。
【0083】
[3]プロピレン系樹脂組成物
本発明のプロピレン系樹脂組成物は、前記プロピレン系重合体[1]、前記プロピレン単独重合体[a]又は前記プロピレン系共重合体[a']に造核剤を添加してなる樹脂組成物である。一般に、プロピレン系重合体の結晶化は、結晶核生成過程と結晶成長過程の2過程からなり、結晶核生成過程では、結晶化温度との温度差や分子鎖の配向等の状態がその結晶核生成速度に影響を与えると言われている。特に分子鎖の吸着等を経て分子鎖配向を助長する効果のある物質が存在すると結晶核生成速度は著しく増大することが知られている。本発明における造核剤としては、結晶核生成過程の進行速度を向上させる効果があるものであればよい。結晶核生成過程の進行速度を向上させる効果があるものとしては、重合体の分子鎖の吸着過程を経て分子鎖配向を助長する効果のある物質が挙げられる。
【0084】
本発明における造核剤の具体例としては、高融点ポリマー、有機カルボン酸若しくはその金属塩、芳香族スルホン酸塩若しくはその金属塩、有機リン酸化合物若しくはその金属塩、ジベンジリデンソルビトール若しくはその誘導体、ロジン酸部分金属塩、無機微粒子、イミド類、アミド類、キナクリドン類、キノン類又はこれらの混合物が挙げられる。
【0085】
高融点ポリマーとしては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリビニルシクロヘキサン、ポリビニルシクロペンタン等のポリビニルシクロアルカン、シンジオタクチックポリスチレン、ポリ3−メチルペンテン−1、ポリ3−メチルブテン−1、ポリアルケニルシラン等が挙げられる。
【0086】
金属塩としては、安息香酸アルミニウム塩、p−t−ブチル安息香酸アルミニウム塩、アジピン酸ナトリウム、チオフェネカルボン酸ナトリウム、ピローレカルボン酸ナトリウム等が挙げられる。
【0087】
ジベンジリデンソルビトール又はその誘導体としては、ジベンジリデンソルビトール、1,3:2,4−ビス(o−3,4−ジメチルベンジリデン)ソルビトール、1,3:2,4−ビス(o−2,4−ジメチルベンジリデン)ソルビトール、1,3:2,4−ビス(o−4−エチルベンジリデン)ソルビトール、1,3:2,4−ビス(o−4−クロロベンジリデン)ソルビトール、1,3:2,4−ジベンジリデンソルビトール等が挙げられる。また、具体的には、新日本理化(製)のゲルオールMDやゲルオールMD−R(商品名)等も挙げられる。
【0088】
ロジン酸部分金属塩としては、荒川化学工業(製)のパインクリスタルKM1600、パインクリスタルKM1500、パインクリスタルKM1300(商品名)等が挙げられる。
【0089】
無機微粒子としては、タルク、クレー、マイカ、アスベスト、ガラス繊維、ガラスフレーク、ガラスビーズ、ケイ酸カルシウム、モンモリロナイト、ベントナイト、グラファィト、アルミニウム粉末、アルミナ、シリカ、ケイ藻土、酸化チタン、酸化マグネシウム、軽石粉末、軽石バルーン、水酸化アルミニウム、水酸化マグネシウム、塩基性炭酸マグネシウム、ドロマイト、硫酸カルシウム、チタン酸カリウム、硫酸バリウム、亜硫酸カルシウム、硫化モリブデン等が挙げられる。
【0090】
アミド化合物としては、アジピン酸ジアニリド、スペリン酸ジアニリド等が挙げられる。これらの造核剤は、一種類を用いてもよく、二種類以上を組み合わせて用いてもよい。
【0091】
本発明のプロピレン系樹脂組成物としては、造核剤として下記一般式で示される有機リン酸金属塩及び/又はタルク等の無機微粒子を用いることが臭いの発生が少なく好ましい。このプロピレン系樹脂組成物は食品向けの用途に好適である。
【0092】
【化7】

【0093】
(式中、R18は水素原子又は炭素数1〜4のアルキル基を示し、R19及びR20はそれぞれ水素原子、炭素数1〜12のアルキル基、シクロアルキル基、アリール基又はアラルキル基を示す。Mはアルカリ金属、アルカリ土類金属、アルミニウム及び亜鉛のうちのいずれかを示し、Mがアルカリ金属のときmは0を、nは1を示し、Mがアルカリ土類金属又は亜鉛のときnは1又は2を示し、nが1のときmは1を、nが2のときmは0を示し、Mがアルミニウムのときmは1を、nは2を示す。)
有機リン酸金属塩の具体例としては、アデカスタブNA−11やアデカスタブNA−21(旭電化株式会社(製))が挙げられる。
【0094】
さらに、本発明のプロピレン系樹脂組成物としては、造核剤として前記のタルク等の無機微粒子を用いると、フィルムに成形した場合、スリップ性にも優れ、印刷特性などの特性が向上するので好ましい。さらには、造核剤として前記のジベンジリデンソルビトール又はその誘導体を用いると、透明性に優れるので好ましい。さらには、造核剤として前記のアミド化合物を用いると、剛性に優れので好ましい。
【0095】
本発明のプロピレン系樹脂組成物は、プロピレン系重合体[1]、前記プロピレン単独重合体[a]又は前記プロピレン系共重合体[a']と造核剤、及び所望に応じて用いられる各種添加剤とをヘンシェルミキサー等を用いてドライブレンドしたものであってもよい。または、単軸又は2軸押出機、バンバリーミキサー等を用いて、溶融混練したものであってもよい。或いは、造核剤として高融点ポリマーを用いる場合は、プロピレン系重合体製造時に、リアクター内で高融点ポリマーを同時又は逐次的に添加して製造したものであってもよい。所望に応じて用いられる各種添加剤としては、酸化防止剤、中和剤、スリップ剤、アンチブロッキング剤、防曇剤、又は帯電防止剤等が挙げられる。
【0096】
本発明における造核剤の添加量は通常、プロピレン系重合体[1]、前記プロピレン単独重合体[a]又は前記プロピレン系共重合体[a']に対して10ppm以上であり、好ましくは10〜10000ppmの範囲であり、より好ましくは10〜5000ppmの範囲であり、さらに好ましくは10〜2500ppmである。10ppm未満では成形性の改善がみられず、一方、10000ppmを超える量を添加しても好ましい効果が増大しないことがある。
【0097】
[4]成形体
本発明の成形体は、前記のプロピレン系重合体[1]、前記プロピレン単独重合体[a]、前記プロピレン系共重合体[a']又は前記プロピレン系樹脂組成物[3]を成形して得られる成形体である。本発明の成形体は、軟質性(柔軟性とも言う)があり、弾性回復率(引っ張っても元に戻る性質)が高く、軟質性がある即ち弾性率が低いわりにはべたつきが少なくかつ透明性に優れているという特徴がある。
【0098】
本発明の成形体としては、フィルム、シート、容器、自動車内装材、架電製品のハウジング材等が挙げられる。フィルムとしては、食品包装用フィルムや農業用フィルム(ビニールハウスの例)等が挙げられる。容器としては、透明性に優れているので、透明ケース、透明ボックス、化粧箱等が挙げられる。
【0099】
成形体の成形方法としては、射出成形法、圧縮成形法、射出圧縮成形法、ガスアシスト射出成形法、押し出し成形法、ブロー成形法等が挙げられる。成形条件については、樹脂が溶融流動する温度条件であれば特に制限はなく、通常、樹脂温度50℃〜300℃、金型温度60℃以下で行うことができる。本発明の成形体として、フィルムを製膜する場合は、一般的な圧縮成形法、押し出し成形法、ブロー成形法、キャスト成形法等により行うことができる。また、フィルムは延伸してもよくしなくともよい。延伸する場合は、2軸延伸が好ましい。2軸延伸の条件としては、下記のような条件が挙げられる。シート成形時の成形条件樹脂温度50〜200℃、チルロール温度50℃以下 縦延伸条件延伸倍率3〜7倍、延伸温度50〜100℃ 横延伸条件延伸倍率6〜12倍、延伸温度50〜100℃また、フィルムは必要に応じてその表面を処理し、表面エネルギーを大きくしたり、表面を極性にしたりしてもよい。例えば処理方法としては、コロナ放電処理、クロム酸処理、火炎処理、熱風処理、オゾンや紫外線照射処理等が挙げられる。表面の凹凸化方法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。
【0100】
フィルムには、常用される酸化防止剤、中和剤、スリップ剤、アンチブロッキング剤、防曇剤、又は帯電防止剤等を必要に応じて配合することができる。更に、タルク等の無機微粒子を含むフィルムは、スリップ性にも優れるため、製袋、印刷等の二次加工性が向上し、各種自動充填包装ラミネート等の高速製造装置でのあらゆる汎用包装フィルムに好適である。
【0101】
造核剤として前記のジベンジリデンソルビトール又はその誘導体を含むプロピレン系樹脂組成物を成形してなるフィルムは、特に透明性に優れディスプレー効果が大きいため、玩具、文具等の包装に好適である。
【0102】
造核剤として前記のアミド化合物を含むプロピレン系樹脂組成物を成形してなるフィルムは、特に剛性に優れ、高速製袋における巻き皺等の問題が起こりにくいため、高速製袋機でのあらゆる汎用包装フィルムとして好適である。
【0103】
[5]プロピレン系樹脂
改質剤本発明のプロピレン系樹脂改質剤は、前記のプロピレン系重合体[1]、前記プロピレン単独重合体[a]又は前記プロピレン系共重合体[a']からなる樹脂改質剤である。本発明のプロピレン系樹脂改質剤は、軟質性があり、べとつきが少なくポリレフィン樹脂との相溶性に優れた成形体を与えることができるという特徴がある。すなわち、本発明のプロピレン系樹脂改質剤は、前記したようにプロピレン単独重合体、プロピレン系重合体が特定のものであり、特にポリプロピレン連鎖部分に結晶性の部分が若干存在するので、従来の改質剤である軟質ポリオレフィン樹脂に比較してべとつきが少ない。さらに、本発明のプロピレン系樹脂改質剤はポリオレフィン系樹脂、特にポリプロピレン系樹脂との相溶性に優れる。その結果、従来の改質剤であるエチレン系ゴム等を用いる場合に比べ、表面特性(べとつき等)の低下が少なく、透明性が高い。以上のような特徴があり、本発明のプロピレン系樹脂改質剤は、柔軟性、透明性の物性改良剤として好適に使用することができる。
【実施例】
【0104】
以下に、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。
【0105】
まず、本発明の重合体の樹脂特性及び物性の評価方法について説明する。
(1)〔η〕の測定
(株)離合社のVMR−053型自動粘度計を用い、テトラリン溶媒中135℃において測定した。
(2)ペンタッド分率、トリアッド分率および異常挿入分率の測定
明細書本文中に記載した方法により測定した。すなわち、メソペンダッド分率(mmmm分率)、トリアッド分率及びラセミペンタッド分率(rrrr分率)は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,6,925(1973)」で提案された方法に準拠し、13C核磁気共鳴スペクトルのメチル基のシグナルを測定し、ポリプロピレン分子鎖中のペンタッド単位でのメソ分率及びラセミ分率並びにトリアッド分率(mm,rr,mr)を求めた。(m−2,1)、(r−2,1)及び(1,3)はGrassiらの報告(Macromolucules,21,p.617(1988))及びBusicoらの報告(Macromolucules,27,p.7538(1994))に基づいて13C−NMRスペクトルのピークの帰属を決定し、各ピークの積分強度から各挿入含有率を算出した。(m−2,1)は、全メチル炭素領域における積分強度に対する17.2ppm付近に現れるPα,γthreoに帰属するピークの積分強度の比をメソ−2,1挿入含有率(%)として算出した。(r−2,1)は、全メチル炭素領域における積分強度に対する15.0ppm付近に現れるPα,γthreoに帰属するピークの積分強度の比をラセミ−2,1挿入含有率(%)として算出した。(1,3)は、全メチン炭素領域における積分強度に対する31.0ppm付近に現れるTβ,γ+に帰属するピークの積分強度の比を1,3挿入含有率(%)として算出した。なお、メソ−2,1挿入、ラセミ−2,1挿入又は1,3挿入に帰属されるべきピ―クがノイズ内に隠れる等で識別できないことがある場合は、各異種結合含有率(m−2,1)、(r−2,1)又は(1,3)は0とみなした。
【0106】
13C核磁気共鳴スペクトルの測定は、下記の装置及び条件にて行った。
装置:日本電子(株)製JNM−EX400型13C−NMR装置
方法:プロトン完全デカップリング法
濃度:220mg/ミリリットル
溶媒:1,2,4−トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
温度:130℃
パルス幅:45°
パルス繰り返し時間:4秒
積算:10000回
【0107】
(3)共重合体中のコモノマー単位の含有量(モル%)日本電子社製のJNM−EX400型NMR装置を用い、以下の条件で13C−NMRスペクトルを測定し、以下の方法により算出した。
試料濃度 :220mg/NMR溶媒 3ml
NMR溶媒:1,2,4−トリクロロベンゼン/ベンゼン−d6(90/10vol%)
測定温度 :130℃
パルス幅 :45°
パルス繰り返し時間:10秒
積算回数 :4000回
【0108】
(a)エチレン単位プロピレンとエチレンのランダム共重合体について13C−NMRにより測定したスペクトルの各シグナルの化学シフトと帰属を第1表に示す。
【0109】
【表1】

【0110】
共重合体中のエチレン単位の含有量(α(モル%))は、13C−NMRで測定したスペクトルにより下記(1)式により求めた。
α=E/S×100・・・(1)
ここで、S及びEはそれぞれ、S=IEPE+IPPE+IEEE+IPPP+IPEE+IPEPE=IEEE+2/3(IPEE+IEPE)+1/3(IPPE+IPEP)であり、また
EPE=I(12)
PPE=I(15)+I(11)+(I(14)−I(11))/2+I(10)
EEE=I(18)/2+I(17)/4
PPP=I(19)+(I(6)+I(7))/2+I(3)+I(13)+I(11)+(I(14)−I(11))/2
PEE=I(20)
PEP=(I(8)+I(9)−2×I(11))/4+I(21)
である。
【0111】
また、下記(2)式により共重合体の立体規則性指標(P(モル%))として、PPP連鎖のアイソタクチックトライアッド分率を求めた。
P=Im/I×100・・・(2)
ここで、Im及びIはそれぞれ、Im=I(22)
I=I(22)+I(23)+I(24)−{(I(8)+I(9))/2+I(10)+3/2×I(11)+I(12)+I(13)+I(15)}
である。
ここで、I(1)、I(2)・・・等は第1表のシグナル1、2・・・等の強度を示す。
【0112】
(4)分子量分布(Mw/Mn)の測定
Mw/Mnは、明細書本文中に記載した方法により測定した。すなわち、Mw/Mnは、GPC法により、下記の装置及び条件で測定したポリエチレン換算の質量平均分子量Mw及び数平均分子量Mnより算出した値である。
GPC測定装置
カラム :TOSO GMHHR−H(S)HT
検出器 :液体クロマトグラム用RI検出器 WATERS 150C
測定条件
溶媒 :1,2,4−トリクロロベンゼン
測定温度 :145℃
流速 :1.0ミリリットル/分
試料濃度 :2.2mg/ミリリットル
注入量 :160マイクロリットル
検量線 :Universal Calibration
解析プログラム:HT−GPC(Ver.1.0)
【0113】
(5)DSC測定
明細書本文中に記載した方法により測定した。すなわち、示差走査型熱量計(パーキン・エルマー社製、DSC−7)を用い、試料10mgを窒素雰囲気下230℃で3分間溶融した後、10℃/分で0℃まで降温後、さらに、0℃で3分間保持した後、10℃/分で昇温させることにより得られる融解吸熱量をΔHとした。また、このときに得られる融解吸熱カーブの最大ピークのピークトップを融点:Tmとした。さらに、230℃にて3分間ホールドした後、10℃/分で0℃まで降温する。このときに得られる結晶化発熱カーブの最大ピークのピークトップを結晶化温度:Tcとした。
【0114】
(6)昇温分別クロマトグラフ
以下のようにして、溶出曲線におけるTREFのカラム温度25℃において充填剤に吸着されないで溶出する成分の量W25(質量%)を求めた。
(a)操作法
試料溶液を温度135℃に調節したTREFカラムに導入し、次いで降温速度5℃/時間にて徐々に0℃まで降温し、30分間ホールドし、試料を充填剤に吸着させる。その後、昇温速度40℃/時間にてカラムを135℃まで昇温し、溶出曲線を得た。
(b)装置構成
TREFカラム :GLサイエンス社製 シリカゲルカラム(4.6φ×150mm)
フローセル :GLサイエンス社製 光路長1mm KBrセル
送液ポンプ :センシュウ科学社製 SSC−3100ポンプ
バルブオーブン :GLサイエンス社製 MODEL554オーブン(高温型)
TREFオーブン:GLサイエンス社製
二系列温調器 :理学工業社製 REX−C100温調器
検出器 :液体クロマトグラフィー用赤外検出器 FOXBORO社製 MIRAN 1A CVF
10方バルブ :バルコ社製 電動バルブ
ループ :バルコ社製 500マイクロリットルループ
(c)測定条件
溶媒 :o−ジクロロベンゼン
試料濃度 :7.5g/リットル
注入量 :500マイクロリットル
ポンプ流量 :2.0ミリリットル/分
検出波数 :3.41μm
カラム充填剤 :クロモソルブP(30〜60メッシュ)
カラム温度分布 :±0.2℃以内
【0115】
(7)引張弾性率
プロピレン系重合体をプレス成形して試験片を作成し、JIS K−7113に準拠した引張試験により測定した。
・試験片(2号ダンベル) 厚み:1mm
・クロスヘッド速度:50mm/min
・ロードセル:100kg
【0116】
(8)内部ヘイズ
プロピレン系重合体をプレス成形して試験片を作成し、JIS K−7105に準拠した試験により測定した。この値が小さいほど透明性が優れる。
・試験片:15cm×15cm×1mm(試験片厚み=1mm)
【0117】
(9)弾性回復率
特開平5−132590に記載の方法と同様に行なった。すなわち、プロピレン系重合体をプレス成形し、試験片としてJIS−2号ダンベルを作成した。
ダンベルの定幅部に25mm間隔の印をつけ、これをL0とした。この試験片を引張試験機にてチャック間距離80mmから160mmまで引き速度50mm/minにて延伸した後、−50mm/minにてチャック間を初期の距離まで戻し、1分後にダンベルにつけた印の間隔を測定し、これをL1とした。以下の式にて弾性回復率を算出した。この値が0以下の場合は、「回復なし」とした。
・〔(2L0−L1)/L0〕×100
・L0:ダンベルにつけた印の初期の長さ
・L1:ダンベルにつけた印の延伸後の長さ
【0118】
(10)アンチブロッキング性
プロピレン系重合体をプレス成形して試験片を作成し、下記の条件で接着させた後、引張試験機にて剥離強度を測定した。
・試験片:15mm×62.5mm×2mm
・接着条件:接着温度40℃、接着面積15mm×31mm、圧着荷重0.7kg、3時間
・せん断剥離条件:クロスヘッド速度50mm/min
【0119】
(11)アイゾット衝撃強度
プロピレン系重合体をプレス成形して試験片を作成し、JIS K−7110に準拠し,試験片厚み=3mm、雰囲気温度−5℃にて測定した。
【0120】
(12)ヘキサンに溶出する成分量(H25)
H25は、下記の測定条件にて測定して求めた。
試料 :0.1〜5g
試料形状:パウダー状(ペレット化したものは粉砕し、パウダー化して用いる)
溶媒 :ヘキサン
溶出条件:25℃、3日間以上静置
溶出量の算出方法:以下の式により算出する。
H25=〔(W0−W1)/W0〕×100(%)
【0121】
(13)沸騰ジエチルエーテル抽出量の測定
ソックスレー抽出器を用い、以下の条件で測定する。
試料 :1〜2g
試料形状:パウダー状(ペレット化したものは粉砕し、パウダー化して用いる)
抽出溶媒:ジエチルエーテル
抽出時間:10時間
抽出回数:180回以上
抽出量の算出方法:以下の式により算出する。
〔ジエチルエーテルへの抽出量(g)/仕込みパウダー質量(g)〕×100
【0122】
〔実施例1〕プロピレン単独重合体
(1)触媒の調製
(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロライドの合成
シュレンク瓶に(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(インデン)を0.83g(2.4mmol)とエーテル50mLを入れる。−78℃に冷却しn−BuLi(ヘキサン溶液1.6M)を3.1mL(5.0mmol)加えた後、室温で12時間攪拌する。溶媒を留去し得られた固体をヘキサン20mLで洗浄することによりリチウム塩をエーテル付加体として1.1g(2.3mmol)得る。このリチウム塩をTHF50mLに溶解し−78℃に冷却する。臭化n−ブチル0.57mL(5.3mmol)をゆっくりと滴下し室温で12時間攪拌する。溶媒を留去しヘキサン50mLで抽出したあと溶媒を除去して(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−n−ブチルインデン)を0.81g(1.77mmol)得た。(収率74%)
次に、窒素気流下においてシュレンク瓶に前記で得られた(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−n−ブチルインデン)を0.81g(1.77mmol)とエーテル100mLを入れる。−78℃に冷却しn−BuLi(ヘキサン溶液1.54M)を2.7mL(4.15mmol)加えた後、室温で12時間攪拌する。溶媒を留去し、得られた固体をヘキサンで洗浄することによりリチウム塩をエーテル付加体として0.28g(1.43mmol)得た。
【0123】
窒素気流下で前記で得られたリチウム塩をトルエン50mLに溶解する。−78℃に冷却し、ここへ予め−78℃に冷却した四塩化ジルコニウム0.33g(1.42mmol)のトルエン(50mL)懸濁液を滴下する。滴下後、室温で6時間攪拌する。その後ろ過し、ろ液の溶媒を留去する。ジクロロメタンより再結晶化することにより(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロライドを0.2g(0.32mmol)得た。(収率22%)
1H−NMR(90MHz,CDCl3)による測定の結果は、
:δ0.88,0.99(12H,ジメチルシリレン),0.7−1.0,1.1−1.5(18H,n−Bu),7.0−7.6(8H,ベンゼン環プロトン)であった。
【0124】
(2)プロピレンの重合
内容積10リットルのステンレス製オートクレーブにヘプタン6リットル、トリイソブチルアルミニウム6ミリモル、さらに、メチルアルミノキサン(アルベマール社製)5ミリモルと、前記で得た(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロライド5マイクロモルをトルエン中5分間予備接触させた触媒成分を投入した。ここで、水素0.05MPa(gauge)を導入した後、全圧で0.8MPa(gauge)までプロピレンガスを導入し重合中圧力が一定になるように調圧器によりプロピレンを供給した。重合温度50℃で、30分間重合を行なった後、内容物を取り出し、減圧下、乾燥することにより、プロピレン単独重合体を得た。得られたポリマーについて前記の樹脂特性の評価を行い、結果を第2表に示した。
【0125】
(3)配合及び混練
上記で得られたポリプロピレン単独重合体に以下の添加剤を処方し、単軸押出機(塚田樹機製作所製:TLC35−20型)にて押し出し造粒し、ペレットを得た。
(添加剤処方)
・フェノール系酸化防止剤:チバスペシャルテイケミカルズ社製 イルガノックス1010 1000ppm
・リン系酸化防止剤:P−EPQ 500ppm
・中和剤:ステアリン酸カルシウム;500ppm
・中和剤:DHT−4A;500ppm
【0126】
(4)物性の評価
前記した評価方法により評価した。得られた結果を第3表に示す。
【0127】
〔実施例2〕
プロピレン単独重合体水素添加しないでプロピレン単独重合体を製造した以外は実施例1と同様に行なった。得られた結果を第2表及び第3表に示す。
【0128】
〔実施例3〕
(1)(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−メチルインデニル)ジルコニウムジクロライドの合成
シュレンク瓶に前記で得られた(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(インデン)を4,4g(12.8mmol)とエーテル100mLを入れる。−78℃に冷却しn−BuLi(ヘキサン溶液1.6M)を16.1mL(25.7mmol)加えた後、室温で12時間攪拌する。溶媒を留去し得られた固体をヘキサン20mLで洗浄することによりリチウム塩を定量的に得る。このリチウム塩をTHF100mLに溶解し−78℃に冷却する。沃化メチル7.4g(52.0mmol)をゆっくりと滴下し室温で12時間攪拌する。溶媒を留去しヘキサン50mLで抽出したあと溶媒を除去して(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−メチルインデン)を4.5g(12mmol)を得た。(収率94%)
次に、窒素気流下シュレンク瓶に前記で得られた(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−メチルインデン)を2.0g(5.4mmol)とエーテル100mLを入れる。−78℃に冷却しn−BuLi(ヘキサン溶液1.6M)を13.5mL(21.6mmol)加えた後、室温で12時間攪拌する。溶媒を留去し、得られた固体をヘキサンで洗浄することによりリチウム塩を1.1g(2.9mmol)を得た。窒素気流下で、前記で得られたリチウム塩をトルエン100mLに溶解する。−78℃に冷却し、ここへ予め−78℃に冷却した四塩化ジルコニウム0.7g(3.0mmol)のトルエン(100mL)懸濁液を滴下する。滴下後室温で6時間攪拌する。その後ろ過し、沈殿をジクロロメタンより抽出した。ジクロロメタン/ヘキサンより再結晶化することにより(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−メチルインデニル)ジルコニウムジクロライドを0.5g(0.94mmol)を得た。(収率32%)
1H−NMR(CDCl3)による測定の結果は、
:δ0.95,1.05(12H,ジメチルシリレン),2.50(6H,CH3),7.2−7.7(8H,Ar−H)であった。
【0129】
(2)プロピレンの単独重合
内容積1リットルのステンレス製オートクレーブにヘプタン400mL,トリイソブチルアルミニウム0.5ミリモル、さらに、メチルアルミノキサン(アルベマール社製)0.5ミリモルと、前記で得た(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−メチルインデニル)ジルコニウムジクロライド0.5マイクロモルをトルエン中5分間予備接触させた触媒成分を投入した。ここで、水素0.03MPa(gauge)を導入した後、全圧で0.8MPa(gauge)までプロピレンガスを導入し重合中圧力が一定になるように調圧器によりプロピレンを供給した。重合温度70℃で、1時間重合を行なった後、内容物を取り出し、減圧下、乾燥することにより、プロピレン単独重合体を得た。得られたポリマーについて前記の樹脂特性の評価を行い、結果を第2表に示した。
【0130】
(3)配合及び混練
上記で得られたプロピレン単独重合体に下記の添加剤処方にて配合を行った以外は実施例1と同様に行った。
(添加剤処方)
・フェノール系酸化防止剤:チバスペシャルテイケミカルズ社製 イルガノックス1010 1000ppm
・リン系酸化防止剤:チバスペシャルテイケミカルズ社製 イルガフォス168 1000ppm
【0131】
(4)物性の評価
実施例1(4)と同様に行った。得られた結果を第3表に示す。
【0132】
〔実施例4〕プロピレン系共重合体
(1)触媒の調製
(a)(1,2'−エチレン)(2,1'−エチレン)−ビス(3−メチルインデン)の製造窒素気流下、(1,2'−エチレン)(2,1'−エチレン)−ビス(インデン)1.12g(3.94ミリモル)を脱水エーテル50ミリリットルに溶かした。−78℃に冷却し、n−ブチルリチウム1.57モル/リットル濃度のヘキサン溶液5.01ミリリットル(n−ブチルリチウム:7.87ミリモル)を、30分かけて滴下した後、室温まで温度を上げ8時間攪拌した。エーテル溶媒を減圧留去し、残査をヘキサン洗浄することにより、ジリチウム塩をエーテル付加物として、1.12g(3.02ミリモル)を得た。このジリチウム塩を脱水テトラヒドロフラン50ミリリットルに溶かし、−78℃に冷却した。この溶液へ、ヨウ化メチル0.42ミリリットル(6.74ミリモル)を含むテトラヒドロフラン溶液10ミリリットルを20分で滴下した後、室温まで上昇させたのち、8時間攪拌を行った。減圧下溶媒を留去した後、残査を酢酸エチルで抽出した。この抽出溶液を水洗し、有機層を、無水硫酸マグネシウムで乾燥した後、ろ別し、ろ液を減圧乾固することにより、目的物である(1,2'−エチレン)(2,1'−エチレン)−ビス(3−メチルインデン)を0.87g(2.78ミリモル)を收率70.5%で得た。
このものは五員環部分の二重結合の異性体混合物として存在した。
【0133】
(b)(1,2'−エチレン)(2,1'−エチレン)−ビス(3−メチルインデン)のジリチウム塩の製造窒素気流下、(1,2'−エチレン)(2,1'−エチレン)−ビス(3−メチルインデン)0.87g(2.78ミリモル)をエーテル35ミリモルに溶かし−78℃に冷却した。この溶液へ、n−ブチルリチウム1.57モル/リットル濃度のヘキサン溶液3.7ミリリットル(n−ブチルリチウム:5.81ミリモル)を、30分かけて滴下した後、室温まで昇温し8時間攪拌した。減圧下に溶媒を留去した後、残査をヘキサン洗浄することにより、ジリチウム塩をエーテル付加物として、1.03g(2.58ミリモル)を收率92.8%で得た。
このものの1H−NMRを求めたところ、次の結果が得られた。
1H−NMR(THF−d8
(δ,ppm):2.20(6H,s),3.25(8H,s),6.0〜7.4(8H,m)
【0134】
(c)(1,2'−エチレン)(2,1'−エチレン)−ビス(3−メチルインデニル)ジルコニウムジクロライドの製造
(1,2'−エチレン)(2,1'−エチレン)−ビス(3−メチルインデン)ジリチウム塩のエーテル付加体1.03g(2.58ミリモル)をトルエン25ミリリットルに懸濁させ、−78℃に冷却した。これに、四塩化ジルコニウム0.60g(2.58ミリモル)のトルエン(20ミリリットル)懸濁液を、20分かけて加え、室温まで昇温し8時間攪拌した後、トルエン上澄みをろ別した。残査をジクロルメタン50ミリリットルで2回抽出した。減圧下に溶媒を留去したのち、残査をジクロロメタン/ヘキサンで再結晶することにより、(1,2'−エチレン)(2,1'−エチレン)−ビス(3−メチルインデニル)ジルコニウムジクロライド0.21gを收率17.3%で得た。
このものの1H−NMRを求めたところ、次の結果が得られた。
1H−NMR(CDCl3):2.48(6H,s),3.33〜3.85(8H,m),6.9〜7.6(8H,m)
【0135】
(2)プロピレン/エチレンの共重合
内容積2リットルのステンレス製オートクレーブにトルエン1.2リットル、トリイソブチルアルミニウム1.5ミリモル、メチルアルミノキサン(アルベマール社製)10(Al)ミリモル、(1,2’−エチレン)(2,1’−エチレン)−ビス(3−メチルインデニル)ジルコニウムジクロライド20マイクロモルを投入し、30℃に昇温し、エチレン/プロピレン混合ガス(エチレン/プロピレンモル比=1/100)を導入した。全圧で0.7MPa(gauge)になるように余剰ガスを排出し、系内のガス組成比を均一に保ちながら60分重合後、内容物を取り出し、減圧下、乾燥することにより、プロピレン系共重合体を得た。
配合及び混練並びに樹脂特性及び物性の評価は実施例1と同様に行った。得られた結果を第2表及び第3表に示す。
【0136】
〔比較例1〕プロピレン単独重合体
(1)マグネシウム化合物の調製内容積約6リットルのかきまぜ機付きガラス反応器を窒素ガスで十分に置換したのち、これにエタノール約2430g、ヨウ素16g及び金属マグネシウム160gを仕込み、かきまぜながら加熱して、還流条件下で系内からの水素ガスの発生がなくなるまで反応させ、固体状応生成物を得た。この固体状生成物を含む反応液を減圧下で乾燥させることにより、マグネシウム化合物を得た。
(2)固体触媒成分(A)の調製
窒素ガスで十分置換した内容積5リットルのガラス製反応器に、上記(1)で得られたマグネシウム化合物(粉砕していないもの)160g、精製ヘプタン80ml、四塩化ケイ素24ml及びフタル酸ジエチル23mlを仕込み、系内を80℃に保ち、かきまぜながら四塩化チタン770mlを加えて110℃で2時間反応させたのち、固体成分を分離して90℃の精製ヘプタンで洗浄した。さらに、四塩化チタン1220mlを加え、110℃で2時間反応させたのち、精製ヘプタンで十分に洗浄して固体触媒成分(A)を得た。
【0137】
(3)プロピレンの気相重合
内容積200リットルの重合槽に、上記(2)で得られた固体触媒成分6.0g/時間、トリイソブチルアルミニウム(TIBA)0.2モル/時間、1−アリル−3,4−ジメトキシベンゼン(ADMB)0.012モル/時間、シクロヘキシルメチルジメトキシシラン(CHMDMS)0.012モル/時間、プロピレン37kg/時間で供給し、70℃、2.8MPa(gauge)で重合を行なった。
(4)配合及び混練
得られたポリプロピレンパウダーに、2, 5−ジメチル−2, 5−ジ−(t−ブチルパーオキシ)−ヘキサンを混合し、さらに実施例1と同じ添加剤処方を行い、40mmΦ押出機で押し出して、ペレットを得た。
(5)樹脂特性及び物性の評価
実施例1と同様に行った。得られた結果を第2表及び第3表に示す。
【0138】
〔参考例〕アフィニティPL1880
ダウ・ケミカル日本(株)製のアフィニティPL1880(商品名)のペレットについて実施例1(4)と同様に物性の評価を行った。得られた結果を第3表に示す。
【0139】
〔比較例2〕プロピレンの単独重合体
内容積1リットルのステンレス製オートクレーブにヘプタン400mL,トリイソブチルアルミニウム0.5ミリモル、さらに、ジメチルアニリニウム(ペンタフルオロフェニル)ボレート2マイクロモルと、特開平3−163088号公報の実施例1と同様にして製造した(第3級ブチルアミド)ジメチル(テトラメチル−η5−シクロペンタジエニル)シランチタンジクロライド1マイクロモルをトルエン中5分間予備接触させた触媒成分を投入した。ここで、水素0.03MPa(gauge)を導入した後、全圧で0.8MPa(gauge)までプロピレンガスを導入し重合中圧力が一定になるように調圧器によりプロピレンを供給した。重合温度70℃で、1時間重合を行なった後、内容物を取り出し、減圧下、乾燥することにより、プロピレン単独重合体を得た。配合及び混練、樹脂特性及び物性の評価を実施例1と同様に行った。得られた結果を第2表及び第3表に示す。
【0140】
〔実施例5〕造核剤添加
1H実施例1にて得られたプロピレン単独重合体に以下の添加剤処方を行ったこと以外は、実施例1と同様に行った。得られた結果を第4表に示す。
(添加剤処方)
・フェノール系酸化防止剤:チバスペシャルテイケミカルズ社製 イルガノックス1010 1000ppm
・リン系酸化防止剤:P−EPQ 500ppm
・中和剤:ステアリン酸カルシウム;500ppm
・中和剤:DHT−4A;500ppm
・造核剤:新日本理化学社製:ゲルオールMD;1000ppm
【0141】
〔実施例6〕造核剤添加
造核剤の新日本理化学社製:ゲルオールMDの添加量を2000ppmにしたこと以外は、実施例5と同様に行った。得られた結果を第4表に示す。
〔実施例7〕造核剤添加
実施例1にて得られたプロピレン単独重合体に以下の添加剤処方を行ったこと以外は、実施例1と同様に行った。得られた結果を第4表に示す。
・フェノール系酸化防止剤:チバスペシャルテイケミカルズ社製 イルガノックス1010 1000ppm
・リン系酸化防止剤:チバスペシャルテイケミカルズ社製 イルガフォス168 1000ppm
・造核剤:新日本理化学社製:ゲルオールMD;5000ppm
〔実施例8〕造核剤添加
造核剤の新日本理化学社製:ゲルオールMDの添加量を10000ppmにしたこと以外は、実施例7と同様に行った。得られた結果を第4表に示す。
〔実施例9〕造核剤添加
実施例7の造核剤:新日本理化学社製:ゲルオールMD:5000ppmを旭電化社製:NA−11:2000ppm変えたこと以外は、実施例7と同様に行った。得られた結果を第4表に示す。
【0142】
〔実施例10〕改質剤効果
出光石油化学社製ポリプロピレンE105GMに実施例1にて得られたペレットを70質量%配合し、単軸押出機(塚田樹機製作所製:TLC35−20型)にて押し出し造粒し、ペレットを得た。物性の評価を実施例1(4)と同様に行った。得られた結果を第5表に示す。
〔実施例11〕改質剤効果
実施例1にて得られたペレットの配合割合を60質量%に変えた以外は実施例10と同様に行った。得られた結果を第5表に示す。
〔実施例12〕改質剤効果
実施例1にて得られたペレットの配合割合を30質量%に変えた以外は実施例10と同様に行った。得られた結果を第5表に示す。
〔比較例3〕
出光石油化学社製ポリプロピレンE105GMについて、物性の評価を実施例1(4)と同様に行った。得られた結果を第5表に示す。
〔比較例4〕
出光石油化学社製ポリプロピレンE105GMに比較例2にて得られた重合体を50質量%配合した以外は実施例10と同様に行った。得られた結果を第5表に示す。
【0143】
〔実施例13〕プロピレン単独重合体
攪拌装置付き1Lステレンレス製耐圧オートクレーブを80℃に加熱し、充分充分減圧乾燥した後、乾燥窒素で大気圧に戻し室温まで冷却した。乾燥窒素気流下、乾燥脱酸素ヘプタン400mL、トリイソブチルアルミニウムのヘプタン溶液(2.0M)を0.5mL(1.0mmol)投入し、350rpmでしばらく攪拌した。一方、十分に窒素置換された50mLシュレンク管に窒素気流下でシクロヘキサン(10mL)およびトリイソブチルアルミニウムヘプタン溶液(2M,0.5mL,1.0mmol)を投入し、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートのシクロヘキサン溶液(4M,1.0mL,4.0mmol)および実施例1で得た(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロライド4マイクロモルを加え、室温で60分間攪拌した。そして、触媒スラリーをオートクレーブに素早く投入した。そして、水素を0.03MPa(gauge)まで投入した。その後、400rpmで攪拌を開始し、プロピレンを全圧0.8MPa(gauge)にゆっくりと昇圧し、同時にゆっくりと温度を50℃まで昇温した。30分間重合を実施した。
反応終了後、未反応のプロピレンを脱圧により除去した。反応混合物を2Lのメタノールに投入してポリプロピレンを沈殿させ、ろ過乾燥することによりポリプロピレンを得た。実施例1と同様に行い得られた結果を第6表及び第7表に示す。
【0144】
〔実施例14〕プロピレン単独重合体
攪拌装置付き1Lステレンレス製耐圧オートクレーブを80℃に加熱し、充分減圧乾燥した後、乾燥窒素で大気圧に戻し室温まで冷却した。乾燥窒素気流下、乾燥脱酸素ヘプタン400mL、トリイソブチルアルミニウムのヘプタン溶液(2.0M)を1.0mL(2.0mmol)およびジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートのヘプタンスラリー(2.0μmol,0.8mL,1.6μmol)を投入し、350rpm、室温で5分間攪拌した。その後、および前記で得た(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロライド4マイクロモルを加えた後、水素を圧力が0.03MPa(gauge)になるまで、投入した。その後、400rpmで攪拌を開始し、プロピレンを全圧0.8MPa(gauge)にゆっくりと昇圧し、同時にゆっくりと温度を50℃まで昇温した。30分間重合を実施した。反応終了後、未反応のプロピレンを脱圧により除去した。反応混合物を2Lのメタノールに投入してポリプロピレンを沈殿させ、ろ過乾燥することによりポリプロピレンを得た。実施例1と同様に行い得られた結果を第6表及び第7表に示す。
【0145】
〔実施例15〕
(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドの合成シュレンク瓶に(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(インデン)のリチウム塩の3.0g(6.97mmol)をTHF50mLに溶解し−78℃に冷却する。ヨードメチルトリメチルシラン2.1mL(14.2mmol)をゆっくりと滴下し室温で12時間攪拌する。溶媒を留去しエーテル50mLを加えて飽和塩化アンモニウム溶液で洗浄する。分液後、有機相を乾燥し溶媒を除去して(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデン)を3.04g(5.88mmol)を得た。(収率84%)
次に、窒素気流下においてシュレンク瓶に前記で得られた(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデン)を3.04g(5.88mmol)とエーテル50mLを入れる。−78℃に冷却しn−BuLi(ヘキサン溶液1.54M)を7.6mL(11.7mmol)加えた後、室温で12時間攪拌する。溶媒を留去し、得られた固体をヘキサン40mLで洗浄することによりリチウム塩をエーテル付加体として3.06g(5.07mmol)を得た。(収率73%)
1H−NMR(90MHz,THF−d8)による測定の結果は、
:δ0.04(s,18H,トリメチルシリル),0.48(s,12H,ジメチルシリレン),1.10(t,6H,メチル),2.59(s,4H,メチレン),3.38(q,4H,メチレン),6.2−7.7(m,8H,Ar−H)であった。
【0146】
窒素気流下で前記で得られたリチウム塩をトルエン50mLに溶解する。−78℃に冷却し、ここへ予め−78℃に冷却した四塩化ジルコニウム1.2g(5.1mmol)のトルエン(20mL)懸濁液を滴下する。滴下後、室温で6時間攪拌する。その反応溶液の溶媒を留去する。得られた残渣をジクロロメタンより再結晶化することにより(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを0.9g(1.33mmol)を得た。(収率26%)
1H−NMR(90MHz,CDCl3)による測定の結果は、
:δ0.0(s,18H,トリメチルシリル),1.02,1.12(s,12H,ジメチルシリレン),2.51(dd,4H,メチレン),7.1−7.6(m,8H,Ar−H)であった。
【0147】
(2)単独重合
(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロライドの変わりに(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを用いた以外は実施例1の(2)と同様に重合を行った。実施例1と同様に行い得られた結果を第6表及び第7表に示す。
【0148】
〔実施例16〕
(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−エトキシメチルインデニル)ジルコニウムジクロライドの合成シュレンク瓶に(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(インデン)のリチウム塩の4.1g(9.50mmol)をTHF50mLに溶解し−78℃に冷却する。クロロメチルエチルエーテル1.9mL(20.5mmol)をゆっくりと滴下し室温で12時間攪拌する。溶媒を留去しエーテル50mLを加えて飽和塩化アンモニウム溶液で加水分解する。分液後、有機相を乾燥し溶媒を除去して(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−エトキシメチルインデン)を3.43g(7.40mmol)を得た。(収率78%)
次に、窒素気流下においてシュレンク瓶に前記で得られた(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−エトキシメチルインデン)を3.43g(7.40mmol)とエーテル50mLを入れる。−78℃に冷却しn−BuLi(ヘキサン溶液1.57M)を9.4mL(14.8mmol)加えた後、室温で12時間攪拌する。溶媒を留去し、得られた固体をヘキサン50mLで洗浄することによりリチウム塩をエーテル付加体として1.07g(1.96mmol)得た。(収率26%)
窒素気流下で前記で得られたリチウム塩をトルエン50mLに溶解する。−78℃に冷却し、ここへ予め−78℃に冷却した四塩化ジルコニウム0.46g(1.96mmol)のトルエン(20mL)懸濁液を滴下する。滴下後、室温で6時間攪拌する。その反応溶液の溶媒を留去する。得られた残渣をヘキサン40mLで抽出することにより(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−エトキシメチルインデニル)ジルコニウムジクロライドを0.24g(0.39mmol)を得た。(収率20%)
【0149】
(2)単独重合
(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロライドの変わりに(1,2'−ジメチルシリレン)(2,1'−ジメチルシリレン)−ビス(3−エトキシメチルインデニル)ジルコニウムジクロライドを用いた以外は実施例1の(2)と同様に重合を行った。実施例1と同様に行い得られた結果を第6表及び第7表に示す。
【0150】
【表2】

【0151】
【表3】

【0152】
【表4】

【0153】
【表5】

【0154】
【表6】

【0155】
【表7】

【産業上の利用可能性】
【0156】
本発明のプロピレン系重合体及び該重合体からなる樹脂組成物並びに成形体は、べたつきが少なく、軟質性及び透明性に優れ、フィルム、シート、容器、自動車内装材、家電製品のハウジング材等として好適である。フィルムとしては、食品包装用フィルムや農業用フィルム、容器としては、透明ケース、透明ボックス、化粧箱等が挙げられる。また、軟質塩化ビニル樹脂代替樹脂として好適に使用できる。本発明の樹脂改質剤は、軟質性があり、べとつきが少なくポリレフィン樹脂との相溶性に優れた成形体を与える。

【特許請求の範囲】
【請求項1】
下記の(1)〜(4)を満たすプロピレン系共重合体。
(1)25℃のヘキサンに溶出する成分量(H25)が0〜80質量%である、
(2)DSC測定において、融点(Tm(℃))を示さないか、或いはTmを示す場合はTmと融解吸熱量ΔH(J/g)が下記の関係を満たす、
ΔH≧6×(Tm−140)
(3)昇温クロマトグラフィーにおける25℃以下で溶出する成分量(W25)が20〜100質量%である、
(4)13C−NMR測定による立体規則性指標(P)が55〜90モル%である
【請求項2】
ゲルパーミエイションクロマトグラフ(GPC)法により測定した分子量分布(Mw/Mn)が4以下である請求項1に記載のプロピレン系共重合体。
【請求項3】
テトラリン溶媒中135℃にて測定した極限粘度[η]が0.5〜15.0デシリットル/gである請求項1又は2に記載のプロピレン系共重合体。
【請求項4】
DSC測定による融解吸熱量ΔHが20J/g以下である請求項1〜3のいずれかに記載のプロピレン系共重合体。
【請求項5】
DSC測定によるTmが100℃以下である請求項1〜4のいずれかに記載のプロピレン系共重合体。
【請求項6】
沸騰ジエチルエーテル抽出量が5質量%以上である請求項1〜5のいずれかに記載のプロピレン系共重合体。
【請求項7】
引張弾性率が100MPa以下である請求項1〜6のいずれかに記載のプロピレン系共重合体。
【請求項8】
プロピレン系共重合体がランダム共重合体である請求項1〜7のいずれかに記載のプロピレン系共重合体。
【請求項9】
プロピレンから得られる構造単位が90モル%以上である請求項1〜8のいずれかに記載のプロピレン系共重合体。
【請求項10】
(A)下記一般式(I)で表される遷移金属化合物、及び(B)(B−1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる成分を含有する重合用触媒の存在下、プロピレンとエチレン及び/又は炭素数4〜20のα−オレフィンを共重合させることにより得られる請求項1〜9のいずれかに記載のプロピレン系共重合体。
【化1】

〔式中、Mはチタン、ジルコニウム、ハフニウムから選ばれる金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基、インデニル基、置換インデニル基、ヘテロシクロペンタジエニル基、置換ヘテロシクロペンタジエニル基、アミド基、ホスフィド基、炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、またそれらはたがいに同一でも異なっていてもよく、Xはα結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX、E1、E2又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY、E1、E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕
【請求項11】
請求項1〜10に記載のプロピレン系共重合体と造核剤を含有する樹脂組成物。
【請求項12】
造核剤の含有量が10ppm以上である請求項11に記載の樹脂組成物。
【請求項13】
請求項11又は12に記載の樹脂組成物がさらに酸化防止剤、中和剤、スリップ剤、アンチロッキング剤、防曇剤、帯電防止剤から選ばれる添加剤を含有する樹脂組成物。
【請求項14】
請求項1〜10のいずれかに記載のプロピレン系共重合体又は請求項11〜13のいずれかに記載のプロピレン系樹脂組成物を成形してなる成形体。
【請求項15】
請求項1〜10のいずれかに記載のプロピレン系共重合体からなるプロピレン系樹脂改質剤。

【公開番号】特開2010−265473(P2010−265473A)
【公開日】平成22年11月25日(2010.11.25)
【国際特許分類】
【出願番号】特願2010−167069(P2010−167069)
【出願日】平成22年7月26日(2010.7.26)
【分割の表示】特願2000−43976(P2000−43976)の分割
【原出願日】平成12年2月22日(2000.2.22)
【出願人】(000183646)出光興産株式会社 (2,069)
【Fターム(参考)】