説明

ベッド位置決めシステム、放射線治療システム及びベッド位置決め方法

【課題】放射線治療において、単純X線画像情報を用いてベッドの位置決め精度を向上できるベッド位置決めシステムを提供する。
【解決手段】治療装置102は、回転可能な回転ガントリー103に照射ヘッド105及びX線発生装置106を備え、ベッド位置決めシステム301は天板を挟んで対向して回転ガントリーに設けられたX線源308及びX線受像器309を有し、X線源308及びX線受像器309により相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成する。撮像操作卓306の画像処理演算装置は、異なるエネルギー分布を持つX線に基づき作成された複数のX線画像間のサブトラクション処理により、位置決めに必要な骨組織を強調した画像を生成し、位置決め装置305はその画像情報を治療計画に用いる断層画像情報と合わせて用い、ベッド107の位置決めを行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ベッド位置決めシステム、放射線治療システム及びベッド位置決め方法に係り、特に、X線又は陽子線をはじめとする粒子線等の各種放射線を患者の患部に照射して治療する放射線治療に用いるのに好適なベッド位置決めシステム、放射線治療システム及びベッド位置決め方法に関する。
【背景技術】
【0002】
がん細胞を各種放射線を照射することで壊死させることを目的とする放射線治療は、近年広く行われつつある。用いられる放射線としては最も広く利用されているX線だけでなく、陽子線を始めとする粒子線を使った治療も行われている。
【0003】
放射線治療の重要なプロセスの一つにベッドの位置決めがある。ベッド位置決めのプロセスを以下に説明する。まず、技師(または医師)が、一般に治療計画装置から出力されたディジタル再構成X線(Digital Reconstructed Radiograph;DRRという)画像情報と、放射線照射前にX線撮像装置を用いて治療用ベッド(以下、ベッドと省略する)の上に患者を横たわらせた状態で撮影して得られた単純X線画像情報を比較する。この比較に基づいて、治療計画で決定した照射標的(がんの患部)の位置と現在のベッド上に横たわっている患者の照射標的の位置のずれ量を算出する。算出したずれ量を用いて二種類の画像が一致するようにベッドの移動量を求める。この移動量に基づいてベッドを移動させることにより、ベッドの位置決めが完了する。このようなベッド位置決めのプロセスは例えば特許文献1に記載されている。また、DRR画像情報と単純X線画像情報のパターンマッチングにより、ベッドの移動量を求めることが特許文献2に記載されている。
【0004】
一方、単純X線画像情報から被写体の特定部分を抽出した画像を得る技術としてエネルギーサブトラクションと呼ばれる方法がある。この方法は、X線吸収率のエネルギーに依存する違いを利用するものであり、異なるエネルギーのX線により撮像された画像同士の差分をとることにより、被写体の特定部分を抽出することができる。この方法を開示する従来技術として非特許文献1及び特許文献3がある。非特許文献1には、エネルギーサブトラクション法により生成された胸部X線画像において、脊椎・肋骨等を差し引いた軟部組織画像を利用することが記載されている。また、特許文献3には、撮影時期の異なる単純X線画像情報に基づいてそれぞれエネルギーサブトラクション法により生成された2つの軟部組織画像を用いて被写体の経時変化部分を選択的に強調した画像を生成することが記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特表2000−510023号公報
【特許文献2】特許第3748433号公報
【特許文献3】特開平8-336517号公報
【非特許文献】
【0006】
【非特許文献1】木口雅夫、他「フラットパネルディテクタを用いたデュアルエネルギーサブトラクション法におけるびまん性肺疾患の検出能の評価、日本放射線技術学会雑誌、第 63 巻、第 12 号 1362-1369頁、2007。
【0007】
【非特許文献2】Frederik Maes, 他,「Multimodality image registration by maximization of mutual information」, IEEE Trans. Med. Image., Vol.16, No.2, 187頁〜197頁, 1997。
【発明の概要】
【発明が解決しようとする課題】
【0008】
DRR画像情報は、単純X線画像を模擬した画像であり、治療計画時に撮影された治療計画用CT画像から生成される。DRR画像の作成は、体内の3次元構造の情報を持つCT画像から得られる体内のCT値を基に、一般的に、レイトレーシング法を応用した方法を用いて行う。なお、ベッド位置決めでは、参照画像情報としてDRR画像情報の代りにX線シミュレータ等を用いて撮影した画像情報を用いる場合もある。
【0009】
一方、放射線照射時に撮影される単純X線画像はX線による投影像であり、主に骨等の明確な構造物が映る。このため、特許文献1に記載のように単純X線画像情報を用いるベッド位置決めではがんの患部つまり軟部組織と骨との位置関係が大きく変化しないと想定し、骨格の構造をもって位置決めが実施されることが多い。ところが単純X線画像は射影、すなわち線減弱係数の積算値情報しか持たないため、例えば胸部など、骨、肺等の軟部組織、及び肺の中の空気部分といったX線の吸収率の大きく異なる部位が混在する場合に、骨によるコントラストがその他の物質によるコントラストに対し支配的ではなくなる。その結果、骨領域とその他の領域の境界をはっきりと認識するのが困難な場合もある。この場合、ベッドの位置決め時には操作者が骨格の構造を推定しながら位置を確定しなければならず、ベッドの位置決めの精度が悪くなる場合もあった。特許文献2に記載のパターンマッチングによりDRR画像情報と単純X線画像情報を直接比較してベッドの移動量を求める方法でも、パターンマッチングの精度を高め、ベッドの位置決め精度を高めるためには単純X線画像において骨の輪郭が明確であることが好ましい。
【0010】
CT画像を用いれば、骨や臓器の3次元位置情報まで比較的容易に把握できる。そこで、位置決め精度を高めるために、放射線照射前に単純X線画像の代わりにCT画像を撮影する場合もある。この画像を治療計画用CT画像と直接比較することで、体内の臓器の位置まで含めた位置決めが可能となる。しかし、この手法は撮影時間が延びる上に撮影のための煩雑さが増すという課題があった。
【0011】
単純X線画像の画像情報量を飛躍的に増やす技術として、非特許文献1及び特許文献3に記載のようなエネルギーサブトラクション法がある。エネルギーサブトラクション法では、異なるエネルギーのX線により撮像された画像同士の差分をとることにより、骨組織と軟部組織の情報を分離でき、どちらかを強調することや目立たなくすることが可能となる。しかし、非特許文献1及び特許文献3では、エネルギーサブトラクション法により脊椎・肋骨等を差し引いた軟部組織画像を生成し、診断精度及び診断効率を向上することを目的としており、その技術を放射線治療におけるベッドの位置決めに用いることには言及していない。
【0012】
以上のように従来のDRR画像と単純X線画像を用いた位置決めでは、単純X線画像において骨の輪郭が明確でない場合、位置決め時の比較が難しく、十分な精度が確保できない場合があった。
【0013】
本発明の目的は、放射線治療において、単純X線画像情報を用いてベッドの位置決め精度を向上することができるベッド位置決めシステム、放射線治療システム及びベッド位置決め方法を提供することである。
【課題を解決するための手段】
【0014】
上記目的を達成するために、本発明は、X線源装置及びこのX線源装置から出射され照射対象を透過したX線を入射するX線検出装置を有し、X線情報として、相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成するX線撮像装置と、前記X線情報に基づき対応する複数の第1X線画像情報を作成する画像情報作成装置と、前記複数の第1X線画像情報間のサブトラクション処理により第2X線画像情報を作成する画像処理装置と、前記第2X線画像情報及び治療計画に用いる断層画像情報に基づいてベッド移動量を演算するベッド移動量算出装置と、前記ベッド移動量に基づいて前記照射対象を支持するベッドの駆動装置を制御するベッド制御装置とを備えるものとする。
【0015】
サブトラクション処理により作成した第2X線画像情報をベッド移動量の算出に用いることで、移動量算出のために参照する治療計画用の断層画像情報との比較が容易となり、ベッドの位置決め精度を向上することができる。
【0016】
X線撮像装置における相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報は、X線のエネルギーを弁別する能力を有するX線検出装置を用いるか、複数の異なる代表エネルギーを有する複数種類のX線を出射可能なX線源装置を用いることによって生成可能である。
【0017】
サブトラクション処理により作成する第2X線画像情報として、骨組織を強調する画像情報を作成することが好ましく、これにより第2X線画像情報と断層画像情報における照射対象(患者)の照射標的(患部)の位置ずれ量を算出するための両画像の比較が容易となり、その位置ずれ量に基づいてベッド移動量を算出することで、ベッドの位置決め精度を一層向上することができる。
【0018】
また、サブトラクション処理により作成する第2X線画像情報としては、骨組織を強調する画像情報を作成する場合は、前記ベッド移動量算出装置において、治療計画に用いる断層画像情報の側でも骨組織を強調する画像情報を作成することが好ましく、これにより断層画像情報に基づく断層画像における骨組織の輪郭が明確となり、両画像の比較が一層容易となり、ベッドの位置決め精度の更なる向上が可能となる。
【0019】
画像処理装置がサブトラクション処理により第2X線画像情報を作成するには、撮像部位の線減弱係数が必要となる。この線減弱係数は、代表的な値を予め用意しておき、それを用いてもよいが、望ましくは、線減弱係数を治療計画に用いる断層画像情報から算出し、その線減弱係数を用いる。これによりサブトラクション処理により得られる第2X線画像の画質が向上し、ベッドの位置決め精度の一層の向上が可能となる。
【発明の効果】
【0020】
本発明によれば、放射線治療において、操作者の技量に関係なく単純X線画像情報を用いてベッドの位置決め精度を向上することができる。
【図面の簡単な説明】
【0021】
【図1】本発明の第1実施例(実施例1)であるベッド位置決めシステム及びこのベッド位置決めシステムを備えたX線治療システムの構成図である。
【図2】図1に示すX線治療システムにおける治療装置の正面図である。
【図3】図1に示すX線治療システムにおけるベッド位置決めシステム及びX線治療システムにに含まれるその他のサブシステム(治療計画装置及びデータサーバ)の構成を示す図である。
【図4】図3に示すベッド位置決めシステムにおけるX線撮像システムの詳細を示す構成図である。
【図5】図3及び図4に示すX線撮像システムにおけるX線受像器の詳細を示す構成図である。
【図6】図3に示すベッド位置決めシステムにおける位置決め装置の詳細を示す構成図である。
【図7】実施例1におけるベッド位置決めシステムで実行されるベッド位置決め方法の手順を示す流れ図である。
【図8】実施例1の一部を修正した変形例におけるベッド位置決めシステムで実行されるベッド位置決め方法の手順を示す流れ図である。
【図9】実施例1の一部を修正した他の変形例におけるベッド位置決めシステムで実行されるベッド位置決め方法の手順を示す流れ図である。
【図10】本発明の第2実施例(実施例2)であるベッド位置決めシステムにおけるエネルギーサブトラクション画像を生成する処理手順を示す流れ図である。
【発明を実施するための形態】
【0022】
以下、本発明を実施の形態を図面を参照しつつ詳細に説明する。
【実施例1】
【0023】
本発明の第1実施例(実施例1)であるベッド位置決めシステム及びこのベッド位置決めシステムを備えたX線治療システムを、図を用いて説明する。まず、ベッド位置決めシステムを説明する前に、ベッド位置決めシステムを備えた放射線治療システムの全体構成と治療装置を、図1〜図3を用いて説明する。本実施例は、放射線としてX線を用いるX線治療システムに本発明を適用した場合のものである。なお、本実施例ではX線治療システムへの適用について述べるが、本発明は陽子線や炭素線を用いた粒子線治療システムにおける位置決めシステムにも適用可能である。
<X線治療システムの全体構成及び治療装置>
図1〜図3に示すように、X線治療システム101は、治療装置102及びベッド位置決めシステム301を備えている。治療装置102は、回転ガントリー103、支柱104、照射ヘッド(照射ノズル又は照射装置ともいう)105、治療用のX線発生装置106、ベッド107を備えている。回転ガントリー103は、床面に据え付けられる支柱104に回転可能に取り付けられる。回転ガントリー103は、回転中心軸123の方向に延びるアーム部110を有し、支柱104に取り付けられた第1回転機構(図示せず)によって駆動されて回転中心軸123を中心に回転する。
【0024】
ベッド107は、治療台109、及び治療台109の上端部に設置される天板108を有する。治療台109は、床面に据え付けられた、第2回転機構(図示せず)を有するターンテーブル(図示せず)上に設置されている。天板108は一方向に細長く伸びている。治療台109は、天板108を三つの方向に移動させる三つの駆動装置(図示せず)を備えている。天板108は、第1駆動装置によって、回転中心軸123に沿った水平方向(Y軸方向という)への移動120を行う。天板108は、第2駆動装置によって、回転中心軸123と直交する水平方向(X方向という)への移動122を行う。天板108は、第3駆動装置によって、高さ方向(鉛直方向)(Z方向という)への移動121を行う。天板108は、第2回転機構の駆動によって、ベッド回転軸125を中心に回転する。さらに、治療台109は、図示されていないが、天板108を回転中心軸123の周りに移動させる(ローリングさせる)第4駆動装置、及び天板108の先端部の上げ下げを行う(ピッチングさせる)第5駆動装置を備える。第4及び第5駆動装置は、ベッド107、すなわち天板108の位置決めの微調整に使用される。天板108の長手方向に伸びる軸が、回転中心軸123と、水平方向及び鉛直方向で共に平行になった状態(図1及び図2に示す天板108の状態)を、ベッド回転軸123回りにおけるベッド107の回転角度がゼロ度と定義する。
【0025】
照射ヘッド105が、天板108と向き合うように、回転ガントリー103の水平方向に伸びた部分、すなわち、アーム部110の先端部に設置される。アーム部110は、回転ガントリー103の回転に伴って天板108の周囲を旋回する。X線発生装置106がアーム部110内に設置されている。照射ヘッド107はX線発生装置106から入射されたX線を照射標的(例えば、患者内に存在するがんの患部)に向かって照射する。回転ガントリー103の回転によって周方向における照射ヘッド105の向きが変えられるので、X線を、照射標的に対し、回転中心軸123の周囲で360度の範囲でどの方向からでも照射することができる。また、照射ヘッド105の軸心を通る、X線が照射される方向である照射中心線124と回転中心軸123の交点を、照射中心点(アイソセンター)126と呼ぶ。
<ベッド位置決めシステム>
本発明を実現するためのベッド位置決めシステム301の構成について更に図4〜図6を用いて説明する。ベッド位置決めシステム301はX線撮像システム304及び位置決め装置305を有し、これらは、図3に示すように、ネットワークを通して治療計画装置302及びデータサーバ303と接続されている。
【0026】
ベッド位置決めシステム301において、X線撮像システム304は撮像操作卓306、撮像制御装置307、X線源(X線源装置)308及びX線受像器(X線入射器)309を有し、撮像制御装置307、X線源(X線源装置)308及びX線受像器(X線入射器)309はX線撮像装置315を構成している。X線源308及びX線受像器309は、間に天板108を挟むようにして対向して(図2参照)、回転ガントリー103に取り付けられる。
【0027】
X線源308は単一の代表エネルギーを有するX線を出射するものであり、単一の代表エネルギーを有するX線は代表エネルギーをピークとする単一の連続的なエネルギー分布を有している。X線受像器309はエネルギー弁別する能力(機能)を有しており、これによりX線情報として、相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成する。
【0028】
図5はX線受像器309の詳細を示す図である。図5において、基板602上には半導体放射線検出器601が多数配置されており、また半導体放射線検出器601の下部は格子状にピクセル化されている。例えば1つのピクセルはピクセル602で図示される領域である。半導体放射線検出器601が1個あたりN個のピクセルを有し、X線受像器309が半導体放射線検出器601をM個有する場合、総ピクセル数(=総画素数)はN×M個となる。なお、図5は半導体放射線検出器601の1個を拡大した図である。半導体放射線検出器601の上部には一様にバイアス電圧が印加され(図示せず)、半導体放射線検出器601の内部には電界が生じている。この状態でX線608が入射し光電効果が生じるとキャリヤ(電子及びホール)が発生し、その位置に応じたピクセルでキャリヤが電流として検知される。なお、X線は電磁波の一種であるが、量子論的にはあるエネルギーを有するフォトンとみなすことができる。キャリヤ量はX線1フォトンが有するエネルギーに比例するため、キャリヤ量すなわち電荷量を測定することでX線のエネルギーを知ることができる。具体的には、各ピクセルからの電荷はチャージアンプ604により読み出され、波形整形アンプ605により電荷量に比例した波高のパルス列が生成される。パルス列は波高弁別回路606により2段階のレベルに応じて振り分けが行なわれる。これらのパルス信号はパルス処理回路607に入力され、X線の入射位置とX線のエネルギーとに応じたディジタル信号処理が実施される。すなわち高エネルギーX線の入射量と、低エネルギーX線の入射量とが独立して得られる。ピクセル602ごとに得られた入射量を画素情報に変換したものが単純X線画像情報であり、これによりエネルギーサブトラクションのためのデータを得ることができる。
【0029】
また、エネルギー弁別のための方法としては、半導体放射線検出器を用いる方法とは別に、2枚のイメージングプレートの間に適切な厚さの銅板等を挿むことで、前後のプレートの感知するX線エネルギーに差をつけるという方法もある。
【0030】
撮像操作卓306は、図4に示すように、画像処理演算装置401、通信装置402、メモリ403、記憶装置404を有している。画像処理演算装置401は、上述したX線受像器309が取得した高エネルギーX線の入射量と低エネルギーX線の入射量のX線情報に基づき対応する2つの単純X線画像情報(第1X線画像情報)を作成するとともに、その2つの単純X線画像情報間のサブトラクション処理により新たなX線画像情報(第2X線画像情報)を作成する(後述)。すなわち、画像処理演算装置401は2つの単純X線画像情報(第1X線画像情報)を作成する画像情報作成装置と、サブトラクション処理により新たなX線画像情報(第2X線画像情報)を作成する画像処理装置の機能を兼ねている。画像処理演算装置401は2つの単純X線画像情報(第1X線画像情報)を作成する画像情報作成装置の機能のみを有するものとし、サブトラクション処理により新たなX線画像情報(第2X線画像情報)を作成する画像処理装置の機能は他の演算装置に持たせてもよい。
【0031】
ベッド位置決めシステム301の位置決め装置305は、ベッド制御装置310及び移動量算出装置311を有し、移動量算出装置311は、図6に示すように、移動量演算装置501、通信装置502、メモリ503、記憶装置504を有している。移動量算出装置311は、撮像操作卓306から入力した移動指令に基づいて目標とするベッド移動量(目標値)を演算し、ベッド制御装置310に出力する。また、移動量算出装置311は、撮像操作卓306からDRR画像情報とX線画像情報(サブトラクション処理により生成した第2X線画像情報)を入力し、これら画像情報に基づいてベッド移動量を演算し、ベッド制御装置310に出力する。ベッド移動量の演算は、特許文献1、特許文献2等に記載の公知の技術を用いることができる。例えば、DRR画像情報とX線画像情報とを比較し、この比較に基づいて患者の照射標的の位置のずれ量を算出し、算出したずれ量を用いて二種類の画像が一致するようにベッドの移動量を求める。ベッド制御装置310は、移動量算出装置311から入力したベッド移動量に基づいた駆動制御指令を上述した治療装置102の駆動装置(第1、第2及び第3駆動装置及び第2回転機構)に出力し、駆動装置を制御する。
<治療の流れ>
次に、治療計画から放射線を照射するまでの治療の流れを図7、図8及び図9を用いて説明する。図7は、本実施例におけるX線撮像システム304、位置決め装置305及び治療計画装置302のぞれぞれで行われる処理内容を互いに関連づけて示した流れ図である。
<治療計画の立案>
まず、初めに治療を行うための治療計画が立案される。そのために、CT装置(図示せず)を用いて治療計画用CT画像を撮像する。その後、技師(または医師)が治療計画装置302を用いて、治療計画用CT画像に基づき患者の照射標的の位置及び大きさや照射方向等が設定される。治療計画の結果と治療用CT画像情報はネットワークを通じてデータサーバ303に保存される(ステップ701)。また、治療計画装置302は、位置決め用に治療計画用CT画像情報からDRR画像情報を生成し、そのDRR画像情報もネットワークを通じてデータサーバ303に保存される(ステップ702)。
<ベッドの位置決め>
治療計画に基づき照射標的へ治療放射線を照射する前に、天板108上に横たわっている患者内の照射標的と照射中心点126を一致させる必要がある。このため、ベッド107、すなわち、天板108の位置決めが実施される。ベッド位置決めシステム301を用いた、本実施例のベッド位置決め方法を以下に説明する。
<ベッドの粗位置決め>
まず、ベッドを移動する(ステップ703)。X線を照射する照射標的は、照射対象である患者内に存在するがんの患部(以下、患部という)である。患者が天板108上に横たわった後、患部が照射中心点126の近くに位置するように、天板108が移動される。この天板108の移動は、技師(または医師)が撮像操作卓306の入力装置から入力した移動指令を移動量算出装置311が入力して目標とするベッド移動量を演算し、この移動量をベッド制御装置310に出力することによって行われる。ベッド制御装置310は、その移動量に基づいて駆動制御指令を第1、第2及び第3駆動装置に出力し、これらの駆動装置を駆動させる。これによって、天板108に対する移動120,121,122が行われ、対象標的が照射中心点126の近くに達する。なお、ベッド制御装置310が移動指令に基づいて第2回転機構を駆動させると、天板108がベッド回転軸125を中心に所定角度だけ旋回する。天板108の、対象標的の照射中心点126近くへの移動は、レーザーマーカ等の光学的装置を目印にして行われる。天板108の移動は、光学的装置を用いずに患者の表面に貼られた(または描かれた)シール及び十字線等のマーカを目印に目測で行う場合もある。
<X線撮像>
次に、照射対象のX線撮影を実行する(ステップ704)。位置決め用のX線撮影は、通常、鉛直方向と水平方向の直交する二方向から行われる。例えば、一枚は図1の照射中心線124に平行な方向から照射し、もう一枚はガントリー103を90度回転させた状態で、図1では回転中心軸123と照射中心線124に直交する方向(すなわち方向122)に沿って撮影する。それぞれの撮像角度に対応するように、ガントリー制御装置(図示せず)は、第1回転機構を駆動させる。撮像制御装置307は、回転ガントリー103の回転角度が予め設定された撮影角度に設定された後、技師(または医師)が撮像操作卓306から入力した撮像指令に基づいてX線源308からX線を出射し、照射対象に照射させる。患者の患部を透過したX線は、X線源308と対向しているX線受像器309の各半導体放射線検出器601(図5参照)によって検出される。一つの方向で撮影が終了すると、ガントリー制御装置は、次の撮像角度になるまで第1回転機構を駆動させた後、同様に撮影が行われる。
【0032】
撮像の結果、前述したX線受像器309の原理に従い、各方向においてエネルギーの異なるX線の入射量を検出器601のピクセルごとに得ることができる。X線受像器309で得られたこれらの情報は、通信装置402を介して撮像操作卓306のメモリ403上に展開され、画像処理演算装置401が画像データ化する。この画像データは単純X線画像情報(第1X線画像情報)として記憶装置404に保存される(ステップ705)。一つの撮像方向に対して、通常は二種類のエネルギー領域に対応した二枚の画像が得られる。さらに細かくエネルギー領域を分ければ三枚以上の画像を得ることも可能である。
<エネルギーサブトラクション画像の生成>
こうして得られた複数の画像から、撮像方向ごとにエネルギーサブトラクション画像をする。
【0033】
ここでエネルギーサブトラクション画像を生成するための原理を述べる。
【0034】
単純X線画像は、線源から検出器までに到達する間に通過したX線が体内で減衰した量を画像化したものである。X線の吸収率は、透過する物質とその長さだけでなく、エネルギーにも依存して変化する。一般的に、MeV以下の領域ではエネルギーが高くなるにつれて吸収率が減少する。例えば、均質な物質を透過する場合、透過する物質の厚さをz、入射X線の強度をI0、透過X線の強度をIとすると、IとI0 との関係は(式1)で表される。
【0035】
【数1】

【0036】
このμを線減弱係数と呼ぶ。
【0037】
軟部組織画像と骨組織画像に対する線減弱係数のエネルギー依存性との違いを利用することで、それぞれの対象を強調した画像を得ることができる。最も単純な例として、体内が骨組織と軟部組織の二種類のみで構成され、それぞれの組織である二つのエネルギーでの線減弱係数がすべて既知の場合を考える。エネルギー1、エネルギー2の二種類のエネルギーに対する線減弱係数を、骨組織に関してμb1、μb2、軟部組織に関してμs1 、μs2 とする。透過X線の強度は(式1)で表される。入射X線の強度をI0 、検出器に到達する透過X線の強度をエネルギー1、エネルギー2に対してI1、I2とすると、これらは(式2)及び(式3)で表される。
【0038】
【数2】

【0039】
【数3】

【0040】
ここで、x、yはそれぞれ骨組織と軟部組織の透過長を表す。これら二つのエネルギーで撮影された画像を重み付きサブトラクション処理することで、新たな画像を得る。例えば(式2)から(式3)を (μs1s2 )倍したものを減ずることで、骨の透過長 x の値を得ることができる。この処理を(式4)で表す。
【0041】
【数4】

【0042】
このようにサブトラクション処理により作成した画像を本明細書ではエネルギーサブトラクション画像或いは単にサブトラクション画像と呼んでいる。このエネルギーサブトラクション画像は、減算する際の係数により、得られる画質が変化する。望ましい画質の画像を得るためには、μb1、μb2、μs1 、μs2 が既知である必要がある。この値は予め典型的な値を用意しておけばよいが、実際には撮影する部位や患者によって最適な値は異なる。
【0043】
画像処理演算装置401は、上記原理に基づいて、ある方向で撮像された二枚の画像からサブトラクション画像を生成し、記憶装置404に保存する(ステップ706)。まず、画像処理演算装置401は、記憶装置404に保存されている二枚の画像情報を読み出し、撮像操作卓306内でメモリ403に展開する。続いて画像処理演算装置401は、サブトラクションをするための重み付けの係数を決定する。この減算で使用する係数により、生成した画像の画質が決定される。骨組織画像を生成したい場合には、(式4)のような処理を行えばよい。(式4)から明らかなように、適切な係数を得るためには、高エネルギー領域、低エネルギー領域での骨組織、及びその他の組織の線減弱係数が必要となる。通常、骨組織の位置で位置決めを行うため骨組織を強調した画像が望ましく、それに適した値が撮像操作卓306の記憶装置404に予め保存されている。画像処理演算装置401はこの値を読み出すことでサブトラクション画像を生成する。画像処理演算装置401は二枚の画像から画素ごとにこの係数を用いた減算処理を行い、新たな画像を生成した上で記憶装置404に保存する。
<線減弱係数の算出>
以上の操作によりサブトラクション画像が生成できるが、サブトラクション画像の画質は二枚の画像を減算する際の係数に依存する。そもそもサブトラクション画像の生成とは、(式2)及び(式3)において、右辺の値がいずれも未知である中、線減弱係数のみを既知と仮定して、透過長を可視化する技術である。既知とした線減弱係数の値、すなわちサブトラクション画像を得るための係数値は、本来は患者または撮像部位ごとに異なる。これは患者ごとの骨組織や軟部組織の密度のばらつきなどによる。一般には代表的な値のみを予め用意しておけばよく、本実施例でもその値を記憶装置404に保存している。しかし、本発明の位置決め装置では、位置決め時に撮像するX線画像とは別に、治療計画用CT画像の情報を利用することができるため、ここからサブトラクション画像生成に必要な係数を算出することができる。この場合、係数は画像全体に渡って同一である必要はなく、サブトラクション画像を生成する際のピクセルごとに設定することも可能となる。以下にその方法を説明する。
【0044】
治療計画用CT画像は、患者体内のCT値を保持している。CT値はX線の線減弱係数を水の線減弱係数が0になるように規格化した値であり、装置ごとの校正によるずれはあるものの、CT撮像時のX線エネルギーでの線減弱係数に対応したものと考えてよい。一方、サブトラクション画像生成のために必要な値は(式4)のようにX線撮像システム309で撮像したX線画像(位置決め用X線画像と呼ぶ)の各ピクセルに対応したX線透過パス上での線減弱係数である。治療計画用CT画像から位置決め用X線画像に対応した線減弱係数を引き出すためには、治療計画用CT画像と位置決め用X線画像との正確な位置関係が既知であることが前提となる。実際は最終的な位置決め前の段階では両者の間に数mm程度のずれがあるが、本装置は治療計画用CT画像の患部中心位置が照射中心点126と一致していると仮定した上で、位置決め用X線画像の各ピクセルに対応した透過パスに沿って透過長で重み付け平均した線減弱係数を、骨組織と軟部組織に関して別々に求める。実際の位置と仮定した位置のずれがある場合は、真に線減弱係数を求めたい組織の近隣の組織の線減弱係数を求めていることになるが、位置の差が数mmであれば線減弱係数の値の違いはほぼ無視できると考えられるため問題はない。一方で、(式2)及び(式3)のもう一つの未知数である透過長に関しては、数mmの位置ずれがある場合には、治療計画用CT画像から正しく定めることができない。組織ごとの透過長は位置が少し変わるだけでも大きく変動する可能性があるからである。結果として、治療計画用CT画像から引き出した線減弱係数の情報を基に、サブトラクション処理により透過長を可視化した画像を得るという方法になる。
【0045】
ただし、注意すべき点が二点ある。一つは、治療計画用CT画像を撮像するときのX線エネルギーと位置決め用X線画像を撮像するときのX線エネルギーが異なる点である。あるエネルギーでの線減弱係数から別のエネルギーでの線減弱係数を精度よく算出するためには、透過する物質の原子番号を仮定しなければならない。もう一つは、CTを撮影するX線のスペクトルはブロードなものであるが、ある代表単色エネルギーでのCT値として取り扱うことで生じる誤差である。これらの誤差を考慮した上で、治療計画用CT画像のCT値と、X線源308が放射する代表X線エネルギーでの骨組織と軟部組織との線減弱係数とを対応させるテーブルを予め用意することになる。
【0046】
以上のように、治療計画用CT画像のCT値から位置決め用X線画像の各ピクセルに対応した線減弱係数が求まる。続いて、この情報からサブトラクションに必要なピクセルごとの係数を算出する。
【0047】
図8は、そのような考えで第1実施例におけるベッド位置決め方法の一部を修正した変形例における処理の流れ図である。まず、画像処理演算装置401はネットワーク上につながったデータサーバ303から患者の治療計画、及び治療計画用CT画像を取得する(ステップ801)。続いて治療計画用CT画像のCT値を、位置決め用X線画像を撮像するためのX線に対応した線減弱係数にテーブルを用いて変換する。次に位置決め用X線画像のピクセルごとに、ピクセル中心位置と線源とを結ぶライン上の骨組織と軟部組織に関して線減弱係数を透過長で重み付け平均する。この結果、各ピクセルに対応した線減弱係数が(式2)、及び(式3)のμb1 、μs1 、μb2 、μs2 として得られる(ステップ802)。なお、図8では線減弱係数の算出がX線画像撮像後となっているが、線減弱係数の算出はX線画像前でも行えるため、予め係数を算出しておくことも可能である。
<ベッド移動量の算出ためのDRR画像情報及びX線画像情報の取得>
最後に、ベッドの移動量を算出する。ベッド移動量を算出するにあたり、移動量算出装置311は、それぞれデータサーバ303及び撮像操作卓306内の記憶装置404からDRR画像情報とX線画像情報を読み込み、記憶装置504に記憶する(ステップ707)。X線画像情報は、先に述べたとおり、画像処理演算装置401により生成された後撮像操作卓306内の記憶装置404に保存されており、ネットワークを通じてこれを取得する。DRR画像情報は、治療計画装置302が治療計画用CT画像を基に生成し、データサーバ303に保存されている。X線画像情報、DRR画像情報ともに、撮影方向に対応した二枚以上の画像情報が存在する。移動量算出装置311がこれらの画像情報のすべてを、通信装置を通じてネットワーク上から取得する。
<新たなDRR画像の作成>
以上のように治療計画装置の生成したDRR画像情報をそのまま利用することも可能であるが、必要に応じで移動量算出装置311がDRR画像を新たに作成することも可能である。前述したように、CT画像では骨組織や臓器の3次元位置情報まで比較的容易に把握できる。例えば、骨組織であれば他の組織と比べて高いCT値を持つことで区別できる。この情報を使えば、例えば骨組織の位置を判別し強調した画像や、逆に骨を除去して体内の臓器を見やすくした画像を得ることができる。図9は、そのような考えで第1実施例におけるベッド位置決め方法の一部を修正した他の変形例における処理の流れ図である。本実施例では、X線画像をエネルギーごとの情報から骨組織画像を生成したために、それに合わせるように骨組織を強調したDRR画像を生成するように設定する。移動量算出装置311の移動量演算装置501は、治療計画用のCT画像情報をデータサーバ303からネットワークを介して取得する(ステップ902)。次いで、移動量演算装置501は骨組織を強調したDRR画像情報を作成する(ステップ903)。DRR画像を作成するために必要なX線源308、X線受像器309の位置の情報などは、データサーバ303に保持されているため、これらの情報も移動量算出装置311がネットワーク上から適宜取得する。
<ベッド移動量の算出>
続いて移動量算出装置311の移動量演算装置501は、X線画像情報、及び治療計画CT画像情報を基に作成されたDRR画像情報を用いて天板108の移動量、すなわちベッドの移動量(目標値)を算出する(ステップ708)。移動量演算装置501は、作成したDRR画像情報とX線画像とを比較して、両画像における照射対象(患者)の照射標的(患部)の位置ずれ量を算出し、この位置ずれ量に基づいてベッド移動量を算出する。複数の方向から撮影した画像が複数枚あるので、それぞれ対応したもの同士を比較する。DRR画像情報とX線画像情報の比較は、例えば特許文献1記載のように操作者が両者の画像内で特徴点を指定し、それらの点が一致するように行い、移動量(目標値)を求める。また、特許文献2に記載のようにパターンマッチングによって行い、移動量を算出してもよいし、非特許文献2に記載のように相互情報量最大化法を用いてもよい。相互情報量最大化法は二つの画像間の類似度を求める方法である。
<ベッド移動>
移動量算出装置311の移動量演算装置501は、上記のように算出したベッド移動量をベッド制御装置310に出力する。ベッド制御装置310は、そのベッド移動量に基づいて駆動制御指令を治療装置102の第1、第2及び第3駆動装置及び第2回転機構に出力し、これらを駆動する(ステップ709)。これにより天板108に対する移動120,121,122と軸125回りの回転が行われ、対象標的が照射中心点126に位置するよう天板108が位置決めされる(ステップ710)。
<治療用X線の照射>
ベッドの位置決めが終了した後、ガントリー制御装置は、ガントリー操作卓(図示せず)から入力されたX線発生装置106及び第1回転機構の各駆動指令に基づいて、X線発生装置106及び第1回転機構を駆動させる。第1回転機構の駆動によって回転ガントリー103が回転し、アーム部110が天板108に横たわっている患者の周囲を旋回する。X線発生装置106は、ガントリー制御装置からの制御指令に基づいて、設定された各回転角度になったとき所定のエネルギーのX線を患者の患部に向かって照射する。このようにして、がんの患部にX線が照射される。
<第1実施例の効果>
以上のように構成した本実施例によれば、サブトラクション画像情報(第2X線画像情報)をベッド移動量の算出に用いることで、移動量算出のために参照するDRR画像情報(治療計画用の断層画像情報)との比較が容易となり、操作者の技量に関係なくベッドの位置決め精度を向上することができる。
【0048】
また、本実施例によれば、サブトラクション画像情報(第2X線画像情報)として、骨組織を強調する画像情報を作成するので、これによりサブトラクション画像情報とDRR画像情報(断層画像情報)における照射対象(患者)の照射標的(患部)の位置ずれ量を算出するための両画像の比較が容易となり、その位置ずれ量に基づいてベッド移動量を算出することで、ベッドの位置決め精度を一層向上することができる。
【0049】
また、サブトラクション画像情報として骨組織を強調する画像情報を作成する場合は、移動量算出装置311において、DRR画像情報側でも骨組織を強調する画像情報を作成することが好ましく、これによりDRR画像における骨組織の輪郭が明確となり、両画像の比較が一層容易となり、ベッドの位置決め精度の更なる向上が可能となる。
【0050】
更に、サブトラクション画像情報を作成するための線減弱係数を治療計画に用いる断層画像情報であるCT画像情報(具体的にはそのCT値)から算出し、その線減弱係数を用いてサブトラクション処理を行うことにより、サブトラクション画像の画質が向上し、ベッドの位置決め精度の一層の向上が可能となる。
【実施例2】
【0051】
本発明の第2実施例(実施例2)であるベッド位置決めシステムを説明する。本実施例のベッド位置決めシステムのハード構成は、第1実施例のベッド位置決めシステムのハード構成と同じであるが、X線撮像システム304の装置性能が異なる。第1実施例のX線撮像システム304においては、X線撮像装置315は、単一の代表エネルギーを有する単一のエネルギー分布を持つX線を出射するX線源308と、エネルギー弁別する能力のあるX線受像器309を有する構成としたが、本実施例のX線撮像システム304においては、X線撮像装置315として、複数の異なる代表エネルギーをする複数の異なるエネルギー分布を持つ複数種類のX線を出射できるX線源308を設置した構成とし、その代わりにX線受像器309はエネルギー弁別を必要としない。
【0052】
本実施例で用いるX線源308は、X線を発生させるための電子を加速するX線管電圧を変更することで、照射するX線の代表エネルギーを変更できる。X線管電圧の変更は、X線撮像装置315の撮像制御装置307による設定の変更によって行うことができる。
【0053】
また、本実施例で用いるX線受像器309は複数の半導体検出器(図示せず)を有するフラットパネルディテクタ(FPD)である。検出器はX線の入射量のみを記録できればよい。シンチレータ及び複数のフォトダイオードを有するFPD、イメージインテンシファイア及びCCDのいずれかをX線受像器5に用いることも可能である。
【0054】
以上のようなX線源308とX線受像器309を用いることにより、第一の代表エネルギーを有するX線で単純X線画像を撮像した後、第二の代表エネルギーを有するX線を用いて新たに別の単純X線画像を撮像すれば、実施例1と同じく、エネルギーの異なるX線による二枚の単純X線画像を得ることができる。
【0055】
図10は、本実施例におけるサブトラクション画像情報の生成処理を示す流れ図である。
【0056】
X線撮像装置315の撮像制御装置307にはサブトラクション画像情報の生成処理のプログラムが予め記憶されており、撮像制御装置307はそのプログラムに基づいて次のように動作する。まず、代表エネルギーが比較的低いX線エネルギーを生成するようX線源308のX線管電圧を設定し(ステップ401)、そのX線エネルギーによるX線画像を撮影する(ステップ402)。続けて、X線撮像装置315の撮像制御装置307は、同プログラムに基づいて、代表エネルギーが比較的高いX線エネルギーを生成するようX線源308のX線管電圧を設定し(ステップ403)、そのX線エネルギーによるX線画像を撮影する(ステップ404)。X線撮像システム304の画像処理演算装置401は、それらのX線情報を用いて低エネルギーと高エネルギーの2種類のX線画像情報を生成し(ステップ405,406)、この2種類のX線画像情報を用いてエネルギーサブトラクションの画像情報を生成する(ステップ407)。その後の処理は第1実施例と同様に行えばよい。
【0057】
本実施例により得られる画像は第1実施例と同等であり、第1実施例と同じ効果を得ることができる。
【符号の説明】
【0058】
101…X線治療システム
102…治療装置
103…回転ガントリー
104…支柱
105…照射ヘッド
106…X線発生装置
107…ベッド
108…天板
109…治療台
110…アーム部
301…ベッド位置決めシステム
302…治療計画装置
303…データサーバ
304…X線撮像システム
305…位置決め装置
306…撮像操作卓
307…撮像制御装置
308…X線源
309…X線受像器
310…ベッド制御装置
311…移動量算出装置
315…X線撮像装置
401…画像処理演算装置
402、502…通信装置
403、503…メモリ
404、504…記憶装置
601…半導体放射線検出器
602…ピクセル
603…基板
604…チャージアンプ
605…波形整形アンプ
606…波高弁別回路
607…パルス処理回路
608…X線

【特許請求の範囲】
【請求項1】
X線源装置及びこのX線源装置から出射され照射対象を透過したX線を入射するX線検出装置を有し、X線情報として、相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成するX線撮像装置と、
前記X線情報に基づき対応する複数の第1X線画像情報を作成する画像情報作成装置と、
前記複数の第1X線画像情報間のサブトラクション処理により第2X線画像情報を作成する画像処理装置と、
前記第2X線画像情報及び治療計画に用いる断層画像情報に基づいてベッド移動量を演算するベッド移動量算出装置と、
前記ベッド移動量に基づいて前記照射対象を支持するベッドの駆動装置を制御するベッド制御装置とを備えたことを特徴とするベッド位置決めシステム。
【請求項2】
前記X線検出装置はX線のエネルギーを弁別する能力を有し、その弁別能力に基づいて前記照射対象を透過したX線を弁別し、前記相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成することを特徴とする請求項1記載のベッド位置決めシステム。
【請求項3】
前記X線源装置は、複数の異なる代表エネルギーを有する複数種類のX線を出射可能であり、前記X線検出装置は、前記X線源装置から出射された少なくとも2つの異なる代表エネルギーを有する複数種類のX線を入射し、前記相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成することを特徴とする請求項1記載のベッド位置決めシステム。
【請求項4】
前記画像処理装置は、前記複数の第1X線画像情報間のサブトラクション処理により作成する前記第2X線画像情報として、骨組織を強調する画像情報を作成することを特徴とする請求項1記載のベッド位置決めシステム。
【請求項5】
前記画像処理装置は、前記複数の第1X線画像情報間のサブトラクション処理により作成する前記第2X線画像情報として、骨組織を強調する画像情報を作成し、かつ前記ベッド移動量算出装置も、前記治療計画に用いる断層画像情報として、骨組織を強調する画像情報を作成することを特徴とする請求項1記載のベッド位置決めシステム。
【請求項6】
前記画像処理装置は、前記複数の第1X線画像情報間のサブトラクション処理で使用する線減弱係数を、前記治療計画に用いる断層画像情報から算出することを特徴とする請求項1記載のベッド位置決めシステム。
【請求項7】
治療用の放射線を照射対象に照射する照射装置及び照射対象を支持するベッドの駆動装置を有する治療装置と、
前記照射装置から出射される治療用の放射線の照射位置に前記照射対象を位置させるよう前記ベッドを移動させるベッド位置決めシステムとを備え、
前記ベッド位置決めシステムは、
X線源装置及びこのX線源装置から出射され照射対象を透過したX線を入射するX線検出装置を有し、X線情報として、相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成するX線撮像装置と、
前記X線情報に基づき対応する複数の第1X線画像情報を作成する画像情報作成装置と、
前記複数の第1X線画像情報間のサブトラクション処理により第2X線画像情報を作成する画像処理装置と、
前記第2X線画像情報及び治療計画に用いる断層画像情報に基づいてベッド移動量を演算するベッド移動量算出装置と、
前記ベッド移動量に基づいて前記照射対象を支持するベッドの駆動装置を制御するベッド制御装置とを備えたことを特徴とする放射線治療システム。
【請求項8】
前記X線検出装置はX線のエネルギーを弁別する能力を有し、その弁別能力に基づいて前記照射対象を透過したX線を弁別し、前記相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成することを特徴とする請求項7記載の放射線治療システム。
【請求項9】
前記X線源装置は、複数の異なる代表エネルギーを有する複数種類のX線を出射可能であり、前記X線検出装置は、前記X線源装置から出射された少なくとも2つの異なる代表エネルギーを有する複数種類のX線を入射し、前記相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成することを特徴とする請求項7記載の放射線治療システム。
【請求項10】
前記画像処理装置は、前記複数の第1X線画像情報間のサブトラクション処理により作成する前記第2X線画像情報として、骨組織を強調する画像情報を作成することを特徴とする請求項7記載の放射線治療システム。
【請求項11】
前記画像処理装置は、前記複数の第1X線画像情報間のサブトラクション処理により作成する前記第2X線画像情報として、骨組織を強調する画像情報を作成し、かつ前記ベッド移動量算出装置も、前記治療計画に用いる断層画像情報として、骨組織を強調する画像情報を作成することを特徴とする請求項7記載の放射線治療システム。
【請求項12】
前記画像処理装置は、前記複数の第1X線画像情報間のサブトラクション処理で使用する線減弱係数を、前記治療計画に用いる断層画像情報から算出することを特徴とする請求項7記載の放射線治療システム。
【請求項13】
X線源装置から出射され照射対象を透過したX線をX線検出装置に入射し、X線情報として、相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成し、
前記X線情報に基づき対応する複数の第1X線画像情報を作成し、
前記複数の第1X線画像情報間のサブトラクション処理により第2X線画像情報を作成し、
前記第2X線画像情報及び治療計画に用いる断層画像情報に基づいてベッド移動量を演算し、
前記ベッド移動量に基づいて前記照射対象を支持するベッドの駆動装置を制御することを特徴とするベッド位置決め方法。
【請求項14】
前記X線検出装置として、X線のエネルギーを弁別する能力を有するX線検出装置を用い、このX線検出装置の弁別能力に基づいて前記照射対象を透過したX線を弁別し、前記相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成することを特徴とする請求項13記載のベッド位置決め方法。
【請求項15】
前記X線源装置として、複数の異なる代表エネルギーを有する複数種類のX線を出射可能なX線源装置を用い、前記X線検出装置は、前記X線源装置から出射された少なくとも2つの異なる代表エネルギーを有する複数種類のX線を入射し、前記相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成することを特徴とする請求項13記載のベッド位置決め方法。
【請求項16】
前記複数の第1X線画像情報間のサブトラクション処理により作成する前記第2X線画像情報として、骨組織を強調する画像情報を作成することを特徴とする請求項13記載のベッド位置決め方法。
【請求項17】
前記複数の第1X線画像情報間のサブトラクション処理により作成する前記第2X線画像情報として、骨組織を強調する画像情報を作成し、かつ前記治療計画に用いる断層画像情報として、骨組織を強調する画像情報を作成することを特徴とする請求項13記載のベッド位置決め方法。
【請求項18】
前記複数の第1X線画像情報間のサブトラクション処理で使用する線減弱係数を、前記治療計画に用いる断層画像情報から算出することを特徴とする請求項13記載のベッド位置決め方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2010−187991(P2010−187991A)
【公開日】平成22年9月2日(2010.9.2)
【国際特許分類】
【出願番号】特願2009−36757(P2009−36757)
【出願日】平成21年2月19日(2009.2.19)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】