説明

ベーマイト型結晶アルミナの製造方法とベーマイト型結晶アルミナ

【課題】通常とは異なった形態を有するベーマイト型アルミナの製造方法を開発する。また、高温安定性に優れ、しかるべきか焼を行った後に、大きな表面積と大きな細孔容積を有する酸化アルミニウムを調製する。
【解決手段】酸化アルミニウム化合物を水および少なくとも二酸塩基の存在下に、30ないし240℃で0.5ないし170時間にわたって水熱処理することにより熟成させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、結晶子が020および120の空間方向で異常に異なる寸法を有するベーマイト型結晶アルミナに関する。また本発明は、ベーマイト型アルミナの製造方法とそれをか焼することによって得られる生成物に関する。
【背景技術】
【0002】
構造が異なる酸化アルミニウムおよび水酸化アルミニウムの関係は非常に複雑である。基本的には、α−Al2 3 (コランダム)、α−AlO(OH)(ジアスポール)、α−Al(OH)3 (β−Al(OH)3 とも呼ばれる。バイエライトまたはボーキサイト二水和物)、γ−Al2 3 、γ−AlO(OH)(ベーマイト)およびγ−Al(OH)3 (α−Al(OH)3 と呼ばれることがある。ギブス石、水礬土石)に分類されている。さらに、水酸化アルミニウムまたは酸化アルミニウム水和物を熱分解して得られる各種酸化アルミニウムも含めて多くの変態が存在する。たとえば、ベーマイト型アルミナは、一般に、温度によって次のように変化するものと考えられている:
ベーマイト→γ一Al2 3 →δ−Al2 3 →θ−Al2 3→α−Al2 3
【0003】
文献に記載されている異なる酸化アルミニウム、酸化アルミニウム水和物(一部は酸化水酸化アルミニウム)および水酸化アルミニウムの名称に、そして、特に名称の最初に付されるギリシャ文字に統一性が見られない。本発明に従うベーマイト型アルミナは、ベーマイト型および擬ベーマイト型アルミナと解釈される。
【0004】
ベーマイト型アルミナは公知である。ベーマイト型高純度アルミナは、たとえば、アルミニウムアルコキシドを制御下に加水分解することにより得られる。その場合、たとえば斜方晶系に属する結晶酸化アルミニウム水和物(γ−AlO(OH)、ベーマイト型アルミナ)として結晶化する水酸化アルミニウムヒドロゲルが得られる。
【0005】
DE 38 23 895−Clは、細孔半径を3ないし100nmに制御したべーマイト型アルミナの製造方法を開示している。この方法に従えば、ベーマイト型アルミナを1ないし6s-1の回転速度で撹拌しながら、100ないし235℃の温度に対応する1ないし30バールの水蒸気圧で0.5ないし20時間水熱処理することによって熟成させる。このようにして製造されるベーマイト型アルミナおよび他の方法によって得られるベーマイト型アルミナの020反射面で測定した結晶子の大きさは、120反射面で測定した結晶子の大きさより常に、少なくとも2nmだけ小さい。また、米国特許第3,898,322号にも水熱処理によって熟成した「アルミナスラリー」の製造方法が記載されている。この場合は、たとえば、アルミニウムアルコキシドの加水分解によって得られる水酸化アルミニウム/酸化アルミニウム水和物の水スラリーを室温で2ないし60時間水熱処理することによって熟成させる。
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明の課題は、通常とは異なった形態を有するベーマイト型アルミナの製造方法を開発することにある。さらに、通常のべーマイト型アルミナよりも高温安定性に優れ、しかるべきか焼を行った後に、大きな表面積と大きな細孔容積を有する酸化アルミニウムを調製することも本発明の課題である。
【課題を解決するための手段】
【0007】
本発明の課題は、020反射面でnm単位で決定される結晶子の大きさが、120反射面で決定される結晶子の大きさより大きく、そして、120反射面で測定される結晶子の大きさが1.5nm、好ましくは0.5nmだけ小さいベーマイト型結晶アルミナによって解決される。020反射面でnm単位で決定される結晶子の大きさは、120反射面でnm単位で決定される結晶子の大きさより大きいことが特に好ましい。
さらに、本発明は、本発明に従うベーマイト型結晶アルミナの製造方法に関する。
【発明の効果】
【0008】
本発明の方法により、通常とは異なった形態を有するベーマイト型結晶アルミナが得られる。また、本発明の酸化アルミニウムは、優れた高温安定性を示す。
【発明を実施するための最良の形態】
【0009】
本発明に従うベーマイト型結晶アルミナを製造するための原料は、たとえば、酸化アルミニウム水和物、水酸化アルミニウムまたはこれらの化合物と酸化アルミニウムとの混合物など、従来からある結晶質、半結晶質または非晶質のアルミニウムー酸素化合物、好ましくは、従来からある擬ベーマイト型アルミナおよび/またはベーマイト型アルミナである。他の方法で製造された市販のアルミニウム−酸素化合物を使用するか、ベーマイト型アルミナを製造しないで直接、たとえばヒドロゲルとして使用する時は、本発明に従う熟成を行う前に、アルミニウム−酸素化合物を粉砕工程にかけることが好ましい。
【0010】
好ましい出発原料は、C1ないしC24アルコールのアルミニウムアルコラートまたはそれらの混合物の加水分解によって製造される酸化アルミニウム水和物(または酸化水酸化アルミニウム)である。アルミニウムアルコキシドは、たとえばチーグラー法によって作ることができる。アルミニウムアルコキシドは、水環境中で加水分解される。加水分解は、包括的には30ないし150℃で、そして好ましくは60ないし100℃で行うことができる。つづいて、生成した酸化アルミニウム水和物スラリーをアルコール水溶液の相から分離する。アルミナ相/水相は、Al2 3含量が5ないし12重量%、好ましくは10ないし11重量%のたとえばアルミナ水和物である。
【0011】
しかし、出発物質としてのアルミニウム−酸素化合物は、天然由来のものでも良いし、アマルガム法など、別の方法で得ることも可能である。
【0012】
本発明に従うベーマイト型結晶アルミナは、アルミニウム−酸素化合物、特に酸化アルミニウム水和物を、水の存在下に60ないし240℃、好ましくは70ないし160℃、特に好ましくは70ないし110℃で、少なくとも10時間にわたって、好ましくは少なくとも20時間、特に好ましくは24ないし70時間、または30ないし60時間の水熱処理によって長時間熟成させることにより製造される。
製造に当たっては、酸化アルミニウム水和物のスラリーにわずかなせん断効果を加えることが好ましい。本発明で言うわずかなせん断効果とは、回転速度0.5ないし3m/sで運転される撹拌機(たとえばプロペラ撹拌機)によって作られるせん断を意味する。スラリーに使用される酸化アルミニウム水和物の粒子径は1ないし12μmが好ましく、特に6ないし12μmが好ましい。
【0013】
本発明に従うベーマイト型結晶アルミナは、本発明の第2の実施の態様に従い、水および少なくとも2核塩基、好ましくは3核塩基(この場合の塩基は窒素塩基が好ましい)の存在下に30ないし240℃、好ましくは70ないし160℃で、0.5ないし170時間の水熱処理によって熟成することにより製造される。塩基の例としては、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン(以下、トリエンと略す)テトラエチレンペンタミン(以下、テトレンと略す)およびペンタエチレンヘキサミン(以下、ペントレンと略す)を挙げることができよう。
【0014】
本発明に従うベトマイト型結晶アルミナは、さらに本発明の第3の実施態様に従い、水および、酸化アルミニウムまたは酸化アルミニウム水和物および水以外の、少なくとも金属元素もしくは非金属元素の酸化物もしくは酸化物水和物の存在下に40ないし240℃、好ましくは70ないし160℃で、少なくとも8時間、好ましくは16時間ないし170時間、そして特に好ましくは32時間ないし170時間の水熱処理によって長時間熟成することにより製造される。
【0015】
これら金属元素または非金属元素の酸化物または酸化物水和物は、ケイ素、ジルコニウム、チタン、ランタンおよび/またはホウ素のそれであることが好ましい。そのような例としてSiO2 、ZrO2 、TiO2 およびB2 3 を挙げることができよう。酸化物の添加量は、Al2 3 に対して0.1ないし5重量%、好ましくは0.2ないし2重量%である。
【0016】
本発明に従うベーマイト型結晶アルミナまたはそれから得られる酸化アルミニウムは、異物元素、特に他の金属元素(ケイ素およびリンを含む)を含まないことが好ましく、その99原子%、好ましくは99.9原子%は、アルミニウム、酸素および/または水素で構成されている。
【0017】
本発明に従うベーマイト型結晶アルミナは、互いに無関係に次に挙げる特性を有することが好ましい。すなわち、細孔容積は0.8cm3/g、好ましくは0.9cm3/gより大きいこと、020反射面で決定される結晶子の大きさは10nm、好ましくは12nmより大きいこと、そして表面積は150m2、好ましくは150ないし200m2であること。ここで、前記第3の方法で製造される本発明に従うベーマイト型結晶アルミナは、たとえ互いに異っていても、次に挙げる特性を有することが好ましい。すなわち、細孔容積は0.7cm3/g、好ましくは0.9cm3/gより大きいこと、020反射面で決定される結晶子の大きさは約6ないし10nm、そして表面積は200m2であること。
【0018】
さらに本発明は、本発明に従うベーマイト型結晶アルミナを150℃より高い温度、好ましくは800ないし1500℃の温度範囲で少なくとも0.5時間か焼することによって合成される酸化アルミニウムに関する。この酸化アルミニウムの特徴は、表面積が極めて大きいこと、細孔容積が大きいこと、そして優れた高温安定性を示すことである。ここで言う温度安定性とは、水、化学薬品、圧力または機械的な応力および反対側の温度といった外的な影響によって起こりうる表面および結晶相の変化に対して安定であるという意味である。
【0019】
さらに、本発明に従う酸化アルミニウム水和物および酸化アルミニウムは、純粋で安定な単一相から成り、か焼温度と時間に応じてδ−、θ−またはα−変態として存在する。このことに関して、粉末X線回折図データを表1、2および3に示した。
【0020】
本発明で言う純単一相とは、粉末X線回折図によって決定される結晶酸化アルミニウムの90重量%、好ましくは98重量%を超える相が唯一つの相から成ることを意味する。本発明に従うθ−酸化アルミニウムは、純単一相で存在し、特に、Åで表示されるd値の領域にα−Al2 3 に固有のピークは認められない。
【0021】
既存の酸化アルミニウムの粉末X線回折図のデータに関しては、コランダム(α−Al2 3 )、δ−およびθ−酸化アルミニウムの対応するJCPDSカード(米国規格基準局)を参照することができる。
【0022】
本発明で言う相が安定であるとは、か焼によってこの酸化アルミニウムを製造する際に使用する温度以下で長時間温度処理する条件下では結晶相が変化しないことを意味する。
【0023】
また、本発明に従う酸化アルミニウムは、温度に対して安定であり、既存の酸化アルミニウムと違って、1200℃で3時間以上か焼しても、60m2/g、好ましくは70m2/gの表面積を保持する。か焼は、マッフル炉の中で空気雰囲気下で行われる。
【0024】
さらに、水銀浸透法(DIN 66133)によって決定される本発明に従う酸化アルミニウムの細孔容積は、1.8ないし100nmの細孔半径に対して、0.6cm3/g、好ましくは0.7ないし1cm3/gである。この特性は、本発明に従う酸化アルミニウムを1100℃で24時間以上処理した後でも保持される。たとえばバエライトをか焼することによって得られる既存の酸化アルミニウムの細孔容積はこれよりいちじるしく小さい(0.2ないし0.4cm3/g)。
【0025】
本発明に従う酸化アルミニウムは、触媒または触媒の担体として適し、特に自動車用の触媒担体物質として好適である。この場合は、触媒担体物質を白金またはパラジウムのような貴金属触媒で処理する。
【0026】
本発明に従う酸化アルミニウムを使用すれば、触媒または触媒の担体を、たとえば1000℃以上の高温でも薄い層の形で使用することが可能である。このことは、たとえば廃ガス用の触媒として使用する場合に大きな利点となる。また多くの場合、技術に使用される酸化ランタンまたはSiO2 といった安定化手段を省くことができる。金属酸化物から成る安定化手段は、Al2 3触媒または触媒担体の効果に悪影響を及ぼす可能性がある。
【0027】
本発明に従うベーマイト型アルミナの結晶子の大きさは、普通のシェラー式を使い、120反射面と020反射面に対して計算した。
結晶子の大きさ=(K×λ×57.3)/(β×cosθ)
K(形状係数): 0.992
入(X線の波長): 0.154nm
β(装置に固有の線幅の広がり補正): 反射に依存
θ: 反射に依存
【0028】
測定はフィリップス社製X’pert型XRD装置で行った。実施例1(比較例)および実施例2に従って調製した試料について測定パラメーターを表1および表2に示す。
【0029】
ベーマイトで決定する反射面120および020(ミラー指数)は、空間群第63番、非通常タイプの結晶データリスト、Amamに関係している。通常タイプのリストはCmenである。このリストでは非通常タイプのリストAmamに対してa軸とc軸が入れ替わっている。
【0030】
本発明に従う酸化アルミニウムの表面積はBET法による窒素の吸着分析(DIN66133)によって決定した。細孔容積および細孔容積の分布は、水銀ポロシメーターを使用し、水銀侵入法(水銀浸透法)(DI N 66133)によって決定した。細孔容積は、DIN66133に従い、cm3/g単位の積算容積の形で表示した。
【0031】
(実施例1(比較例))
以下に述べるようにしてアルミニウムアルコラートを中性加水分解し、出発原料のアルミナスラリーを調製した。
【0032】
チーグラー/アルフォール法による合成の中間体として生成するアルミニウムアルコラート混合物を撹拌槽中で水と90℃に加熱して加水分解させた。この時、混合しない2つの相、すなわち、上層にアルコールの相、そして下層にアルミナ/水の相が形成された。
【0033】
A123を10ないし11重量%含有するpH9のアルミナスラリー500gを回分式反応装置に仕込み、反応装置の圧力を3bar、115℃とした。反応条件を調整した後、通常の撹拌機を使用し、撹拌速度1.6m/s、回転数500回転/分で4時間熟成し
た。
【0034】
比較実験で次の値が得られた。
反射面 β θ 結晶子の大きさ
120 0.919 14゜ 9.8n m
020 0 919 7゜ 6.7n m
120反射面の方が、020反射面より3.1nmだけ大きい。
【0035】
比表面積は、BET法による窒素吸着実験によって決定した。1200℃で3時間にわたり、温度処理した後の比表面積は、46m2/gであった。この試料の粉末X線回折図を表1に示す。明らかにα相のピークが認められる。
【0036】
(実施例2)
比較例で述べた、Al2 3を10ないし11重量%含有するpH9のアルミナスラリー500gを回分式反応装置に仕込んだ。反応装置の圧力を98℃の常圧とした。反応条件を調整した後、通常の摸拝機を使用し、摸拝速度1.6m/s、回転数500回転/分で16時間熟成した。比較例で説明した方法によって得られた結晶子の大きさは、120面で13.5nm、020面で12.1nmであった。
【0037】
1200℃で3時間にわたり温度処理した後の比表面積は68m2/gであった。この試料の粉末X線回折図を表1に示す。θ相のピークが認められる。酸化アルミニウムのθ相における相純度は98%より高い。
【0038】
上述の条件で20時間にわたり熟成した場合、実測による結晶子の大きさは、120面で13.5nm、020面で13.0nmである。
【0039】
(実施例3)
比較例で述べた、Al2 3を10ないし11重量%含有するpH9のアルミナスラリー500gを回分式反応装置に仕込んだ。反応装置の圧力を3bar、110℃とした。反応条件を調整した後、通常の撹拌機を使用し、撹拌速度1.6m/s、回転数500回転/分で40時間熟成した。
【0040】
比較例で説明した方法によって決定した結晶子の大きさは、120面で15.3nm、020面で15.3nmであった。1200℃で3時間にわたり温度処理した後の比表面積は67m2/gであった。
【0041】
(実施例4)
比較例で述べた、Al2 3を10ないし11重量%含有するpH9のアルミナスラリー500gを回分式反応装置に仕込んだ。反応装置の圧力を3bar、110℃とした。反応条件を調整した後、通常の撹拌機を使用して撹拌速度1.6m/s、回転数500回転/分で60時間熟成した。
【0042】
比較例で説明した方法によって決定した結晶子の大きさは、120面で16・1nm、020面で16.5nmであった。1200℃で3時間にわたり温度処理した後の比表面積は72m2/gであった。
【0043】
(実施例5)
比較例で述べた、Al2 3を10ないし11重量%含有するpH9のアルミナスラリー600gにテトレンの20%水溶液50gを加え、68時間煮沸還流させた。その間、その時々に応じて1時間後に水300gを添加した。混合物に水200gを加えて希釈し、噴霧乾燥させた。
【0044】
比較例で説明した方法によって決定した結晶子の大きさは、120面で14.4nm、020面で14.6nmであった。1200℃で3時間にわたって温度処理した後の比表面積は81m2/gであった。
【0045】
(実施例6)
アルミニウム・トリーn−ヘキサノラートの6.02%n−ヘキサノール溶液300gに90℃で5%テトレン水溶液360gを加えて混合し、90℃で30分撹拌した。反応混合物から共沸蒸留によってヘキサノールを除去した。つづいて残留物を90℃で24時間撹拌した。その間、場合に応じて1時間後、2時間後および3時間後に水100gを添加した。反応混合物を噴霧乾燥した。
【0046】
比較例で説明した方法によって決定した結晶子の大きさは、120面で11.0nm、020面で11.8nmであった。1200℃で3時間にわたり温度処理した後の比表面積は76m2/gであった。
【0047】
(実施例7)
アルミニウム・トリーn−ヘキサノラートの6.02%n−ヘキサノール溶液300gに90℃で5%テトレン水溶液360gを加えて混合し、90℃で30分撹拌した。反応混合物から共沸蒸留によってヘキサノールを除去した。つづいて、残留物を90℃で68時間撹拌した。その間、場合に応じて1時間後、2時間後および3時間後に水100gを添加した。反応混合物を噴霧乾燥した。
【0048】
比較例で説明した方法によって決定した結晶子の大きさは、120面で12.6nm、020面で16.4nmであった。1200℃で3時間にわたり温度処理した後の比表面積は79m2/gであった。
【0049】
【表1】

【0050】
【表2】

【0051】
【表3】


【特許請求の範囲】
【請求項1】
020反射面でnm単位で決定される結晶子の大きさが、120反射面で決定される結晶子の大きさより大きく、そして、120反射面で測定される結晶子の大きさが1.5nmだけ小さいベーマイト型結晶アルミナ。
【請求項2】
020反射面でnm単位で決定される結晶子の大きさが、120反射面で決定される結晶子の大きさより大きく、そして、120反射面で測定される結晶子の大きさが0.5nmだけ小さいことを特徴とする請求項1に記載のベーマイト型結晶アルミナ。
【請求項3】
020反射面でnm単位で決定される結晶子の大きさが、120反射面でnm単位で決定される結晶子より大きいことを特徴とする請求項2に記載のベーマイト型結晶アルミナ。
【請求項4】
020反射面で測定された結晶子の大きさが10ないし50nmであることを特徴とする請求項1〜3のいずれか1つに記載のベーマイト型結晶アルミナ。
【請求項5】
アルミニウム−酸素化合物を水の存在下に60ないし240℃で少なくとも10時間にわたって水熱処理することにり長時間熟成させることを特徴とする請求項1〜4のいずれか1つに記載のベーマイト型結晶アルミナの製造方法。
【請求項6】
アルミニウム−酸素化合物を水および少なくとも二酸塩基の存在下に30ないし240℃で0.5ないし170時間にわたって水熱処理することにより熟成させることを特徴とする請求項1〜4のいずれか1つに記載のベーマイト型結晶アルミナの製造方法。
【請求項7】
ベーマイト型アルミナを、水および、酸化アルミニウムまたは酸化アルミニウム水和物を除く金属酸化物もしくは非金属酸化物または金属酸化物水和物もしくは非金属酸化物水和物の存在下に40ないし240℃で少なくとも8時間にわたって水熱処理することにより長時間熟成させることを特徴とする請求項1〜3のいずれか1つに記載のベーマイト型結晶アルミナの製造方法。
【請求項8】
温度処理、特に800ないし1500℃の温度で少なくとも0.5時間か焼することにより請求項1〜3のいずれか1つに従ってベーマイト型結晶アルミナから製造可能な純単一相酸化アルミニウム。
【請求項9】
酸化アルミニウムがθ相またはδ相で存在することを特徴とする請求項8に記載の純単一相酸化アルミニウム。
【請求項10】
酸化アルミニウムが、1200℃で3時間にわたってか焼することにより温度処理した後で60m2/gより大きな表面積を有することを特徴とする請求項8または9のいずれか1つに記載の純単一相酸化アルミニウム。
【請求項11】
水銀浸透法で決定される酸化アルミニウムの細孔容積が、1.8ないし100nmの細孔半径に対して、0.6cm3/gより大きいことを特徴とする請求項8、9または10のいずれか1つに記載の純単一相酸化アルミニウム。
【請求項12】
請求項8〜11のいずれか1つに従う酸化アルミニウムの、触媒または触媒担体物質としての応用。

【公開番号】特開2009−1492(P2009−1492A)
【公開日】平成21年1月8日(2009.1.8)
【国際特許分類】
【出願番号】特願2008−261743(P2008−261743)
【出願日】平成20年10月8日(2008.10.8)
【分割の表示】特願2000−564900(P2000−564900)の分割
【原出願日】平成11年8月5日(1999.8.5)
【出願人】(501186162)サゾル ジャーマニー ゲーエムベーハー (5)
【Fターム(参考)】