説明

ホログラムシート

【課題】
ホログラムを用いたホログラムシートにおいて、その真正性を高めるために、通常は視認できないが、電圧を印加することで、室内等の照明光源とは異なる波長でホログラム再生像を再生する新規なホログラムシートを提供する。
【解決手段】
ホログラム形成層上にエレクトロルミネッセンス素子層を設け、そのエレクトロルミネッセンス素子層が、ホログラムレリーフの形状を有することで、所定の電圧を印加したときのみ、空間にその所定の可視光波長のホログラムが浮き上がり、このことによって、そのホログラムが真正品であると、目視にて判定可能とし、偽造防止性を高めた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規なホログラムシート、特に、位相ホログラムを呈するレリーフホログラムのレリーフ位置に、蛍光および/又は燐光(以後、まとめて「蛍光」と称す。)発光するエレクトロルミネッセンス素子薄膜を配した蛍光発光型のホログラムシートに関するものである。
本明細書において、配合を示す「部」は質量基準である。また、「ホログラム」はホログラムと、回折格子などの光回折性機能を有するものも含む。
【背景技術】
【0002】
(主なる用途)
本発明のホログラムシートの主なる用途としては、ホログラムそのものを装飾用として用いる美術・工芸品分野や商業用分野があるが、それにとどまらず、偽造防止分野に使用されるホログラムシートであって、具体的には、クレジットカード等の偽造されて使用されると、カード保持者やカード会社等に損害を与え得るもの、運転免許証、社員証、会員証等の身分証明書、入学試験用の受験票、パスポート等、紙幣、商品券、ポイントカード、株券、証券、抽選券、馬券、預金通帳、乗車券、通行券、航空券、種々の催事の入場券、遊戯券、交通機関や公衆電話用のプリペイドカード等がある。
これらはいずれも、経済的、もしくは社会的な価値を有する情報を保持した情報記録体であり、偽造による損害を防止する目的で、記録体そのものの真正性を識別できる機能を有することが望まれる。
【0003】
また、これら情報記録体以外であっても、高額商品、例えば、高級腕時計、高級皮革製品、貴金属製品、もしくは宝飾品等の、しばしば、高級ブランド品と言われるもの、または、それら高額商品の収納箱やケース等も偽造され得るものである。また、量産品でも有名ブランドのもの、例えば、オーディオ製品、電化製品等、または、それらに吊り下げられるタグも、偽造の対象となりやすい。
さらに、著作物である音楽ソフト、映像ソフト、コンピュータソフト、もしくはゲームソフト等が記録された記憶体、またはそれらのケース等も、やはり偽造の対象となり得る。また、プリンター用のトナー、用紙など、交換する備品を純正材料に限定している製品などにも、偽造による損害を防止する目的で、そのものの真正性を識別できる機能を有することが望まれる。
【0004】
(背景技術)
従来、情報記録体や上記した種々の物品(総称して、真正性識別対象物と言う。)の偽造を防止する目的で、その構造の精密さから、製造上の困難性を有すると言われるホログラムを真正性の識別可能なものとして適用することが多く行なわれている。しかしながら、ホログラムの製造方法自体は知られており、その方法により精密な加工を施すことができることから、ホログラムが単に目視による判定だけのものであるときは、真正なホログラムと偽造されたホログラムとの区別は困難である。
これらの真正性識別対象物、特にラベル形態や転写形態にてホログラム画像を施された物品は、ホログラム画像の目視確認という真正性識別のみでなく、新たな真正性識別方法を用いてその対象物の真正性を識別する必要が生じている。
【0005】
(先行技術)
これらの要求に応えるため、ホログラムに積層して、入射した光の内、左回り偏光もしくは、右回り偏光のいずれか一方の光のみを反射する光選択反射層を有するホログラムシートが提案された。(例えば、特許文献1参照。)
この光選択反射層として、コレステリック液晶を使用し、偏光版等を用いて確認する方法で偽造防止性を高めている。
しかしながら、特許文献1の記載にあるように、ホログラム形成層上の反射性薄膜層の反射率が高いため、コレステリック液晶層で反射されず透過した光(選択的反射光の補色光)が、この反射性薄膜層で反射し、再びコレステリック液晶層へ戻る(以下戻り光とする)ことにより、この戻り光が、コレステリック液晶を観察する際のノイズ成分となって、選択的反射光に付加・混在し、液晶本来の色調とならず、視認・識別することすら難しくなっていた。
【0006】
また、コレステリック液晶材料そのものが高価であり、その液晶性能を引き出すためには液晶層に接して、配向膜の形成が不可欠であって煩雑であり、さらには、コレステリック液晶の光散乱性により、ホログラム画像を再生する光がその液晶層を通過するときに画像にボケ・歪みを生じる等の問題があった。
このため、コレステリック液晶層の光散乱性を抑えたり、コレステリック液晶層そのものを薄くする等の工夫が考えられたが、コレステリック液晶層の光散乱性を抑えるために屈折率差を小さくしたり、コレステリック液晶層を薄くしたりすると、上記した光選択反射層としての機能が低下してしまい、ホログラム画像の鮮明性と偽造防止性能を確保する最適な条件を得ることが難しいという欠点を有していた。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2007−90538号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
そこで、本発明はこのような問題点を解消するためになされたものである。その目的は、位相ホログラムのホログラム形成層、すなわちホログラムレリーフに接するようにエレクトロルミネッセンス素子層を設け、電圧を印加したとき、所定の波長で光るホログラムを視認することができる新規なホログラムシートを提供することである。さらに、このようなホログラムシートはこれまでに存在しないため、新規な装飾性及び、これを応用する偽造防止性を提供することである。
【課題を解決するための手段】
【0009】
上記の課題を解決するために、
本発明のホログラムシートの第1の態様は、
透明基材の一方の面に、ホログラム画像に対応したホログラムレリーフを有する透明樹脂層、及び、前記ホログラムレリーフに接するように、且つ追従するように陽極としての透明導電性薄膜層、絶縁層、及び、発光層が設けられ、その上に陰極としての透明導電性薄膜層がさらに設けられ、前記陽極としての透明導電性薄膜層と前記陰極としての透明導電性薄膜層との間に交流電圧を印加することにより、前記発光層がエレクトロルミネッセンスによる発光を生じることを特徴とするものである。
上記第1の態様のホログラムシートによれば、
透明基材の一方の面に、ホログラム画像に対応したホログラムレリーフを有する透明樹脂層、及び、前記ホログラムレリーフに接するように、且つ追従するように陽極としての透明導電性薄膜層、絶縁層、及び、発光層が設けられ、その上に陰極としての透明導電性薄膜層がさらに設けられ、前記陽極としての透明導電性薄膜層と前記陰極としての透明導電性薄膜層との間に交流電圧を印加することにより、前記発光層がエレクトロルミネッセンスによる発光を生じることを特徴とするホログラムシートことを特徴とするホログラムシートを提供することができる。

本発明のホログラムシートの第2の態様は、
前記陰極としての透明導電性薄膜層と前記発光層との間に、さらに絶縁層が設けられていることを特徴とするものである。
上記第2の態様のホログラムシートによれば、
前記陰極としての透明導電性薄膜層と前記発光層との間に、さらに絶縁層が設けられていることを特徴とする請求項1に記載のホログラムシートを提供することができる。

本発明のホログラムシートの第3の態様は、
前記陽極としての透明導電性薄膜層、前記絶縁層、前記発光層の総厚さは、0.1μm〜0.5μmであることを特徴とするものである。
上記第3の態様のホログラムシートによれば、
前記陽極としての透明導電性薄膜層、前記絶縁層、前記発光層の総厚さは、0.1μm〜0.5μmであることを特徴とする請求項1又は2に記載のホログラムシートを提供することができる。
【0010】
ホログラム画像を再生する干渉縞や回折格子群が、ホログラムレリーフとして、透明樹脂層面上に略一平面として形成されており、このレリーフに上に接して、且つ、このレリーフに追従して均一な厚さで無機エレクトロルミネッセンス素子を構成する層である、陽極(透明導電性薄膜層)、絶縁層及び、発光層が設けられている。ここで、エレクトロルミネッセンス素子を構成する各層は、そのレリーフ全面を覆うように設けてもよいし、部分的に覆うように設けてもよい。さらに、もう一つの、無機エレクトロルミネッセンス素子を構成する層である、陰極(透明導電性薄膜層)は、一方の面が上記ホログラムレリーフの形状に追従するように設けられるが、他方の面は、上記ホログラムレリーフの形状に追従するように設けられるていてもよいし、敢えて追従させず、上記レリーフ形状に無関係な面、特に、鏡面とすることもできる。
陰極の上記他方の面を上記レリーフ形状に追従させないことで、陰極層を厚くして、その電子供給量を十分なものとしたり、陰極層に導電性樹脂をコーティングにより形成する等の自由度が増すとともに、陰極側からの不要なホログラム再生を抑える効果を有する。
さらに、陰極の上記他方の面を鏡面としたり、光の反射を防止する無反射形状(光を散乱させる微細な凹凸を有する形状、又は、微細な円錐状等の凹凸を連続して形成したもの、さらには、その凹凸の大きさをランダムにしたもの等。)とすることで、上記した効果をより大きくすることができる。
ホログラムレリーフは、位相ホログラムとしての位相差を、レリーフ形状に現しているが、この位相差を有するレリーフ形状に追従して(沿って)、薄膜である、無機エレクトロルミネッセンス素子を構成する層である、陽極(透明導電性薄膜層)、絶縁層及び、発光層(以下、まとめて、「エレクトロルミネッセンス素子層」とも呼ぶ。)が設けられることにより、エレクトロルミネッセンス素子層そのものが、ホログラムレリーフ形状を形作り(特に、その素子の中で光を発する発光層がそのレリーフ形状を形作り)、そのエレクトロルミネッセンス素子層が発する(放射する)光が、上記位相差を含むことになる。
【0011】
これは、レリーフホログラムを再生する場合に、そのレリーフホログラムを所定の照明光で照明した際に、そのレリーフホログラム面上のあらゆる点(場所)で生じるホイヘンスの2次波に対し、本発明のホログラムシートの場合においては、この2次波に相当するものが、ホログラムレリーフ面に配されたエレクトロルミネッセンス素子層の発光光であり、この光がその役目を担い、ホログラム画像に対応したホログラムレリーフが有する位相差を含んで発光光を観察者側に届けるものである。
すなわち、この発光光が、ホログラムレリーフ面上の空間において干渉現象を起こし、その結果、所定の方向に所定のホログラム再生像を発現する。
エレクトロルミネッセンスとは、電場のエネルギーによって、蛍光物質等が発光する現象であって、面光源を得ることが可能である。
特に、無機エレクトロルミネッセンスは、物質に電界を印加したときに発光する物理現象であり、その機構は、固体である HYPERLINK "http://ja.wikipedia.org/wiki/%E7%84%A1%E6%A9%9F%E5%8C%96%E5%90%88%E7%89%A9" \o "無機化合物" 無機化合物の蛍光体(発光層)に電圧を印加するとその固体内にあらかじめ存在する電子、あるいは電極から注入された電子が高電界によって加速され、発光中心に衝突してこれを励起し、そのとき生じた電子と正孔が再結合することによって発光するというものである。外部から電流によって注入された電子と正孔の再結合によって発光する有機エレクトロルミネッセンスとは、励起の点で異なる。
すなわち、薄膜で形成された無機エレクトロルミネッセンス素子は、二重絶縁構造を有しており、この構造に電界を印加することにより発光が起こる。
発光層の構成形態から「分散型」と「薄膜型」の2種類に分けられ、分散型は、強誘電体粉末を有機バインダーに分散させた絶縁層と蛍光体粉末を有機バインダーに分散させた発光層とを積層させて、透明電極と背面電極で挟んだ構造であり、その代表的な構成は、/透明電極/絶縁層/発光層/背面電極/、若しくは、/透明電極/絶縁層/発光層/絶縁層/背面電極/である。
薄膜型は、薄膜電極付き基板上に薄膜蛍光体からなる発光層と絶縁層を積層させ、電極を付けた構造であって、スパッタリング法や真空蒸着法等の薄膜形成方法を用いて層を形成する。その代表的な構成は、分散型と同様である。
いずれも、透明電極側から、発光光が出る。
【0012】
つまり、加速された電子が、発光中心に衝突してこれを励起し、そのとき生じた電子と正孔とが再結合の際に発生するエネルギーにより化合物等を励起し、励起状態から、再び、基底状態へ戻るときに、蛍光(燐光を含む。)発光等が起こる。
蛍光発光の原理は、図1に示すジャブロンスキー図にあるように、その有機物質(複数の物質の複合系を含む。)の分子等の基底状態(S0:一重項状態)からエネルギー吸収によって第一(S1)、第二(S2)、第三励起状態(S3)・・・のどれかの振動状態に励起された有機物質の分子等が、無放射過程で非常に速やかに緩和してS1の電子励起状態に移るか、あるいは項間交差によって三重項状態(T1、T2)へ移る。
S1の最低振動状態になった蛍光体は、無放射過程によるか蛍光を発して基底状態に戻り、三重項状態になった分子は、無放射過程によるか、燐光を発して基底状態に戻る。
励起しても光に上手く利用できないエネルギーは無放射失活(熱失活)する。
一重項同士の遷移は瞬間的に起こるため、蛍光の半減期は10-4sec以下と短いものである。遷移に要する時間は、10-15secで励起が起こり、その後10-9〜10-7secで蛍光発光が起こるとされている。
一方、三重項から一重項への遷移はスピン変化禁止により禁制遷移となり自発的放出が起こりにくいので、燐光の半減期は大きく、秒単位のものもある。
基底状態に戻る際に光を発するか否か、光の強度が強いか弱いか、蛍光寿命が長いか短いかは、その有機物質の分子等の分子構造や分子等の置かれた環境に大きく依存する。
有機物質の分子等の放出光の波長分布を発光スペクトルといい、発光スペクトルは発光の波長に対し相対的な発光強度をプロットして作成される。発光スペクトルに示される波長(エネルギー)は一次励起状態の最低振動エネルギー準位から基底状態の優先的な振動エネルギー準位までのエネルギー差と等しくなる。
【0013】
本発明は、従来のホログラムの再生方法、すなわち、ホログラムに照明光源からの照明光を当て、ホログラムレリーフ面での反射光の干渉現象によって、その照明光の波長のホログラムを再生するもの、とは異なり、電圧を印加することによって、エレクトロルミネッセンス素子が発光し、その発光光そのものが上記干渉現象を生じて、その発光光の波長におけるホログラムを再生するものである。従って、回折角度も、その発光光の波長に依存する。
例えば、透明でほとんど何も見えない空間(レーザー再生ホログラム等のようにその再生に単波長光を必要とするものは、白色光光源では視認できない。また、白色光再生に適するレインボーホログラムであっても、ホログラフレリーフ面の界面反射強度が小さい場合にも、やはり視認しにくくなる。)に、電圧印加によって初めて、例えば「緑色」のホログラムを視認することもできるため、観察者の目には、あたかも、通常再生に用いられる「緑色の照明光源」の無いところに、ホログラムだけが光輝き、空中に浮いているように見え、意匠性にも優れるものとなる。
【0014】
さらに、ホログラムを再生可能な電源端子(陽極端子と、陰極端子。複数設けてもよいし、ダミー端子を設けることで、その偽造防止性を高めることが出来る。)がどの部分に形成されているか判別しにくくして、その構造を知りうる者のみがホログラム再生を果たすことができるよう設けて、真正性判定用に有用なものとすることができる。
また、上記した、発光光の波長を知りうる者のみがホログラム再生像の色調を予測でき、その再生波長に調整したバンドパスフィルターを通して覗いて、そのバンドパスフィルターを通過できるホログラムのみが、真正であると判定することもできる。
また、このバンドパスフィルターを通過する角度(回折角度)も、その発光波長に依存し、やはり、その値を知りうる者のみがその所定の角度で判定を行うことができる。
さらに、薄膜で形成されたエレクトロルミネッセンス素子を複数含めることにより、この再生像は複数の角度に異なる色調で現れることになり、意匠性の面でも、真正性判定の面でもより優れたものとすることができる。
もちろん、無機エレクトロルミネッセンス素子は、その印加する電圧により、発光スペクトルが大きく異なり、また個々の素子独特の発光特性を有するため、真正性判定に使用する印加電圧(電圧強度や、周波数等。)を知りえない偽造者が、真正品と全く同一のホログラムシートを作製しようとしても、物理的に不可能と言える。
【0015】
無機エレクトロルミネッセンス素子の構造は、基本構造として、透明電極(陽極)、絶縁層、発光層、背面電極(陰極)を積層したものであり、発光は、発光層である蛍光体膜から出る。蛍光体は、薄膜型の場合、誘電性のある母体材料に、発光中心となる微量の添加不純物を混ぜたもので、エネルギーを受けることで、その発光中心物質の外殻軌道または高い順位に移動(励起)した、発光中心物質の持つ電子が、元の順位に戻る(遷移)ときに、発光を生じる。
陽極(透明導電層)は、導電性を確保する必要があるため、やや厚くなるが、10nm〜200nmに抑える。10nm未満では、導電性の機能を発揮できず、200nmを超えると、ホログラムレリーフへの追従性が劣化する。
発光層である蛍光体の膜を、絶縁層である誘電体で挟み込み、その両端に電極を配した構造は、コンデンサを3個直列に接続した回路と考えることができ、ここに、交流電圧をかけると、誘電体と蛍光体の中で分極が生じ、印加電圧を上げ、蛍光体の膜にかかる電界が、100MV/m以上となると、発光中心が電界で加速された電子等の衝突のエネルギーを受け取り、励起されるようになる。
発光層としては、母体にZnSや、SrSなどの■族硫化物を用い、発光中心にMnや希
土類を添加したもの、母体にBaAL24(バリウム・アルミニウム複合硫化物)を用い、発光中心にEuを添加したもの、等が用いられる。
発光層には、周期表の第2族元素と第16族元素とから成る群から選ばれる少なくとも1種の元素及び/又は周期表の第13族元素と第15族元素とから成る群から選ばれる少なくとも1種の元素とを含む半導体を好ましく用いることができる。
そのキャリア密度は、1017/cm3以下であることが好ましい。
【0016】
発光層を形成する物質の具体例をさらに挙げると、CdS,CdSe,CdTe,ZnSe,ZnTe,CaS,MgS,GaP,GaAs,GaN,InP,InAs及びそれらの混晶などが挙げられるが、ZnSe,CaSなどを好ましく用いることができる。
さらに、BaAl2S4、CaGa2S4、Ga2O3、Zn2SiO4、Zn2GaO4、ZnGa2O4,ZnGeO3,ZnGeO4,ZnAl2O4,CaGa2O4,CaGeO3,Ca2Ge2O7,CaO,Ga2O3,GeO2,SrAl2O4,SrGa2O4,SrP2O7,MgGa2O4,Mg2GeO4,MgGeO3,BaAl2O4,Ga2Ge2O7,BeGa2O4,Y2SiO5,Y2GeO5,Y2Ge2O7,Y4GeO8,Y2O3、Y2O2S,SnO2及びそれらの混晶などを好ましく用いることができる。
【0017】
キャリア密度等は、一般に用いられるホール効果測定法などで求めることができる。
絶縁層である誘電体膜としては、金属酸化物、窒化物が用いられる。BaTiO3などのペロブスカイト系酸化物は高い誘電率を持ち好適である。
酸化物に含むことができる元素としては、周期表の第2族、3族、9族、12族(旧2B族(旧IIb族))、13族(旧3B族(旧III族))、14族(旧4B族(旧IV族))、第15族、第16族の元素が好ましく、第12族、第13族及び第14族の元素からなる群より選ばれる少なくとも1種の元素を含むことがより好ましい。具体的にはGa、In、Sn、Zn、Al、Sc、Y、La、Si、Ge、Mg、Ca、Sr、Rh、Ir等を挙げることができ、より好ましくは、Ga,In,Sn,Zn,Si,Ge等である。またこれらの元素以外に透明半導体が、S、Se、Te等のカルコゲナイドやCu、Ag等を好ましく含むことができる。
絶縁層と発光層の層厚さは、0.1μm〜2μmとする。もちろん、2μmを超えて10μm程度の厚さとすることで、発光性性能をより向上させることができるが、ホログラムレリーフの追従性の面で、2μmが限界である。
透明電極、背面電極は、有機エレクトロルミネッセンス素子と同様に、ITOや、金属薄膜が好適に持ちいられる。
異なる発光色の蛍光体膜を交互に並置して、多色とすることもできるが、輝度の高い1色の発光体膜の上に、色変換材料(クマリン系:クマリン6、ローダミン系:ローダミン6G、ローダミンB等の蛍光色素の混合物や、2種以上のベンゾ−α−ビロン骨格を持つ蛍光色素の混合物等、波長350nm〜600nmの光を吸収して、波長600nm以上の可視領域に発光極大を有する光を放出する等。)を重ねて多色とすることも好適である。
印加電圧としては、100V・50〜1000Hzの交流電源等を用いることができる。
【0018】
次に、ホログラフィの原理について説明する。
物体がコヒーレント光で照明され,物体から回折された光が記録媒体(フォトレジスト等。)を照明しているとした場合、物体から回折されて記録面に到達した波面を物体波は、
F(x,y)=A(x,y)EXP[φ(x,y)]
であらわされる。ここで、
A(x,y) は物体波の振幅分布とし、
φ(x,y) は位相分布とする。
このとき、記録媒体には、記録媒体に到達する光波の強度分布が記録される。その強度分布は、
I(x,y)=|F(x,y)|2=A2(x,y) (1)
となり、位相分布は記録されない。
ここで,物体波にこれと干渉性のある光波(参照波という)を重ね合わせると,記録される光波の強度分布は、
I(x,y)=|F(x,y)+R(x,y)|2
=|F(x,y)|2+|R(x,y)|2
+F(x,y)R*(x,y)+F*(x,y)R(x,y) (2)
となる.(*は複素共役項を表す。)
【0019】
ただし,参照光が記録面に角度θで入射する平面波であるとすれば、
R(x,y)=r(x,y)EXP(2πiαx) (3)
と書け、
α = SIN(θ)/λ (4)
である。(2)の第1項と第2項はそれぞれ、物体波の強度と参照波の強度でいずれも位相情報は欠落している。第3項と第4項は干渉の項でそれぞれ
F(x,y)R*(x,y)=
A(x,y)r(x,y)EXP[i [φ(x,y)−2παx] ] (5)
F*(x,y)R(x,y)=
A(x,y)r(x,y)EXP[−i [φ(x,y)−2παx]] (6)
とあらわされ、物体の位相項 φ(x,y) が残っている。(5)、(6)は互いに複素共役であり、(4.2)の第3項は物体の複素振幅分布を含んでいる。(5)、(6)を(2)に代入すると、
I(x,y)=|F(x,y)|2+|R(x,y)|2
+2A(x,y)r(x,y)COS [2παx−φ(x,y)] (7)
となる.物体波と参照波が干渉して干渉縞を形成していることがわかる。
【0020】
このように、物体波に参照波を重ね合わせて干渉記録し、 物体の位相情報を欠落させずに記録する方法がホログラフィである。(7)を記録したものが「ホログラム」と呼ばれる。ホログラムの振幅透過率もしくは振幅反射率が、記録した強度分布 I(x,y)
比例し、
T(x,y)=τI(x,y) (8)
とかけるとする。このホログラムに、記録したときに用いた参照波を所定の角度であてると、ホログラムを透過もしくは反射してきた波面は、
T(x,y)R(x,y)=τ(|F(x,y)|2+|R(x,y)|2
+τF(x,y)|R(x,y)|2
+τF*(x,y)R2(x,y) (9)
とあらわすことが出来る.この第2項は
τF(x,y)|R(x,y)|2
τA(x,y)r2(x,y)EXP[iφ(x,y)]] (10)
第3項は、
τF*(x,y)R2(x,y)=
τA(x,y)r2(x,y)EXP[−iφ(x,y)+2πiα] (11)
とかける。
【0021】
このことから、(9)の第1項は、照明光と同じ方向にホログラムを突き抜ける光束もしくは正反射する光束であり、第2項は、(10)より、物体光に比例した振幅を持つ光波であることがわかり、第3項は、(11)より、物体波と共役な位相分布を持ち、2θの方向に伝播する光波であることがわかる。
このようにして,ホログラフィの技術を使うと複素振幅分布を記録して再生することが出来る。
本発明の場合は、ホログラムの振幅透過率もしくは振幅反射率が、記録した強度分布に比例し、(8)の式で表されてはいるものの、このホログラムに、記録したときに用いた参照波を所定の角度であてるのではなく、(8)の振幅透過率もしくは振幅反射率と同様の空間的な分布を持つ発光波がこのホログラムから発せられることになる。
従って、参照光にホログラムに記録された位相項を付与するという従来のホログラム再生の原理によらず、既にホログラムに記録されている位相項を保持して発光波を放射するものである。従って、理論上は、物体の位相差を含む空間関数を持つ3次元の連続曲面状の発光面を有し、その曲面から光が放射されることになる。
【0022】
従来のホログラム再生原理を、透過タイプについて、単純化して説明すると、参照光としての平行光をホログラムにあてた際、遮蔽部分では、平行光が遮蔽され、透過部分からのみその平行光を透過し、透過部分と遮蔽部分との境界において回折が起こり、物体の持つ位相項を受け取り、ホログラムを透過した成分全体が重ね合わさり、それがホログラム再生光となって観察者の目に届くものである。
本発明の場合は、上記した参照光としての平行光が存在せず、ホログラムレリーフに接するように設けられた発光面での発光時、その放射光が物体の位相項を保持しており、その放射光同士の干渉現象により、ホログラム再生がなされるものである。
時間的且つ空間的コヒーレンス性を完全には持たない放射光同士の干渉効果は、レーザー光のような十分な干渉を生じないが、低コヒーレント光で ホログラムを照明した際と同様のレベルでホログラム再生が行われる。以上のような原理による再生であるため、ホログラム撮影時の参照光は平行光であることが好ましく(複雑な参照光を再現できないため。)、もしくは、「回折格子により表現されたホログラム」(回折格子は、物体光、参照光とも平行光である。)であることが好ましく、回折格子は計算機ホログラム等、電子線描画により形成したものが精密であり、好適である。
【0023】
さらに、上記の理由から、ホログラム再生像をより鮮明にするためには、放射光に対して、時間的若しくは空間的なコヒーレンス性に関する特性を付与することが必要であり、例えば、発光体の発光する部分の厚さ(放射方向の距離)を薄いものとして、発光点の厚さ方向におけるばらつきを小さいものとしたり、発光層その他の層を均一(層厚さを均一にしたり、均一分散や、均一組成とするなど、層内のムラをなくすこと。)にして、発光スペクトルのばらつきや、発光スペクトルの幅を小さいものとすることが望ましい。
また、ホログラムを光学的に記録する際に使用する光の主波長や、回折格子等を形成する際に想定する回折光の主波長と、エレクトロルミネッセンス素子からの発光波長を同一、乃至はほぼ同一とすることで、より鮮明なホログラム再生像を得ることができる。
さらには、発光光が通過する透明導電性薄膜、絶縁層等の透明な層での光の多重反射を考慮して、発光発光波長の通過する光の強度が最大となるように、各層の屈折率と厚さを設定することが好ましい。
但し、本発明のホログラムシートの本来の目的は、発光層の発光面で有する位相差分布を維持したまま素子から光を放出し、放出直後の空間において、その位相差分布に基づく光の干渉を十分行わせることであるから、この位相差分布を撹乱するような多重反射は、光の強度を増しすことはあっても、返ってホログラム再生像の鮮明度の低下を招く。
従って、上記した透明層等の屈折率分布や、厚さの設定は、これを配慮して行う必要がある。逆に、上記した透明層等での多重反射や、照明光のそれらの界面での反射を抑制する構成とすることも、ホログラム再生像の鮮明度を高めるために好適である。
もちろん、偽造防止性を高めるために、敢えて、発光する波長を記録形成時の波長と異ならせることも好適である。その場合は、波長が異なることによる、ホログラム再生像の変形や、回折角度の変化を予想し、あらかじめ確認しておくことが必須となる。
さらに、エレクトロルミネッセンス素子形成領域の部分的なばらつき、すなわち、形成場所による発光波長や、発光強度のばらつきは、ホログラム再生像の品質を劣化させるため、発光層の均一性は重要となる。
【0024】
少なくとも、発光波長のピーク値の部分的なばらつき(ある1mm径のスポット領域と、それに隣接する1mm径のスポット領域との差など。)や半値幅のばらつきは、30nm以内、発光強度ばらつきは10%以内であることが好適である。発光波長のピーク値や、半値幅のバラツキが30nmを超えると、ホログラム再生像の再生位置のばらつきが発生し、ホログラム再生像がボケて不鮮明となる。また、発光強度のばらつきが10%を超えると、光の干渉にもばらつきが発生し、結果的に不鮮明な再生となる。
また、エレクトロルミネッセンス素子を多数の微細なスポット(例えば、網点状等)として、離散させて設けた場合(発光層のみを網点状とする等、素子全体を離散的に設けても良いし、単層乃至は複数の層のみを離散的に設けても良い。)には、発光量が減少し、全体的な明るさは低下するものの、個々のスポットに隣接する領域から発光光がでないため、不要な干渉を低減させることができ、ホログラム再生像のシャープさが増し、好適である。
但し、このスポットの大きさや、発光層等の厚さが、ホログラムレリーフとは無関係にそのホログラム面上に離散的に形成されている場合には、その大きさ分布や、厚さ分布に起因する蛍光発光強度分布が、場合によっては、ホログラムを再生する光と不要な干渉を生じ、若しくは、あるべき干渉を撹乱し、ホログラム再生像を不鮮明にする要因となり得る。
この要因を排除するため、発光層を、連続して形成する場合、及び、離散的に形成する場合においても、ホログラムレリーフを形成する凹凸に追従して均一な厚さ、そして、均一な分布で形成して、ホログラムレリーフ面のどの領域からも、同一の強度の発光が生じるようにし、ホログラム再生像の鮮明化を図ることができる。
【0025】
本発明のホログラムシートは、室内照明光や、自然光照明下では、ホログラム再生像があまり認識できず、電圧を印加した時のみ、突然ホログラム再生像が出現し、まったく照明光のないところに、ホログラム再生像が浮き上がっているように観察される。
但し、陰極の金属層が高い反射性を有しているため、この層の反射により、ホログラム再生像が視認できることになる。そこで、陰極そのものも透明層としたり、陰極層のみホログラムレリーフに追従させないように陰極層に接している層の厚さを制御、若しくは、ばらつかせて、さらには、敢えて平坦化して(鏡面となる。)、室内照明光や、自然光照明下では、ホログラム再生像を全く認識できないようにすることも偽造防止性の向上や、意外性という意味での意匠性の向上に寄与する。
本発明のホログラムシートのホログラム再生像は、空間的なホログラムの位相を含んではいるとはいえ、その発光光同士の時間的及び空間的なコヒーレント性は小さく、このホログラム再生像は通常のレーザー再生レリーフホログラムの再生像より微弱であって且つ不鮮明となっている。
もちろん、ビーム形状の回折光を観察するのみであれば、その色調と回折方向を確認することは容易であり、そのままでも真正性の判定に差し支えないものの、この微弱且つ不鮮明なホログラム再生像を観察者が認識しその存在を正確に判定可能とするために、発光体の発光性能を向上させ、且つ、回折角度を大きくとって波長―回折角依存性を強め、0次回折光の角度と発光の回折角度の差を大きくし、さらには、発光層を薄くして、発光層厚さ方向のばらつきを抑え且つ均一なものとすることが必要となる。(発光面が位相情報を含んでいるため、その空間的な形状を正確に再現するものとする。)
【0026】
さらには、時間的なコヒーレント性をより強く発現するため、電圧の印加をパルス状とし、パルスとパルスの時間的間隔を蛍光等の発光時間である10-7sec以上あけて照明することも好適である。これにより、一つの印加パルスによって生じた一つの蛍光の発光面が、次の印加パルスによって生じた蛍光の発光面とは、互いに撹乱現象を起こさず、一つのパルスによって発現した一つの蛍光発光面によって生じるホログラフィックな干渉現象により、鮮明なホログラム再生像を観察することができるようになる。もちろん、単純に秒単位でON−OFFする電圧印加手法(手動でも可能なレベル。)を使用した場合でも、観察者には、連続して発光しているようにも見えるため、このような簡易な手段であっても目視で確認する場合には、上記した効果を十分得ることができる。
本発明のホログラムシートにおいて、エレクトロルミネッセンス素子層の発光側、すなわち、発光層、絶縁層と、透明導電性薄膜の積層等における、透明導電性薄膜の最表面が、ホログラム形成層のホログラムレリーフに接し、且つ追従しているので、透明導電性薄膜の最表面を通過した発光が、ホログラム形成層と透明基材を通過して、観察者側にその発光光の波長におけるホログラム再生像を再生する。
この場合には、ホログラム形成層、透明導電性薄膜、及び発光層等の屈折率差を小さくしたり(その差を0.10以内とするなど。)、その分布を制御する(屈折率を高、低、高と積層し、低い層の屈折率の二乗が高い層の屈折率に相当するなど。)ことで、各層の界面での不要な反射を抑制することができ、エレクトロルミネッセンス素子に電圧を印加する前の視認性を抑制可能であって、より意匠性を高いものとすることができる。
【0027】
さらには、発光層の表面からホログラム形成層のホログラムレリーフ面までの距離(その間の各層の層厚さ)を極力小さいものとすることで、発光層表面のレリーフ形状のホログラムレリーフに対する追従性を高いものとすることができる。これにより、より鮮明なホログラム再生像を得ることができる。
また、前記陰極としての透明導電性薄膜層と前記発光層との間に、さらに絶縁層が設けられていると、発光層に対する絶縁性を確保でき、その耐久性が向上するとともに、印加する電圧を高くすることが可能となるため、より明るく、鮮明なホログラム再生像をえることができる。
この絶縁層としては、前記した、陽極側の絶縁層と同一のものを同一の厚さで設けることもできるが、陰極と、発光層の間であって、発光層の上に形成され、もはや、陽極へ向かうホログラムを再生する発光光の波面形状や、位相情報への影響はほとんどないため、薄膜もしくは、比較的厚い層として形成可能である。
従って、薄膜型材料のみならず、分散型材料をも用いることができ、形成方法も、通常の薄膜形成方法や、コーティング等の印刷方法を採用することができる。
特に、発光層と接してる面とは反対の面の形状は、ホログラムレリーフのレリーフ形状とは無関係な形状をしていることが望ましく、(この面、すなわち、最表面が、レリーフ形状を忠実に再現していると、陰極側から観察した際に、絶縁層と陰極との界面で反射光を発し、その反射光により、ホログラム再生像を視認可能としてしまう。
意匠性や、偽造防止という観点から、発光前のホログラムの視認性は不要であって、この界面の形状は、印刷等による形成面のように、凹凸の少ない平坦な面、ゆるやかな単純曲面、さらには、光を散乱するような散乱面であることが望ましい。
【0028】
より望ましくは、絶縁層の上記界面を鏡面としたり(界面の鏡面反射光により、ホログラム再生像を視認しにくくする。)、光の反射を防止する無反射形状(光を散乱させる微細な凹凸を有する形状、又は、微細な円錐状等の凹凸を連続して形成したもの、さらには、その凹凸の大きさをランダムにしたもの等。)とすることで、その効果をより大きくすることも好適である。この場合は、絶縁層として、分散型材料を用いて、コーティング後、加熱・乾燥もしくは、電離放射線等の硬化の前、又はその際に、その最表面に、所望の形状(光を散乱させる微細な凹凸を有する形状、又は、微細な円錐状等の凹凸を連続して形成したもの、さらには、その凹凸の大きさをランダムにしたもの)を有する原盤を重ねることによって、その所望の形状を賦型することも、好適である。
このような絶縁層に用いられる、誘電体材料としては、π電子系の酸−塩基二成分型有機物を利用した有機強誘電体、例えば、クロラニク酸、ブロマニル酸等のような強い酸性度(H+(プロトン)の供与能)の水酸基を有するジヒドロキシ−p−ベンゾキノン類、あるいは、クロラニル酸を酸として、ベンゼン環にプロトン受容基の窒素原子を組み入れたフェナジン(Phz)を塩基として作用させ、1:1の分子化合物としたもの等、さらに、分子間で水素結合を形成して一次元のネットワークを形成したこれらの集合構造分子も使用することができる。
【0029】
その形成厚さは、50nm〜5μmとする。
50nm以下では、その機能が不十分となるが、5μmを超えると、陽極と陰極の距離が大きく開くことにより、印加する電圧を非常に高いものとする必要が生じる。
さらに、エレクトロルミネッセンス素子層を、レリーフ形状に、接するように、且つ追従するように設ける際に、ホログラム再生像をより鮮明にするためには、ホログラムレリーフ上の、陽極、絶縁層、及び発光層を合わせた総厚さは、さらに、薄く形成することが好適であり、ホログラムレリーフの凹凸の深さや、ピッチの大きさに対して、同じレベルとすることが望ましく、0.1μm〜0.5μmであることが、より好ましい。
このため、陽極としての透明導電性薄膜の厚さを10nm〜100nmに制御し、絶縁層の厚さを、40nm〜200nm、そして、発光層の厚さを50nm〜200nmに抑える。
この厚さが、0.1μm、すなわち、100nm未満であれば、素子としての性能が不十分であり、0.5μmを超えると、明るさは確保できるが、ホログラムレリーフの追従性が低下し、いずれにしても鮮明なホロググラム再生像を得るには、不十分となる。
このため、陽極には、導電率の高い透明導電性薄膜層を用いる必要があり、例えば、ITO薄膜における錫成分の配合を最適化し、且つ、薄膜形成時の基板温度、アニーリング温度を高く設定する。
また、絶縁層にも、より高い誘電率を有する材料を選定する必要があり、光CVD法等による酸化タンタル薄膜形成、(Pb、La)(Zr、Ti)03(PLZT)薄膜や、ペロブスカイト構造のチタン酸ストロンチウム等、さらには、パルスレーザー堆積法等を採用することが好適である。
発光層も高効率の材料を選定する必要があり、ユーロピウム添加硫化カルシウムや、Ti添加、又は、Tb添加錫酸カルシウム等を採用する。
さらには、陰極側の絶縁性を高くすることも、発光光率を向上する。
もちろん、絶縁性を確保できる範囲で、印加電圧乃至は、交流周波数を上げることも採用可能であり、200V・1000Hzもしくはそれ以上とすることも、ホログラム再生像を鮮明にするためには、好適である。
【発明の効果】
【0030】
本発明のホログラムシートによれば、
透明基材の一方の面に、ホログラム画像に対応したホログラムレリーフを有する透明樹脂層、及び、前記ホログラムレリーフに接するように、且つ、追従するように陽極としての透明導電性薄膜層、絶縁層及び、発光層が設けられ、その上に、陰極としての透明導電性薄膜層、又は、もう一つの絶縁層を介して陰極としての透明導電性薄膜層、がさらに設けられていることを特徴とするホログラムシートが提供され、電圧印加により無機エレクトロルミネッセンス素子としての発光が生じ、その発光波長によるホログラム再生像を持つ、意匠性及び真正性判定性に優れるホログラムシートが提供される。
【図面の簡単な説明】
【0031】
【図1】は、ジャブロンスキー図である。
【図2】は、本発明の1実施例を示すホログラムシートAの断面図である。 (エレクトロルミネッセンス素子を構成する層(透明導電性薄膜層、絶縁層及び 、発光層)が、「ホログラムレリーフを形成する凹凸に接するように追従して 形成され」、陰極としての透明導電性薄膜層の最表面が鏡面となっている例で ある。)
【図3】は、本発明の1実施例を示すホログラムシートA´の断面図である。 (図2の構成に、もう一つの絶縁層が追加形成されている例である。)
【図4】は、本発明の1実施例を判定するプロセスである。
【発明を実施するための形態】
【0032】
以下、本発明の実施形態について、図面を参照しながら、詳細に説明する。
(透明基材)本発明で使用される透明基材1は、厚みを薄くすることが可能であって、機械的強度や、ホログラムシートAを製造する際の加工に耐える耐溶剤性および耐熱性を有するものが好ましい。使用目的にもよるので、限定されるものではないが、フィルム状もしくはシート状のプラスチックが好ましい。
例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリビニルアルコール、ポリスルホン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアリレート、トリアセチルセルロース(TAC)、ジアセチルセルロース、ポリエチレン/ビニルアルコール等の各種のプラスチックフィルムを例示することができる。
その中でも、紫外線等の励起光に対する耐性を有するもの、例えば、紫外線吸収剤を含むものであってもよい。紫外線吸収剤を含むものは、自然光等の中に含まれる紫外線により微かではあるが、予定外のホログラム再生を防ぐ効果も有する。
透明基材1の厚さは、通常5〜100μmであるが、ホログラム再生像の視認性を配慮する場合には、5〜50μm、特に5〜25μmとすることが望ましい。
【0033】
(ホログラムレリーフを有する透明樹脂層:ホログラム形成層ともいう。)
本発明のホログラム形成層2を構成するための透明な樹脂材料としては、各種の熱可塑性樹脂、熱硬化性樹脂、もしくは電離放射線硬化性樹脂を用いることができる。熱可塑性樹脂としてはアクリル酸エステル樹脂、アクリルアミド樹脂、ニトロセルロース樹脂、もしくはポリスチレン樹脂等が、また、熱硬化性樹脂としては、不飽和ポリエステル樹脂、アクリルウレタン樹脂、エポキシ変性アクリル樹脂、エポキシ変性不飽和ポリエステル樹脂、アルキッド樹脂、もしくはフェノール樹脂等が挙げられる。
これらの熱可塑性樹脂および熱硬化性樹脂は、1種もしくは2種以上を使用することができる。これらの樹脂の1種もしくは2種以上は、各種イソシアネート樹脂を用いて架橋させてもよいし、あるいは、各種の硬化触媒、例えば、ナフテン酸コバルト、もしくはナフテン酸亜鉛等の金属石鹸を配合するか、または、熱もしくは紫外線で重合を開始させるためのベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド等の過酸化物、ベンゾフェノン、アセトフェノン、アントラキノン、ナフトキノン、アゾビスイソブチロニトリル、もしくはジフェニルスルフィド等を配合しても良い。
【0034】
また、電離放射線硬化性樹脂としては、エポキシアクリレート、ウレタンアクリレート、アクリル変性ポリエステル等を挙げることができ、このような電離放射線硬化性樹脂に架橋構造を導入するか、もしくは粘度を調整する目的で、単官能モノマーもしくは多官能モノマー、またはオリゴマー等を配合して用いてもよい。
上記の樹脂材料を用いてホログラム形成層2を形成するには、感光性樹脂材料にホログラムの干渉露光を行なって現像することによって直接的に形成することもできるが、予め作成したレリーフホログラムもしくはその複製物、またはそれらのメッキ型等を複製用型として用い、その型面を、透明基材1上に、コーティング方式、グラビア印刷方式、カーテンコート方式、インクジェット方式等種々の形成方式を用いて、上記の樹脂を、1〜10μm厚さに形成したホログラム形成層2に押し付けることにより、賦型を行なうのがよい。ホログラム形成層2には、エレクトロルミネッセンス素子による発光波長に対する高い透明性を有することが要求される。
【0035】
熱硬化性樹脂や電離放射線硬化性樹脂を用いる場合には、型面に未硬化の樹脂を密着させたまま、加熱もしくは電離放射線照射により、硬化を行わせ、硬化後に剥離することによって、硬化した透明な樹脂材料からなる層の片面にレリーフホログラムの微細凹凸を形成することができる。なお、同様な方法によりパターン状に形成して模様状とした回折格子を有する回折格子形成層も光回折構造として使用できる。
ホログラムは物体光と参照光との光の干渉による干渉縞を凹凸のレリーフ形状で記録されたもので、例えば、フレネルホログラムなどのレーザ再生ホログラム、及びレインボーホログラムなどの白色光再生ホログラム、さらに、それらの原理を利用したカラーホログラム、コンピュータジェネレーティッドホログラム(CGH)、ホログラフィック回折格子などがある。また、マシンリーダブルホログラムのように、その再生光を受光部でデータに変換し所定の情報として伝達したり、真偽判定を行うものであってもよい。
【0036】
微細な凹凸を精密に作成するため、光学的な方法だけでなく、電子線描画装置を用いて、精密に設計されたレリーフ構造を作り出し、より精密で複雑な再生光を作り出すものであってもよい。このレリーフ形状は、ホログラムを再現もしくは再生する光もしくは光源の波長(域)と、再現もしくは再生する方向、及び強度によってその凹凸のピッチや、深さ、もしくは特定の周期的形状が設計される。
また、カラーホログラム画像を、回折格子線からなる回折格子画素(同一の回折格子線からなる単一回折格子エリアの最小単位。これら画素から回折光としてでてくる光の集合が一つのカラーホログラム画像を形成する。)に要素分解し、所定の画素のサイズ、格子線ピッチ、格子線角度をその各要素に割り当てて再現するという画像処理方法を用いて形成することも可能である。
凹凸のピッチ(周期)は再現もしくは再生角度に依存するが、通常0.01μm〜数μmであり、凹凸の深さは、再現もしくは再生強度に大きな影響を与える要素であるが、通常0.01μm〜数μmである。
単一回折格子のように、全く同一形状の凹凸の繰り返しであるものは、隣り合う凹凸が同じ形状であればある程、反射する光の干渉度合いが増しその強度が強くなり、最大値へと収束する。回折方向のぶれも最小となる。立体像のように、画像の個々の点が焦点に収束するものは、その焦点への収束精度が向上し、再現もしくは再生画像が鮮明となる。
【0037】
ホログラムレリーフ形状を賦形(複製ともいう)する方法は、回折格子や干渉縞が凹凸の形で記録された原版をプレス型(スタンパという)として用い、上記透明基材1上にコーティング方法等、適宜な印刷方法により形成したホログラム形成層2上に、前記原版を重ねて加熱ロールなどの適宜手段により、両者を加熱圧着することにより、原版の凹凸模様を複製することができる。形成するホログラムパターンは単独でも、複数でもよい。
上記の極微細な形状を精密に再現するため、また、複製後の熱収縮などの歪みや変形を最小とするため、原版は金属を使用し、低温・高圧下で複製を行う。
原版は、Niなどの硬度の高い金属を用いる。光学的撮影もしくは、電子線描画などにより形成したガラスマスターなどの表面にCr、Ni薄膜層を真空蒸着法、スパッタリングなどにより5〜50nm形成後、Niなどを電着法(電気めっき、無電解めっき、さらには複合めっきなど)により50〜1000μm形成した後、金属を剥離することで作ることができる。
複製方式は、平板式もしくは、回転式を用い、線圧0.1トン/m〜10トン/m、複製温度は、通常60℃〜200℃とする。
【0038】
ホログラムレリーフ面のそのレリーフ形状が、エレクトロルミネッセンス素子層を設ける際の種々の負荷、すなわち、薄膜形成時の熱粒子の衝突や、薄膜材料を加熱する電子線への暴露、薄膜特性を向上させるための加熱エージング処理等による、ホログラム形成層にかかる種々の負荷、による熱変形等を受けてホログラム再生像が劣化することを防ぐため、ホログラム形成層は、電離放射線硬化型とすることが好ましく、レリーフ形成後にさらに硬化度を向上させるための、追加加熱処理や、追加電離放射処理をするものが、さらに好ましい。
また、電圧を印加した際の電気的絶縁性を確保するため、導電性がなく、絶縁性の高いものが望ましく、絶縁破壊強さ(ASTM−149)で、15MV/m以上、さらには、20MV/m以上のものが望ましい。絶縁破壊強さは、ガラス粉等の充填剤を混入することで、より高い値とすることができるが、本発明の目的から、光学的透明性が要求されるため、絶縁破壊強さは、高いものでも、50MV/m以下となる。
絶縁破壊強さが、15MV/m未満では、エレクトロルミネッセンス素子への印加電圧が安定せず、発光がムラとなることで、ホログラム再生像が劣化する。また、電気が漏れることによる感電の不安が残る。
【0039】
熱硬化性樹脂、もしくは電離放射線硬化性樹脂を用いることができる。熱可塑性樹脂としてはアクリル酸エステル樹脂、アクリルアミド樹脂、ポリカーボネート樹脂、もしくはポリスチレン樹脂等が、また、熱硬化性樹脂としては、メラミン樹脂、尿素樹脂、アニリン樹脂、不飽和ポリエステル樹脂、等が挙げられる。
但し、ホログラム形成層そのものが、エレクトロルミネッセンス素子における陽極の役目をする場合には、これとは逆に、導電性を有する樹脂を用い、その樹脂層にホログラム形成レリーフを施すことも、好適である。この場合には、層構成が簡易となり、また、透明導電性薄膜を形成する際の種々の負荷を避けることが可能となる。
【0040】
(エレクトロルミネッセンス素子を構成する層)
エレクトロルミネッセンス素子を構成する層は、ホログラム形成層2のホログラムレリーフ上に、構成する層、すなわち、透明導電性薄膜層(陽極)、絶縁層、及び、発光層を順次設けていくことで、形成される。
陽極としての透明導電性薄膜層3の材料としては、例えば、ITO薄膜(インジウム・スズ酸化物薄膜)、酸化インジウム、錫ドープ酸化錫、アンチモンドープ酸化錫、亜鉛ドープ酸化錫、フッ素ドープ酸化錫、酸化亜鉛等の透明導電性材料、ポリアニリン、ポリピロール、ポリアセチレン、ポリアルキルチオフェン誘導体、ポリシラン誘導体等の導電性高分子等、を使用して形成することができる。
陽極3の形成形成方法は、スパッタリング法、真空蒸着法、化学蒸着法(CVD法)、スピンコート法、キャスト法を用いたゾルゲル法、スプレイパイロリシス法、イオンプレーティング法等の方法があるが、ホログラム形成層2のホログラムレリーフのレリーフ形状の変形を最小限とし、且つ、滑らかな形成面とするために、ホログラム形成層2へのダメージが小さい、真空蒸着法、化学蒸着法(CVD法)等を用いる。、さらには、所望の組成の塗布液を塗布して形成する方法等を採用することができる。
【0041】
特に、電子ビーム加熱真空蒸着法を採ることが好ましい。具体的には、真空度1×10-7〜1×10-5Pa、成膜速度10〜50nm/秒、基材温度(冷却)−10〜100℃の条件で成膜する。
陽極の代表的なものは、透明導電性薄膜である、ITO薄膜であり、ホログラムレリーフ上に、電子線加熱真空蒸着法により、例えば100nm程度形成する。
透明導電性薄膜の導電性は、その表面抵抗値で管理しており、0.1Ω/□以下となるよう、インジウムと錫の加熱速度や、導入する酸素がスの量を制御する。
ホログラムレリーフは、その凹凸深さが0.01μmと微細であり、しかも、その微妙に変化する曲線の変化そのものが、ホログラム再生情報を含んでいる為、この薄膜形成による加熱や、金属粒子の衝突等の衝撃によって、その曲線に変化を生じないよう、ホログラム形成層及び透明基材を十分冷却し、高速で処理する。従って、膜厚さを薄く形成する。
透明導電性薄膜の膜厚さ制御を十分行い、膜厚さばらつきが、数%以内にとどめ(100nmの数%→数nmレベル)、透明導電性薄膜の表面(レリーフと接着している面とは反対の面)が、ホログラム形成面とほぼ同一の形となるようにする。
ホログラム形成層2へのダメージをさらに軽減するために、CVD法(化学蒸着法)等を用いることもできる。CVD法の場合は、ホログラム形成層へのダメージはほとんど無いが、薄膜形成後の加熱処理等付加的な処理を要し、薄膜の表面性もホログラムレリーフのレリーフ形状としてはやや粗いものとなる。
【0042】
ホログラム形成層2へのダメージをさらに軽減するために、CVD法(化学蒸着法)等を用いることもできる。CVD法の場合は、ホログラム形成層へのダメージはほとんど無いが、薄膜形成後の加熱処理等付加的な処理を要し、薄膜の表面性もホログラムレリーフのレリーフ形状としてはやや粗いものとなる。
次に、この陽極3としての透明導電性薄膜上に、絶縁層4を設ける。
絶縁層4として用いられる材料は、具体的には、Y2O3、Al2O3、Ta2O5、SiO2、Si3O4等の非晶質酸化物、BaTiO3、PbTiO3等の強誘電体、SiNx、SiOF、SiOC、Pb(Zr,Ti)O3、(Pb、La)(Zr,Ti)O3、Bi4Ti3O12、さらにはぺロブスカイト型強誘電体、タングステン・ブロンズ型強誘電体、ビスマス層状構造強誘電体等を挙げることができる。
さらに、π電子系の酸−塩基二成分型有機物を利用した有機強誘電体、例えば、クロラニク酸、ブロマニル酸等のような強い酸性度(H+(プロトン)の供与能)の水酸基を有するジヒドロキシ−p−ベンゾキノン類、あるいは、クロラニル酸を酸として、ベンゼン環にプロトン受容基の窒素原子を組み入れたフェナジン(Phz)を塩基として作用させ、1:1の分子化合物としたもの等、さらに、分子間で水素結合を形成して一次元のネットワークを形成したこれらの集合構造分子も使用することもできる。
その形成方法は、スパッタリング法、真空蒸着法、化学蒸着法(CVD法)、スピンコート法、キャスト法を用いたゾルゲル法、スプレイパイロリシス法、イオンプレーティング法等の方法、さらには、所望の組成の塗布液を塗布して形成する方法等を採用することができる。
【0043】
絶縁層4である誘電体膜として、代表的には、BaTiO3薄膜を、スパッタリング(Arガス使用)法を用いて、例えば500nmの厚さで形成する。この場合には、ホログラム形成層2上に、既に、金属酸化物薄膜が形成されているため、そのレリーフの耐熱性は比較的高く、比較的容易に薄膜形成を行うことができる。
この層は、絶縁性を確保するためには、厚い方が望ましい(〜2μm)が、ホログラム形成層2のホログラムレリーフ面の形状を維持するためには、やはり、均一厚さ、及び、その表面性の滑らかさを確保する必要があるため、40nm〜500nmとすることが好適である。
ここで、絶縁層4を透明導電性薄膜上の隅々まで形成すると、陽極端子を設けることができないため、マスキング法により、透明導電性薄膜上の一部を、そのホログラムの大きさとのバランスを考慮して、例えば、50mm×40mmサイズのホログラムの場合には、2mm×4mmサイズのマスキングを施して、絶縁層を形成する。
もう一つの絶縁層である、発光層5上の絶縁層7は、ホログラムレリーフへの追従性という、厚さに対する制約がないため、50nm〜5μmと幅広く選択できる。
但し、陽極と陰極の間隔が大きくなりすぎると、発光光率の低下や、高電圧印加が必要となることから、絶縁層7も可能な限り薄く設ける。
【0044】
さらにその上に、無機エレクトロルミネッセンス素子用の発光層5を設ける。
発光層5は、所望の発光色の発光蛍光体を用いて形成されたものであり、例えば、赤色発光蛍光体として、ZnS、Mn/CdSSe等、緑色発光蛍光体として、ZnS:TbOF、ZnS:Tb等、青色発光蛍光体としては、SrS:Ce、(SrS:Ce/ZnS)n、CaGa2S4:Ce、Sr2Ga2S5:Ceを挙げることができる。また、白色発光蛍光体として、SrS:Ce/ZnS:Mn等が挙げられ、これらの蛍光体を適宜選択して、用いることができる。
発光層5の厚さは、上記した理由により、50nm〜1μmとする。
発光層5としては、代表的には、母体にZnSを用い、発光中心にMnを添加したものを、スパッタリング(Arガス使用)法を用いて、例えば1μm厚さで形成する。
この発光層5が、ホログラムレリーフの位相情報を含んで発光するものであるため、この層の両表面(両界面)は、ホログラム形成層のレリーフ形状を忠実に再現していなければならない。
そのために、上記した各層の厚さの均一性、界面の滑らかさを確保できる成膜方法を採用する。
発光層形成時にも、上記した位置に同様のマスキング処理を施す。
【0045】
この上に設ける陰極は、アルミニウム、金、銀、白金、銅、鉄、銀・マグネシウム合金等の金属薄膜や、グラファイトなどを厚さ、50〜500nmで形成する。代表的には、アルミニウム薄膜でよく、真空蒸着法で安定的に、例えば、300nm厚さで形成することができる。
アルミニウム薄膜の発光層と接している面は、発光層のレリーフ形状に追従しており、発光層の形状そのものを再現できる。また、その反対の層は、本発明の発光とは無関係であるため、通常の形成面でよい。
陰極形成時にも、上記した位置に同様のマスキング処理を施す。
以上の様にして、透明基材1上に、ホログラム形成層2、そして、無機エレクトロルミネッセンス素子からなる、エレクトロルミネッセンス素子層3を、そのホログラムレリーフ面に接して、追従するように設けることができ、且つ、陰極側から観察した場合、アルミニウム金属面の一部に、陽極である透明導電性薄膜層が露出して見える。
この陽極と、陰極の間に、電圧50V〜200V・100〜1000Hzの交流電圧を印加すると、エレクトロルミネッセンス層3において発光が生じ、(陽極側より)ホログラム形成層2、透明基材1を通して、ホログラム再生像を視認することができる。
【実施例】
【0046】
(実施例1)
透明基材1として、12μmのPETフィルムの表面に、アクリルアミド樹脂組成物を塗布し、ホログラム画像位置検知パターン付きのレリーフホログラム(30mm×40mmサイズ:「発光」の文字画像:図3参照)の複製用型の型面を、接触させたまま加熱硬化させることにより、レリーフホログラムの形成を行ない、厚さ3μmのホログラム形成層2を得た。
PETフィルム及びアクリルアミド樹脂の絶縁破壊強さは、それぞれ50MV/m、20MV/mであった。
このホログラム形成層2上に、そのホログラムレリーフ形成領域を覆うように、陽極3としてのITO薄膜を、200nm厚さで形成した。
その上に、絶縁層4として、誘電体材料BaTiO3を、同様の位置のマスキング処理を施して、スパッタリング(Arガス使用)法を用いて、1μmの厚さで形成した。この時、陰極端子を残すため、ホログラム画像の右端下に3mm×3mmの領域で、マスキング処理を行った。
【0047】
その上に、発光層5として、母体にZnSを用い、発光中心にMnを添加したものを、スパッタリング(Arガス使用)法を用いて、1μm厚さで形成した。ターゲットには、硫化マンガン(MnS)を0.5mol%添加した硫化亜鉛(ZnS)を用い、ターゲットガスには、高純度のアルゴンガスを用いた。このとき、同様にマスキング処理を施した。
さらに、その上に、陰極6として、ITO薄膜を、同様の位置のマスキング処理を施して、電子線加熱真空蒸着法により、厚さ500nmで形成した。この際、蒸着角度を被蒸着面に対して、垂直方向より45度〜60度とし、その形成表面がホログラムレリーフとは無関係な面(追従性がほとんどみられない面という意味。)とした。
以上により、ホログラム形成層2上に、陽極3、絶縁層4、発光層5、及び陰極6からなる有機エレクトロルミネッセンス素子を形成し、実施例1のホログラムシートAを作製した。
このホログラムシートAを室内の照明光下で観察したところ、透明基材1側からは、ホログラム再生像を視認しにくく、さらに、その反対面のITO薄膜側(陰極6側)からは、ホログラム再生像を全く視認できなかった。
このホログラムシートAの陽極3の端子部分と、の陰極6であるITO薄膜形成表面との間に、100V・100Hzの電圧を印加したところ、発光が生じ、透明基材1側からの観察において、透明な空間上に緑色の、鮮明なホログラム再生像を視認することができた。
このホログラムシートAへの電圧印加を止めると、印加前の状態に戻った。
以上のことから、このホログラムシートAは、真正品であることを容易に且つ確実に判断することができた。
【0048】
(実施例2)
発光層5と、陰極6の間に、チタン酸ストロンチウム粉末混合ポリイミド前駆体ワニス(混合比:1/10)をシルクスクリーン印刷により、5μm厚さで形成し、微細な光散乱面(マット状)を有するNi製賦型を100度・1トン/m線圧にて加熱・加圧しながら賦型し、重合硬化させ、その最表面をマット状とし、絶縁層7を追加形成したこと以外は、実施例1と同様にして、実施例2のホログラムシートA´を得た。
実施例1と同様にして評価したところ、電圧印加前のホログラムの視認性がさらに抑制され、意匠性、偽造防止性を向上できたこと以外は、実施例1と同様の結果が得られた。
(実施例3)
陽極3を厚さ100nmとし、絶縁層4として、ペロブスカイト構造のチタン酸ストロンチウムを厚さ200nmで、発光層5として、ユーロピウム添加硫化カルシウムを200nmとし、その上に絶縁層7として絶縁層4と同一のものを使用したこと以外は、実施例2と同様にして、実施例3のホログラムシートA´を得た。
【0049】
陽極3、絶縁層4及び、発光層5の3層の総厚さは、500nm(0.5μm)となった。
このホログラムシートA´を室内の照明光下で観察したところ、透明基材1側及び、その反対面の陰極6側からは、ホログラム再生像を視認し難かった。
このホログラムシートA´の陽極3の端子部分と、の陰極6との間に、200V・500Hzの電圧を印加したところ、発光が生じ、透明基材1側からの観察において、透明な空間上に赤色の、鮮明なホログラム再生像を視認することができた。
このホログラムシートAへの電圧印加を止めると、印加前の状態に戻った。
以上のことから、このホログラムシートAは、真正品であることを容易に且つ確実に判断することができた。
【0050】
(比較例)
エレクトロルミネッセンス素子層3を形成せず、陰極であるアルミニウム薄膜層のみを実施例1と同様にホログラムシートを形成し、比較例とした。
実施例1と同様に観察したところ、室内照明下で目視にて、反射光によるホログラム再生像は視認できたが、電圧を印加しても何らの変化も生じず、発光によるホログラム再生像を確認することはできなかった。
このことより、このホログラムシートが真正なものでないと判断できた。
【符号の説明】
【0051】
A、A´ ホログラムシート
1 透明基材
2 ホログラムレリーフを有する透明樹脂層(ホログラム形成層)
3 透明導電性薄膜層(陽極)
4 絶縁層
5 発光層
6 透明導電性薄膜層(陰極)
7 絶縁層(2つ目の絶縁層)
8 観察状態の例示:可視光線(室内照明光)
9 同上:反射光による再生像(視認できる場合と、出来ない場合がある。)
10 同上:電圧を印加した状態
11 同上:緑色の再生像(発光による再生像)


【特許請求の範囲】
【請求項1】
透明基材の一方の面に、ホログラム画像に対応したホログラムレリーフを有する透明樹脂層、及び、前記ホログラムレリーフに接するように、且つ追従するように陽極としての透明導電性薄膜層、絶縁層、及び、発光層が設けられ、
その上に陰極としての透明導電性薄膜層がさらに設けられ、前記陽極としての透明導電性薄膜層と前記陰極としての透明導電性薄膜層との間に交流電圧を印加することにより、前記発光層がエレクトロルミネッセンスによる発光を生じることを特徴とするホログラムシート。
【請求項2】
前記陰極としての透明導電性薄膜層と前記発光層との間に、さらに絶縁層が設けられていることを特徴とする請求項1に記載のホログラムシート。
【請求項3】
前記陽極としての透明導電性薄膜層、前記絶縁層、前記発光層の総厚さは、0.1μm〜0.5μmであることを特徴とする請求項1又は2に記載のホログラムシート。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−152639(P2011−152639A)
【公開日】平成23年8月11日(2011.8.11)
【国際特許分類】
【出願番号】特願2010−13663(P2010−13663)
【出願日】平成22年1月25日(2010.1.25)
【出願人】(000002897)大日本印刷株式会社 (14,506)
【Fターム(参考)】