説明

ホログラムシート

【課題】
ホログラムを用いたホログラムシートにおいて、その真正性を高めるために、照明光と同一の波長のホログラム再生像を再生するホログラムとは異なり、照明光とは異なる波長のホログラム再生をする新規なホログラムシートを提供する。
【解決手段】
ホログラム形成層上にフォトクロミック薄膜層を設け、フォトクロミック薄膜層を励起する光で照明して、可視光領域にある、その発光の色調によるホログラム再生像を目視にて判定可能とし、偽造防止性を高めた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規なホログラムシート、特に、位相ホログラムを呈するレリーフホログラムのレリーフ位置に、フォトクロミック薄膜を配した発色型のホログラムシートに関するものである。
本明細書において、配合を示す「部」は質量基準である。また、「ホログラム」はホログラムと、回折格子などの光回折性機能を有するものも含む。「回折格子」には、光干渉縞などの光学的に形成したものや、電子線描画方法などの直接描画方法によって形成したものを含む。
【背景技術】
【0002】
(主なる用途)
本発明のホログラムシートの主なる用途としては、ホログラムそのものを装飾用として用いる美術・工芸品分野や商業用分野があるが、それにとどまらず、偽造防止分野に使用されるホログラムシートであって、具体的には、クレジットカード等の偽造されて使用されると、カード保持者やカード会社等に損害を与え得るもの、運転免許証、社員証、会員証等の身分証明書、入学試験用の受験票、パスポート等、紙幣、商品券、ポイントカード、株券、証券、抽選券、馬券、預金通帳、乗車券、通行券、航空券、種々の催事の入場券、遊戯券、交通機関や公衆電話用のプリペイドカード等がある。
これらはいずれも、経済的、もしくは社会的な価値を有する情報を保持した情報記録体であり、偽造による損害を防止する目的で、記録体そのものの真正性を識別できる機能を有することが望まれる。
【0003】
また、これら情報記録体以外であっても、高額商品、例えば、高級腕時計、高級皮革製品、貴金属製品、もしくは宝飾品等の、しばしば、高級ブランド品と言われるもの、または、それら高額商品の収納箱やケース等も偽造され得るものである。また、量産品でも有名ブランドのもの、例えば、オーディオ製品、電化製品等、または、それらに吊り下げられるタグも、偽造の対象となりやすい。
さらに、著作物である音楽ソフト、映像ソフト、コンピュータソフト、もしくはゲームソフト等が記録された記憶体、またはそれらのケース等も、やはり偽造の対象となり得る。また、プリンター用のトナー、用紙など、交換する備品を純正材料に限定している製品などにも、偽造による損害を防止する目的で、そのものの真正性を識別できる機能を有することが望まれる。
【0004】
(背景技術)
従来、情報記録体や上記した種々の物品(総称して、真正性識別対象物と言う。)の偽造を防止する目的で、その構造の精密さから、製造上の困難性を有すると言われるホログラムを真正性の識別可能なものとして適用することが多く行なわれている。しかしながら、ホログラムの製造方法自体は知られており、その方法により精密な加工を施すことができることから、ホログラムが単に目視による判定だけのものであるときは、真正なホログラムと偽造されたホログラムとの区別は困難である。
これらの真正性識別対象物、特にラベル形態や転写形態にてホログラム画像を施された物品は、ホログラム画像の目視確認という真正性識別のみでなく、新たな真正性識別方法を用いてその対象物の真正性を識別する必要が生じている。
【0005】
(先行技術)
これらの要求に応えるため、ホログラムに積層して、入射した光の内、左回り偏光もしくは、右回り偏光のいずれか一方の光のみを反射する光選択反射層を有するホログラムシートが提案された。(例えば、特許文献1参照。)
この光選択反射層として、コレステリック液晶を使用し、偏光版等を用いて確認する方法で偽造防止性を高めている。
しかしながら、特許文献1の記載にあるように、ホログラム形成層上の反射性薄膜層の反射率が高いため、コレステリック液晶層で反射されず透過した光(選択的反射光の補色光)が、この反射性薄膜層で反射し、再びコレステリック液晶層へ戻る(以下戻り光とする)ことにより、この戻り光が、コレステリック液晶を観察する際のノイズ成分となって、選択的反射光に付加・混在し、液晶本来の色調とならず、視認・識別することすら難しくなっていた。
【0006】
また、コレステリック液晶材料そのものが高価であり、その液晶性能を引き出すためには液晶層に接して、配向膜の形成が不可欠であって煩雑であり、さらには、コレステリック液晶の光散乱性により、ホログラム画像を再生する光がその液晶層を通過するときに画像にボケ・歪みを生じる等の問題があった。
このため、コレステリック液晶層の光散乱性を抑えたり、コレステリック液晶層そのものを薄くする等の工夫が考えられたが、コレステリック液晶層の光散乱性を抑えるために屈折率差を小さくしたり、コレステリック液晶層を薄くしたりすると、上記した光選択反射層としての機能が低下してしまい、ホログラム画像の鮮明性と偽造防止性能を確保する最適な条件を得ることが難しいという欠点を有していた。
さらには、ホログラム形成層をフォトクロミック材料で構成し、そのフォトクロミック層の一方の面にホログラムレリーフと反射性薄膜層を形成することで、そのホログラムレリーフの存在を隠蔽する偽造防止方法が提案されているが、この積層におけるフォトクロミック層は、あくまで「意外な色調変化をする」層としての役目をしているのみであり、偽造防止効果としては不十分であった。(例えば、特許文献2参照。)
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2007−90538号公報
【特許文献2】特開平3−248188号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
そこで、本発明はこのような問題点を解消するためになされたものである。その目的は、位相ホログラムのホログラム形成層、すなわちホログラムレリーフに接するようにフォトクロミック薄膜層を設け、定められた条件下でのみ、所定の色調からなるホログラムを視認することができ、もしくは、定められた条件下で、色調が変化したホログラムを視認することができる、新規なホログラムシートを提供することである。さらに、このようなホログラムシートはこれまでに存在しないため、新規な装飾性及び、これを応用する偽造防止性を提供することである。
【課題を解決するための手段】
【0009】
上記の課題を解決するために、
本発明のホログラムシートの第1の態様は、
透明基材の一方の面に、光遮蔽性薄膜が離散的に設けられ、その上に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、及び、前記ホログラムレリーフを形成する凹凸に追従して、且つ均一な厚さで、フォトクロミック薄膜層が設けられていることを特徴とするものである。
上記第1の態様のホログラムシートによれば、
透明基材の一方の面に、光遮蔽性薄膜が離散的に設けられ、その上に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、及び、前記ホログラムレリーフを形成する凹凸に追従して、且つ均一な厚さで、フォトクロミック薄膜層が設けられていることを特徴とするホログラムシートを提供することができる。
また、本発明のホログラムシートの第2の態様は、
前記フォトクロミック薄膜層の厚さが、0.01μm以上0.5μm以下であることを特徴とするものである。
上記第2の態様のホログラムシートによれば、
前記フォトクロミック薄膜層の厚さが、0.01μm以上0.5μm以下である請求項1または2記載のホログラムシートが提供される。
さらに、本発明のホログラムシートの第3の態様は、
前記光遮蔽性薄膜が、前記透明樹脂層の上に、さらにもう一層設けられ、且つ、その二層における光遮蔽領域の位置が同一であることを特徴とするものである。
上記第3の態様のホログラムシートによれば、
前記光遮蔽性薄膜が、前記透明樹脂層の上に、さらにもう一層設けられ、且つ、その二層における光遮蔽領域の位置が同一であることを特徴とする請求項1または2記載のホログラムシートが提供される。
本発明のホログラムシートにおいては、ホログラム画像を再生する回折格子群が、ホログラムレリーフとして、透明樹脂層面上に略一平面として形成されており、このレリーフ上に、若しくは、このレリーフに追従して均一な厚さでフォトクロミック薄膜層が設けられている。
すなわち、ホログラムレリーフは、位相ホログラムとしての位相差をレリーフ形状に現しているが、この位相差を有するレリーフ形状に追従して(沿って)フォトクロミック薄膜層が設けられることにより、フォトクロミック薄膜層が呈する色調が、上記位相差を有して(含んで)観察されることになる。言い換えれば、フォトクロミック薄膜が所定の条件下において呈する「色調」を有する「光」がそのフォトクロミック薄膜層から「発する」ことになる。
【0010】
これは、レリーフホログラムを再生する場合に生じる(ホログラム再生の元となる)ホイヘンスの2次波に対し、本発明のホログラムシートの場合において、この2次波に相当するものが、ホログラムレリーフ面に配されたフォトクロミック薄膜の呈する色調(以後、発した色として「発色」、若しくは、発色した光として、「発色光」、又は「発光光」とも表現する。)であり、この発色光がその役目を担い、ホログラム画像に対応した回折格子群を含むホログラムレリーフが有する位相差を含んで発色光を観察者側に発するものである。
この発色光が、ホログラムレリーフ面上の空間において干渉現象を起こし、その結果、所定の方向に所定のホログラム再生像を発現する。
この「発光」は、フォトクロミック薄膜に含まれるフォトクロミック分子による自発光型の発光と捉えることができ、視野角依存性がなく、ディスプレーデバイスとしては長所として扱われるが、本発明の目的においては、その発光の放射する方向は、所定方向に制限されていることが望ましく、その制限によって、発光光の空間的コヒーレント性を向上させることができる。
このため、透明基材の一方の面に、光遮蔽性薄膜を離散的に設け、所望の制限を達成する。
光遮蔽性薄膜を離散的に設ける代表的な態様としては、透明基材の一方の面に、金属性薄膜層を、微細な網点状又は、離散的な市松模様状に設ける。
【0011】
従って、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層は、透明基材の一方の面上のこの光遮蔽性薄膜のない部分、及び光遮蔽性薄膜上に形成されることになる。
網点等の個々の大きさは、ホログラムレリーフの代表的周期1μmより小さいものとし、0.01μm〜0.5μm、好適には、0.05μm〜0.1μmとする。
且つ、その分布は、周期的、又は、無作為なものとすることができるが、いずれにしても、上記代表的周期において、均一な遮蔽面積を占めるように形成する。これは、ホログラムレリーフの個々の周期に対して、均一な光の量を配するためであり、この均一性は、ホログラムレリーフの再生像の精度に影響を及ぼすためである。
例えば、単純回折格子の断面が周期1.4μmの三角関数形状であった場合には、その0.7μmが凹部であって、残りの0.7μmが凸部であり、それぞれの部分に対応する位置に、一辺0.1μm正方の市松模様を想定し、その正方形の一つ飛ばしに(交互に)遮蔽部分を設けることで、凹部と凸部に対する遮蔽割合が同一となるとともに、凹凸形状に対応する部分に偏りなく均等に遮蔽部を設けることができる。
【0012】
このことは、その開口部を通過する、ホログラムレリーフの位相(情報)を含んだ発光光が、強度面で1/2以下に制限されるものの、その位相(情報)に不要な方向に進む光を止めて、不要な撹乱を受けることなく放出されることを意味する。
さらに、この離散的に設けられた金属性薄膜を、もう一層設けて2層とし、その2層目(もう一つの層)を、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層の、そのホログラムレリーフ面上に設け、且つ、その遮蔽領域の個々の位置をその2層間で同調させて設ける。
光遮蔽性薄膜を、このように離間させ、且つ、その遮蔽領域を同調させて(その位置を同一として)設けることにより、その第2層目(フォトクロミック薄膜層と接している。)で、「発光」層から放出されたほぼ180度に拡がる光(発光面の垂直線に対して、±90度という意味。さらに言い換えれば、進行方向に全方位という意味。)の発光点をまず制限し(フォトクロミック薄膜層と接して光遮蔽薄膜が存在する部分は、その部分の発光光の進行を止めるため。)、且つ、その第1層目(基材に接している。)で、所定の方向(発光面に垂直な方向。)に進む光のみを透過するよう制限することで、発光光の進行方向を所定の方向に制限することができる。
【0013】
上記した市松模様を例にとると、第2層目の一つの正方形状の開口部分を通過した発光光が、その発光面に垂直方向に進み、その第1層目の同一位置の正方形状の開口部分を通過して、放射される。しかし、第2層目の一つの正方形状の開口部分をその発光面に角度を持って通過する(垂直線に対して30度の傾きをもって通過する)発光光は、第1層目の市松模様のその対応する開口部分の両隣の遮蔽部分(正方形状)において、遮蔽されることとなる。両隣の遮蔽部分のさらに隣の開口部分へ向かう発光光は、光の屈折により(界面反射により)ほぼ全反射となって、外に放射される光の量が大幅に減少する。
もちろん、市松模様は、縦横方向には、上記した開口部分と遮蔽部分が交互に均一に形成されているが、斜め方向では、その開口部分と遮蔽部分の割合が偏る場合があり、その正方形の対角線上では、遮蔽部分がなく、すべて開口部分となっている。
この正方形対角線方向をも、開口部分と遮蔽部分が交互に形成されるように、市松模様を変形し、正方形の四隅にも遮蔽領域を追加する等の工夫も好適である。
また、2つの遮蔽層を相対的に平行移動して、その制限方向を垂直方向以外の所定の角度に設定し、ホログラムレリーフの回折方向(結像方向)と関連性を持たせることも好適である。
以上のような発光光の放射角度を、所定方向に制限することにより、発光光の空間的コヒーレント性を改善することができ、ホログラムレリーフの位相を含む発光光の干渉効果を高め、より精度の高い、鮮明なホログラム再生像を再生することを可能とする。
【0014】
本発明は、ホログラムの照明光源の波長とは異なる波長でホログラムを再生するものであり、例えば、紫外線で照明し、青色のホログラムを視認することもできるため、観察者の目には、あたかも、通常用いられる青色の照明光源の無いところに、ホログラムだけが光輝き、空中に浮いているように見え、意匠性にも優れるものとなる。
さらに、ホログラムを再生するための励起光の波長域が非常に狭い場合には(フォトクロミック薄膜の励起をするための光源波長が限定されていることを意味する。)、その特定の波長域を知りうる者のみがホログラム再生を果たすことができ、真正性判定用に有用なものとなる。また、上記励起後の発色した、もしくは変化した色調を知りうる者のみがホログラム再生像の色調を予測でき、その再生波長に調整したバンドパスフィルターを通して覗いて、そのバンドパスフィルターを通過できるホログラムのみが、真正であると判定することもできる。
また、このバンドパスフィルターを通過する角度(回折角度)も、その発色もしくは変化後の波長に依存し、やはり、その値を知りうる者のみがその所定の角度で判定を行うことができる。
さらに、同一波長で励起可能で、且つ、励起後の色調が異なる、フォトクロミック分子を複数含めると、この再生像は複数の角度に異なる色調で現れることになり、意匠性の面でも、真正性判定の面でもより優れたものとなる。
【0015】
フォトクロミック薄膜が、その色調を変化させる様子を、フォトクロミック分子ポテンシャル曲線(図1参照。)を用いて、以下に説明する。
フォトクロミック分子Aは、ある波長λの光照射によってエネルギーを得て、励起状態の分子A*になる。(STEP1)
このとき、励起状態となったフォトクロミック分子A*は分子内反応、例えば、cis−trance異性化反応や、閉環・開環反応、酸化・還元反応、水素移動による互変異性等を起こして、その分子の幾何構造や、電子構造を変化させる。
この変化によって、フォトクロミック分子A*は、フォトクロミック分子Aとは違った波長の光λ′を吸収するフォトクロミック分子B へと変化する。
そして、フォトクロミック分子B は、その吸収波長λ′の光の吸収(STEP2)、もしくは、熱エネルギーを吸収(STEP3)して、再び、フォトクロミック分子A へと戻る。
そしてこのSTEP1〜STEP3を繰り返すことが可能である。
このとき、フォトクロミック分子B からフォトクロミック分子A への熱戻りのしやすさは、その基底状態ポテンシャルエネルギー△E(図1:STEP3
)の大きさに依存することになる。
熱戻りがしにくい、つまり△Eが極端に大きければ暗所に保存しておけばその
まま着色体を維持し続けることになる。(このようなフォトクロミック分子は、これを光のみに依存するという意味でP 型という。)
逆に、光が当たらなくなって、すみやかに脱色、もしくは、元の色調に戻る場合には、△Eは比較的小さい。(このようなフォトクロミック分子は熱依存性が
あるという意味で、T 型という。)
【0016】
すなわち、フォトクロミック薄膜は、あるときはフォトクロミック分子Aで構成され、あるときは、フォトクロミック分子Bで構成されていることになる。
フォトクロミック分子Aもしくは、Bはそれぞれ特徴のある光吸収曲線を有しており、フォトクロミック分子Aは波長λにおいて、フォトクロミック分子Bは波長λ´において大きな吸収(曲線)部分を持つ。
一例として、フォトクロミック分子Aにおける波長λが、紫外線領域にある場合、フォトクロミック分子Aは、無色透明であって、励起状態A*を経て、フォトクロミック分子Bに変化して初めて、可視光領域にある特定の波長(これが波長λ´の場合もある。)を中心とする光の吸収により、特定の色調を呈するようになる。
この「色調を呈する」状況は、フォトクロミック分子Bが、可視光領域において所定の光吸収曲線を有しており、このフォトクロミック分子Bに白色光を当てた際に、特定の波長を含む所定の波長領域の光を吸収し、吸収されなかった波長領域の光が発散光として、フォトクロミック分子Bからなるホロクロミック薄膜層から発することになる。
この例によるホログラムシートにおいては、フォトクロミック分子Bから発する発散光が、上記したホイヘンスの2次波の役割を担うことになる。
従って、フォトクロミック薄膜層がフォトクロミック分子Aで構成されているときには、このフォトクロミック薄膜層が無色透明であって、その位置にホログラムがあるとは認識できず、そのフォトクロミック薄膜層の背景にあるものが見えているが、波長λの照明光をフォトクロミック薄膜層に当てることにより、フォトクロミック薄膜層が上記した波長領域の光を発散し、その発散光の干渉により、その発散光の「色調」によるホログラムが空中に浮かんで見えることになる。
【0017】
この発散光の「色調」によるホログラム再生像は、フォトクロミック薄膜層が、上記したP型である場合には、その「色調」をしばらく維持し、徐々に消色し、また、フォトクロミック薄膜層が、上記したT型である場合には、比較的すみやかに「色調」が消色し、再び、無色透明となる。
また、フォトクロミック分子A、Bがいずれも可視領域の色調を呈する場合には、ホログラム再生像の色調が変わる現象が現れることになる。
本発明のホログラムシートのこのような効果を意匠性ととらえて、鑑賞用途に採用してもよい。
また、T型の中でも、その消色の速さを非常に早いものとして、波長λの照明をはずすと同時に消色するように設計し、ホログラム真正性判定者が、ホログラムシート(もしくはホログラムシート貼着物)保持者から、そのホログラムシート(もしくはホログラムシート貼着物)を預かり、素早く波長λの照明を僅かな時間照射し、その瞬間に、上記した発色光によるホログラム再生像を視認して、真正であることを確認し、その後、すみやかに、そのホログラムシート(もしくはホログラムシート貼着物)を、その保持者に返却するなど、その真正性判定を、その保持者に気づかれずにに行うことを可能とすることもできる。
この場合には、消色の速さを、発色強度(発色濃度)の半減期で表現して、その半減期が、0.1秒〜数秒となるように設計する必要がある。こうすることで、波長λの光を照射すると、速やかに上記した変化が生じ、フォトクロミック分子Bの「色調」のホログラム再生像が現れ、波長λの光の照射を止めると、速やかに無色透明となる、真正性判定に優れるホログラムシートを提供することができる。
もちろん、波長λの光を照射後、発色を確認し、速やかに波長λ´の光を照射して消色するような判定システムを用いることも好適である。
【0018】
次に、ホログラフィの原理について説明する。
物体がコヒーレント光で照明され,物体から回折された光が記録媒体(フォトレジスト等。)を照明しているとした場合、物体から回折されて記録面に到達した物体波は、
F(x,y)=A(x,y)EXP[φ(x,y)]
であらわされる。ここで、
A(x,y) は物体波の振幅分布とし、
φ(x,y) は位相分布とする。
このとき、記録媒体には、記録媒体に到達する光波の強度分布が記録される。その強度分布は、
I(x,y)=|F(x,y)|2=A2(x,y) (1)
となり、位相分布は記録されない。
ここで,物体波にこれと干渉性のある光波(参照波という)を重ね合わせると,記録される光波の強度分布は、
I(x,y)=|F(x,y)+R(x,y)|2
=|F(x,y)|2+|R(x,y)|2
+F(x,y)R*(x,y)+F*(x,y)R(x,y) (2)
となる.(*は複素共役項を表す。)
【0019】
ただし,参照光が記録面に角度θで入射する平面波であるとすれば、
R(x,y)=r(x,y)EXP(2πiαx) (3)
と書け、
α = SIN(θ)/λ (4)
である。(2)の第1項と第2項はそれぞれ、物体波の強度と参照波の強度でいずれも位相情報は欠落している。第3項と第4項は干渉の項でそれぞれ
F(x,y)R*(x,y)=
A(x,y)r(x,y)EXP[i [φ(x,y)−2παx] ] (5)
F*(x,y)R(x,y)=
A(x,y)r(x,y)EXP[−i [φ(x,y)−2παx]] (6)
とあらわされ、物体の位相項 φ(x,y) が残っている。(5)、(6)は互いに複素共役であり、(4.2)の第3項は物体の複素振幅分布を含んでいる。(5)、(6)を(2)に代入すると、
I(x,y)=|F(x,y)|2+|R(x,y)|2
+2A(x,y)r(x,y)COS [2παx−φ(x,y)] (7)
となる.物体波と参照波が干渉して干渉縞を形成していることがわかる。
【0020】
このように、物体波に参照波を重ね合わせて干渉記録し、 物体の位相情報を欠落させずに記録する方法がホログラフィである。(7)を記録したものが「ホログラム」と呼ばれる。ホログラムの振幅透過率もしくは振幅反射率が、記録した強度分布 I(x,y)に比例し、
T(x,y)=τI(x,y) (8)
とかけるとする。このホログラムに、記録したときに用いた参照波を所定の角度であてると、ホログラムを透過もしくは反射してきた波面は、
T(x,y)R(x,y)=τ(|F(x,y)|2+|R(x,y)|2
+τF(x,y)|R(x,y)|2
+τF*(x,y)R2(x,y) (9)
とあらわすことが出来る.この第2項は
τF(x,y)|R(x,y)|2
τA(x,y)r2(x,y)EXP[iφ(x,y)]] (10)
第3項は、
τF*(x,y)R2(x,y)=
τA(x,y)r2(x,y)EXP[−iφ(x,y)+2πiα] (11)
とかける。
【0021】
このことから、(9)の第1項は、照明光と同じ方向にホログラムを突き抜ける光束もしくは正反射する光束であり、第2項は、(10)より、物体光に比例した振幅を持つ光波であることがわかり、第3項は、(11)より、物体波と共役な位相分布を持ち、2θの方向に伝播する光波であることがわかる。
このようにして,ホログラフィの技術を使うと複素振幅分布を記録して再生することが出来る。
本発明の場合は、ホログラムの振幅透過率もしくは振幅反射率が、記録した強度分布に比例し、(8)の式で表されてはいるものの、このホログラムに、記録したときに用いた参照波を所定の角度であてるのではなく、(8)の振幅透過率もしくは振幅反射率と同様の空間的な分布を持つ発光波がこのホログラムから発せられることになる。
従って、参照光にホログラムに記録された位相項を付与するという従来のホログラム再生の原理によらず、既にホログラムに記録されている位相項を保持して発光波を放射するものである。従って、理論上は、物体の位相差を含む空間関数を持つ3次元の連続曲面状の発光面を有し、その1曲面から光が放射されることになる。
【0022】
従来のホログラム再生原理を透過タイプについて、単純化して説明すると、参照光としての平行光をホログラムにあてた際、遮蔽部分では、平行光が遮蔽され、透過部分からのみその平行光を透過し、透過部分と遮蔽部分との境界において回折が起こり、物体の持つ位相項を受け取り、ホログラムを透過した成分全体が重ね合わさり、それがホログラム再生光となって観察者の目に届くものである。
本発明の場合は、上記した参照光としての平行光が存在せず、ホログラムレリーフに接するように設けられた発光面での発光時、その放射光が物体の位相項を保持しており、その放射光同士の干渉現象により、ホログラム再生がなされるものである。
時間的且つ空間的コヒーレンス性を持たない放射光同士の干渉効果は、レーザー光のような十分な干渉を生じないが、低コヒーレント光で ホログラムを照明した際と同様のレベルでホログラム再生が行われる。例示すれば、レーザー光のような特別な光源による照明を用いず、一般家庭や、一般的な事務所等において用いられている「蛍光灯」のような、「人工的に発生させた自然光」によっても、ホログラムを再生させることが十分可能である。但し、「人工的に発生させた自然光」であっても、その光源の大きさが、「点光源」であるか、「線状」であるか。もしくは「平面状」であるかによっても、また、その発光波長が、「単色光」であるか否か、さらには、その発光曲線の半値幅が狭いか否か等によって、その「ホログラム再生像の鮮明さ」は大きく左右されることになる。
【0023】
この空間的なコヒーレント性を向上するため、
「透明基材」と「ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層(ホログラム形成層ともいう。)」との間に、光遮蔽性薄膜を離散的に、「1層」、設ける。
さらには、2層タイプとして、
もう一層(2層目)を、「ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層」の「ホログラムレリーフ形成面」上に設ける。
二つの光遮蔽性薄膜の間の間隔は、「透明樹脂層の厚さ」になり、透明樹脂層の厚さは、0.05μm〜5.0μmとする。
すなわち、厚さ0.05μm〜5.0μmの間の値だけ、二つの光遮蔽性薄膜を離間させることができる。ホログラムレリーフの周期の大きさから、そして、光遮蔽性薄膜の個々の大きさから、これを越えて離間させることは、意味を持たない。
もちろん、一つのみの光遮蔽性薄膜(1層目)を形成した場合には、蛍光層面と、光遮蔽性薄膜との間隔が、この値となる。
さらに、光遮蔽性薄膜を3層設けることも可能であり、この場合は、透明基材の他方の面に3層目を設けたり、透明基材と透明樹脂層との間に、別の平坦な透明樹脂層を挿入し、その一方の面に設けることも好適である。このときの別の透明樹脂層の厚さ範囲も、上記した透明樹脂層の厚さ範囲と同様とする。
この「別の透明樹脂層」の両面に光遮蔽性薄膜を設けることも好適である。
さらに、蛍光層の蛍光発光の観察を、ホログラム形成層側とは反対側から行う場合には、蛍光層のホログラム形成層側とは反対側の上に上記と同様に「別の透明樹脂層」を設け、その両面に光遮蔽性薄膜を形成することもできる。
この離間する距離は、光遮蔽性薄膜によって遮蔽する大きさ、すなわち、遮蔽性薄膜の個々の部分の大きさ、及び、それらが離散的に設けられた、その間隔の大きさに依存して定められる。
【0024】
光遮蔽性薄膜を離散的に設ける方法は、スパッタリング法、真空蒸着法、化学蒸着法(CVD法)、スピンコート法、キャスト法を用いたゾルゲル法、スプレイパイロリシス法、イオンプレーティング法等の方法、さらには、所望の組成の塗布液を塗布して形成する方法等を用いて、一旦全面に形成し、その後、フォトレジスト処理等の湿式エッチング方法等により、網点や市松模様における不要部分を除去する方法を採用することができる。
網点等の個々の大きさは、ホログラムレリーフの代表的周期1μmより小さいものとし、0.01μm〜0.5μm、好適には、0.05μm〜0.1μmとするとともに、その厚さも、同様に、0.01μm〜0.1μmとする。
離散的に設ける個々の光遮蔽領域の形状は、上記した様に、円形、楕円形(以上、網点。)や、正方形、長方形(以上、市松模様。)に限定されず、多角形や、星型等、任意の形状を採用することができるが、この光遮蔽領域を通過する(開口部を通過する)発光光が保有するホログラムレリーフの位相(情報)を、撹乱するものであってはならず、可能な限り、その形状を単純なものとすることが望ましい。
しかも、その開口部の面積も、均一に配分されたものであることが望ましく、例えば、所定の大きさに設定された円形を、所定の距離間隔で一面に配置したものや、正方形の市松模様が望ましい。
その厚さも、0.01μm未満では、その光遮蔽性が不十分であり、0.1μmを超えると、光遮蔽層のある領域と無い領域との段差が大きくなり、フォトクロミック薄膜層の発光膜としての性能低下を招く。
光遮蔽性薄膜を形成する材料としては、アルミニウム、亜鉛、錫、金、銀、白金、銅、鉄、マグネシウム等の単体もしくは合金による金属薄膜や、グラファイトなどを用いることができる。
その中でも、蛍光層の蛍光発光波長領域において、高い遮蔽性を示すものが好適である。さらに、励起光波長に対する透明性を有するものは、尚、好適である。
【0025】
以上のことより、フォトクロミック薄膜層の発光面と、第1層目の光遮蔽性薄膜との距離は、0.05μm〜5.0μmとするが、さらに、0.1μm〜0.5μmとすることが望ましい。
すなわち、光遮蔽性薄膜の開口部分の大きさ及び、遮蔽部分の大きさが、0.01〜0.5μmであるため、0.01μm開口に対して、その5倍の距離離間した位置に、0.01μmの開口部分が配されることにより、斜め方向へ進む光をかなり遮断できる。
但し、離間距離が5倍以上となると、一つの開口部を通過した光が、対応する開口部とは異なる開口部を通過する割合が増加するため、これを上限として、離間距離と開口距離との比であらわすと、5/1〜1/1とすることが最適である。この比が1/1未満では、光の進む角度が広くなり、進行方向を制限することができなくなる。
もちろん、二つの光遮蔽性薄膜を設ける位置が、フォトクロミック薄膜層の発光面から、二つとも離間している場合には、進む光の角度をより小さく制限することが可能となることはいうまでもない。
以上のような原理によるホログラム再生であるため、ホログラム撮影時の参照光は平行光であることが好ましく(複雑な参照光を再現できないため。)、もしくは、「回折格子により表現されたホログラム」(回折格子は、物体光、参照光とも平行光である。)であることが好ましく、さらに、回折格子は計算機ホログラム等、電子線描画により形成したものが精密であり、好適である。
【0026】
さらに、上記の理由から、ホログラム再生像をより鮮明にするためには、放射光に、時間的若しくは空間的なコヒーレンス性に類する特性を付与することが必要であり、例えば、発光する層の厚さを薄いものとしたり、発光波長の幅を狭くすることが望ましい。さらに、励起光源も小さい形状であることが好ましく、スポット形状等が特に好適である。
また、発光する層を励起する励起光と、変化後の発光波長との波長差は大きい方が望ましく、さらに、観察時、その励起光をフィルタリングして発色光のみを取り出したり、さらにそれを増幅することも有効である。
励起光源として、紫外線、可視光線、電子線、X線等のエネルギー及び、場合に応じて、赤外線エネルギーを放射可能な光源を用いて、発光等をさせることができるが、ホログラム観察用さらには、ホログラム認証用に用いるためには、フォトクロミック薄膜に応じた光源を用いる必要があり、所定の強度、波長、さらには照明スポットのサイズを有する紫外線光源、可視光光源、場合により赤外光光源を用いることが好適である。
これらの光源による照明により、ホログラムレリーフ面に接するように設けられたフォトクロミック薄膜層から、さらに言及すれば、そのフォトクロミック薄膜層に含まれるフォトクロミック分子等から個々に、照明光源の波長とは異なる波長の発光等が発現する。その発光等が、ホログラムレリーフと同一の空間的位相を含み、且つ、照明光源とは異なる波長(発光波長。)を有することから、ホログラムレリーフによる正反射光(0次回折光)方向や、照明光波長(励起光波長)による回折方向とは異なる方向、すなわち、発光波長による回折方向へホログラム像の再生が行われる。
【0027】
但し、このフォトクロミック薄膜層の厚さが、ホログラムレリーフとは無関係にそのホログラム面上に分布している場合には、その厚さ分布に起因する発光強度分布が、場合によっては、ホログラムを再生する光と不要な干渉を生じ、ホログラム再生像を不鮮明にする要因となり得る。
この要因を排除するため、フォトクロミック薄膜層を、ホログラムレリーフを形成する凹凸に追従して均一な厚さで形成して、ホログラムレリーフ面のどの位置からも、同一の強度の発光が生じるようにし、ホログラム再生像の鮮明化を図る。
本発明のホログラムシートの照明光(励起光)として、可視光以外の紫外光や赤外光を使用した場合は、その光は観察者には見えず、あたかも照明光のないところからホログラム再生像が浮き上がっているように観察されるが、このホログラム再生像は、例え、照明光が、時間的・空間的なコヒーレント性を有していても、結果として、励起・発光というプロセスを経て発光するものであるため、その発光時の空間的なホログラムの位相を含んではいるとはいえ、その発色光同士の時間的及び空間的なコヒーレント性は小さく、ホログラム再生像は通常のレーザー再生レリーフホログラムのレーザー光による再生像より微弱であって且つ不鮮明となっている。
もちろん、ビーム形状の回折光を観察するのみであれば、その色調と回折方向を確認することは容易であり、そのままでも真正性の判定に差し支えないが、このため、この微弱且つ不鮮明なホログラム再生像を観察者が認識しその存在を正確に判定可能とするために、フォトクロミック薄膜の発光性能を向上させ、且つ、回折角度を大きくとって波長―回折角依存性を強め、照明光回折角度と発光光回折角度の差を大きくし、さらには、フォトクロミック薄膜層を薄くして、フォトクロミック薄膜層厚さ方向のばらつきを抑え且つ均一なものとすることが必要となる。(発光面が位相情報を含んでいるため、その空間的な形状を正確に再現するものとする。)
【0028】
さらには、時間的なコヒーレント性を発現するため、光源として発光時間が10-15sec以下のパルスレーザーで励起して、パルスとパルスの時間的間隔をA−B分子間遷移時間以上あけて照明することも好適である。これにより、一つの励起パルスによって生じた一つの発光の発光面が、次の励起パルスによって生じた発光面とは、互いに撹乱現象を起こさず、一つのパルスによって発現した一つの発光面によって生じるホログラフィックな干渉現象により、鮮明なホログラム再生像を観察することができるようになる。もちろん、単純に秒単位でON−OFFするストロボ状の光源を使用した場合でも、観察者には、連続して発光しているようにも見えるため、このような簡易な手段であっても目視で確認する場合には、上記した効果を十分得ることができる。
フォトクロミック薄膜層は、フォトクロミック分子を樹脂に混入させたり、溶剤(若しくは水)に分散させたりしたフォトクロミック分子含有インキを、グラビア方式、オフセット方式、シルクスクリーン方式、ノズルコート方式さらにはインクジェット方式等でホログラムレリーフ上に形成することができる。
このとき、インキ中のフォトクロミック分子の含有割合を調整する等により、形成したフォトクロミック薄膜層を、ホログラムレリーフを形成する凹凸に追従して均一な厚さで形成することができる。
ホログラムレリーフの凹凸は例えれば、1μmレベルの周期で、深さ0.01μmレベルの凹凸を持つ、ゆるやかな曲線であって略平面と見做せるため、この略平面上に適宜な粘度(0.1〜10パスカル・秒)に調整し、インキの自重によるレベリング効果を発揮させることと、インキ中の固形分を10%以下、さらには5%以下とすることで、例えば、厚さ1μmに対して、そのばらつきを1/10以下に、さらには1/20以下に抑えることができる。
【0029】
ここで、フォトクロミック薄膜層を1μmオーダーとしたが、ホログラム再生像の鮮明度を向上させるためには、フォトクロミック薄膜層を離散的に設けることも好ましく、このために、フォトクロミック薄膜を形成する領域の単位(サイズ)を1.0μm程度もしくはそれ以下、例えば0.01μm〜0.5μm、より好適には、0.01〜0.05μmとし、ホログラムレリーフ面内に均一に点在させることも好適である。そして、フォトクロミック薄膜層厚さ方向には、フォトクロミック分子、もしくは、フォトクロミック分子を吸着させた微粒子を単位として1〜10分子もしくは1〜10粒子で並んでいる状態とすることが好ましい。
中でも、ノズルコート方式やインクジェット方式、さらには、化学蒸着等の物理的蒸着法では、樹脂を使用せず溶剤等とフォトクロミック分子や粒子のみで薄膜を形成可能であり、フォトクロミック薄膜層として非常に薄く形成(フォトクロミック分子や粒子1〜10分子等。)することができるため好適である。その上にそれらのフォトクロミック薄膜を固定するために適宜な透明樹脂層を保護層として形成してもよい。
ところで、フォトクロミック材料は、ホログラム記録材料や、光メモリ用記録材料そのものとして用いることは可能であり、そのような用途は既に公知であるが、これらは、フォトクロミック材料に直接ホログラフィックな記録(干渉縞の記録)を行うものであって、フォトクロミック材料に微細な明暗の記録を行うものである。
この記録は、記録した領域のフォトクロミック分子に変化を与えない手法(変化を与えない波長の光を照射するなど。)を用いて、読み出されることになる。
これに対して、本発明のホログラムシートは、均一に形成したフォトクロミック薄膜層を全て同様に(均一に)照明し、均一な発色を生じさせるだけのものであって、ホログラム撮影光学系を組んでフォトクロミック薄膜層を露光するというような複雑な工程を必要とせず、フォトクロミック薄膜層そのものが「その形状として保有」している凹凸形状に、そのホログラム情報を担持させており、フォトクロミック薄膜層を均一に形成するだけでホログラム情報を「取得する」(「ホログラム再生情報」を「獲得する」という意味。)ことができるという顕著な効果を有するものである。
【0030】
ホログラムレリーフは、周期1μm程度で、深さは、0.01μm、最大でも0.5μmの凹凸形状をしており、この凹部にのみフォトクロミック薄膜層を設けることで、ホログラムレリーフの周期に同調するかたちで、フォトクロミック薄膜層の有無、すなわち、発光の有無を設けることができる。
ホログラムレリーフの凹部とは、ホログラムレリーフ上にフォトクロミック薄膜層を形成する際の凹部であって、通常の観察の仕方、すなわち、ホログラム形成層側から観察する場合には、凸部側となる。フォトクロミック薄膜層の有無を利用して発光強度分布を形成するためには、凹凸どちらかに部分的に形成すればよく、さらには、凹部全体をフォトクロミック薄膜層で埋めてもよく、もしくは、凹部の最低部のほんの一部のみに形成してもよい。但し、その位相分布と形成する分布が同調する必要があるため、一部に形成する場合は、常に同一の位置に同一のフォトクロミック薄膜「量」を持って形成しなければならない。(この「量」が、発光強度に比例するため。)
凹部に選択的にフォトクロミック薄膜層を形成する方法としては、溶剤等に分散した粒径の非常に小さい、フォトクロミック分子を含むか、その表面に吸着させた微粒子(粒径が0.01μm等。樹脂を含まない。)インキを使用して、ホログラムレリーフの上にインキ層を形成し、溶剤が揮発する間に、微粒子が自重で凸部から凹部へと移動するようにしても良い。
【0031】
また、規則的な回折格子を設け、その上に均一に設けたフォトクロミック薄膜層をフォトリソグラフィーを用いて、その規則的な回折格子に同調させて露光現像、エッチングすることにより、凹凸とフォトクロミック薄膜層を同調して設けることもできる。この方法によると、各凹部に点在するフォトクロミック薄膜層の厚さや大きさを制御可能であり、レリーフ面全体に、いわば”均一に”形成することができる。
以上の手法により形成したものは、上記のホログラムの原理において説明した、発光(放射光)にホログラムレリーフの位相情報を含ませること、に加え、その位相情報に同調した振幅情報をさらに含ませるものである。
従って、発光放射光に位相ホログラムと振幅ホログラムの両方のホログラム情報を含ませることができ、より鮮明なホログラムを得ることが可能となる。
これにより、その意匠性及び真正性判定性を向上することができる。
上記したホログラムの原理より、ホログラム再生像の鮮明度を高めるためには、フォトクロミック薄膜層の厚さは薄いことが望ましいが、薄くすればするほど、ホログラム再生時の発光強度が弱くなるため、フォトクロミック薄膜層厚さは、0.01μm以上1.0μm以下である必要があり、さらには、0.01μm以上0.5μm以下であることが好ましい。
0.01μm未満(最小粒径の粒子1個分)では、発光強度が弱すぎて、光電子倍増管を用いて増幅したとしても、迷光等のノイズとの区別がつきにくく、1.0μmを超えると、発光強度は本発明の目的には十分な強度を得ることが可能であるが、厚さ方向に複数存在する粒子からの発光により、ホログラムレリーフの位相情報を担う曲面の位置がその厚み方向に複数存在することになり、結果としてホログラム再生像が不鮮明となる。
これに対して、0.01μm以上として発光強度を確保し、0.5μm以下として、位相情報を担う曲面の位置を明確にして、ホログラム再生像を鮮明なものとする。
【発明の効果】
【0032】
本発明のホログラムシートによれば、
透明基材の一方の面に、光遮蔽性薄膜が離散的に設けられ、その上に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、及び、前記ホログラムレリーフに接するようにフォトクロミック薄膜層が設けられていることを特徴とするホログラムシートが提供され、照明光の波長と異なる波長によるホログラム再生像を持つ、意匠性及び真正性判定性に優れるホログラムシートが提供される。
また、本発明の他のホログラムシートによれば、
発光層が薄く、もしくは、光遮蔽性薄膜が透明樹脂層上にもう一層設けられていて、より鮮明なホログラム再生が可能なホログラムシートが提供される。
【図面の簡単な説明】
【0033】
【図1】は、フォトクロミック分子ポテンシャル曲線を説明する図である。
【図2】は、本発明の1実施例を示すホログラムシートAの断面図である。 (フォトクロミック薄膜層が、「ホログラムレリーフを形成する凹凸 に追従して均一な厚さで形成されている」例。)
【図3】は、本発明の他の1実施例を示すホログラムシートA´の断面図である。 (フォトクロミック薄膜層が、「ホログラムレリーフを形成する凹凸 の凹部にのみ形成されている」例。)
【図4】は、本発明の1実施例を判定するプロセスである。
【発明を実施するための形態】
【0034】
以下、本発明の実施形態について、図面を参照しながら、詳細に説明する。
(透明基材)本発明で使用される透明基材1は、厚みを薄くすることが可能であって、機械的強度や、ホログラムシートAを製造する際の加工に耐える耐溶剤性および耐熱性を有するものが好ましい。使用目的にもよるので、限定されるものではないが、フィルム状もしくはシート状のプラスチックが好ましい。
例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリビニルアルコール、ポリスルホン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアリレート、トリアセチルセルロース(TAC)、ジアセチルセルロース、ポリエチレン/ビニルアルコール等の各種のプラスチックフィルムを例示することができる。
その中でも、紫外線等の励起光に対する耐性を有するもの、例えば、紫外線吸収剤を含むものであってもよい。紫外線吸収剤を含むものは、自然光等の中に含まれる紫外線により微かではあるが、予定外のホログラム再生を防ぐ効果も有する。
透明基材1の厚さは、通常5〜100μmであるが、ホログラム再生像の視認性を配慮する場合には、5〜50μm、特に5〜25μmとすることが望ましい。
【0035】
(光遮蔽性薄膜:1層目)
透明基材1上に光遮蔽性薄膜4(1層目)を形成する。
光遮蔽性薄膜4は、アルミニウム等の金属薄膜や、グラファイトなどを、真空蒸着法等の薄膜形成方法を用いて、透明基材1上に設け、その上に、フォトレジストを塗布して、パターン露光・現像・エッチング処理により、不要部分を除去し(この部分が開口部分となる。)、光遮蔽性の領域を離散的に設ける。
その厚さは、発光光を遮蔽できる厚さであって、10nm〜100nmとする。10nm未満では、その遮蔽性が不十分であり、100nmを超えると、光遮蔽性薄膜4の有無による段差が大きくなり、この上に形成する各層を形成し難くなる。
ホログラムレリーフ形状の凹凸のピッチ(周期)はホログラム再生角度に依存するが、通常0.1μm〜数μmであり、光遮蔽する個々の遮蔽領域の大きさは、このホログラム再生に対する影響を小さいものとするため、このピッチより小さくし、0.01μm〜0.5μm、好適には、0.05μm〜0.1μmとする。この大きさは小さい方が望ましいが、フォトクロミック薄膜層と離間させる距離に相当する透明樹脂層の厚さから、0.01μmより小さくすることは難しい。
離散的に設ける個々の光遮蔽領域の形状は、上記した様に、円形、楕円形、正方形、長方形等に限定されず、多角形や、星型等、任意の形状を採用することができるが、この光遮蔽領域を通過する発光光が保有するホログラムレリーフの位相(情報)を、不要に撹乱せしないものであることが望ましい。
【0036】
(ホログラムレリーフを有する透明樹脂層:ホログラム形成層ともいう。)
本発明のホログラム形成層2を構成するための透明な樹脂材料としては、各種の熱可塑性樹脂、熱硬化性樹脂、もしくは電離放射線硬化性樹脂を用いることができる。熱可塑性樹脂としてはアクリル酸エステル樹脂、アクリルアミド樹脂、ニトロセルロース樹脂、もしくはポリスチレン樹脂等が、また、熱硬化性樹脂としては、不飽和ポリエステル樹脂、アクリルウレタン樹脂、エポキシ変性アクリル樹脂、エポキシ変性不飽和ポリエステル樹脂、アルキッド樹脂、もしくはフェノール樹脂等が挙げられる。
これらの熱可塑性樹脂および熱硬化性樹脂は、1種もしくは2種以上を使用することができる。これらの樹脂の1種もしくは2種以上は、各種イソシアネート樹脂を用いて架橋させてもよいし、あるいは、各種の硬化触媒、例えば、ナフテン酸コバルト、もしくはナフテン酸亜鉛等の金属石鹸を配合するか、または、熱もしくは紫外線で重合を開始させるためのベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド等の過酸化物、ベンゾフェノン、アセトフェノン、アントラキノン、ナフトキノン、アゾビスイソブチロニトリル、もしくはジフェニルスルフィド等を配合しても良い。
【0037】
また、電離放射線硬化性樹脂としては、エポキシアクリレート、ウレタンアクリレート、アクリル変性ポリエステル等を挙げることができ、このような電離放射線硬化性樹脂に架橋構造を導入するか、もしくは粘度を調整する目的で、単官能モノマーもしくは多官能モノマー、またはオリゴマー等を配合して用いてもよい。
上記の樹脂材料を用いてホログラム形成層2を形成するには、感光性樹脂材料にホログラムの干渉露光を行なって現像することによって直接的に形成することもできるが、予め作成したレリーフホログラムもしくはその複製物、またはそれらのメッキ型等を複製用型として用い、その型面を上記の樹脂材料の層に押し付けることにより、賦型を行なうのがよい。
熱硬化性樹脂や電離放射線硬化性樹脂を用いる場合には、型面に未硬化の樹脂を密着させたまま、加熱もしくは電離放射線照射により、硬化を行わせ、硬化後に剥離することによって、硬化した透明な樹脂材料からなる層の片面にレリーフホログラムの微細凹凸を形成することができる。なお、同様な方法によりパターン状に形成して模様状とした回折格子を有する回折格子形成層も光回折構造として使用できる。
ホログラムは物体光と参照光との光の干渉による干渉縞を凹凸のレリーフ形状で記録されたもので、例えば、フレネルホログラムなどのレーザ再生ホログラム、及びレインボーホログラムなどの白色光再生ホログラム、さらに、それらの原理を利用したカラーホログラム、コンピュータジェネレーティッドホログラム(CGH)、ホログラフィック回折格子などがある。また、マシンリーダブルホログラムのように、その再生光を受光部でデータに変換し所定の情報として伝達したり、真偽判定を行うものであってもよい。
【0038】
微細な凹凸を精密に作成するため、光学的な方法だけでなく、電子線描画装置を用いて、精密に設計されたレリーフ構造を作り出し、より精密で複雑な再生光を作り出すものであってもよい。このレリーフ形状は、ホログラムを再現もしくは再生する光もしくは光源の波長(域)と、再現もしくは再生する方向、及び強度によってその凹凸のピッチや、深さ、もしくは特定の周期的形状が設計される。
また、カラーホログラム画像を、回折格子線からなる回折格子画素(同一の回折格子線からなる単一回折格子エリアの最小単位。これら画素から回折光としてでてくる光の集合が一つのカラーホログラム画像を形成する。)に要素分解し、所定の画素のサイズ、格子線ピッチ、格子線角度をその各要素に割り当てて再現するという画像処理方法を用いて形成することも可能である。
凹凸のピッチ(周期)は再現もしくは再生角度に依存するが、通常0.1μm〜数μmであり、凹凸の深さは、再現もしくは再生強度に大きな影響を与える要素であるが、通常0.01μm〜0.5μmである。
単一回折格子のように、全く同一形状の凹凸の繰り返しであるものは、隣り合う凹凸が同じ形状であればある程、反射する光の干渉度合いが増しその強度が強くなり、最大値へと収束する。回折方向のぶれも最小となる。立体像のように、画像の個々の点が焦点に収束するものは、その焦点への収束精度が向上し、再現もしくは再生画像が鮮明となる。
【0039】
ホログラムレリーフ形状を賦形(複製ともいう)する方法は、回折格子や干渉縞が凹凸の形で記録された原版をプレス型(スタンパという)として用い、上記透明基材1上に、前記原版を重ねて加熱ロールなどの適宜手段により、両者を加熱圧着することにより、原版の凹凸模様を複製することができる。形成するホログラムパターンは単独でも、複数でもよい。
上記の極微細な形状を精密に再現するため、また、複製後の熱収縮などの歪みや変形を最小とするため、原版は金属を使用し、低温・高圧下で複製を行う。
原版は、Niなどの硬度の高い金属を用いる。光学的撮影もしくは、電子線描画などにより形成したガラスマスターなどの表面にCr、Ni薄膜層を真空蒸着法、スパッタリングなどにより5〜50nm形成後、Niなどを電着法(電気めっき、無電解めっき、さらには複合めっきなど)により50〜1000μm形成した後、金属を剥離することで作ることができる。
複製方式は、平板式もしくは、回転式を用い、線圧0.1トン/m〜10トン/m、複製温度は、通常60℃〜200℃とする。
【0040】
(光遮蔽性薄膜:2層目)
ホログラム形成層2のホログラムレリーフ面上に、接して、且つ、追従するように、光遮蔽性薄膜4(1層目)と同様の材料、方法を用いて、光遮蔽性薄膜4に対応する位置に、同一の大きさで、光遮蔽性薄膜5(2層目)を形成する。
ホログラムレリーフ面は、実際には、ほぼ平坦な面であるため、また、対応する位置関係の精度を高めるため、透明基材1の上に形成する光遮蔽性薄膜4(1層目)と同一手法にて形成することが望ましい。
但し、接着させる材料が異なるため、十分な接着強度を得られるようその形成条件を調整する。
対応する位置とは、透明基材1に対して垂直な方向に重なる位置を意味するが、敢えて、この垂直方向を所定の角度、例えば10度〜30度の内の定められた角度分斜めとし、ホログラム再生像が結像する角度に調整することは、本発明の目的をより効果的に達成できる。
【0041】
(フォトクロミック薄膜層)
本発明では、ホログラム形成層2のホログラムレリーフ面に、フォトクロミック薄膜層3を形成する。
このフォトクロミック薄膜層に用いられる、フォトクロミック分子(フォトクロミック材料)としては、有機化合物系と、無機化合物系があり、
有機化合物系としては、
アゾベンゼン類(cis−trance異性):ジメチルアミノアゾベンゼン類等、
スピロピラン類(分子内開環―閉環):スピロベンゾチオピラン,スピロセレナゾリノベンゾピラン,スピロベンゾセレナゾリノナフトオキサジン等、より具体的には、1,3,3−トリメチルインドリノ−6'−ニトロベンゾピリロスピラン、1',3'−ジヒドロ−8−メトキシ−1',3',3'−トリメチル−6−ニトロスピロ[2H−1−ベンゾピラン−2',2'−(2H)−インドール]、1,3,3−トリメチルインドリノベンゾピリロスピラン、1,3,3−トリメチルインドリノ−6'−ブロモベンゾピリロスピラン、1,3,3−トリメチルインドリノ−8'−メトキシベンゾピリロスピラン、1,3,3−トリメチルインドリノ−β−ナフトピリロスピラン等、
スピロオキサジン類(分子内開環―閉環):スピロキノオキサジン類、スピロナフトオキサジン類、スピロフェナントロオキサジン類、スピロビピリドオキサジン類等、分子内に窒素原子を含む複素環構造を有する化合物等(赤紫〜青色。「着色」が速やかに消色。)、
スピロペリミジン類:2,3-ジヒドロ-2-スピロ-4'-[8'-アミノナフタレン-1'(4'H)-オン]ペリミジン、2,3-ジヒドロ-2-スピロ-7'-[8'-イミノ-7',8'-ジヒドロナフタレン-1'-アミン]ペリミジン等、
【0042】
アリールエテン類:対称型ジアリールエテン、非対称型2,3−ジアリールマレイン酸無水物、非対称ジアリールペルフルオロシクロペンテン等、
1,2-ビス(2,4-ジメチル-5-フェニル-3-チエニル)-3,3,4,4,5,5-ヘキサフルオロ-1-シクロペンテン、1,2-ビス[2-メチルベンゾ[b]チオフェン-3-イル]-3,3,4,4,5,5-ヘキサフルオロ-1-シクロペンテン、2,3-ビス(2,4,5-トリメチル-3-チエニル)マレイン酸無水物、2,3-ビス(2,4,5-トリメチル-3-チエニル)マレイミド、cis-1,2-ジシアノ-1,2-ビス(2,4,5-トリメチル-3-チエニル)エテン等、より具体的には、発色波長:425nm、469nm、526nm、534nm、550nm、562nm、578nm、583nm、611nm、620nm、628nm、665nm、680nm、828nm等(構造により、青色、緑色、黄色、赤色等に発色。)、
フルギド類:ジフェニルフルギド、トリフェニルフルギド等、
クロメン類:6−モルホリノ−3,3−ビス(3−フルオロ−4−メトキシフェニル)−3H−ベンゾ(f)クロメン、6−モルホリノ−3−(4−メトキシフェニル)−3−(4−トリフルオロメトキシフェニル)−3H−ベンゾ(f)クロメン、6−ピペリジノ−3−メチル−3−(2−ナフチル)−3H−ベンゾ(f)クロメン、6−ピペリジノ−3−メチル−3−フェニル−3H−ベンゾ(f)クロメン、6−モルホリノ−3,3−ビス(4−メトキシフェニル)−3H−ベンゾ(f)クロメン、6−ヘキサメチレンイミノ−3−メチル−3−(4−メトキシフェニル)−3H−ベンゾ(f)クロメン、6−モルホリノ−3−(2−フリル)−3−メチル−3H−ベンゾ(f)クロメン、6−モルホリノ−3−(2−チエニル)−3−メチル−3H−ベンゾ(f)クロメン、6−モルホリノ−3−(2−ベンゾフリル)−3−メチル−3H−ベンゾ(f)クロメン等(橙色〜黄色に発色。)、
【0043】
シクロファン類:アントラセノファン、アントラセノナフタレノファン、アントラセノパラシクロファン等のアントラセン含有シクロファンやメタシクロファン等、
カルコン(1,3-ジフェニル-2-プロペン-1-オン)―フラビリウム系等、
フルギミド化合物類:N−シアノメチル−6,7−ジヒドロ−4−メチル−2−フェニルスピロ(5,6−ベンゾ〔b〕チオフェンジカルボキシイミド−7,2−トリシクロ〔3.3.1.13,7〕デカン)、N−シアノメチル−6,7−ジヒドロ−2−(4'−メトキシフェニル)−4−メチルスピロ(5,6−ベンゾ〔b〕チオフェンジカルボキシイミド−7,2−トリシクロ〔3.3.1.13,7〕デカン)、N−シアノ−6,7−ジヒドロ−4−メチル−2−フェニルスピロ(5,6−ベンゾ〔b〕チオフェンジカルボキシイミド−7,2−トリシクロ〔3.3.1.13,7〕デカン)、N−シアノ−6,7−ジヒドロ−4−メチルルスピロ(5,6−ベンゾ〔b〕フランジカルボキシイミド−7,2−トリシクロ〔3.3.1.13,7〕デカン)、N−シアノ−4−シクロプロピル−6,7−ジヒドロスピロ(5,6−ベンゾ〔b〕フランジカルボキシイミド−7,2−トリシクロ〔3.3.1.13,7〕デカン)、N−シアノ−6,7−ジヒドロ−4−メチルスピロ(5,6−ベンゾ〔b〕チオフェンジカルボキシイミド−7,2−トリシクロ〔3.3.1.13,7〕デカン)、N−シアノメチル−4−シクロプロピル−6,7−ジヒドロスピロ(5,6−ベンゾ〔b〕チオフェンジカルボキシイミド−7,2−トリシクロ〔3.3.1.13,7〕デカン)、N−シアノメチル−4−シクロプロピル−6,7−ジヒドロ−2−(4'−メトキシフェニルスピロ(5,6−ベンゾ〔b〕チオフェンジカルボキシイミド−7,2−トリシクロ〔3.3.1.13,7〕デカン)、N−シアノメチル−4−シクロプロピル−6,7−ジヒドロ−2−フェニルスピロ(5,6−ベンゾ〔b〕チオフェンジカルボキシイミド−7,2−トリシクロ〔3.3.1.13,7〕デカン)、N−(3'−シアノフェニル)−6,7−ジヒドロ−4−メチル−2−(4'−メトキシフェニル)スピロベンゾチオフェンカルボキシイミド−7,2'−トリシクロ[3.3.1.13,7]デカン(橙色〜青色に発色。)、
【0044】
チオインジゴ類(cis−trance異性)、サリチリデンアニリン類(分子内水素移動:結晶タイプ。)、ニトロベンジルピリジン類(分子内水素移動:結晶タイプ。)、テトラクロル−α−ケトジヒドロナフタリン類、ビス(トリフェニルイミダゾリル)類、テトラフェニルヒドラジン類、ビアンスロン類、ピリジルシドノン類、アントラセン誘導体(光二量化)、メチレンブルー(光酸化還元)、トリフェニルメタン類(イオン解離)、ヘキサフェニルビイミダゾル(ラジカル解離)、多環芳香族化合物(酸素付加)等、
を用いることができる。

特に、ジアリールエテン類を透明樹脂に分散させたもの、ジアリールエテン類の結晶化物は、物理特性、耐候性に優れる。
また、無機化合物系としては、
AgBr、AgCl、AgI、CuBr2、CuCl2、CuCl、CuI2、CuI、Ag単体、Cu単体等の中から選択した三成分系化合物等、
銀ナノ粒子-酸化チタン系等、
を用いることができる。
さらに、これらのフォトクロミック分子(材料)の中で、フォトクロミック分子Bとしての発光強度曲線(波長を横軸として。)が、可視領域において、一つのみのピークを持つものが好適であり、さらには、そのピークの半値幅が、10〜50nmであるものが、より鮮明なホログラム再生像を与えるため好適である。
【0045】
形成方法としては、一般的印刷方法、コーティング方法等も用いることは可能であるが、より精密な薄膜を形成する方法として、回転塗布法、キャスト法、スクリーン印刷法、ブレードコーティング法、ロール塗布法、水面展開法、LB(ラングミュア・ブロジェット)法等が挙げられ、ドライ・プロセスとしては真空蒸着法、スパッタリング法、化学蒸着法等が挙げられる。
特に、有機化合物系を均一に、且つ、分子レベルで薄膜形成するには、化学蒸着法が好適である。
より具体的には、フォトクロミック分子を透明な樹脂に均一に分散した樹脂分散型のインキや、水又は溶剤にフォトクロミック分子を分散した溶媒分散型のインキを作製し、それらを用いて、印刷方式や、コーティング方式さらには、インクジェット方式等の種々の形成方法を用いて、ホログラム形成層2に、そのホログラムレリーフに接するように、また、追従するよう均一に、若しくは凹部に部分的に、フォトクロミック薄膜層3を形成することができる。(ホログラムシートA)
また、ホログラム形成層2のホログラムレリーフ面上に、直接、フォトクロミック分子を化学蒸着法によりフォトクロミック薄膜層3を形成することも、そのホログラムレリーフ追従性や、その均一性から好適であるとともに、電子ビーム加熱真空蒸着法における高温の電子ビームや、スパッタリング法におけるアルゴン原子の衝突がなく、分子の構造を維持しやすいため好適である。
また、ホログラム形成層2上にフォトクロミック薄膜層3を形成した後、フォトレジストを用いたフォトリソグラフィー法により、回折格子パターンに位置合わせして露光、現像、不要部除去によりフォトレジストのパターンを回折格子パターンの凹部に同調させ、エッチングによりフォトクロミック薄膜層を除去して、凹部のみにフォトクロミック薄膜層を残すことができる。(ホログラムシートA´)
逆に、ホログラム形成層2上にフォトレジスト層を形成し、回折格子パターンに位置合わせして露光、現像、不要部除去により、凸部にフォトレジストを残し、凹部を露出させて、この上にフォトクロミック薄膜層を形成後、凸部上のフォトレジストを除去すると同時に、その真上にあるフォトクロミック薄膜層を部分的に除去することにより、凹部のみにフォトクロミック薄膜層3を残すことができる。(ホログラムシートA´)
【0046】
樹脂分散型のインキは、上記したフォトクロミック分子を、透明樹脂、例えば、熱可塑性樹脂としてはアクリル酸エステル樹脂、アクリルアミド樹脂、ニトロセルロース樹脂、もしくはポリスチレン樹脂等が、また、熱硬化性樹脂としては、不飽和ポリエステル樹脂、アクリルウレタン樹脂、エポキシ変性アクリル樹脂、エポキシ変性不飽和ポリエステル樹脂、アルキッド樹脂、もしくはフェノール樹脂等に混入し、2次凝集を少なくするように、ガラスビーズやスチールビーズを用いたボールミル、ニーダー、ロールミル等による混練りを十分行い、溶剤等で粘度調整をして、グラビア方式、オフセット方式、シルクスクリーン方式、カーテンコート方式、ノズルコート方式、さらには、インクジェット方式を適宜用いて均一な厚さに形成することができる。
但し、フォトクロミック薄膜層3の厚さを、0.003μm以上1.0μm以下、さらには、0.01μm以上0.5μm以下とするためには、樹脂分散型インキの固形分を1〜10%とし、溶剤若しくは水を溶媒とした塗布膜が、例えば、5μmであったときに、溶媒を蒸発させた後の厚さ(フォトクロミック薄膜層の厚さ)がその1/10乃至は1/100となるようにし、0.5μm〜0.05μmとする。
【0047】
溶媒分散型のインキは、樹脂成分を含まず、フォトクロミック分子と溶媒のみであるため、樹脂分散型よりフォトクロミック薄膜層3の厚さを薄くすることができる。
溶媒としては、使用するフォトクロミック分子の極性に合わせ、水やアルコール系溶剤、若しくは、セルソルブ系、パラフィン系溶剤を用いて、フォトクロミック分子を溶解・保持させ、攪拌しながらカーテンコート、ノズルコート等によりホログラム形成層2上に設けることができる。
さらには、ホログラムレリーフ面を形成している樹脂に対して、溶解性を有する遅い揮発性の溶剤を数μm塗布し(アクリル・塩ビ・酢ビ樹脂や、ポリエステル樹脂等に対するケトン系溶剤、例えばシクロヘキサノン等。この溶剤を非溶解性の溶剤で希釈して使用し、残留する成分を0.1μm以下にすることも可能である。)、そのホログラムレリーフ面の最表面のみを溶解して、その最表面に粘着性を付与し、その上に、フォトクロミック分子を霧状として吹きかけて、その粘着性の面に接するフォトクロミック分子のみがホログラムレリーフ面上に残るようにするフォトクロミック薄膜層形成方法も好適である。
この方法によると、フォトクロミック薄膜層3がLB膜のように分子レベルの膜となり、ホログラムレリーフ面上に(フォログラムレリーフの大きさに比較して)均一に形成され、ホログラム形成層2側から励起光を当てた場合の発光面が、ホログラムレリーフ面と「同一」となる。
いずれにしても、ホログラムレリーフの凹凸が非常に小さい為、フォトクロミック薄膜層3を均一厚さで、且つ、その中のフォトクロミック分子が均一な密度となるように、もしくは、ホログラムレリーフ面上に均一に(部分形成の場合には形成してある部分同士が均一に)形成するためには、フォトクロミック分子が凝集して2次粒子状とならないようにする必要があり、溶剤(溶媒)へ溶解する方法や、ナノ粒子の表面に吸着させて、ナノ粒子顔料として薄膜形成することが好適である。
さらに、このような非常に薄いフォトクロミック薄膜層3を物理的に保護するために、上記した透明な樹脂を適宜な形成方法を用いて、1.0μm〜3.0μmの厚さで設けてもよい。
また、ホログラム形成層2、フォトクロミック薄膜層3、及び上記保護のための層の互いの屈折率差を、0.3以内、さらには、0.03以内とすることで、励起前における不要なホログラム再生像の出現を防ぎ、より偽造防止性を高めることが可能となる。
【0048】
この様にして作成したホログラムシートに、使用したフォトクロミック分子に適した励起光、例えば、紫外線(波長365nmや、波長245nm等。)を、10μW/cm2〜10mW/cm2の強度で、1.0秒〜100秒間照射するか、もしくは、可視領域内での色調変化をするものについては、所定波長に近いLED光や、半導体レーザー光を照射して、所定の色調に発色させ、もしくは、色調変化させ、その色調におけるホログラム再生像を視認して、その真正性を判定することができる。
このとき、所定のフィルターや、再生光増幅装置等を用いて、その視認性を高めたり、機械的判定を行ってもよい。
また、所定の色調のホログラム再生像の存在を、ホログラムシートを所持している者、すなわち、ホログラムシートを転写形成、又は、貼付した真正性識別対象物を所持している者に悟られないよう、真正性確認後、速やかに(数秒〜数十秒以内。)その色調が消えるか、又は、元の色調に戻るよう工夫することも好適である。
【実施例】
【0049】
(実施例1)
透明基材1として、12μmのPETフィルムの表面に、光遮蔽性薄膜4として、アルミニウム薄膜を真空蒸着法により100nm厚さで形成し、フォトレジストを1μm厚さにコーティング形成後、1辺0.1μm正方の市松模様状にパターン露光・現像・エッチング処理を施して、市松模様状の開口部を有する光遮蔽性薄膜4を形成した。
その上に、メラミン樹脂組成物を塗布し、ホログラム画像位置検知パターン付きのレリーフホログラム(「発光」の文字画像:図4参照)の複製用型の型面を、接触させたまま加熱硬化させることにより、レリーフホログラムの形成を行ない、厚さ3μmのホログラム形成層2を得た。
このホログラム形成層2上に、下記組成の樹脂分散型のフォトクロミック分子含有インキをグラビアコーティング方式により、コーティングし乾燥して、フォトクロミック薄膜層3を10μm厚さで、ホログラムレリーフに接するように形成し、乾燥して、0.1μm厚さとし、
・<インキ組成物>
1,2-ビス[2-メチルベンゾ[b]チオフェン-3-イル]-
3,3,4,4,5,5-ヘキサフルオロ-1-シクロペンテン
東京化成工業株式会社製結晶性材料B2629 0.1質量部
塩ビ樹脂 1質量部
メチルエチルケトン 29質量部
トルエン 70質量部
本発明のホログラムシートAを作製した。
このホログラムシートAを365nm波長の光源(浜松ホトニクス製UV-LEDモジュール LC―L2)を用いて照明したところ、図4に示すように、この紫外線は目視では見えず、青色のホログラム再生像「発光」を確認することができ、青色の再生像のみが空間に浮いているように見え、意匠性に優れるものであった。
そして、照明をはずしたところ、速やかに発光の再生像が消え、元の状態に戻った。
このホログラムシートを3cm角に切り出し、パスポートに貼付して、ブラックライト発光管40W照明(照明形状を小さくするため、3mmφ穴を持つカバー装着。)したところ、青色のホログラム再生像を認識することができ、ブラックライト照明をはずすと、速やかにその像が消え、パスポート保持者に気づかれずに、真正性判定をすることが十分に可能と思われた。
【0050】
(実施例2)
フォトクロミック分子含有インキをホログラムレリーフ上に形成する方式を、スピンコート方式とし、均一な塗膜厚さを2μmとし、乾燥後のフォトクロミック薄膜層3を0.02μm厚さで形成したこと以外は、実施例1と同様にして、実施例2の本発明のホログラムシートAを作製した。
このホログラムシートAを実施例1と同様に観察したところ、より鮮明に青色のホログラム再生像「発光」を確認することができ、青色の再生像のみが空間に浮いているように見え、意匠性に優れるものであった。
このホログラムシートAを3cm角に切り出し、パスポートに貼付して、ブラックライト発光管40W照明(照明形状を小さくするため、3mmφ穴を持つカバー装着。)したところ、青色のホログラム再生像を認識することができ、ブラックライト照明をはずすと、速やかにその像が消え、パスポート保持者に気づかれずに、真正性判定をすることが十分に可能と思われた。
【0051】
(実施例3)
ホログラム形成層2のホログラムレリーフ面上に、実施例1の光反射性薄膜4と同様にして光反射性薄膜5を形成したこと以外は、実施例1と同様にして、実施例3のホログラムシートA´を得た。
実施例1と同様に観察したところ、より鮮明に青色のホログラム再生像を確認することができた。
(実施例4)
フォトクロミック分子として、2,3-ジヒドロ-2-スピロ-4'-[8'-アミノナフタレン-1'(4'H)-オン]ペリミジン東京化成工業株式会社製D3618を用いたこと以外は、実施例1と同様として、実施例4のホログラムシートAを作製した。
励起光として、オムロン社製UV−LEDを用いたこと以外は、実施例2と同様にして観察したところ、黄色から青色に色調が変化し、実施例2より、鮮明で且つ発光強度の強いホログラム再生像を確認することができた。
【0052】
(比較例)
フォトクロミック薄膜層を形成せず、ホログラムシートを形成し、比較例とした。
実施例1と同様に観察したところ、励起光を照射しても何らの変化もなく、目視にて確実に認識できるホログラム再生像を確認することはできなかった。
このことより、このホログラムシートが真正なものでなく、このパスポートが偽物であると判断できた。
【符号の説明】
【0053】
A、A´ ホログラムシート
1 透明基材
2 ホログラムレリーフを有する透明樹脂層(ホログラム形成層)
3 フォトクロミック薄膜層(連続的な形成若しくは部分形成)
4 光遮蔽性薄膜(1層目)
5 光遮蔽性薄膜(2層目)
6 観察状態の例示:可視線(照明光)
7 同上 :再生像なし(紫外光励起の場合)
8 同上 :紫外線(照明光)
9 同上 :青色の再生像

【特許請求の範囲】
【請求項1】
透明基材の一方の面に、光遮蔽性薄膜が離散的に設けられ、その上に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、及び、前記ホログラムレリーフを形成する凹凸に追従して、且つ、均一な厚さで、フォトクロミック薄膜層が設けられていることを特徴とするホログラムシート。

【請求項2】
前記フォトクロミック薄膜層の厚さが、0.01μm以上0.5μm以下であることを特徴とする請求項1記載のホログラムシート。
【請求項3】
前記光遮蔽性薄膜が、前記透明樹脂層の上に、さらにもう一層設けられ、且つ、その二層における光遮蔽領域の位置が同一であることを特徴とする請求項1または2記載のホログラムシート。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−248014(P2011−248014A)
【公開日】平成23年12月8日(2011.12.8)
【国際特許分類】
【出願番号】特願2010−119724(P2010−119724)
【出願日】平成22年5月25日(2010.5.25)
【出願人】(000002897)大日本印刷株式会社 (14,506)
【Fターム(参考)】