説明

ホログラムシート

【課題】
ホログラムを用いた透明ホログラムシートにおいて、その真正性を高めるために、照明光と同一の波長のホログラム再生像を再生するホログラムとは異なり、照明光とは異なる波長のホログラム再生をする新規な透明ホログラムシートを提供する。
【解決手段】
ホログラム形成層上に蛍光層を設け、蛍光体を励起する光で照明して、可視光領域にある、その蛍光発光の色調によるホログラム再生像を目視にて判定可能とし、その偽造防止性を高めた透明ホログラムシートとした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規なホログラムシート、特に、位相ホログラムを呈するレリーフホログラムのレリーフ位置に、蛍光発光体を配した蛍光発光型のホログラムシートに関するものである。
ここで、「透明反射性薄膜層」の「透明反射性」とは、可視光領域の光、すなわち、その波長が400nm〜800nmの光を部分的に反射し、且つ、部分的に透過することを意味し、少なくとも、その波長域にある光を10%以上透過する薄膜層を意味する。
このような「薄膜層」を設けることにより、本発明のホログラムシートは、「反射型」、及び「透過型」のいずれのタイプのホログラム再生像も観察可能とすることもできる。
本明細書において、配合を示す「部」は質量基準である。また、「ホログラム」はホログラムと、回折格子などの光回折性機能を有するものも含む。
【背景技術】
【0002】
(主なる用途)
本発明のホログラムシートの主なる用途としては、ホログラムそのものを装飾用として用いる美術・工芸品分野や商業用分野があるが、それにとどまらず、偽造防止分野に使用されるホログラムシートであって、具体的には、クレジットカード等の偽造されて使用されると、カード保持者やカード会社等に損害を与え得るもの、運転免許証、社員証、会員証等の身分証明書、入学試験用の受験票、パスポート等、紙幣、商品券、ポイントカード、株券、証券、抽選券、馬券、預金通帳、乗車券、通行券、航空券、種々の催事の入場券、遊戯券、交通機関や公衆電話用のプリペイドカード等がある。
これらはいずれも、経済的、もしくは社会的な価値を有する情報を保持した情報記録体であり、偽造による損害を防止する目的で、記録体そのものの真正性を識別できる機能を有することが望まれる。
【0003】
また、これら情報記録体以外であっても、高額商品、例えば、高級腕時計、高級皮革製品、貴金属製品、もしくは宝飾品等の、しばしば、高級ブランド品と言われるもの、または、それら高額商品の収納箱やケース等も偽造され得るものである。また、量産品でも有名ブランドのもの、例えば、オーディオ製品、電化製品等、または、それらに吊り下げられるタグも、偽造の対象となりやすい。
さらに、著作物である音楽ソフト、映像ソフト、コンピュータソフト、もしくはゲームソフト等が記録された記憶体、またはそれらのケース等も、やはり偽造の対象となり得る。また、プリンター用のトナー、用紙など、交換する備品を純正材料に限定している製品などにも、偽造による損害を防止する目的で、そのものの真正性を識別できる機能を有することが望まれる。
【0004】
(背景技術)
従来、情報記録体や上記した種々の物品(総称して、真正性識別対象物と言う。)の偽造を防止する目的で、その構造の精密さから、製造上の困難性を有すると言われるホログラムを真正性の識別可能なものとして適用することが多く行なわれている。しかしながら、ホログラムの製造方法自体は知られており、その方法により精密な加工を施すことができることから、ホログラムが単に目視による判定だけのものであるときは、真正なホログラムと偽造されたホログラムとの区別は困難である。
これらの真正性識別対象物、特にラベル形態や転写形態にてホログラム画像を施された物品は、ホログラム画像の目視確認という真正性識別のみでなく、新たな真正性識別方法を用いてその対象物の真正性を識別する必要が生じている。
【0005】
(先行技術)
これらの要求に応えるため、ホログラムに積層して、入射した光の内、左回り偏光もしくは、右回り偏光のいずれか一方の光のみを反射する光選択反射層を有するホログラムシートが提案された。(例えば、特許文献1参照。)
この光選択反射層として、コレステリック液晶を使用し、偏光版等を用いて確認する方法で偽造防止性を高めている。
しかしながら、特許文献1の記載にあるように、ホログラム形成層上の反射性薄膜層の反射率が高いため、コレステリック液晶層で反射されず透過した光(選択的反射光の補色光)が、この反射性薄膜層で反射し、再びコレステリック液晶層へ戻る(以下戻り光とする)ことにより、この戻り光が、コレステリック液晶を観察する際のノイズ成分となって、選択的反射光に付加・混在し、液晶本来の色調とならず、視認・識別することすら難しくなっていた。
【0006】
また、コレステリック液晶材料そのものが高価であり、その液晶性能を引き出すためには液晶層に接して、配向膜の形成が不可欠であって煩雑であり、さらには、コレステリック液晶の光散乱性により、ホログラム画像を再生する光がその液晶層を通過するときに画像にボケ・歪みを生じる等の問題があった。
このため、コレステリック液晶層の光散乱性を抑えたり、コレステリック液晶層そのものを薄くする等の工夫が考えられたが、コレステリック液晶層の光散乱性を抑えるために屈折率差を小さくしたり、コレステリック液晶層を薄くしたりすると、上記した光選択反射層としての機能が低下してしまい、ホログラム画像の鮮明性と偽造防止性能を確保する最適な条件を得ることが難しいという欠点を有していた。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2007−90538号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
そこで、本発明はこのような問題点を解消するためになされたものである。その目的は、位相ホログラムのホログラム形成層、すなわちホログラムレリーフを有する透明樹脂の、そのホログラムレリーフに接するように蛍光層を設け、さらにその上に、透明反射性薄膜層を設けて、自然光の下では、その透明反射性薄膜層による反射光によりホログラム再生像を視認でき、一見、通常の透明ホログラムシートのように観察できるものの、定められた所定の波長を有する光源の照明により、その波長とは異なる特定の波長のみによるホログラム再生像を特定の方向に出現させる新規なホログラムシートを提供することである。さらに、このようなホログラムシートはこれまでに存在しないため、新規な装飾性及び、これを応用する偽造防止性を提供することである。
【課題を解決するための手段】
【0009】
上記の課題を解決するために、
本発明のホログラムシートの第1の態様は、
透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、前記透明樹脂層の前記ホログラムレリーフに接するように設けられた蛍光層、及び、前記蛍光層に接するように設けられた透明反射性薄膜層が、この順序で設けられていることを特徴とするものである。
上記第1の態様のホログラムシートによれば、
透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、前記透明樹脂層の前記ホログラムレリーフに接するように設けられた蛍光層、及び、前記蛍光層に接するように設けられた透明反射性薄膜層が、この順序で設けられていることを特徴とするホログラムシートを提供することができ、高い意匠性と高度な偽造防止性を持つホログラムシートを提供できる。
本発明のホログラムシートの第2の態様は、
透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、前記透明樹脂層の前記ホログラムレリーフに接するように設けられた透明反射性薄膜層、及び、前記透明反射性薄膜層に接するように設けられた蛍光層が、この順序で設けられていることを特徴とするものである。
上記第2の態様のホログラムシートによれば、
透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、前記透明樹脂層の前記ホログラムレリーフに接するように設けられた透明反射性薄膜層、及び、前記透明反射性薄膜層に接するように設けられた蛍光層が、この順序で設けられていることを特徴とするホログラムシートを提供することができ、高い意匠性と高度な偽造防止性を持つホログラムシートを提供できる。
本発明のホログラムシートの第3の態様は、
前記蛍光層が、均一な厚さで形成されていることを特徴とするものである。
上記第3の態様のホログラムシートによれば、
前記蛍光層が、均一な厚さで形成されていることを特徴とする第1または第2の態様のホログラムシートを提供することができ、より鮮明なホログラム再生像を出現可能な、ホログラムシートを提供できる。
【0010】
本発明のホログラムシートの第4の態様は、
前記蛍光層の厚さが、0.01μm以上0.1μm以下であることを特徴とするものである。
上記第4の態様のホログラムシートによれば、
前記蛍光層の厚さが、0.01μm以上0.1μm以下であることを特徴とする第3の態様のホログラムシートを提供することができ、鮮明度が著しく高いホログラム再生像を出現可能な、ホログラムシートを提供できる。
本発明のホログラムシートの第5の態様は、
前記透明樹脂層のホログラムレリーフが、前記透明基材上に、均一な厚さの透明な層と、均一な厚さの蛍光層の2層が設けられた後、または、前記透明基材上に、均一な厚さの透明な層、均一な厚さの蛍光層と、均一な厚さの透明反射性薄膜層の3層が設けられた後に、
前記2層、または、前記3層を同時に変形させることにより設けられたものであることを特徴とするものである。
上記第5の態様のホログラムシートによれば、
前記透明樹脂層のホログラムレリーフが、前記透明基材上に、均一な厚さの透明な層と、均一な厚さの蛍光層の2層が設けられた後、または、前記透明基材上に、均一な厚さの透明な層、均一な厚さの蛍光層と、均一な厚さの透明反射性薄膜層の3層が設けられた後に、前記2層、または、前記3層を同時に変形させることにより設けられたものであることを特徴とする第3または第4の態様のホログラムシートを提供することができ、自然光下でのホログラム再生像がより鮮明な、ホログラムシートを提供できる。
ホログラム画像を再生する回折格子群が、ホログラムレリーフとして、透明樹脂層面上に略一平面として形成されており、このホログラムレリーフ上に、または、透明樹脂層のホログラムレリーフ上に設けられている透明反射性薄膜層上に、蛍光層が設けられている。
すなわち、ホログラムレリーフは、位相ホログラムとしての位相差を「レリーフ形状」に現しているが、この位相差を有する「レリーフ形状」に追従して(沿って)蛍光層が設けられることにより、蛍光層が発する蛍光が、上記位相差を有して(含んで)発することになる。
透明反射性薄膜層は非常に薄く、ホログラムレリーフ上にこの透明反射性薄膜層を設けた場合には、その透明反射性薄膜層の最表面も、透明樹脂層のホログラムレリーフ形状と実質的に同一のホログラムレリーフ形状となっている。ここで、実質的に同一とは、その「形状」が全く同一か、ほぼ同一ということを意味し、それらのホログラムレリーフによるホログラム再生像が「同一の再生像」として視認されるという意味である。
【0011】
そして、透明樹脂層のホログラムレリーフ上に、蛍光層が設けられている場合には、さらにその蛍光層の上に、透明反射性薄膜層が設けられている。
従って、いずれの構成の場合の透明反射性薄膜層も、実質的に同一の「レリーフ形状」を持ち、自然光下では、この蛍光層は視認されず、この透明反射性薄膜層の反射面における「レリーフ形状」によって、ホログラム再生像を観察することとなる。
しかし、この蛍光層を発光させる照明光源、すなわち、定められた「所定の波長」を有する光源の照明を用いると、その「所定の波長」とは異なる「特定の波長のみ」によるホログラム再生像が特定の方向に出現して、観察者は、改めて、この「特定の波長」によるホログラム再生像を観察することとなる。
以下、この蛍光層によるホログラム再生の原理につき解説する。
すなわち、レリーフホログラムを再生する場合に生じるホイヘンスの2次波に対し、本発明のホログラムシートの場合において、この2次波に相当するものが、ホログラムレリーフ面に配された蛍光体(もしくは、蛍光物質とも呼ぶ。蛍光層の中に含まれている。)の蛍光発光であり、この発光がその役目を担い、ホログラム画像に対応した回折格子群を含むホログラムレリーフが有する位相差を含んで発光光を観察者側に発するものである。
この発光する光(以下、発光光ともいう。)が、ホログラムレリーフ面上の空間において干渉現象を起こし、その結果、所定の方向に所定のホログラム再生像を発現する。
蛍光体は、紫外線、電子線、X線などのエネルギーを吸収して可視光線として放出する物質であり、例えば、母体となるセラミックス結晶にEu やCe などの発光を担う金属イオンが微量添加した材料等がある。この場合、発光に寄与するのは金属イオンであり、外から加えられたエネルギー(紫外線、電子線、X線などや、もちろん可視光線、赤外線等のエネルギー。)を吸収して励起され、その後基底状態に戻る時に発光する。ホスト結晶の格子は金属イオンを取り囲むことによりイオンを化学的に安定化させたり、結晶場や配位環境を整えることにより発光色や発光強度を制御する働きをする。
本発明は、これらの蛍光発光の内、ストークスシフト(Stokes shift)によって可視光領域の発光を起こす蛍光体材料を用いる。もちろん、赤外線の励起による可視光領域の発光を起こすものも用いることができる。
【0012】
本発明は、ホログラムの照明光源の波長とは異なる波長でホログラムを再生するものであり、例えば、紫外線で照明し、緑色のホログラムを視認することもできるため、観察者の目には、暗闇の中で、通常用いられる緑色の照明光源(例えば、アルゴンレーザーなど。)の無いところに、ホログラムだけが光輝き、空中に浮いているように見え、意匠性にも優れるものとなる。
また、単波長光源再生型であって、蛍光灯等の多波長光源による照明光下では、各波長によるホログラム再生像がダブってしまい(再生角度が僅かずつズレて再生し、「一つの鮮明な像」として観察できないことを意味する。)、ホログラム再生像を視認できないタイプのホログラムをレリーフホログラムとして記録しておくと、蛍光層から発する光が「単波長」であることから、「蛍光層が発光した時のみ観察可能となるようなホログラム」を含めることもでき、その意匠性及び偽造防止性を高めることを可能とする。
そして、通常のホログラムにおいては、その再生原理から、そのホログラム再生像が出現する方向がそのホログラムを照明する方向に依存しており、ホログラム再生用の照明を真上から斜め上方へと移動させると、ホログラム再生像の出現方向がその動きに同調して移動するものであるが、本発明のホログラムシートにおいては、透明反射性薄膜層において反射されて再生するホログラム再生像は、これと同様の挙動を示すものの、蛍光層の発光により再生されるホログラム再生像は、その定められた「所定の波長」を有する光源の照明を、どのような方向からあてても、「同一の特定の方向にのみ現れる」という特異な性質を持つことから、その偽造防止性をさらに高めることができる。
もちろん、ホログラムを再生可能な光源の波長域が非常に狭いことに起因して、その特定の波長域を知りうる者のみがホログラム再生を果たすことができ、真正性判定用に有用なものとなる。また、上記したストークスシフトの値を知りうる者のみがホログラム再生像の色調を予測でき、その再生波長に調整したバンドパスフィルターを通して覗いて、そのバンドパスフィルターを通過できるホログラムのみが、真正であると判定することもできる。
また、このバンドパスフィルターを通過する角度(回折角度)も、そのストークスシフト量に依存し、やはり、その値を知りうる者のみがその特定の角度で判定を行うことができる。
さらに、蛍光体を複数含めることにより、この再生像は複数の角度に異なる色調で現れることになり、意匠性の面でも、真正性判定の面でもより優れたものとなる。
蛍光発光の原理は、図1に示すジャブロンスキー図にあるように、蛍光体(蛍光色素、蛍光顔料、蛍光染料等を含む。)の基底状態(S0:一重項状態)から光吸収によって第一(S1)、第二(S2)、第三励起状態(S3)・・・のどれかの振動状態に励起された発光体が、無放射過程で非常に速やかに緩和してS1の電子励起状態に移るか、あるいは項間交差によって三重項状態(T1、T2)へ移る。S1の最低振動状態になった蛍光体は、無放射過程によるか蛍光を発して基底状態に戻る。三重項状態になった分子は、無放射過程によるか、リン光を発して基底状態に戻る。
【0013】
一重項同士の遷移は瞬間的に起こるため、蛍光の半減期は10-4sec以下と短いものである。遷移に要する時間は、10-15secで励起が起こり、その後10-9〜10-7secで蛍光発光が起こるとされている。
一方、三重項から一重項への遷移はスピン変化禁止により禁制遷移となり自発的放出が起こりにくいので、リン光の半減期は大きく、秒単位のものもある。
基底状態に戻る際に光を発するか否か、光の強度が強いか弱いか、蛍光寿命が長いか短いかは、その蛍光体物質の分子構造や分子の置かれた環境に大きく依存する。
蛍光体材料の放出光の波長分布を蛍光スペクトルといい、蛍光スペクトルは蛍光の波長に対し相対的な蛍光強度をプロットして作成される。(実際の蛍光スペクトル測定では、波長と 強度が一定に維持された励起光を光源として用い、 蛍光体を取り扱う場合は、放出スペクトルのことを蛍光スペクトルと呼ぶ。)蛍光スペクトルに示される波長(エネルギー)は一次励起状態の最低振動エネルギー準位から基底状態の優先的な振動エネルギー準位までのエネルギー差と等しくなる。
蛍光の振幅が励起状態と基底状態の振幅構造と類似しているなら、最も長波長側の励起の振幅と鏡像関係となり、理論上、蛍光色素が吸収した光エネルギーの波長と蛍光として放出する波長は同じになる。しかし実際にはほとんどの蛍光色素の蛍光スペクトルは長波長(低エネルギー)側にシフトする。励起スペクトルと蛍光スペクトルのピーク波長間の差はストークスシフトと呼ばれ、この波長差は、蛍光放出以前の励起状態の際に放出されたエネルギーが熱エネルギーに変換されたために生じる。
ストークスシフトは蛍光の感度おいて非常に重要であり、蛍光を検出する際、励起光の影響を受けないためバックグラウンドを低くすることができる。
入射光の波長と強度を一定にした場合(例えば、光源として制御されたレーザー光を使用した場合)、放出される蛍光は蛍光物質の量と正比例する。従って、蛍光の強度を一定とするためには、ホログラムレリーフ面に形成する蛍光層の中の蛍光体の量を一定とする必要がある。
【0014】
もちろん、蛍光体の濃度が高い場合には、サチレーションをおこし直線性が失われて一定の強度となったり、蛍光体間の距離が極めて接近し、表面付近だけが励起され、放出蛍光が吸収されてしまうため、本発明の目的である蛍光光の干渉性を十分得るためには、蛍光層の厚さ方向に蛍光体が分散して多く存在するよりも、ホログラムレリーフ面近傍にのみ均一に存在する方が、より高い干渉現象を生じるため、蛍光体の粒径の1〜10倍、さらには1〜3倍とすることが望ましい。蛍光体が染料であり、蛍光層を形成する樹脂に溶解している場合には、その樹脂層を薄く抑える必要がある。また、蛍光染料によって、染着する場合には、ホログラムレリーフを形成している透明樹脂層そのもののレリーフ面のみを染着することにより、上記した目的を達成することもできる。
また、蛍光体によっては、放出される蛍光強度(輝度)が異なり、蛍光強度はそのまま感度に影響を与えるため蛍光体の蛍光強度は非常に重要な要素となる。蛍光強度は蛍光体の以下の2つの特性に依存し、
・光の吸収効率(吸光係数)
・励起光と蛍光の変換効率(量子収率)
蛍光強度は蛍光体の吸光係数(ε)と量子収率(φ)に比例するため、以下の式で表される。
・蛍光強度(輝度) ∝ 吸光係数(ε)×量子収率(φ)
ここで、蛍光体の吸光係数とは蛍光体に吸収される特定波長の光量を意味し、モル吸光係数は光路1 cmあたりの1M(1モル)蛍光色素溶液の光学濃度として定義される。有用な蛍光体では、このモル吸光係数が10,000以上を示す。励起光と蛍光の変換効率(量子収率)は以下の式から得ることができる。
・φ = 放出された光子数 / 吸収された光子数
ここで、量子収率(φ)は “0” (非蛍光性物質)から “1” (効率100%)までの値をとる。蛍光体の量子収率を示す例として、フルオレセイン(φ=0.9)およびCy5(φ=0.3)がある。通常の量子収率(φ)の測定には、吸収スペクトルのピーク波長が用いられる。
【0015】
フルオレセイン(ε=70,000、φ=0.9) とCy5(ε=200,000、φ=0.3)は極めて高い輝度を持っており、これらの蛍光体は量子収率と吸光係数は非常に異なっているが、蛍光強度は同等となる。
したがって、蛍光体を評価する場合は、吸光係数と量子収率をあわせて考慮する必要がある。蛍光強度は入射光の強さにも影響を受け、理論上、入射光量を上げていくと励起さ
れる蛍光体が増加し、同時に放出される光量(光子数、あるいは基底状態まで落ちていく 電子数)が増加し、蛍光強度の上昇として観察される。しかし 実際には、入射光量を上げすぎてしまうと全ての蛍光体が常時励起状態となり、蛍光破壊が起こり蛍光強度が減衰あるいは消失して蛍光強度との相関性が失われる等の現象が発生するため、入射光量を適切に定める必要がある。
さらに、蛍光体の量子収率や励起スペクトルおよび蛍光スペクトルは 環境条件、すなわち、環境温度、イオン濃度、PH、励起光の強度、樹脂等との共有結合、非共有結合性の相互作用(インターカレーション効果等。)などから影響を受けるため、これら環境条件を考慮して励起光波長や、蛍光光を認識しやすくするための光学フィルター(ロウパスフィルター、ハイパスフィルターや、バンドパスフィルター等。)を必要に応じ、設定する必要がある場合もある。
【0016】
また、もう1つの環境効果として光によるフォトブリーチングがある。励起状態にある蛍光体は基底状態に比べて化学的に活性化されているため、破壊されやすくなり、低頻度ではあるが、例えば、「励起蛍光色素分子」が化学反応を進行し、最終的に低蛍光性の構造になりことがある。この化学反応の進行は個々の蛍光体のフォトブリーチングに対する感受性や化学的な環境、励起光の強度、励起光の照射時間、観察や認証のための光学スキャンの繰り返し数等に依存するため、目的に応じた設定が必要となる。
光源として制御可能なレーザー光を使用するなど、入射光の波長と強度を一定にした場合、放出される蛍光(光子数)は蛍光体の量と正比例する。蛍光体が極めて高濃度である場合は、シグナル応答が非線形になる。
一定量の蛍光体から放出される光子数は、励起/放出サイク ルを繰り返せば増幅できる。励起光強度と蛍光体濃度が一定の場合は、放出光の総量は照射時間(蛍光色素等に励起光を照射している期間)に比例する。励起/放出サイクルの時間よりも照射時間が長ければ、蛍光体は励起/放出サイクルを何回も繰り返す。蛍光強度(放出光子数)の測定は、どのような受光素子でも測定可能である。
低強度光を測定する場合は、 増幅機構を持つ光電子増幅管(Photo multiplier tube:PMT) が有効である。PMTに十分なエネルギーを持つ光が入射すると、 陰極から電子が放出され、電子は電流として増幅される。これら受光素子の電流は、入射光の強度に比例し、蛍光強度は通常、任意単位で表示される(例rfu:rela−tive fluorescence unites:相対蛍光単位)。
【0017】
蛍光体は、一般的に、蛍光体原料を焼成する固相反応法により、製造される。この固相反応法では原料混合物を高い温度で焼成するため、得られる焼成ケーキは、蛍光体粒子が硬く凝集したものとなることが多い。そのため、通常は、蛍光体の製造の際には例えばボールミル、乳鉢等による粉砕工程を行うが、このときの蛍光体粒子の表面の損傷を抑制する方法として、流動式反応器装置を用いて、実質的に単分散の蛍光体−前駆体粒子を、流動する気体中に浮遊させて焼成することにより、凝集していない実質的に単分散の蛍光性粒子を製造する。この方法によれば、1μm未満の大きさの蛍光性粒子を製造することができる。
また、例えば、ZnGa2O4:Mn蛍光体を製造するに際し、焼成を行なう前の蛍光体原料を湿式沈殿法により調製することにより、低温での焼成が可能となり、蛍光体粒子の凝集を抑制することができる。
また、例えば、アルカリ土類アルミン酸塩系、またはアルカリ土類珪酸塩系の母体結晶を有する蛍光体の製造方法に関し、Srを含む蛍光体原料として硝酸ストロンチウムを用い、原料混合液又は懸濁液を所望の粒径となるよう液滴化し、これを焼成する方法がある。これにより、極めて脆い性質を有する蛍光体が得られ、容易に微小なサイズへ粉砕することができる。
蛍光体原料としては、製造しようとする蛍光体を構成する元素(以下、「蛍光体構
成元素」ともいう。)を含有する化合物を用いることができる。その例を挙げると、蛍光体構成元素を含有する、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物、窒化物等が挙げられる。蛍光体原料の選択に際しては、得られる蛍光体への反応性等を考慮して選択することが好ましい。さらに、蛍光体を構成する各蛍光体構成元素に対応し、蛍光体原料は、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、蛍光体の各蛍光体原料中に含まれる不純物としては、蛍光体の特性に悪影響を与えない限りにおいて、特に限定されない。
各蛍光体原料の重量メジアン径としては、通常0.01μm以上、0.5μm以下である。このために、蛍光体原料の種類によっては予めジェットミル等の乾式粉砕機で粉砕を行っても良い。これにより、各蛍光体原料の原料混合物中での均一分散化を図り、かつ、蛍光体原料の表面積増大による原料混合物の固相反応性を高めることができ、不純物相の生成を抑えることが可能となる。
【0018】
例えば、Baを含む蛍光体原料の具体例としては、BaO、Ba(OH)2・8H2O、BaCO3、Ba(NO32、BaSO4、Ba(C24)・22O、Ba(OCOCH32、BaCl2等が挙げられる。
Caを含む蛍光体原料の具体例としては、CaO、Ca(OH)2、CaCO3、Ca(NO32・4H2O、CaSO4・2H2O、Ca(C24)・H2O、Ca(OCOCH32・H2O、無水CaCl2(但し、水和物であってもよい。)等が挙げられる。
Srを含む蛍光体原料の具体例としては、SrO、Sr(OH)2・8H2O、SrCO3、Sr(NO32、SrSO4、Sr(C24)・H2O、Sr(OCOCH32・0.5H2O、SrCl2等が挙げられる。
Znを含む蛍光体原料の具体例としては、ZnO、Zn(C24)・2H2O、ZnSO4・7H2O等が挙げられる。
Mgを含む蛍光体原料の具体例としては、MgCO3、MgO、MgSO4、Mg(C24)・2H2O等が挙げられる。
Siを含む蛍光体原料の具体例としては、SiO2、H4SiO4、Si(OCOCH34等が挙げられる。
Euを含む蛍光体原料の具体例としては、Eu23、Eu2(SO43、Eu2(C243、EuCl2、EuCl3、Eu(NO33・6H2O等が挙げられる。
Sm、Tm及びYbを含む各蛍光体原料の具体例としては、Eu源の具体例として挙げた各化合物において、EuをそれぞれSm、Tm及びYbに置き換えた化合物が挙げられる。
【0019】
Mnを含む蛍光体原料の具体例としては、MnO、MnO2、Mn23、MnF2、MnCl2、MnBr2、Mn(NO32・6H2O、MnCO3、MnCr24等が挙げられる。
Crを含む蛍光体原料の具体例としては、Cr23、CrF3(水和物であってもよい)、CrCl3、CrBr3・6H2O、Cr(NO32・9H2O、(NH42CrO4等が挙げられる。
Tbを含む蛍光体原料の具体例としては、Tb47、TbCl3(水和物を含む。)、TbF3、Tb(NO33・nH2O、Tb2(SiO43、Tb2(C243・10H2O等が挙げられる。また、他の蛍光体原料(例えば、Eu源)とTb源とを共沈させてから用いることもできる。
Prを含む蛍光体原料の具体例としては、Pr23、PrCl3、PrF3、Pr(NO3362O、Pr2(SiO43、Pr2(C243・10H2O等が挙げられる。
Ceを含む蛍光体原料の具体例としては、CeO2、CeCl3、Ce2(CO33・5H2O、CeF3、Ce(NO33・6H2O等が挙げられる。
Luを含む蛍光体原料の具体例としては、Lu23、LuCl3、LuF3(水和物であってもよい)、Lu(NO33(水和物であってもよい)等が挙げられる。
Laを含む蛍光体原料の具体例としては、La23、LaCl372O、La2(CO33・H2O、LaF3、La(NO33・6H2O、La2(SO43等が挙げられる。
Gdを含む蛍光体原料の具体例としては、Gd23、GdCl3・6H2O、Gd(NO33・5H2O、Gd2(SO43・8H2O、GdF3等が挙げられる。
【0020】
Geを含む蛍光体原料の具体例としては、GeO2、Ge(OH)4、Ge(OCOCH34、GeCl4等が挙げられる。
Gaを含む蛍光体原料の具体例としては、Ga23、Ga(OH)3、Ga(NO33・nH2O、Ga2(SO43、GaCl3等が挙げられる。
Alを含む蛍光体原料の具体例としてはα−Al23、γ−Al23等のAl23、Al(OH)3、AlOOH、Al(NO33・9H2O、Al2(SO43、AlCl3等が挙げられる。
Pを含む蛍光体原料の具体例としては、P25、Ba3(PO42、Sr3(PO42、(NH43PO4等が挙げられる。
Bを含む蛍光体原料の具体例としては、B23、H3BO3等が挙げられる。
なお、上記に例示した原料は、必要に応じて共沈させてから用いてもよい。
さらに、N元素、O元素及びハロゲン元素等に対応する蛍光体原料は、通常、上記各蛍光体構成元素の蛍光体原料のアニオン成分として、又は焼成雰囲気中に含有される成分として、蛍光体製造時に供給される。
蛍光体原料を混合して原料混合物を調製してから、原料混合物を所定温度、雰囲気下で焼成する。この際、混合は十分に行うことが好ましい。
上記混合手法としては、特に限定はされないが、具体的には、下記(A)及び(B)として挙げた手法を用いることができる。また、これらの各種条件については、例えば、ボールミルにおいて2種の粒径の異なるボールを混合して用いる等の条件を選択可能である

【0021】
(A)例えばハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、又は、乳鉢と乳棒等を用いる粉砕と、例えばリボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、又は、乳鉢と乳棒を用いる混合とを組み合わせ、前述の蛍光体原料を粉砕混合する乾式混合法。
(B)前述の蛍光体原料に例えばメタノール、エタノール等のアルコール系溶媒又は水などの溶媒又は分散媒を加え、例えば粉砕機、乳鉢と乳棒、又は蒸発皿と撹拌棒等を用いて混合し、溶液又はスラリーの状態とした上で、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる湿式混合法。
蛍光体原料の混合は、蛍光体原料の物性に応じて、湿式又は乾式のいずれかを選択することができる。
また、ハロゲン化物、窒化物等の酸化・吸湿し易い原料を用いる場合には、例えばアルゴンガス、窒素ガス等の不活性気体を充填し、水分管理されたグローブボックス内でミキサー混合する。
また、混合・粉砕時に、粒径を揃える等の目的で、蛍光体原料を篩いにかけても良い。この場合、各種市販の篩いを用いることが可能であるが、金属メッシュのものよりもナイロンメッシュ等の樹脂製のものを用いる方が、不純物混入防止の点で好ましい。
焼成工程では、得られた原料混合物を焼成することにより焼成物を得る。得られた焼成物は、通常、その組成は目的とする蛍光体のものとなっているが、その粒子は焼結して焼成ケーキとなっている。
【0022】
さらに、焼成において、焼成炉中の耐熱容器の数が多い場合には、例えば、上記の昇温速度を遅めにする等、各耐熱容器への熱の伝わり具合を均等にすることが、ムラなく焼成するためには好ましい。
焼成工程における焼成温度、圧力、雰囲気等の焼成条件は、製造しようとする蛍光体そ
れぞれに応じて適切な条件を設定することが好ましい。
さらに、耐湿性等の耐候性を一層向上させるために、又は、発光装置の蛍光体含有部における樹脂に対する分散性を向上させるために、必要に応じて、蛍光体の表面を異なる物質で被覆する等の表面処理を行なってもよい。
蛍光体の表面に存在させることのできる物質(以下「表面処理物質」とも称する。)の例としては、例えば、有機化合物、無機化合物、ガラス材料等を挙げることができる。 有機化合物の例としては、アクリル樹脂、ポリカーボネート、ポリアミド、ポリエチレン等の熱溶融性ポリマー、ラテックス、ポリオルガノシロキサン等が挙げられる。
無機化合物の例としては、酸化マグネシウム、酸化アルミニウム、酸化珪素、酸化チタン、酸化ジルコニウム、酸化スズ、酸化ゲルマニウム、酸化タンタル、酸化ニオブ、酸化バナジウム、酸化硼素、酸化アンチモン、酸化亜鉛、酸化イットリウム、酸化ランタン、酸化ビスマス等の金属酸化物、窒化珪素、窒化アルミニウム等の金属窒化物、燐酸カルシウム、燐酸バリウム、燐酸ストロンチウム等のオルト燐酸塩、ポリリン酸塩等が挙げられる。なお、燐酸リチウム、燐酸ナトリウム、及び燐酸カリウムからなる群から選ばれる少なくとも1種と、硝酸バリウム、硝酸カルシウム、硝酸ストロンチウム、塩酸バリウム、塩酸カルシウム、及び塩酸ストロンチウムからなる群から選ばれる少なくとも1種とを組み合わせて用いることもできる。中でも、燐酸ナトリウムと硝酸カルシウムとを組み合わせて用いることが好ましい。また、蛍光体表面にバリウム、カルシウム、ストロンチウムが存在する場合には燐酸ナトリウム等の燐酸塩のみを用いても表面処理を行なうことができる。
【0023】
ガラス材料の例としてはホウ珪酸塩、ホスホ珪酸塩、アルカリ珪酸塩等が挙げられる。 これらの表面処理物質は、何れか1種のみを単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
表面処理を施した蛍光体は、これらの表面処理物質を有することになるが、その表面処理物質の存在態様としては、例えば下記のものが挙げられる。
(i)表面処理物質が連続膜を構成して、蛍光体の表面を被覆する態様。
(ii)表面処理物質が多数の微粒子となって、蛍光体の表面に付着することにより、蛍光体の表面を被覆する態様。
蛍光体の表面への表面処理物質の付着量、若しくは被覆量は、蛍光体の重量に対して、0.1重量%以上、また、30重量%以下、好ましくは15重量%以下であることが望ましい。蛍光体に対する表面処理物質量の量が多過ぎると、蛍光体の発光特性が損なわれる場合があり、少な過ぎると表面被覆が不完全となって、耐湿性、分散性の改善が見られない場合がある。
表面処理の方法には特に限定は無いが、例えば、以下に説明するような、金属酸化物(
酸化珪素)による被覆処理法を挙げることができる。
蛍光体をエタノール等のアルコール中に混合して、攪拌し、更にアンモニア水等のアルカリ水溶液を混合して、攪拌する。次に、加水分解可能なアルキル珪酸エステル、例えばテトラエチルオルト珪酸を混合して、攪拌する。得られた溶液を30分間静置した後、蛍光体表面に付着しなかった酸化珪素粒子を含む上澄みを除去する。次いで、アルコール混合、攪拌、静置、上澄み除去を数回繰り返した後、150℃で2時間の減圧乾燥工程を経て、表面処理蛍光体を得る。
蛍光体の表面処理方法としては、この他、例えば球形の酸化珪素微粉を蛍光体に付着さ
せる方法、蛍光体に珪素系化合物の皮膜を付着させる方法、蛍光体微粒子の表面をポリマー微粒子で被覆する方法、蛍光体を有機材料、無機材料及びガラス材料等でコーティングする方法、蛍光体の表面を化学気相反応法によって被覆する方法、金属化合物の粒子を付着させる方法等を用いることができる。
蛍光体の結晶構造の例を挙げると、(Ba,Sr,Ca,Mg)2SiO4:Eu等のオルソシリケート系結晶構造、Ca3(Sc,Mg,Na,Li)2Si312:Ce等のガーネット系結晶構造、(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu等のアパタイト系結晶構造、M3Si6122:Eu(但し、Mはアルカリ土類金属元素を表わす。)等の窒化物系結晶構造などが挙げられる。中でも、オルソシリケート系結晶構造又はガーネット系結晶構造が好ましい。
【0024】
(緑色蛍光体)
緑色蛍光体の発光ピーク波長は、通常500nm以上、中でも510nm以上、さらには515nm以上であることが好ましく、また、通常550nm以下、中でも542nm以下、さらには535nm以下の範囲であることが好ましい。この発光ピーク波長λpが短過ぎると青味を帯びる傾向がある一方で、長過ぎると黄味を帯びる傾向があり、何れも緑色光としての特性が低下する可能性がある。
また、緑色蛍光体の発光ピークの半値幅としては、通常10nm以上、通常130nm以下であり、用途に応じて適宜調整することが好ましい。この半値幅FWHMが狭過ぎると発光強度が低下する場合があり、広過ぎると色純度が低下する場合がある。
また、緑色蛍光体は、外部量子効率が、通常60%以上、好ましくは70%以上のものであり、メジアン径D50は、通常1μm程度である。
緑色蛍光体の具体例を挙げると、破断面を有する破断粒子から構成され、緑色領域の発光を行う(Mg,Ca,Sr,Ba)Si222:Euで表わされるユウロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体等が挙げられる。
【0025】
また、その他の緑色蛍光体としては、Sr4Al1425:Eu、(Ba,Sr,Ca)Al24:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)Al2Si28:Eu、(Ba,Mg)2SiO4:Eu、(Ba,Sr,Ca,Mg)2SiO4:Eu、(Ba,Sr,Ca)2(Mg,Zn)Si27:Eu、(Ba,Ca,Sr,Mg)9(Sc,Y,Lu,Gd)2(Si,Ge)624:Eu等のEu付活珪酸塩蛍光体、Y2SiO5:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr227−Sr225:Eu等のEu付活硼酸リン酸塩蛍光体、Sr2Si38−2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体、Zn2SiO4:Mn等のMn付活珪酸塩蛍光体、CeMgAl1119:Tb、Y3Al512:Tb等のTb付活アルミン酸塩蛍光体、Ca28(SiO462:Tb、La3Ga5SiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga24:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y3(Al,Ga)512:Ce、(Y,Ga,Tb,La,Sm,Pr,Lu)3(Al,Ga)512:Ce等のCe付活アルミン酸塩蛍光体、Ca3Sc2Si312:Ce、Ca3(Sc,Mg,Na,Li)2Si312:Ce等のCe付活珪酸塩蛍光体、CaSc24:Ce等のCe付活酸化物蛍光体、Eu付活βサイアロン等のEu付活酸窒化物蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl24:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)22S:Tb等のTb付活酸硫化物蛍光体、LaPO4:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO3:Ce,Tb、Na2Gd227:Ce,Tb、(Ba,Sr)2(Ca,Mg,Zn)B26:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、Ca8Mg(SiO44Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In)24:Eu等のEu付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)8(Mg,Zn)(SiO44Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、M3Si694:Eu、M3Si6122:Eu(但し、Mはアルカリ土類金属元素を表わす。)等のEu付活酸窒化物蛍光体等を用いることも可能である。
【0026】
また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テルビウム錯体等の有機蛍光体を用いることも可能である。
以上例示した緑色蛍光体は、何れか一種のみを使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
(橙色ないし赤色蛍光体)
該橙色ないし赤色蛍光体の発光ピーク波長は、通常570nm以上、好ましくは580nm以上、より好ましくは585nm以上、また、通常780nm以下、好ましくは700nm以下、より好ましくは680nm以下の波長範囲にあることが好適である。
このような橙色ないし赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行う(Mg,Ca,Sr,Ba)2Si58:Euで表わされるユーロピウム賦活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行う(Y,La,Gd,Lu)22S:Euで表わされるユーロピウム賦活希土類オキシカルコゲナイド系蛍光体等が挙げられる。
また、赤色蛍光体の発光ピークの半値幅としては、通常1nm〜50nmの範囲である

また、赤色蛍光体は、外部量子効率が、通常60%以上、好ましくは70%以上のもの
であり、メジアン径D50は通常1μm程度である。
【0027】
更に、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種類の元素を含有する酸窒化物及び/又は酸硫化物を含有する蛍光体であって、Al元素の一部又は全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。
また、そのほか、赤色蛍光体としては、(La,Y)22S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O4:Eu、Y23:Eu等のEu付活酸化物蛍光体、(Ba,Mg)2SiO4:Eu,Mn、(Ba,Sr,Ca,Mg)2SiO4:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、LiW28:Eu、LiW28:Eu,Sm、Eu229、Eu229:Nb、Eu229:Sm等のEu付活タングステン酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO3:Eu等のEu付活アルミン酸塩蛍光体、Ca28(SiO462:Eu、LiY9(SiO462:Eu、(Sr,Ba,Ca)3SiO5:Eu、Sr2BaSiO5:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)3Al512:Ce、(Tb,Gd)3Al512:Ce等のCe付活アルミン酸塩蛍光体、(Mg,Ca,Sr,Ba)2Si5(N,O)8:Eu、(Mg,Ca,Sr,Ba)Si(N,O)2:Eu、(Mg,Ca,Sr,Ba)AlSi(N,O)3:Eu等のEu付活酸化物、窒化物又は酸窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、Ba3MgSi28:Eu,Mn、(Ba,Sr,Ca,Mg)3(Zn,Mg)Si28:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF2・GeO2:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La)23:Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)22S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO4:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY24:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa24:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP27:Eu,Mn、(Sr,Ca,Ba,Mg,Zn)227:Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)2WO6:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)xSiyNz:Eu,Ce(但し、x、y、zは、1以上の整数を表わす。)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO46(F,Cl,Br,OH):Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1-x-yScxCey)2(Ca,Mg)1-r(Mg,Zn)2+rSiz-qGeqO12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。
【0028】
赤色蛍光体としては、β−ジケトネート、β−ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン)、アントラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。
以上の中でも、赤色蛍光体としては、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Ca,Sr,Ba)Si(N,O)2:Eu、(Ca,Sr,Ba)AlSi(N,O)3:Eu、(Ca,Sr,Ba)AlSi(N,O)3:Ce、(Sr,Ba)3SiO5:Eu、(Ca,Sr)S:Eu、(La,Y)22S:Eu又はEu錯体を含むことが好ましく、より好ましくは(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Ca,Sr,Ba)Si(N,O)2:Eu、(Ca,Sr,Ba)AlSi(N,O)3:Eu、(Ca,Sr,Ba)AlSi(N,O)3:Ce、(Sr,Ba)3SiO5:Eu、(Ca,Sr)S:Eu又は(La,Y)22S:Eu、もしくはEu(ジベンゾイルメタン)3・1,10−フェナントロリン錯体等のβ−ジケトン系Eu錯体又はカルボン酸系Eu錯体を含むことが好ましく、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Sr,Ca)AlSi(N,O):Eu又は(La,Y)22S:Euが特に好ましい。
また、以上例示の中でも、橙色蛍光体としては(Sr,Ba)3SiO5:Euが好ましい。
なお、橙色ないし赤色蛍光体は、1種のみを用いても良く、2種以上を任意の組み合わせ及び比率で併用してもよい。
【0029】
(青色蛍光体)
青色蛍光体の発光ピーク波長は、通常420nm以上、好ましくは430nm以上、より好ましくは440nm以上、また、通常490nm以下、好ましくは480nm以下、より好ましくは470nm以下、更に好ましくは460nm以下の波長範囲にあることが好適である。
また、青色蛍光体の発光ピークの半値幅としては、通常20nm〜80nmの範囲である。
また、青色蛍光体は、外部量子効率が、通常60%以上、好ましくは70%以上のものであり、メジアン径D50は通常1μm程度である。
このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行う(Ba,Sr,Ca)MgAl1017:Euで表わされるユーロピウム賦活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行う(Mg,Ca,Sr,Ba)5(PO43(Cl,F):Euで表わされるユウロピウム賦活ハロリン酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行う(Ca,Sr,Ba)259Cl:Euで表わされるユウロピウム賦活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行う(Sr,Ca,Ba)Al24:Eu又は(Sr,Ca,Ba)4Al1425:Euで表わされるユウロピウム賦活アルカリ土類アルミネート系蛍光体等が挙げられる。
【0030】
また、そのほか、青色蛍光体としては、Sr227:Sn等のSn付活リン酸塩蛍光体、(Sr,Ca,Ba)Al24:Eu又は(Sr,Ca,Ba)4Al1425:Eu、BaMgAl1017:Eu、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1017:Eu,Tb,Sm、BaAl813:Eu等のEu付活アルミン酸塩蛍光体、SrGa24:Ce、CaGa24:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu、(Ba,Sr,Ca)5(PO43(Cl,F,Br,OH):Eu,Mn,Sb等のEu付活ハロリン酸塩蛍光体、BaAl2Si28:Eu、(Sr,Ba)3MgSi28:Eu等のEu付活珪酸塩蛍光体、Sr227:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、Y2SiO5:Ce等のCe付活珪酸塩蛍光体、CaWO4等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO5:Eu,Mn、(Sr,Ca)10(PO46・nB23:Eu、2SrO・0.84P25・0.16B23:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、Sr2Si382SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体、SrSi9Al19ON31:Eu、EuSi9Al19ON31等のEu付活酸窒化物蛍光体、La1-xCexAl(Si6-zAlz)(N10-zOz)(ここで、x、及びyは、それぞれ0≦x≦1、0≦z≦6を満たす数である。)、La1-x-yCexCayAl(Si6-zAlz)(N10-zOz)(ここで、x、y、及びzは、それぞれ、0≦x≦1、0≦y≦1、0≦z≦6を満たす数である。)等のCe付活酸窒化物蛍光体等を用いることも可能である。
【0031】
また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラリゾン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。
以上の例示の中でも、青色蛍光体としては、(Ca,Sr,Ba)MgAl1017:Eu、(Sr,Ca,Ba,Mg)10(PO46(Cl,F)2:Eu又は(Ba,Ca,Mg,Sr)2SiO \f14:Euを含むことが好ましく、(Ca,Sr,Ba)MgAl1017:Eu、(Sr,Ca,Ba,Mg)10(PO46(Cl,F)2:Eu又は(Ba,Ca,Sr)3MgSi28:Euを含むことがより好ましく、BaMgAl1017:Eu、Sr10(PO46(Cl,F)2:Eu又はBa3MgSi28:Euを含むことがより好ましい。また、このうち照明用途及びディスプレイ用途としては(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu又は(Ca,Sr,Ba)MgAl1017:Euが特に好ましい。
なお、青色蛍光体は、1種のみを用いても良く、2種以上を任意の組み合わせ及び比率で併用してもよい。
(黄色蛍光体)
黄色蛍光体の発光ピーク波長は、通常530nm以上、好ましくは540nm以上、より好ましくは550nm以上、また、通常620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあることが好適である。
また、黄色蛍光体の発光ピークの半値幅としては、通常60nm〜200nmの範囲である。
また、黄色蛍光体は、外部量子効率が、通常60%以上、好ましくは70%以上のものであり、メジアン径D50は通常1μm程度である。
このような黄色蛍光体としては、各種の酸化物系、窒化物系、酸窒化物系、硫化物系、酸硫化物系等の蛍光体が挙げられる。
【0032】
特に、RE3M512:Ce(ここで、REは、Y、Tb、Gd、Lu、及びSmからなる群から選ばれる少なくとも1種類の元素を表わし、Mは、Al、Ga、及びScからなる群から選ばれる少なくとも1種類の元素を表わす。)やMa3Mb2Mc312:Ce(ここで、Maは2価の金属元素、Mbは3価の金属元素、Mcは4価の金属元素を表わす。)等で表わされるガーネット構造を有するガーネット系蛍光体、AE2MdO4:Eu(ここで、AEは、Ba、Sr、Ca、Mg、及びZnからなる群から選ばれる少なくとも1種類の元素を表わし、Mdは、Si、及び/又はGeを表わす。)等で表わされるオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、AEAlSi(N,O)3:Ce(ここで、AEは、Ba、Sr、Ca、Mg及びZnからなる群から選ばれる少なくとも1種類の元素を表わす。)等のCaAlSiN3構造を有する窒化物系蛍光体等のCeで付活した蛍光体が挙げられる。
また、その他、黄色蛍光体としては、CaGa24:Eu、(Ca,Sr)Ga24:Eu、(Ca,Sr)(Ga,Al)24:Eu等の硫化物系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のsialon構造を有する酸窒化物系蛍光体等のEuで付活した蛍光体、(M1-a-bEuaMnb)2(BO31-p(PO4)pX(但し、Mは、Ca、Sr、及びBaからなる群より選ばれる1種以上の元素を表し、Xは、F、Cl、及びBrからなる群より選ばれる1種以上の元素を表わす。a、b、及びpは、各々、0.001≦a≦0.3、0≦b≦0.3、0≦p≦0.2を満たす数を表わす。)等のEu付活又はEu,Mn共付活ハロゲン化ホウ酸塩蛍光体等を用いることも可能である。
また、黄色蛍光体としては、例えば、brilliant sulfoflavine FF (Colour Index Number 56205)、basic yellow HG (Colour Index Number 46040)、eosine (Colour Index Number 45380)、rhodamine 6G (Colour Index Number 45160)等の蛍光染料等を用いることも可能である。
【0033】
さらには、ビス(トリアジニルアミノ)スチルベンジスルホン酸誘導体やビススチリルビフェニル誘導体(紫外線励起400〜450nm蛍光発光)等を用いることもできる。
特に、ナノ蛍光体:Siナノ蛍光体、ZnSナノ蛍光体、YAG:Ceナノ蛍光体、LaPO4:Lnナノ蛍光体、色素ドープシリカナノ蛍光体、半導体ナノ粒子、CdSe−ZnS量子ドット等は、その粒径がホログラムレリーフのレリーフ周期よりはるかに小さいため、そのレリーフ面上へ均一に形成でき、かつ、形成厚さも制御しやすいため特に好適である。半導体薄膜の極微細加工により形成する場合は、高精度且つ、極薄膜で形成可能であり、発光光の波形や、強度を制御して、その干渉性を向上させることができる。
蛍光性半導体量子ドットにおいては、中心核(コア)は、例えば、セレン化カドミウム(CdSe)でできており、その外側を硫化亜鉛(ZnS)の被覆層(シェル)が覆っている構造をしている。この金属化合物の直径を変えることで、発する蛍光波長が変わる特徴を持つ。この量子ドットの周囲に生体高分子を配置したものは、生体高分子特有の反応基を有するため、この反応基を利用して蛍光体を特異的に配置させることが可能である。
紫外線発光蛍光体としては、紫外線により励起され、これよりも低いエネルギー準位に戻る時に発する蛍光スペクトルのピークが、青、緑、赤等の波長域にあるものである。そして、このような紫外線発光蛍光体としては、例えばCa259 Cl:Eu2+,CaWO4 ,ZnO:Zn,Zn2 SiO4 :Mn、Y22 S:Eu,ZnS:Ag,YVO4 :Eu、Y23 :Eu,Gd22 S:Tb,La22S:Tb,Y3 Al512:Ce等があり、これらを単体として使用するか、またはこれらを数種、適当な割合で混合して使用する。
これらは、蛍光スペクトルのピークを、青、赤、緑の波長領域以外に有するものである。また、インキ中の紫外線蛍光発光体の重量率は、読み取りヘッドの受光素子による蛍光の検知が可能であればよい。
一方、赤外線発光蛍光体としては、波長λ1の励起光を受けて、波長λ2の可視光を発光する特性を有し、λ1=λ2かつλ1>λ2なる性質を有するものがある。そして、このような赤外線発光蛍光体としては、例えば組成が YF3 :Yb,Er,ZnS:CuCO等がある。
【0034】
具体的例として、BASF社製ルモゲンFVヴァイオレット570(ナフタルイミド:374nm→413nm)、ルモゲンFイエロー083(ペリレン:励起波長476nm→発光波長490nm:以下同じ。)、ルモゲンFオレンジ(ペリレン:525nm→539nm)、ルモゲンFレッド305(ペリレン:578nm→613nm)等、
デイグロ社製蛍光顔料:グロプリルT/GTシリーズ、ACTシリーズ、Z/ZQシリーズ、GPLシリーズ、LHYシリーズ、蛍光染料:ダイブライトD−818ロアノークイエロー、D−784アルパータイエロー、D−208アパツチイエロー、D−288チェロキーレツド、D−688コロラドレツド、D−298コロンビアブルー等、
シンロイヒ社製蛍光顔料:シンロイヒカラーFZ−2000シリーズ(FZ−2001RED等)、FZ-2800シリーズ(FZ−2808Blue等)、SX−100シリーズ(SX−104Orange等)、SX−1000シリーズ(SX−1004Orange、SX−1005Lemon Yellow、SX−1007Pink、SX−1037Magenta:平均粒径1.0μm以下)、SW−10シリーズ(SW−11Red Orange、SW−12NGreen、SW−13Red、SW−14NOrange、SW−15N Lemon Yellow、SW−16N Orange Yellow、SW−07Cerise、SW−17Pink、SW−27Rose、SW−37Rubine、SW−47Violet、SW−28Blue:平均粒径1.0μm以下)、SPシリーズ、SF−3000シリーズ(超微粒子タイプ)、SF−5000シリーズ(超微粒子タイプ)、SF−8000シリーズ(超微粒子タイプ)、ルミライトナノRY202(粒径30nm、365〜370nm→619nm)等、
【0035】
モリテッククス社製:蛍光粒子(グリーン:468nm→508nm)G25(粒径0.03μm)、G40(粒径0.04μm)、G50(粒径0.05μm)、G75(粒径0.07μm)、G85(粒径0.09μm)、G100(粒径0.10μm)、G140(粒径0.14μm)、G200(粒径0.20μm)、G250(粒径0.25μm)、G300(粒径0.30μm)、G400(粒径0.40μm)、G450(粒径0.45μm)、G500(粒径0.50μm)、
蛍光粒子(グリーン:360nm→530nm)34−1(平均粒径3.0μm)、
蛍光粒子(ブルー:365nm→447nm)B50(粒径0.05μm)、B100(粒径0.10μm)、B150(粒径0.14μm)、B200(粒径0.20μm)、B300(粒径0.30μm)、B400(粒径0.40μm)、B500(粒径0.50μm)、
蛍光粒子(レッド:542nm→612nm)B50(粒径0.05μm)、B60(粒径0.05μm)、B100(粒径0.10μm)、B160(粒径0.16μm)、B200(粒径0.20μm)、B300(粒径0.30μm)、B400(粒径0.40μm)、B500(粒径0.50μm)等、
テールナビ社製 紫外線励起蛍光顔料UVP−1(発光波長421nm)、UVB−1(発光波長453nm)、UVG−2(発光波長517nm)、UVR−2(発光波長626nm)、可視光励起蛍光顔料LMS−570(450〜520nm→570nm)、LMS−560(450〜467nm→560nm)、LMS−550(450〜465nm→550nm)、LMS−540(450〜465nm→540nm)等、
イントロジェン社製Qdot525ナノクリスタル(350〜488nm→525nm)、Qdot565ナノクリスタル(350〜488nm→565nm)、Qdot585ナノクリスタル(350〜488nm→585nm)、Qdot605ナノクリスタル(350〜488nm→605nm)、Qdot625ナノクリスタル(350〜488nm→625nm)、Qdot655ナノクリスタル(350〜488nm→655nm)、Qdot705ナノクリスタル(350〜488nm→705nm)、Qdot800ナノクリスタル(350〜488nm→800nm)等、
エヴィデントテクノロジーズ社製エヴィドット:CdSe/ZnSコアシェルエヴィドット(平均粒径7.2〜9.6nmで発光波長490nm〜620nm)等、
日本カンタムデザイン社製量子ドット:カルボキシル基タイプ、アミノ基タイプ:直径3.0nm〜直径8.3nmで発光波長530nm〜620nm等を好適に用いることができる。
【0036】
次に、ホログラフィの原理について説明する。
物体がコヒーレント光で照明され,物体から回折された光が記録媒体(フォトレジスト等。)を照明しているとした場合、物体から回折されて記録面に到達した波面を物体波は、
F(x,y)=A(x,y)EXP[φ(x,y)]
であらわされる。ここで、
A(x,y) は物体波の振幅分布とし、
φ(x,y) は位相分布とする。
このとき、記録媒体には、記録媒体に到達する光波の強度分布が記録される。その強度分布は、
I(x,y)=|F(x,y)|2=A2(x,y) (1)
となり、位相分布は記録されない。
ここで,物体波にこれと干渉性のある光波(参照波という)を重ね合わせると,記録される光波の強度分布は、
I(x,y)=|F(x,y)+R(x,y)|2
=|F(x,y)|2+|R(x,y)|2
+F(x,y)R*(x,y)+F*(x,y)R(x,y) (2)
となる.(*は複素共役項を表す。)
【0037】
ただし,参照光が記録面に角度θで入射する平面波であるとすれば、
R(x,y)=r(x,y)EXP(2πiαx) (3)
と書け、
α = SIN(θ)/λ (4)
である。(2)の第1項と第2項はそれぞれ、物体波の強度と参照波の強度でいずれも位相情報は欠落している。第3項と第4項は干渉の項でそれぞれ
F(x,y)R*(x,y)=
A(x,y)r(x,y)EXP[i [φ(x,y)−2παx] ] (5)
F*(x,y)R(x,y)=
A(x,y)r(x,y)EXP[−i [φ(x,y)−2παx]] (6)
とあらわされ、物体の位相項 φ(x,y) が残っている。(5)、(6)は互いに複素共役であり、(4.2)の第3項は物体の複素振幅分布を含んでいる。(5)、(6)を(2)に代入すると、
I(x,y)=|F(x,y)|2+|R(x,y)|2
+2A(x,y)r(x,y)COS [2παx−φ(x,y)] (7)
となる.物体波と参照波が干渉して干渉縞を形成していることがわかる。
【0038】
このように、物体波に参照波を重ね合わせて干渉記録し、 物体の位相情報を欠落させずに記録する方法がホログラフィである。(7)を記録したものが「ホログラム」と呼ばれる。ホログラムの振幅透過率もしくは振幅反射率が、記録した強度分布 I(x,y)
比例し、
T(x,y)=τI(x,y) (8)
とかけるとする。このホログラムに、記録したときに用いた参照波を所定の角度であてると、ホログラムを透過もしくは反射してきた波面は、
T(x,y)R(x,y)=τ(|F(x,y)|2+|R(x,y)|2
+τF(x,y)|R(x,y)|2
+τF*(x,y)R2(x,y) (9)
とあらわすことが出来る.この第2項は
τF(x,y)|R(x,y)|2
τA(x,y)r2(x,y)EXP[iφ(x,y)]] (10)
第3項は、
τF*(x,y)R2(x,y)=
τA(x,y)r2(x,y)EXP[−iφ(x,y)+2πiα] (11)
とかける。
【0039】
このことから、(9)の第1項は、照明光と同じ方向にホログラムを突き抜ける光束もしくは正反射する光束であり、第2項は、(10)より、物体光に比例した振幅を持つ光波であることがわかり、第3項は、(11)より、物体波と共役な位相分布を持ち、2θの方向に伝播する光波であることがわかる。
このようにして,ホログラフィの技術を使うと複素振幅分布を記録して再生することが出来る。
本発明の場合は、ホログラムの振幅透過率もしくは振幅反射率が、記録した強度分布に比例し、(8)の式で表されてはいるものの、このホログラムに、記録したときに用いた参照波を所定の角度であてるのではなく、(8)の振幅透過率もしくは振幅反射率と同様の空間的な分布を持つ発光波がこのホログラムから発せられることになる。
従って、参照光にホログラムに記録された位相項を付与するという従来のホログラム再生の原理によらず、既にホログラムに記録されている位相項を保持して発光波を放射するものである。従って、理論上は、物体の位相差を含む空間関数を持つ3次元の連続曲面状の発光面を有し、その1曲面から光が放射されることになる。
【0040】
従来のホログラム再生原理を透過タイプについて、単純化して説明すると、参照光としての平行光をホログラムにあてた際、遮蔽部分では、平行光が遮蔽され、透過部分からのみその平行光を透過し、透過部分と遮蔽部分との境界において回折が起こり、物体の持つ位相項を受け取り、ホログラムを透過した成分全体が重ね合わさり、それがホログラム再生光となって観察者の目に届くものである。
本発明の場合は、上記した参照光としての平行光が存在せず、ホログラムレリーフに接するように設けられた発光面での発光時、その放射光が物体の位相項を保持しており、その放射光同士の干渉現象により、ホログラム再生がなされるものである。
時間的且つ空間的コヒーレンス性を持たない放射光同士の干渉効果は、レーザー光のような十分な干渉を生じないが、低コヒーレント光で ホログラムを照明した際と同様のレベルでホログラム再生が行われる。以上のような原理による再生であるため、ホログラム撮影時の参照光は平行光であることが好ましく(複雑な参照光を再現できないため。)、もしくは、「回折格子により表現されたホログラム」(回折格子は、物体光、参照光とも平行光である。)であることが好ましく、回折格子は計算機ホログラム等、電子線描画により形成したものが精密であり、好適である。
【0041】
さらに、上記の理由から、ホログラム再生像をより鮮明にするためには、放射光に、時間的若しくは空間的なコヒーレンス性に類する特性を付与することが必要であり、例えば、発光体の発光面の厚さを薄いものとしたり、発光波長の幅を狭くすることが望ましい。さらに、励起光源も小さい形状であることが好ましく、スポット形状等が特に好適である。
また、発光体を励起する励起光と、発光波長との波長差は大きい方が望ましく、さらに、観察時、その励起光をフィルタリングして発光光のみを増幅することも有効である。
励起光源として、紫外線、可視光線、電子線、X線等のエネルギー及び場合に応じて、赤外線エネルギーを放射可能な光源を用いて、蛍光発光等をさせることができるが、ホログラム観察用さらには、ホログラム認証用に用いるためには、蛍光体に応じた光源を用いる必要があり、所定の強度、波長、さらには照明スポットのサイズを有する紫外線光源、可視光光源、場合により赤外線光源を用いる。
これらの光源による照明により、ホログラムレリーフ面、または、「ホログラムレリーフと実質的に同一な面」(以下、この2種類の「面」を特に区別する必要がない場合には、総称して、「ホログラムレリーフ面」という。従って、「ホログラムレリーフ」と、「実質的に同一なホログラムレリーフ」も、同様に総称として、「ホログラムレリーフ」という。)に接するように設けられた蛍光層から、さらに言及すれば、その蛍光層に含まれる蛍光体から個々に、照明光源の波長とは異なる波長の蛍光等が発現する。その蛍光発光等が、ホログラムレリーフと同一の空間的位相を含み、且つ、照明光源とは異なる波長(蛍光波長。)を有することから、ホログラムレリーフによる正反射光(0次回折光)方向や、照明光波長(励起光波長)による回折方向とは異なる方向、すなわち、蛍光波長による回折方向へホログラム像の再生が行われる。
【0042】
但し、この蛍光層の厚さが、ホログラムレリーフとは無関係にそのホログラム面上に分布している場合には、その厚さ分布に起因する蛍光発光強度分布が、場合によっては、ホログラムを再生する光と不要な干渉を生じ、ホログラム再生像を不鮮明にする要因となり得る。
この要因を排除するため、蛍光層を、ホログラムレリーフを形成する凹凸に追従して均一な厚さで形成して、ホログラムレリーフ面のどの位置からも、同一の強度の発光が生じるようにし、ホログラム再生像の鮮明化を図ることができる。
(この「ホログラムレリーフを形成する凹凸」という場合の「ホログラムレリーフ」は、「透明樹脂層のホログラムレリーフ」の場合と、「蛍光層のホログラムレリーフ」の場合、さらには、「透明反射性薄膜層のホログラムレリーフ」の場合、そして、「透明樹脂層」は、片面のみにホログラムレリーフが形成されているが、「蛍光層」と「透明反射性薄膜層」にはそれらの「層」の両面にホログラムレリーフが形成されているため、それぞれの「ホログラムレリーフ」が存在するが、これらの「ホログラムレリーフ」に共通する説明を行う場合には、それらを総称して「ホログラムレリーフ」という表現を用いる。「ホログラムレリーフ」によって再生される「ホログラム再生像」も同様とする。)
本発明のホログラムシートの照明光(励起光)として、可視光以外の紫外光や赤外光を使用した場合は、その光は観察者には見えず、あたかも照明光のないところからホログラム再生像が浮き上がっているように観察されるが、このホログラム再生像は、例え、照明光が、時間的・空間的なコヒーレント性を有していても、結果として、励起・蛍光というプロセスを経て発光するものであるため、その発光時の空間的なホログラムの位相を含んではいるとはいえ、その発光光同士の時間的及び空間的なコヒーレント性は小さく、ホログラム再生像は通常のレーザー再生レリーフホログラムの再生像より微弱であって且つ不鮮明となっている。
もちろん、ビーム形状の回折光を観察するのみであれば、その色調と回折方向を確認することは容易であり、そのままでも真正性の判定に差し支えないが、このため、この微弱且つ不鮮明なホログラム再生像を観察者が認識しその存在を正確に判定可能とするために、蛍光体の発光性能を向上させ、且つ、回折角度を大きくとって波長―回折角依存性を強め、照明光回折角度と蛍光光回折角度の差を大きくし、さらには、蛍光層を薄くして、蛍光層厚さ方向のばらつきを抑え且つ均一なものとすることが必要となる。(発光面が位相情報を含んでいるため、その空間的な形状を正確に再現するものとする。)
【0043】
さらには、時間的なコヒーレント性を発現するため、光源として10-15sec以下のパルスレーザーで励起して、パルスとパルスの時間的間隔を蛍光発光時間である10-7sec以上あけて照明することも好適である。これにより、一つの励起パルスによって生じた一つの蛍光発光の発光面が、次の励起パルスによって生じた蛍光発光面とは、互いに撹乱現象を起こさず、一つのパルスによって発現した一つの蛍光発光面によって生じるホログラフィックな干渉現象により、鮮明なホログラム再生像を観察することができるようになる。もちろん、単純に秒単位でON−OFFするストロボ状の光源を使用した場合でも、観察者には、連続して発光しているようにも見えるため、このような簡易な手段であっても目視で確認する場合には、上記した効果を十分得ることができる。
蛍光層は、蛍光体を樹脂に混入させたり、溶剤(若しくは水)に分散させたりした蛍光インキを、グラビア方式、オフセット方式、シルクスクリーン方式、ノズルコート方式さらにはインクジェット方式等でホログラムレリーフ上に形成することができる。
このとき、蛍光インキ中の蛍光体の含有割合を調整する等により、形成した蛍光層を、ホログラムレリーフを形成する凹凸に追従して均一な厚さで形成することができる。
ホログラムレリーフの凹凸は例えれば、1μmレベルの周期で、深さ0.01μmレベルの凹凸を持つ、ゆるやかな曲線であって略平面と見做せるため、この略平面上に適宜な粘度(0.1〜10パスカル・秒)に調整し、インキの自重によるレベリング効果を発揮させることと、インキ中の固形分を20%以下、さらには10%以下とすることで、例えば、厚さ1μmに対して、そのばらつきを1/10以下に、さらには1/20以下に抑えることができる。
【0044】
ここで、蛍光層を1μmオーダーとしたが、ホログラム再生像の鮮明度を向上させるためには、蛍光層を薄くすることが好ましく、このためには、蛍光体のサイズを1.0μm程度もしくはそれ以下、例えば0.1μm〜0.5μm、さらには、0.5μm〜0.1μm、より好適には、3〜10nmとし、ホログラムレリーフ面内に均一に点在させ、且つ、蛍光層厚さ方向には、蛍光体1粒子を単位として1〜10粒子、もしくは1〜3粒子以内で並んでいる状態とすることが好ましい。
中でも、ノズルコート方式やインクジェット方式は樹脂を使用せず溶剤等と蛍光体のみで形成可能であり、蛍光層として非常に薄く形成(蛍光体1個分〜3個分等。)することができるため好適である。その上にそれらの蛍光体を固定するために樹脂を形成してもよい。
上記したホログラムの原理より、ホログラム再生像の鮮明度を高めるためには、蛍光層の厚さは薄いことが望ましいが、薄くすればするほど、ホログラム再生時の蛍光発光強度が弱くなるため、蛍光層厚さは、0.01μm以上0.1μm以下である必要がある。
0.01μm未満(最小粒径の蛍光体1個分は、0.003μm。)では、蛍光発光強度が弱すぎて、光電子倍増管を用いて増幅したとしても、迷光等のノイズとの区別がつきにくく、0.1μmを超えると、その蛍光層の形成過程によっては、蛍光層の「ホログラムレリーフを有する透明樹脂層と接していない側」の「レリーフ形状」と、蛍光層の「ホログラムレリーフを有する透明樹脂層と接している側」の「レリーフ形状」とが、実質的に同一とは、なり難くなる。従って、蛍光層の厚さは、2.0μm以下とし、好適には、0.1μm以下とする。
すなわち、蛍光層の「ホログラムレリーフを有する透明樹脂層と接していない側」の「レリーフ形状」と、ホログラムレリーフを有する透明樹脂層上に設けられている「ホログラムレリーフ」の「レリーフ形状」との間に、「ズレ」が発生することとなる。
【0045】
この「ズレ」は、「レリーフ形状」の深さ方向に発生し易く、蛍光層の厚さが厚くなればなる程、その「ズレの大きさ」が大きくなる。
ホログラムレリーフにおける「深さ方向のズレ」は、ホログラム再生像の「明るさ」に強く影響し、ホログラムレリーフの深さが「最適深さ(最も明るいホログラム再生像を再生し得る深さを意味する。)」より一様に浅くなっても、また、一様に深くなっても、その「明るさ」が低下することとなる。
この「ズレ」を最小限に抑えるために、まず、透明基材上に、「均一な厚さの透明な層」を形成し、その透明な層の上に、「均一な厚さの蛍光層」を形成する。
このとき、透明基材として、表面平滑性の高いもの(例えば、その表面粗さ:Raが0.01μm以下。)を用いて、その表面上に、透明な樹脂材料を用いて、1μm〜10μmで形成し、その厚さ精度を±1%以内とした「均一な厚さの透明な層」を設け、さらに、その上に、蛍光層を0.01μm〜2.0μmで形成し、その厚さ精度を±5%以内とした「均一な厚さの蛍光層」を設ける。
この「均一な厚さの透明な層」の蛍光層と接している平面が、下記する変形により、「ホログラムレリーフ」の「レリーフ形状」とされ、「均一な厚さの透明な層」が、「ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層」となる。通常は、その透明樹脂層の厚さは、1μm〜30μmの厚さで形成するところ、より均一な厚さを実現すべく、より薄く形成する。
このような「均一さ」は、スピンコーティング方式等の精密コーティング方式により得ることができ、また、使用するインキ組成において、インキ中の固形分を0.5%〜5.0%と低く設定し、インキ塗布後に緩やかな乾燥を行うことで、その乾燥前の塗膜の厚さムラを1/20〜1/200の大きさとする手法を用いることもできる。
例えば、3μm厚さの透明な樹脂層を、その厚さ精度±1%、すなわち、±0.03μm以下の厚さムラで設け、その上に、1.0μm厚さの蛍光層を、その厚さ精度±5%、すなわち、±0.05μm以下の厚さムラで設けて、「透明基材」上に、「均一な厚さの透明な層」と、「均一な厚さの蛍光層」を重ねて形成する。
【0046】
この均一な2層に対して、その蛍光層の最表面上に、あらかじめホログラムレリーフを設けてある原版(プレス型。)を押し当て、適宜な加熱と加圧を加えて、その均一な2層を変形させ、「均一な厚さの透明な層」においては、「均一な厚さの蛍光層」と接している面側のみを、そして、「均一な厚さの蛍光層」においては、「均一な厚さの蛍光層」そのものを、「レリーフ形状」とする。
これにより、「均一な厚さの透明な層」と「均一な厚さの蛍光層」との界面、及び、「均一な厚さの蛍光層」の最表面に形成される「ホログラムレリーフ」が、あらかじめ金型に設けていた「ホログラムレリーフ」と高い精度で同一となり、この「均一な厚さの蛍光層」の最表面に形成される透明反射性反射層の表面形状をも、高い精度で「ホログラムレリーフ」そのものとすることができる。
この結果、透明反射性薄膜層によって反射する光は、非常に鮮明なホログラム再生像を再生する。
さらに、透明基材上に、「均一な厚さの透明な層」を形成し、その透明な層の上に、「均一な厚さの蛍光層」を形成した、その上にさらに、「均一な厚さの透明反射性薄膜層」を設けて、3層とし、その最表面である、「均一な厚さの透明反射性薄膜層」側から、上記と同様の原版の押し当て、適宜な加熱と加圧を加えて、その均一な3層を変形させ、「均一な厚さの透明な層」においては、「均一な厚さの蛍光層」と接している面側のみを、そして、「均一な厚さの蛍光層」と「均一な透明反射性薄膜層」においては、「均一な厚さの蛍光層」そのものと、「均一な透明反射性薄膜層」そのものを、「レリーフ形状」とすることも同様に好適である。
また、
透明基材上に、「均一な厚さの透明な層」を形成し、その透明な層の上に、「均一な厚さの透明反射性薄膜層」を形成した、その上にさらに、「均一な厚さの蛍光層」を設けて、3層とし、その最表面である、「均一な厚さの蛍光層」側から、上記と同様の原版の押し当て、適宜な加熱と加圧を加えて、その均一な3層を変形させ、「均一な厚さの透明な層」においては、「均一な厚さの蛍光層」と接している面側のみを、そして、「均一な透明反射性薄膜層」と「均一な厚さの蛍光層」においては、
「均一な透明反射性薄膜層」そのものと、「均一な厚さの蛍光層」そのものを、「レリーフ形状」とすることも同様に好適である。
その透明反射性薄膜層は、電子線加熱方式による蒸着や、CVD(化学蒸着法)などの真空薄膜法などにより、厚さ100nm〜2000nmで設けることができる。
【0047】
また、透明反射性薄膜層は、「屈折率の異なる透明な層」に挟まれた「均一な厚さの透明な層」とみることができ、この透明反射性薄膜層に入射する光は、この透明反射性薄膜層内において、多重反射現象を生じることとなる。
この多重反射現象を、最も単純な構成で説明するため、屈折率n1の領域(例えば、真空領域n1=1。)中に、厚さd1、屈折率n2の透明反射性薄膜層が挟まれている(浮いている)状態を想定する(屈折率n1の領域と屈折率n2の領域とがなす、2つの界面は、平面界面とする。)。
この透明反射性薄膜層に、屈折率n1領域側から入射する光は、屈折率n1領域と透明反射性薄膜層との界面(第1界面とする。)において、一部反射され、残りの光がこの界面において屈折し、その進行方向をフレネルの公式に従った方向へ変えて、その透明反射性薄膜層内を進み、今度は、透明反射性薄膜層の内部から、屈折率n1領域へ飛び出す際に、その界面(第2界面とする。)において、同様に、一部反射し、残りが屈折を生じることとなる。
この第1界面と第2界面(上記の2つの界面を意味する。)は、平行な平面であって、その平面間距離が上記したd1となっている。
そして、その第2界面に、内側から向かって反射された光は、再び、第1界面に向かい、第1界面において、さらに、一部反射され、残りが、その第1界面を透過し、且つ、屈折する光となる。
このように、最初に第1界面において反射される光(一次反射光。)、薄膜層内の第2界面において、内側から向かって、最初に反射された後、第1界面を透過する光(二次反射光。)、さらに第1界面において反射され、再び、第2界面において反射された後、第1界面を透過する光(三次反射光。)、さらに同様の高次反射光が、その薄膜層を飛び出した領域において干渉現象を起こし、薄膜層の屈折率n2、厚さd1と、入射光の波長λ、及びその入射角度θによってその「強度」が定まる、「反射光」となる。
【0048】
例えば、この薄膜層に垂直に入射する(θ=0°)光においては、n1×d1=m×λ/4(mは整数。)の式が成り立ち、その反射率Rは、R=(n22−n122/(n22+n122となって、その値は、所定の入射角度において、最大値をとることとなる。
しかも、この現象は、透過光においても同様に成り立つものである。
すなわち、透明反射性薄膜層は、所定の波長の光を、所定の角度で反射、もしくは、別の所定の角度で透過する際に、その反射率や、透過率に、最大値や、最小値をとらせることとなる。
従って、蛍光層の上に、透明反射性薄膜層を設ける際に、蛍光層の蛍光発光する光の波長に合わせて、その屈折率及び、その厚さを設定することで、例えば、透明反射性薄膜層に垂直な方向に進む光を「選択的に強く」することができる。
これは、蛍光層内で発光した光が、上記したようにホイヘンスの2次波のごとく、透明反射性薄膜層内をあらゆる方向に進もうとする際に、その透明反射性薄膜層を垂直に進み、且つ、その透明反射性薄膜層内を垂直に飛び出る光(垂直透過光を意味する。)のみを「選択的に強く」することができることを意味する。
このことを利用して、本発明のホログラムシートを蛍光発光させ、且つ、その透明反射性薄膜層側から観察する、蛍光発光の波長により再生されるホログラム再生像を、著しく鮮明、且つ、輝度の大きいものとすることが可能となる。
また、反射光を上記と同様に「選択的に強く」し、その反射角度と、「反射型」のホログラム再生像の再生角度を実質的に同一とすることにより、その蛍光発光の波長により再生されるホログラム再生像をも、著しく鮮明、且つ、輝度の大きいものとすることが可能となる。
さらに、敢えて、透明反射性薄膜層上の前後に、蛍光層を設けて、蛍光層を2層とすることで、ホログラムシートを通して、2つの蛍光層についての、蛍光発光によるホログラム再生像を観察できるようにすることも可能であり、その際、その2つの蛍光層が設けられる位置(領域)を異なるものとしたり、また、蛍光発光の波長を異なるものとしたりして、それぞれの蛍光発光によるホログラム再生像を「異なるもの」とすることも、その意匠性や偽造防止性を高めるため、好適である。
そして、透明反射性薄膜層上に、さらに、適宜な粘着層を形成して「ラベル」として用いたり、適宜な基材上に、適宜な剥離層を設け、その上に、ホログラムレリーフを有する透明樹脂層、蛍光層、透明反射性薄膜層の3層と、さらにその上に、適宜な接着剤層を設けた、「転写箔」として用いることも好適である。
【発明の効果】
【0049】
本発明のホログラムシートによれば、
透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、及び、そのホログラムレリーフに接するように設けられた蛍光層、及び、その上に接するように設けられた透明反射性薄膜層が、この順序で設けられているホログラムシート、または、透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、及び、そのホログラムレリーフに接するように設けられた透明反射性薄膜層、及び、その上に接するように設けられた蛍光層が、この順序で設けられているホログラムシートが提供され、自然光の下では、その透明反射性薄膜層による反射光によりホログラム再生像を視認でき、一見、通常の透明ホログラムシートのように観察できるものの、定められた所定の波長を有する光源の照明により、その波長とは異なる特定の波長のみによるホログラム再生像を特定の方向に出現させる新規なホログラムシートが提供される。
【図面の簡単な説明】
【0050】
【図1】は、ジャブロンスキー図である。
【図2】は、本発明の一実施例を示すホログラムシートAの断面図である。
【図3】は、本発明の別の実施例を示すホログラムシートA´の断面図である。
【図4】は、本発明の一実施例を判定するプロセスである。
【発明を実施するための形態】
【0051】
以下、本発明の実施形態について、図面を参照しながら、詳細に説明する。
(透明基材)本発明で使用される透明基材1は、厚みを薄くすることが可能であって、機械的強度や、ホログラムシートAを製造する際の加工に耐える耐溶剤性および耐熱性を有するものが好ましい。使用目的にもよるので、限定されるものではないが、フィルム状もしくはシート状のプラスチックが好ましい。(図2及び図3参照。)
例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリビニルアルコール、ポリスルホン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアリレート、トリアセチルセルロース(TAC)、ジアセチルセルロース、ポリエチレン/ビニルアルコール等の各種のプラスチックフィルムを例示することができる。
その中でも、紫外線等の励起光に対する耐性を有するもの、例えば、紫外線吸収剤を含むものであってもよい。紫外線吸収剤を含むものは、自然光等の中に含まれる紫外線により微かではあるが、予定外のホログラム再生を防ぐ効果も有する。
透明基材1の厚さは、通常5〜100μmであるが、ホログラム再生像の視認性を配慮する場合には、5〜50μm、特に5〜25μmとすることが望ましい。
【0052】
(ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層:以下、ホログラム形成層ともいう。)
本発明のホログラム形成層2を構成するための透明な樹脂材料としては、各種の熱可塑性樹脂、熱硬化性樹脂、もしくは電離放射線硬化性樹脂を用いることができる。(図2及び図3参照。)
熱可塑性樹脂としてはアクリル酸エステル樹脂、アクリルアミド樹脂、ニトロセルロース樹脂、もしくはポリスチレン樹脂等が、また、熱硬化性樹脂としては、不飽和ポリエステル樹脂、アクリルウレタン樹脂、エポキシ変性アクリル樹脂、エポキシ変性不飽和ポリエステル樹脂、アルキッド樹脂、もしくはフェノール樹脂等が挙げられる。
これらの熱可塑性樹脂および熱硬化性樹脂は、1種もしくは2種以上を使用することができる。これらの樹脂の1種もしくは2種以上は、各種イソシアネート樹脂を用いて架橋させてもよいし、あるいは、各種の硬化触媒、例えば、ナフテン酸コバルト、もしくはナフテン酸亜鉛等の金属石鹸を配合するか、または、熱もしくは紫外線で重合を開始させるためのベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド等の過酸化物、ベンゾフェノン、アセトフェノン、アントラキノン、ナフトキノン、アゾビスイソブチロニトリル、もしくはジフェニルスルフィド等を配合しても良い。
また、電離放射線硬化性樹脂としては、エポキシアクリレート、ウレタンアクリレート、アクリル変性ポリエステル等を挙げることができ、このような電離放射線硬化性樹脂に架橋構造を導入するか、もしくは粘度を調整する目的で、単官能モノマーもしくは多官能モノマー、またはオリゴマー等を配合して用いてもよい。
上記の樹脂材料を用いてホログラム形成層2を形成するには、感光性樹脂材料にホログラムの干渉露光を行なって現像することによって直接的に形成することもできるが、予め作成したレリーフホログラムもしくはその複製物、またはそれらのメッキ型等を複製用型として用い、その型面を上記の樹脂材料の層に押し付けることにより、賦型を行なうのがよい。
【0053】
熱硬化性樹脂や電離放射線硬化性樹脂を用いる場合には、型面に未硬化の樹脂を密着させたまま、加熱もしくは電離放射線照射により、硬化を行わせ、硬化後に剥離することによって、硬化した透明な樹脂材料からなる層の片面にレリーフホログラムの微細凹凸を形成することができる。なお、同様な方法によりパターン状に形成して模様状とした回折格子を有する回折格子形成層も光回折構造として使用できる。
ホログラム形成層2の厚さは、1μm〜30μm、特には、3μm〜10μmとする。
この厚さが、1μm未満では、「レリーフ形状」を形成し難く、30μmを超えると、ホログラムシートの処理工程や使用環境等による、ホログラム形成層2の熱膨張や、熱変形による「レリーフ形状」の劣化が起こり易くなる。そして、ホログラム形成層2の厚さが、3μm〜10μmであると、その処理工程中や使用の際の取扱い適性に優れる上、その均一性を向上させることができる。
ホログラムは物体光と参照光との光の干渉による干渉縞を凹凸のレリーフ形状で記録されたもので、例えば、フレネルホログラムなどのレーザ再生ホログラム、及びレインボーホログラムなどの白色光再生ホログラム、さらに、それらの原理を利用したカラーホログラム、コンピュータジェネレーティッドホログラム(CGH)、ホログラフィック回折格子などがある。また、マシンリーダブルホログラムのように、その再生光を受光部でデータに変換し所定の情報として伝達したり、真偽判定を行うものであってもよい。(ホログラム形成プロセスは図示せず。)
特に、白色光再生ホログラム等の自然光や蛍光灯などの通常の照明光においてホログラム再生像A1を観察できるホログラムH1と、フレネルホログラム等の単波長光でのみホログラム再生像A2を再生可能なホログラムH2を、一つのホログラムレリーフとして多重記録することで、本発明のホログラムシートを通常照明光で観察する際にはホログラム再生像A1のみが視認でき、所定の波長の照明光を当てた際には、別のホログラムであるホログラム再生像A2を視認できるようにすることも好適である。
【0054】
さらに、その所定の波長の照明光が、紫外線等の観察する人の目に入ることが好ましくない光源を用いたものである場合には、その紫外線等が透明反射性反射層4にて反射してその目に入ることを避けるため、観察する方向とは大きく異なる方向にその反射光が進むようにその入射角度を調節する(ホログラムシートへの入射角度を、ホログラムシート面に垂直な方向に対して、±60度〜±80度とする。もしくは、ホログラム再生像を再生する照明角度がホログラムシートの上方であって、再生角度がその下方に向かう場合に、そのホログラムシートの右方向から入射して、左方向に反射するものとする。)ことも好適である。
しかも、ホログラム再生像A2は、その所定の照明光を当てる角度を変えても、その再生する方向が一定であることから、簡易、且つ、正確に、その真正性を判定可能となる。
微細な凹凸を精密に作成するため、光学的な方法だけでなく、電子線描画装置を用いて、精密に設計されたレリーフ構造を作り出し、より精密で複雑な再生光を作り出すものであってもよい。
このレリーフ形状は、ホログラムを再現もしくは再生する光もしくは光源の波長(域)と、再現もしくは再生する方向、及び強度によってその凹凸のピッチや、深さ、もしくは特定の周期的形状が設計される。
また、カラーホログラム画像を、回折格子線からなる回折格子画素(同一の回折格子線からなる単一回折格子エリアの最小単位。これら画素から回折光としてでてくる光の集合が一つのカラーホログラム画像を形成する。このようなホログラムレリーフは、ホログラム画像に対応した回折格子群を含む典型的な例である。)に要素分解し、所定の画素のサイズ、格子線ピッチ、格子線角度をその各要素に割り当てて再現するという画像処理方法を用いて形成することも可能である。
凹凸のピッチ(周期)は再現もしくは再生角度に依存するが、通常0.1μm〜数μmであり、凹凸の深さは、再現もしくは再生強度に大きな影響を与える要素であるが、通常0.01μm〜0.5μmである。
単一回折格子のように、全く同一形状の凹凸の繰り返しであるものは、隣り合う凹凸が同じ形状であればある程、反射する光の干渉度合いが増しその強度が強くなり、最大値へと収束する。回折方向のぶれも最小となる。立体像のように、画像の個々の点が焦点に収束するものは、その焦点への収束精度が向上し、再現もしくは再生画像が鮮明となる。
【0055】
ホログラムレリーフ形状を賦形(複製ともいう。)する方法は、回折格子や干渉縞が凹凸の形で記録された原版をプレス型(スタンパとも呼ばれる。)として用い、上記ホログラム形成層2上に、前記原版を重ねて加熱ロールなどの適宜手段により、両者を加熱圧着することにより、原版の凹凸模様を複製することができる。形成するホログラムパターンは単独でも、複数でもよい。
上記の極微細な形状を精密に再現するため、また、複製後の熱収縮などの歪みや変形を最小とするため、原版は金属を使用し、低温・高圧下で複製を行う。
原版は、Niなどの硬度の高い金属を用いる。光学的撮影もしくは、電子線描画などにより形成したガラスマスターなどの表面にCr、Ni薄膜層を真空蒸着法、スパッタリングなどにより5〜50nm形成後、Niなどを電着法(電気めっき、無電解めっき、さらには複合めっきなど)により50〜1000μm形成した後、金属を剥離することで作ることができる。
複製方式は、平板式もしくは、回転式を用い、線圧0.1トン/m〜10トン/m、複製温度は、通常60℃〜200℃とする。(複製プロセスは図示せず。)
そして、上記した、ホログラムレリーフ形状を賦形(複製)する方法を用いて、あらかじめ、透明基材1上に、「均一な厚さの透明な層」(図示せず。この「透明な層」が本発明のホログラムシートAのホログラム形成層2となる。)を形成し、その透明な層の上に、「均一な厚さの蛍光層」(図示せず。この蛍光層が本発明のホログラムシートAの蛍光層3となる。)を形成したものの、その均一な厚さの蛍光層上から、上記した原版を重ねて加熱ロールなどの適宜手段により、加熱、加圧することにより、原版の凹凸模様を、「均一な厚さの透明な層」に設けてホログラム形成層2とし、「均一な厚さの蛍光層」に設けて蛍光層3とすることも好適である。
この際、透明基材1は、耐熱性や、耐圧力性が高く、この加熱、加圧によっては、何らの変形も受けない。
さらには、あらかじめ、透明基材1上に、「均一な厚さの透明な層」、「均一な厚さの蛍光層」及び、「透明反射性を有する金属薄膜層」を形成したものの(4層構成のシートとなる。)、その金属薄膜層上から、同様に、ホログラムレリーフ形状を賦形して、ホログラム形成層2、蛍光層3、及び透明反射性薄膜層4を設ける方法も好適である。
【0056】
(蛍光層)
本発明では、ホログラム形成層2のホログラムレリーフ面に、または、透明反射性薄膜層4のホログラムレリーフ面に、蛍光層3を形成する。(図2及び図3参照。)
この蛍光層3は、蛍光体を透明な樹脂に均一に分散した樹脂分散型の蛍光インキや、水又は溶剤に蛍光体を分散した溶媒分散型の蛍光インキを作製し、それらを用いて、印刷方式や、コーティング方式さらには、インクジェット方式等の種々の形成方法を用いて、ホログラム形成層2上、または、透明反射性薄膜層4上に、そのホログラムレリーフに接するように、また、追従するよう均一に形成することができる。
樹脂分散型の蛍光インキは、上記した蛍光体を、透明樹脂、例えば、熱可塑性樹脂としてはアクリル酸エステル樹脂、アクリルアミド樹脂、ニトロセルロース樹脂、もしくはポリスチレン樹脂等が、また、熱硬化性樹脂としては、不飽和ポリエステル樹脂、アクリルウレタン樹脂、エポキシ変性アクリル樹脂、エポキシ変性不飽和ポリエステル樹脂、アルキッド樹脂、もしくはフェノール樹脂等に2次凝集を少なくするように、ガラスビーズやスチールビーズを用いたボールミル、ニーダー、ロールミル等による混練りを十分行い、溶剤等で粘度調整をして、グラビア方式、オフセット方式、シルクスクリーン方式、カーテンコート方式、ノズルコート方式、さらには、インクジェット方式を適宜用いて均一な厚さに形成することができる。
蛍光層3の厚さは、0.01μm以上2.0μm以下とするが、好適には、0.01μm以上0.1μm以下とする。
蛍光層3の厚さを、0.01μm以上0.1μm以下とするためには、樹脂分散型インキの固形分を0.5〜5.0%とし、溶剤若しくは水を溶媒とした塗布膜が、例えば、2.0μmであったときに、溶媒を蒸発させた後の厚さ(蛍光層の厚さ)がその1/20乃至は1/200となるようにし、0.1μm〜0.01μmとする。
【0057】
溶媒分散型の蛍光インキは、樹脂成分を含まず、蛍光体と溶媒のみであるため、樹脂分散型より蛍光層3の厚さを薄くすることができる。
溶媒としては、水やアルコール系溶剤、若しくは、セルソルブ系、パラフィン系溶剤を用いて、粒子系の小さい蛍光体を分散保持させ、攪拌しながらカーテンコート、ノズルコート等によりホログラム形成層2上に設けることができる。
この場合には、溶媒の蒸発速度を調整することで、溶媒の揮発する間に、蛍光体が自重で凹部へと移動させることも可能となる。
さらには、ホログラム形成層2上に蛍光層3を設ける場合、そのホログラムレリーフ面を形成している樹脂に対して、溶解性を有する遅い揮発性の溶剤を数μm塗布し(アクリル・塩ビ・酢ビ樹脂や、ポリエステル樹脂等に対するケトン系溶剤、例えばシクロヘキサノン等。この溶剤を非溶解性の溶剤で希釈して使用し、残留する成分を0.1μm以下にすることも可能である。)、そのホログラムレリーフ面の最表面のみを溶解して、その最表面に粘着性を付与し、その上に、蛍光体を粉体のまま吹きかけて、その粘着性の面に接する蛍光体粒子のみがホログラムレリーフ面上に残るようにする蛍光層3の形成方法も好適である。
この方法によると、蛍光層3がほぼ1粒子膜となり、ホログラムレリーフ面上に均一に形成され、ホログラム形成層2側から励起光を当てた場合の蛍光発光面が、ホログラムレリーフ面と同一となる。
いずれにしても、ホログラムレリーフの凹凸が非常に小さい為、蛍光層3を均一厚さで、且つその中の蛍光体が均一な密度となるように、もしくは、ホログラムレリーフ面上に均一に(部分形成の場合には形成してある部分同士が均一に)形成するためには、蛍光体の粒径は小さい方が好ましく、ナノ蛍光体は特に好適である。
【0058】
(透明反射性薄膜層)
ホログラム形成層2上に、または、蛍光層3上に、透明反射性薄膜層4を形成する。
蛍光層3の上に透明反射性薄膜層4を形成した場合は、本発明のホログラムシートAとなる。また、ホログラム形成層2上に、透明反射性薄膜層4を形成し、その上に、蛍光層3を形成した場合は、本発明のホログラムシートA´となる。(図2及び図3参照。)
本発明のホログラムシートAでは、蛍光層3の上に形成されているホログラムレリーフに接して、且つ、追従するように透明反射性薄膜層4を形成する。この透明反射性薄膜層4は、入射した光を反射する必要があるため、形成層3よりも高い屈折率を有する透明な薄膜であれば、特に限定されない。
また、本発明のホログラムシートA´においても、ホログラム形成層2の上に形成されているホログラムレリーフに接して、且つ、追従するように透明反射性薄膜層4を形成する。この透明反射性薄膜層4は、入射した光を反射する必要があるため、ホログラム形成層2よりも高い屈折率を有する透明な薄膜であれば、特に限定されない。
透明反射性薄膜層4としては、真空薄膜法などにより形成される非常に薄く透明性が発現した金属薄膜層、または、金属化合物薄膜層のいずれでもよいが、その透明性により、「ラベル」や「転写箔」として貼着もしくは転写後にその「ラベル」や「転写層」に覆われた被貼着体や被転写体上の画像などがホログラムを通して観察できるので好ましい。
具体的には、ほぼ無色透明な色相で、その光学的な屈折率がホログラム形成層2や、蛍光層3のそれとは異なることにより、金属光沢が無いにもかかわらず、ホログラムなどの光輝性を視認できるものを用いることができる。
例えば、ホログラム形成層2や、蛍光層3よりも光屈折率の高い薄膜には、例として、ZnS、TiO2、Al23、Sb23、SiO、SnO2、ITOなどがある。
好ましくは、金属酸化物又は窒化物であり、具体的には、Be、Mg、Ca、Cr、Mn、Cu、Ag、Al、Sn、In、Te、Ti、Fe、Co、Zn、Ge、Pb、Cd、Bi、Se、Ga、Rb、Sb、Pb、Ni、Sr、Ba、La、Ce、Auなどの酸化物もしくは窒化物他、または、それらを2種以上を混合したものなど(透明金属化合物)が例示できる。
またアルミニウムなどの一般的な光反射性(可視光波長のほぼ全域にわたる反射、すなわち、「全反射」に近い性質を有する。)の金属薄膜も、厚みが100nm以下になると、透明性が出てくるため、その厚さが10nm〜50nmの範囲で使用できる。
【0059】
透明反射層(透明金属化合物層)の形成には、金属化合物の蒸発温度が、金属よりも高いことから、高温加熱を要するものの、その厚さは、10〜2000nm程度、好ましくは20〜1000nmの厚さになるように、電子線加熱方式の蒸着、スパッタリング、イオンプレーティング、CVD(化学蒸着法)などの真空薄膜法などを用いて設けることができる。特に、形成する薄膜層を薄くしておくと、その熱的ダメージを少なくすることができる。
このホログラムシートAまたはA´に、蛍光灯等の照明光5を照射すると、その透明反射性薄膜層4による反射光によってホログラム再生像6(例えば、レインボーホログラム。)を視認することができる。
さらに、このホログラムシートAまたはA´に蛍光層3の蛍光体を蛍光発光させる所定の波長の光、例えば、365nm波長の紫外線7を照射すると、「赤色」単色のホログラム再生像8が特定の方向に出現する。(図4参照。ホログラムシートAの「反射型」のホログラムにつき図示したもの。)
もちろん、「透過型」のホログラムの場合は、そのホログラム再生像の方向がホログラムシートAまたはA´を透過する方向となるが、その再生原理は同様である。(図示せず。)
そして、紫外線7の照射方向を変化させても、「赤色」単色のホログラム再生像8の再生方向(上記の特定の方向。)は変化せず、高い偽造防止性があると認識できるものである。(図示せず。)
【実施例】
【0060】
(実施例1)
透明基材1として、12μmのPETフィルムの表面に、メラミン樹脂組成物を塗布し、ホログラム画像位置検知パターン付きのレリーフホログラム(「蛍光」の文字画像:図4参照)の複製用型の型面を、接触させたまま加熱硬化させることにより、レリーフホログラムの形成を行ない、厚さ3μmのホログラム形成層2を得た。
このホログラム形成層2上に、下記組成の樹脂分散型蛍光インキをグラビアコーティング方式により、コーティングし乾燥して、蛍光層3を2.0μm厚さで、ホログラムレリーフに接するように形成し、
・<蛍光インキ組成物>
テールナビ社製 紫外線励起蛍光顔料UVR−2 5質量部
アクリル樹脂 10質量部
メチルエチルケトン 40質量部
酢酸エチル 45質量部
その蛍光層3上に、アルバック社製電子線加熱真空蒸着機にて、100nm厚さのTiO2薄膜からなる透明反射性薄膜層4を形成し、本発明のホログラムシート(図示せず。)を作製した。
このホログラムシートを、図4のように、蛍光灯照明光(図4における5に相当する。)下に置くと、鮮明なホログラム再生像(図4における6に相当する。)を視認できた。
その蛍光灯照明を消した後、このホログラムシートを365nm波長の光源(浜松ホトニクス製UV-LEDモジュール LC―L2。図4における7に相当する。)を用いて照明したところ、図4のホログラムシートAと同様に、この紫外線は目視では見えず、赤色のホログラム再生像「蛍光」(図4における8に相当する。)を確認することができ、赤色のホログラム再生像のみが空間に浮いているように見え、意匠性に優れるものであった。
また、このホログラムシートの裏側から、上記の光源を用いて照明したところ、同様のホログラム再生像を同様に視認することができた。(図示せず。)
このホログラムシートに適宜な粘着剤を塗付して、3cm角に切り出し、パスポートの顔写真上に貼付したところ、ホログラムシートの下に、顔写真を確認でき、且つ、暗い環境にてブラックライト蛍光管40W照明(照明形状を小さくするため、3mmφ穴を持つカバー装着。)したところ、赤色のホログラム再生像を認識することができた。(図示せず。)
【0061】
(実施例2)
実施例1と同様に形成したホログラム形成層2上に、下記組成の樹脂分散型蛍光インキをグラビアコーティング方式により、コーティングし乾燥して、蛍光層3を0.1μm厚さで形成したこと以外は、実施例1と同様とし、
・<蛍光インキ組成物>
ルミライトナノRY202(粒径30nm) 5質量部
ポリビニルアルコール樹脂 10質量部
イソプロピルアルコール 40質量部
水 45質量部
本発明のホログラムシートAを作製した。(図2参照。)
このとき、蛍光層3は、ホログラム形成層2のホログラムレリーフに追従して均一な厚さで形成されていた。
このホログラムシートAを、可視光線(照明光)5を用いて照明したところ、非常に鮮明なホログラム再生像6が出現し、さらに、このホログラムシートAを365nm波長の光源7(浜松ホトニクス製UV−LEDモジュール LC―L2)を用いて照明したところ、この紫外線は目視では見えず、より鮮明に赤色のホログラム再生像8「蛍光」を確認することができたこと以外は、実施例1と同様に良好な結果を得た。(図4参照。)
【0062】
(実施例3)
ホログラム形成層2を形成後、下記組成の溶剤をグラビアコーティング方式で3μmの塗膜(乾燥前)を形成し、速乾性成分のみを揮発させた後、
・<溶剤組成物>
シクロヘキサノン 1質量部
メチルエチルケトン 40質量部
シクロへキサン 59質量部
蛍光体(ルミライトナノRY202、粒径30nm。)を粉体のままふりかけて(ホログラム形成面2を下に向け、粉体をしたから吹き付けた。)蛍光層3を形成し、さらに乾燥させ、残留している溶剤を揮発させ、その上から、下記組成の透明樹脂組成物をグラビアコーティング方式により、コーティングし乾燥して、蛍光体と蛍光体の隙間を埋めるように形成し(このとき、蛍光体とその蛍光体の隙間を埋めるように設けた透明樹脂が、一体となって蛍光層3となる。)、蛍光層3としての厚さを0.01μm厚さで形成したこと以外は、実施例2と同様とし、本発明のホログラムシートAを作製した。(図2参照。)
・<透明樹脂組成物>
ポリビニルアルコール樹脂 1質量部
イソプロピルアルコール 49質量部
水 50質量部
このホログラムシートAを、実施例2と同様にして観察したところ、実施例2より鮮明なホログラム再生像8を確認することができたこと以外は、実施例2と同様に良好な結果を得た。(図4参照。)
【0063】
(実施例4)
透明基材1として、12μmの高平滑性PETフィルム(表面粗さRa:10nm)を用い、下記組成の均一な厚さの透明な層用組成物を用いて、スピンコーティング方式により、均一な厚さの透明な層を、乾燥後の厚さ2.0μmで形成し、
・<均一な厚さの透明な層用組成物>
メラミン樹脂 10質量部
トルエン 10質量部
イソプロピルアルコール 10質量部
メチルエチルケトン 30質量部
酢酸エチル 40質量部
その上に、下記組成の均一な厚さの蛍光層用組成物を用いて、同様に、スピンコーティング方式により、均一な厚さの蛍光層を、乾燥後の厚さ1.0μmで形成し、
・<均一な厚さの蛍光層用組成物>
テールナビ社製 紫外線励起蛍光顔料UVR−2 5質量部
メラミン樹脂 2質量部
アクリル樹脂 3質量部
イソプロピルアルコール 20質量部
メチルエチルケトン 20質量部
酢酸エチル 50質量部
その透明基材1、「均一な厚さの透明な層」及び、「均一な厚さの蛍光層」の3層構成のシートを形成した。(図示せず。)
その3層構成のシートの「均一な厚さの蛍光層」最表面に、実施例1で用いたレリーフホログラム(「蛍光」の文字画像:図4参照)の複製用型の型面を接触させ、熱ロールプレス方式により、80℃、1トン/m、2m/分の条件にて、レリーフホログラムの形成を行ない、「均一な厚さの透明な層」と「均一な厚さの蛍光層」との界面の形状、及び、「均一な厚さの蛍光層」の最表面の形状を、いずれも「ホログラムレリーフ」の「レリーフ形状」とした(実質的に同一の形状という意味。)こと以外は、実施例1と同様にして、実施例4のホログラムシートAを得た。このレリーフホログラムの形成により、「均一な厚さの透明な層」がホログラム形成層2に、「均一な厚さの蛍光層」が蛍光層3となっている。(図2参照。)
このホログラムシートAを、実施例1と同様に評価したところ、著しく鮮明なホログラム再生像6が出現し、さらに、著しく鮮明な赤色のホログラム再生像8「蛍光」を確認することができたこと以外は、実施例1と同様に良好な結果を得た。(図4参照。)
【0064】
(実施例5)
実施例4において、透明基材1、「均一な厚さの透明な層」及び、「均一な厚さの蛍光層」の3層構成のシートの上に、さらに、アルバック社製電子線加熱真空蒸着機にて、50nm厚さのTiO2薄膜からなる「均一な厚さの透明反射性薄膜層」を形成した(平坦、且つ、厚さが均一な蛍光層上への形成となり、透明反射性薄膜層の厚さ精度が向上した。)こと以外は、実施例4と同様にして、本発明のホログラムシート(図示せず。)を作製した。
実施例4と同様に評価したところ、実施例4と同様の良好な結果が得られた。
(実施例6)
実施例1において、ホログラム形成層2上に、アルバック社製電子線加熱真空蒸着機にて、100nm厚さのTiO2薄膜からなる透明反射性薄膜層4を形成し、その上に、下記組成の樹脂分散型蛍光インキをグラビアコーティング方式により、コーティングし乾燥して、蛍光層3を2.0μm厚さで、「透明反射性薄膜層4のホログラムレリーフ」に接するように形成して、本発明のホログラムシートA´を得た。(図3参照。)
・<蛍光インキ組成物>
テールナビ社製 紫外線励起蛍光顔料UVR−2 5質量部
アクリル樹脂 10質量部
メチルエチルケトン 40質量部
酢酸エチル 45質量部
実施例1と同様に評価したところ、蛍光層3の存在がより隠ぺいされ、偽造防止性が向上したと思われたたこと以外は、実施例1と同様の良好な結果が得られた。
(比較例)
蛍光層を形成せず、ホログラムシートを形成し、比較例とした。
実施例1と同様に観察したところ、蛍光灯の下で目視にて認識できるホログラム再生像を確認することができたが、周りを暗くして、紫外線を照射したところ、ホログラム再生像は現れなかった。
このことより、このホログラムシートが真正なものでなく、このパスポートが偽物であると判断できた。
【符号の説明】
【0065】
A、A´ ホログラムシート
1 透明基材
2 ホログラム画像に対応した回折格子群を含むホログラムレリーフ を有する透明樹脂層(ホログラム形成層)
3 蛍光層
4 透明反射性薄膜層
5 観察状態の例示:可視光線(照明光)
6 同上 :再生像なし
7 同上 :紫外線(照明光)
8 同上 :赤色の再生像

【特許請求の範囲】
【請求項1】
透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、前記透明樹脂層の前記ホログラムレリーフに接するように設けられた蛍光層、及び、前記蛍光層に接するように設けられた透明反射性薄膜層が、この順序で設けられていることを特徴とするホログラムシート。
【請求項2】
透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、前記透明樹脂層の前記ホログラムレリーフに接するように設けられた透明反射性薄膜層、及び、前記透明反射性薄膜層に接するように設けられた蛍光層が、この順序で設けられていることを特徴とするホログラムシート。
【請求項3】
前記蛍光層が、均一な厚さで形成されていることを特徴とする請求項1または2に記載のホログラムシート。

【請求項4】
前記蛍光層の厚さが、0.01μm以上0.1μm以下であることを特徴とする請求項3に記載のホログラムシート。
【請求項5】
前記透明樹脂層のホログラムレリーフが、前記透明基材上に、均一な厚さの透明な層と、均一な厚さの蛍光層の2層が設けられた後、または、前記透明基材上に、均一な厚さの透明な層、均一な厚さの蛍光層と、均一な厚さの透明反射性薄膜層の3層が設けられた後に、前記2層、または、前記3層を同時に変形させることにより設けられたものであることを特徴とする請求項3または4のいずれかに記載のホログラムシート。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−242410(P2012−242410A)
【公開日】平成24年12月10日(2012.12.10)
【国際特許分類】
【出願番号】特願2011−108924(P2011−108924)
【出願日】平成23年5月16日(2011.5.16)
【出願人】(000002897)大日本印刷株式会社 (14,506)
【Fターム(参考)】