説明

ポリアミド系樹脂フィルムロールの製造方法

【課題】スムーズに歩留まり良くラミネートによる製袋加工を行うことが可能な二軸配向ポリアミド系樹脂フィルムロールを効率的に製造するための製造方法を提供する。
【解決手段】本発明のポリアミド系樹脂フィルムロールの製造方法は、ポリアミド系樹脂を移動冷却体面上へシート状に溶融押出し冷却することにより未延伸シートを得る溶融押出冷却工程、未延伸シートを縦方向および横方法に二軸延伸する二軸延伸工程、および二軸延伸された二軸延伸フィルムをロール状に巻き取る巻取工程を含んでいる。そして、溶融押出冷却工程においては、ポリアミド系樹脂の移動冷却体面への溶融押出し冷却に際し、直流高圧を印可した電極と溶融状態のポリアミド系樹脂シートとの間に、ストリーマコロナ状態のコロナ放電が行われ、溶融状態のポリアミド系樹脂シートに移動冷却体面と密着させるのに十分な電荷が付与される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、長尺に亘って物性が均一で高品質なポリアミド系樹脂フィルムを巻き取ってなるフィルムロールを高い生産性で製造するための製造方法に関するものであり、詳しくは、ポリオレフィン系樹脂フィルムとラミネートしてレトルト食品等の包装に使用する際の加工性が良好なポリアミド系樹脂フィルムロールを製造するための製造方法に関するものである。
【背景技術】
【0002】
ナイロンを主成分とする二軸配向ポリアミド系樹脂フィルムは、強靭で、ガスバリヤー性、耐ピンホール性、透明性、印刷性等に優れているところから、各種液状食品、含水食品、冷凍食品、レトルト食品、ペースト状食品、畜肉・水産食品等の各種の食品の包装材料として広く実用化されており、殊に、近年では、レトルト食品の包装に広汎に利用されている。かかるポリアミド系樹脂フィルムは、たとえばポリエチレンやポリプロピレン等のポリオレフィン系樹脂フィルム等とラミネートし、流れ方向に平行に2つに折り畳んでから3辺を熱融着して切り出し、1辺が開放された開封状態の3方シール袋とされ、内部に各種の食品等を充填して密閉した後に、沸騰水中で加熱殺菌して市場に供される。
【0003】
ところが、二軸配向ポリアミド系樹脂フィルムを用いた場合には、加熱殺菌処理後に包装袋の隅部で反りが生じて4辺がS字状にカールする現象(以下、S字カール現象という)が生じ、包装商品としての見栄えが著しく悪化してしまうことがある。そのため、そのようなカール現象を低減させる方法として、特許文献1の如く、二軸配向ポリアミド系樹脂フィルムにおける沸水収縮歪み率と分子配向角のフィルム幅方向の変化率の積を特定の値に調整する方法が提案されているが、かかる方法では、沸騰水処理時における寸法安定性を高めるために、熱固定時の温度を極端に高くしたり、延伸後の緩和熱処理を過度に施したりする必要があるため、得られるフィルムの強靭性や耐ピンホール性が損なわれるといった問題が生じる。
【0004】
それゆえ、出願人らは、特許文献2の如く、フィルムの沸水収縮率や屈折率を特定の数値範囲に調整することにより、強靭性や耐ピンホール性を低減させることなく、S字カール現象を生じない二軸配向ポリアミド系樹脂フィルムを得る方法を発明し提案した。
【0005】
【特許文献1】特開平4−103335号公報
【特許文献2】特開平8−174663号公報
【0006】
上記した特許文献2の方法によれば、強靱で耐ピンホール性に優れており、S字カール現象の生じない二軸配向ポリアミド系樹脂フィルムを得ることが可能となる。しかしながら、ラミネートによる製袋加工においては、熱融着させる際の圧力や時間等の条件は、使用するフィルムロール毎に微調整されるため、フィルムロールに巻かれたフィルムの沸水収縮率や屈折率等の物性値の平均値が特許文献2の範囲に入っている場合でも、一本のフィルムロールにおける変動量が大きい場合には、製袋加工において、ラミネートする際にフィルム同士の間に皺が入ったりして、歩留まりが悪くなる等のトラブルが生じ易い。
【0007】
一方、出願人らは、複数の樹脂を混合して溶融押し出した後に二軸延伸したフィルムを巻き取る二軸延伸フィルムロールの製造方法において、動摩擦係数の変動を小さくするための方法として、原料チップの形状を揃えることや押出機への原料供給部である漏斗状ホッパの傾斜角度を大きくすることによって原料の偏析を小さくする方法について提案した(特開2004−181777)。しかしながら、かかる方法も、フィルムロールに巻かれたフィルムの沸水収縮率や屈折率等の物性の変動やバラツキを抑えるための方法としては、必ずしも決定的な方法であるとはいえない。
【0008】
それゆえ、出願人らは、高度に均一な二軸延伸フィルムロールを生産するための生産技術について鋭意検討を重ねた結果、フィルム厚み、沸水収縮率や屈折率等の物性が高度に均一で、ラミネートする際にフィルム同士の間に皺が入ることなく歩留まり良く製袋加工を施すことが可能なポリアミド系樹脂フィルムロールを発明するに至った(特願2004−262922)。
【0009】
上記したポリアミド系樹脂フィルムロールの製造においては、押出機からダイを通して溶融押出しされるシートを冷却ロール(金属ロール)等の移動冷却体上で冷却固化することによって未延伸シートが形成される。また、そのような冷却ロールによる冷却固化においては、溶融状態のポリアミド系樹脂シートを、空気の薄層を介在させることなく直接的に移動冷却体上に密着させることができれば、溶融樹脂の急冷が可能となり、結晶化度の低い未延伸シートを得ることが可能となる。したがって、冷却ロールによる冷却固化においては、押し出された溶融シートを冷却体面へ短時間の内に強制的に密着させるべく、ダイスと移動冷却体との間に針金状の電極を設けて未固化シートの表面上に静電荷を析出させて当該未固化シートを冷却体面に強制密着させる方法が採用される(以下、この静電荷による強制密着を利用した未固化シートの成形方法を静電印加成形法という)。
【発明の開示】
【発明が解決しようとする課題】
【0010】
しかしながら、シートの引取速度が遅い場合には、シート表面に析出した静電荷による密着が可能であるが、引取速度を上げると静電気力による密着は不可能となり、空気の薄層が溶融状態のシートと移動冷却体面との間に入り込み、シートの厚み変動が大きくなり溶融シートの冷却が遅れ、冷却斑を生じ、結晶化が進んでいるとともに結晶化斑のある透明性不良のシートが得られる。さらに、移動冷却体面上にポリアミド系重合体のオリゴマーの析出が起こる。このため、シート状物表面上に析出される静電荷量を多くすべくダイスと移動冷却体表面との間に配置した電極に印可する電圧を高めると、電極と冷却体表面との間に非連続的なアーク放電が生じ、冷却体表面のシート状物が破壊され、甚だしい場合には、冷却体の表面被覆が破壊される。したがって、電極に印可する電圧をある程度以上に高めることができず、従来の静電印加成形法では、上記した特願2004−262922の如く高度に均一なポリアミド系樹脂フィルムロールを、製膜速度を十分に高めて製造することは不可能であった。
【0011】
本発明の発明者らは、かかる従来技術の改良について鋭意検討し、フィルム形成性のポリアミド系樹脂を移動冷却体面へシート状に溶融押出し冷却するに際し、多針状電極を用い、当該多針状電極と溶融樹脂シートとの間で、ストリーマコロナ状態のコロナ放電を行い、溶融状態のポリアミド系樹脂シートに移動冷却体面と密着するに十分な電荷を付与せしめることにより、アーク放電させずに低電圧で高電流を付与させることに成功した。そして、それにより、前記従来の静電印加成形法における諸欠点を一挙に解決でき、移動冷却体にオリゴマーが堆積せず、厚み均一性、透明性に優れ、結晶化度が低く、かつ、結晶化斑の少ないポリアミド系樹脂シートを高速度で製膜し得ること、および、通常の速度(従来の速度)で製膜する際には製膜性がより安定することを見出し、本発明に到達したものである。
【課題を解決するための手段】
【0012】
かかる本発明の内、請求項1に記載された発明の構成は、幅が0.2m以上3.0m以下で長さが300m以上30000m以下のポリアミド系樹脂フィルムを巻き取ってなるポリアミド系樹脂フィルムロールの製造方法であって、ポリアミド系樹脂を移動冷却体面上へシート状に溶融押出し冷却することにより未延伸シートを得る溶融押出冷却工程、未延伸シートを縦方向および横方法に二軸延伸する二軸延伸工程、および二軸延伸された二軸延伸フィルムをロール状に巻き取る巻取工程を含んでおり、前記溶融押出冷却工程が、前記ポリアミド系樹脂の移動冷却体面への溶融押出し冷却に際し、直流高圧を印可した電極と前記溶融状態のポリアミド系樹脂シートとの間に、ストリーマコロナ状態のコロナ放電を行い、溶融状態のポリアミド系樹脂シートに移動冷却体面と密着するに十分な電荷を付与せしめるものであり、ロール状に巻き取られたポリアミド系樹脂フィルムが、フィルムの巻き終わりから2m以内に1番目の試料切り出し部を、また、フィルムの巻き始めから2m以内に最終の切り出し部を設けるとともに、1番目の試料切り出し部から約100m毎に試料切り出し部を設けたとき、下記要件(1)、(2)を満たすとともに、下記要件(3)を満たすものであることにある。
(1)前記各切り出し部から切り出された各試料について、全方向の沸水収縮率のうちの最大値である最大沸水収縮率を測定したときに、それらの最大沸水収縮率の平均値である平均沸水収縮率が2%〜6%であるとともに、すべての試料の最大沸水収縮率の変動率が、前記平均沸水収縮率に対して±2%〜±10%の範囲内である
(2)前記各切り出し部から切り出された各試料について、長手方向に対し+45度方向の沸水収縮率と長手方向に対し−45度方向の沸水収縮率との差の絶対値である沸水収縮率方向差を求めたときに、それらの沸水収縮率方向差の平均値である平均沸水収縮率方向差が1.5%以下であるとともに、すべての試料の沸水収縮率方向差の変動率が、前記平均沸水収縮率方向差に対して±2%〜±10%の範囲内である
(3)巻取られたロールの長手方向全長に亘る厚みの変動率が、平均厚みに対して±2%〜±10%の範囲内である
【0013】
請求項2に記載された発明の構成は、請求項1に記載された発明において、ロール状に巻き取られたポリアミド系樹脂フィルムが、各切り出し部から切り出された各試料について、厚み方向の屈折率を測定したときに、それらの屈折率の平均値である平均屈折率が1.500以上1.520以下であるとともに、すべての試料の屈折率の変動率が、前記平均屈折率に対して±2%以内の範囲であることにある。
【0014】
請求項3に記載された発明の構成は、請求項1に記載された発明において、ロール状に巻き取られたポリアミド系樹脂フィルムが、各切り出し部から切り出された各試料について、厚み方向の屈折率を測定したときに、それらの屈折率の平均値である平均屈折率が1.500以上1.520以下であるとともに、すべての試料の屈折率の変動率が、前記平均屈折率に対して±1%以内の範囲であることにある。
【0015】
請求項4に記載された発明の構成は、請求項1に記載された発明において、ポリアミド系樹脂フィルムを構成するポリアミドの主成分がナイロン6であることにある。
【0016】
請求項5に記載された発明の構成は、請求項1に記載された発明において、異なる2種以上のポリアミド系樹脂の混合物から形成されたポリアミド系樹脂フィルムを巻き取ったものであることにある。
【0017】
請求項6に記載された発明の構成は、請求項1に記載された発明において、巻き取ったポリアミド系樹脂フィルムがポリオレフィン系樹脂フィルムとラミネートされるものであることにある。
【0018】
請求項7に記載された発明の構成は、請求項1に記載された発明において、テンター延伸法により延伸したポリアミド系樹脂フィルムを巻き取ることにある。
【0019】
請求項8に記載された発明の構成は、請求項1に記載された発明において、逐次二軸延伸したポリアミド系樹脂フィルムを巻き取ることにある。
【0020】
請求項9に記載された発明の構成は、請求項1に記載された発明において、実質的に未配向のポリアミド系樹脂からなるシート状物を、前記ポリアミド系樹脂のガラス転移温度+20℃よりも高温で3倍以上の倍率となるように少なくとも2段階で縦方向に延伸を施した後に、3倍以上の倍率となるように横方向に延伸を施したポリアミド系樹脂フィルムを巻き取ることにある。
【0021】
請求項10に記載された発明の構成は、請求項1に記載された発明において、最終的な延伸処理を施した後に熱固定したポリアミド系樹脂フィルムを巻き取ることにある。
【0022】
請求項11に記載された発明の構成は、請求項1に記載された発明において、熱固定後に弛緩処理を施したポリアミド系樹脂フィルムを巻き取ることにある。
【0023】
請求項12に記載された発明の構成は、請求項1に記載された発明において、巻き取られたポリアミド系樹脂フィルム中に、滑剤、ブロッキング防止剤、熱安定剤、酸化防止剤、帯電防止剤、耐光剤、耐衝撃性改良剤のうちの少なくとも1種が添加されていることにある。
【0024】
請求項13に記載された発明の構成は、請求項1に記載された発明において、巻き取られたポリアミド系樹脂フィルム中に、無機粒子が添加されていることにある。
【0025】
請求項14に記載された発明の構成は、請求項13に記載された発明において、無機粒子が、平均粒径0.5〜5.0μmのシリカ粒子であることにある。
【0026】
請求項15に記載された発明の構成は、請求項1に記載された発明において、巻き取られたポリアミド系樹脂フィルム中に、高級脂肪酸が添加されていることにある。
【0027】
請求項16に記載された発明の構成は、請求項1に記載された発明において、前記溶融押出冷却工程におけるストリーマコロナ状態のコロナ放電が、直流高圧を印可した多針状電極と溶融状態のポリアミド系樹脂シートとの間で行われることにある。
【発明の効果】
【0028】
本発明の製造方法によれば、厚みが均一で、結晶化度が低く透明性に優れ、さらに結晶化斑が少ないポリアミド系樹脂シートを高速で製膜することができ、移動冷却体のオリゴマーによる汚れが発生しない。したがって、本発明の製造方法によれば、上記した特願2004−262922の如く高度に均一なポリアミド系樹脂フィルムロールを、製膜速度を十分に高めてきわめて効率良く製造することができる。すなわち、本発明の製造方法により高い生産性で得られたポリアミド系樹脂フィルムロールによれば、ほとんどトラブルなくスムーズにラミネートによる製袋加工を行うことができ、S字カールのない包装物を効率的に得ることが可能となる。また、製袋加工等の後加工において、高い歩留まりで加工品を得ることが可能となる。加えて、本発明の製造方法により得られたポリアミド系樹脂フィルムロールを用いれば、ラミネートによる製袋加工後の食品包装用の袋が、強靱で耐ピンホール性にも優れたものとなる。
【発明を実施するための最良の形態】
【0029】
以下、本発明のポリアミド系樹脂フィルムロールの製造方法の好ましい態様について説明する。本発明の製造方法によれば、ポリアミド系樹脂フィルムロールは、ポリアミド系樹脂(ポリアミド樹脂チップ原料)を溶融押し出しして得られた未延伸シートを縦方向(長手方向)および横方法(幅方向)に二軸延伸した後にロール状に巻き取ることによって製造される。
【0030】
本発明において使用されるポリアミド系樹脂としては、たとえば、ε−カプロラクタムを主原料としたナイロン6を挙げることができる。また、その他のポリアミド樹脂としては、3員環以上のラクタム、ω−アミノ酸、二塩基酸とジアミン等の重縮合によって得られるポリアミド樹脂を挙げることができる。具体的には、ラクタム類としては、先に示したε−カプロラクタムの他に、エナントラクタム、カプリルラクタム、ラウリルラクタム、ω−アミノ酸類としては、6−アミノカプロン酸、7−アミノヘプタン酸、9−アミノノナン酸、11−アミノウンデカン酸を挙げることができる。また、二塩基酸類としては、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカジオン酸、ヘキサデカジオン酸、エイコサンジオン酸、エイコサジエンジオン酸、2,2,4−トリメチルアジピン酸、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、キシリレンジカルボン酸を挙げることができる。さらに、ジアミン類としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ペンタメチレンジアミン、ウンデカメチレンジアミン、2,2,4(または2,4,4)−トリメチルヘキサメチレンジアミン、シクロヘキサンジアミン、ビス−(4,4’−アミノシクロヘキシル)メタン、メタキシリレンジアミン等を挙げることができる。そして、これらを重縮合して得られる重合体またはこれらの共重合体、たとえばナイロン6、7、11、12、6.6、6.9、6.11、6.12、6T、6I、MXD6(メタキシレンジパンアミド6)、6/6.6、6/12、6/6T、6/6I、6/MXD6等を用いることができる。加えて、本発明のポリアミドフィルムロールを製造する場合には、上記したポリアミド樹脂を単独で、あるいは、2種以上を混合して用いることができる。
【0031】
なお、上記ポリアミド系樹脂の中でも本発明において特に好ましいのは、相対粘度が2.0〜3.5の範囲のものである。ポリアミド系樹脂の相対粘度は、得られる二軸延伸フィルムの強靭性や延展性等に影響を及ぼし、相対粘度が2.0未満のものでは衝撃強度が不足気味になり、反対に、相対粘度が3.5を超えるものでは、延伸応力の増大によって逐次二軸延伸性が悪くなる傾向があるからである。なお、本発明における相対粘度とは、ポリマー0.5gを97.5%硫酸50mlに溶解した溶液を用いて25℃で測定した場合の値をいう。
【0032】
ポリアミド系樹脂(ポリアミド系樹脂チップ原料)の溶融押出しにおいては、押出はTダイ、Iダイの如きフラットダイにより平板にて行われる。押し出されたシートは、冷却ロール(金属ロール)等の移動冷却体の表面上で冷却し、実質的に無配向シートとして得られる。押出シートの結晶化を抑えるために、押出シートの冷却温度は、露点以上結晶化最大温度−20℃以下の温度範囲が好ましい。上記において結晶化最大温度(Tc)とは、DSC(Differential Scanning Calorimeter)により求められ、ナイロン6の場合は通常180〜200℃であるが、ポリマーの種類、各種添加剤の添加によって異なる。押出シートの冷却温度がTg+10℃以上の場合は、冷却されたシートが変形し易いため、Tg+10℃以下で冷却するために、さらに2段目の冷却を行うことが好ましい。押出シートの冷却は、移動冷却体面と反対側からの冷却液の塗布や冷却ガスの噴霧、冷却液槽への浸漬等による冷却手段を併用することもできる。
【0033】
移動冷却体の表面は、鏡面仕上げ、粗面仕上げのいずれでも良い。表面材質は、長期の使用に耐えるものが好ましいが、特に限定されるものではない。硬質クロムメッキ、セラミックコート、テフロン(登録商標)コート等が表面材質として例示できる。
【0034】
本発明で用いる高圧直流には多少の交流成分が重畳されていても良いが、できるだけ電圧または電流の安定化された直流電源、好ましくはダミー抵抗を出力端とアース端に繋いで測定したときのリップル(peak to peak)が1.0%以下である直流電源を用いることが好ましい。電極の極性は限定されるものではないが、負電位が特に好ましい。
【0035】
本発明の特徴は、ストリーマコロナ状態のコロナ放電を電極と溶融押出されたポリアミド系樹脂シートとの間に生成させることにより低圧で高電流を付与することにあり、前記静電印加成形法に比し数十倍以上の電流を付与できる。ここで、ストリーマコロナ状態のコロナ放電とは、電極とアース平板(溶融樹脂シート)とを橋絡した安定したコロナ状態をいう(特公昭62−41095号公報参照)。電極が正電位の場合は、電極先端から溶融シートに棒状に集中したコロナを形成し、負電位の場合は、電極先端から溶融シートに吊鐘状に広がったコロナを形成するが、本発明におけるストリーマコロナ状態のコロナ放電としては、どちらの状態のコロナ放電をも採用することができる。
【0036】
本発明のストリーマコロナ状態のコロナ放電を安定して生成させるためには、放電点を非連続的に配置することが必要である。このためには、たとえば多針状電極(シリコン等の絶縁物で被覆した長尺状の支持体から多数の針状体を同一方向にほとんど隙間なく並設させた電極)や、鋸刃状電極が好ましいが、本発明では特に限定されるものではない。放電点の数や配列方法も任意に選択することができる。加えて放電体の材質は、電気導電性のものであれば何でも良く、金属(特にステンレス)、炭素等を例示することができる。なお、多針状電極における針状体は、先端が鋭角状になっていると好ましい。また、針状体の先端が鋭角状になっている場合には、先端以外の部分の太さが0.5〜5.0mmφ(直径)であるとストリーマコロナ放電状態が一層安定したものとなるので好ましく、1.0〜3.0mmφであるとより好ましい。加えて、多針状電極のすべての針状体から溶融樹脂シートへ放電される必要はなく、印加電圧の調整等により、ストリーマコロナ放電の間隔を適宜変更することが可能である。
【0037】
さらに、本発明の方法において、ストリーマコロナ状態のコロナ放電を安定して生成させるためには、たとえば電極の放電点と溶融樹脂シートとの間隙を2〜20mmにすることが好ましく、2〜10mmの範囲にすると特に好ましい。このように放電点を配置することにより、電極と溶融状態のポリアミド系樹脂シートとの間に光彩を伴った安定したストリーマコロナ放電が生成し、同時に高電流が流れる。また、本発明にて成形されるシートの厚みは、特に限定されるものではないが、50〜500μmが好ましく、100〜300μmがより好ましい。一方、本発明にて成形されるシートの引取速度も、特に限定されない。従来の静電印加成形法による引取可能最高速度は、約50m/minであるが、本発明の方法では、この引取速度以上、約80m/minにおいても密着冷却可能である。なお、上述の如く、ストリーマコロナ放電を利用した場合には、引取可能最高速度が飛躍的に増大するが、通常の引取速度においてストリーマコロナ放電を利用した場合には、製膜性がより安定したものとなり、破断の頻度が著しく減少する。
【0038】
また、上述の如く、ストリーマコロナ放電を行う場合に、印可する電圧を7〜14kvの範囲に調整すると、フィルムロールの縦方向の厚み斑、物性の変動やバラツキが低下するので好ましい。また、本発明のフィルムロールの製造方法においては、印可する電圧のバラツキを、平均電圧(設定値)±20%以内に抑えることが必要であり、±10%以内に抑えるとより好ましい。
【0039】
さらに、上述の如く、ストリーマコロナ放電を行う場合には、電極の周囲の雰囲気を、湿度40〜85%RH、温度35〜55℃の範囲内で、乾燥状態とならず、やや加湿状態以上で露点を形成しないように調整すると、オリゴマー(ε−カプロラクタムのオリゴマー等)が電極の針先や鋸刃の先に付着する事態を防止でき、ストリーマコロナ放電が安定したものとなるので好ましい。なお、より好ましい湿度の範囲は、60〜80%RHであり、より好ましい温度の範囲は、40〜50℃である。
【0040】
次に、図面により、本発明の方法について説明する。図1は、本発明の方法に係るシートの製造工程の一実施形態を示す説明図である。図1においてダイス1からシート状溶融体2が押し出されて、冷却ドラム3により冷却固化されて未延伸シート4となる。直流高圧電源5により電極6に電圧が印可され、電極6よりシート状溶融体にストリーマコロナ放電7を発生させる。
【0041】
本発明の製造方法によれば、ポリアミド系樹脂フィルムロールは、上記の如く樹脂(ポリアミド樹脂チップ)を移動冷却体面上へ溶融押出し冷却して得られた未延伸シートを縦方向(長手方向)および横方法(幅方向)に二軸延伸した後にロール状に巻き取ることによって製造される。
【0042】
また、本発明者らが、フィルムロールの縦方向の厚み斑(フィルムロールの全長に亘る厚み斑)、沸水収縮率等の物性の変動やバラツキについて検討した結果、かかる縦方向の厚み斑や物性の変動やバラツキは、主として、溶融させた樹脂を未延伸フィルムにするキャスト工程における種々の要因により大きな影響を受けることが判明した。すなわち、押出機と直結した漏斗状ポッパ(以下、単にホッパという)に供給する際の樹脂の温度が低かったり、ホッパに供給する樹脂の水分率が高かったりすると、未延伸フィルムにおける縦方向の厚み斑が大きくなり、二軸延伸フィルムにおける物性の変動やバラツキが大きくなることが分かった。また、Tダイから押し出した樹脂を金属ロールに巻き付ける際に、樹脂と金属ロールとの接触点が乱れた場合にも、未延伸フィルムにおける縦方向の厚み斑が大きくなり、二軸延伸フィルムにおける物性の変動やバラツキが大きくなることが分かった。さらに、二軸延伸工程における延伸条件が不適切であると、未延伸フィルムにおける縦方向の厚み斑が増幅され、物性の変動やバラツキを助長してしまうことも分かった。
【0043】
さらに、本発明者らは、上記事実に基づいて鋭意検討した結果、フィルムロールの製造の際に、以下の手段を講じることにより、物性の変動の少ないフィルムロールを得ることが可能となることを突き止めた。
(1)樹脂チップの形状の均一化
(2)ホッパ形状の適正化
(3)樹脂チップ乾燥時の水分率低減
(4)ホッパへの樹脂供給時の温度保持
(5)溶融樹脂を金属ロールへ接触させる際の吸引
(6)延伸条件の適正化
以下、上記した各手段について順次説明する。
【0044】
(1)樹脂チップの形状の均一化
本発明のフィルムロールの製造において、ブレンド方式を採用する場合には、組成の異なる複数の原料ポリアミド樹脂チップをホッパ内でブレンドした後、溶融混練し、押出機から押出して、フィルム化する。たとえば、原料となるポリアミドが3種類ある場合、3個のホッパにそれぞれのポリアミド樹脂チップを連続式あるいは間欠式に供給し、必要に応じて緩衝ホッパを介して、最終的には、押出機直前あるいは直上のホッパ(以下、「最終ホッパ」という)で3種類のポリアミド樹脂チップを混ぜながら、押出し機の押出量に合わせて原料チップを定量的に押出機に供給してフィルムを形成する。
【0045】
ところが、最終ホッパの容量あるいは形状によっては、最終ホッパ内のチップ量が多い場合および最終ホッパ内のチップの残量が少なくなった場合に、原料偏析の現象、すなわち、最終ホッパから押出機へと供給されるチップの組成が異なったものとなる現象が発生する。また、かかる偏析現象は、チップの形状あるいは比重が異なっている場合に、特に顕著に現れる。さらに、かかる偏析現象によって、長尺なフィルムを製造した場合に、最大沸水収縮率、沸水収縮率方向差、フィルム厚み、厚み方向の屈折率が変動する。
【0046】
すなわち、チップの大きさに違いがあると、最終ホッパ内をチップの混合物が落下していくときに、小さいチップは先に落下し易いため、最終ホッパ内のチップ残量が少なくなると、大きいチップの比率が多くなって、これが原料偏析の原因となる。したがって、物性変動の少ないフィルムロールを得るためには、使用する複数種のポリアミド樹脂チップの形状を合わせて、最終ホッパ内での原料偏析の現象を抑止することが必要である。
【0047】
ポリアミドの原料チップは、通常、重合後に溶融状態で重合装置よりストランド状で取り出され、直ちに水冷された後、ストランドカッターでカットされて形成される。このため、ポリアミドのチップは、断面が楕円形の楕円柱状となる。ここで、ポリマーチップの形状と原料偏析との関係について検討した結果、使用量の最も多いポリアミドチップに混合される他のポリアミドチップの断面楕円の平均長径(mm)、平均短径(mm)、平均チップ長さ(mm)を、それぞれ、使用量の最も多いポリアミドの原料チップの断面楕円の平均長径(mm)、平均短径(mm)、平均チップ長さ(mm)に対して±20%以内の範囲に調整することにより、上記原料偏析を低減させることが可能となる。なお、使用量の最も多いポリアミドチップ以外のポリアミドチップの断面楕円の平均長径、平均短径、平均チップ長さを、それぞれ、使用量の最も多いポリアミドの原料チップの断面楕円の平均長径、平均短径、平均チップ長さに対して±15%以内の範囲に調整すると、偏析防止効果がきわめて顕著なものとなるので、より好ましい。
【0048】
(2)ホッパ形状の適正化
最終ホッパとして漏斗状ホッパを用い、その傾斜角を65゜以上にすることによって、大きいチップも小さいチップと同様に落とし易くすることができ、内容物の上端部が水平面を保ちつつ下降していくようになるため、原料偏析の低減に効果的である。より好ましい傾斜角は70゜以上である。なお、ホッパの傾斜角とは、漏斗状の斜辺と、水平な線分との間の角度である。最終ホッパの上流に複数のホッパを使用しても良く、この場合、いずれのホッパにおいても、傾斜角を65゜以上とする必要があり、より好ましくは70゜以上である。
【0049】
また、使用する原料チップの削れ等により発生する微粉体の比率を低減することも、沸水収縮率の変動を抑制するために好ましい。微粉体が原料偏析の発生を助長するので、工程内で発生する微粉体を除去して、ホッパ内に含まれる微粉体の比率を低減することが好ましい。含まれる微粉体の比率は、原料チップが押出機に入るまでの全工程を通じて、1重量%以内とすることが好ましく、0.5重量%以内とすることが、より好ましい。微粉体の比率を低減するための具体的な方法としては、ストランドカッターでチップ形成時に篩を通したり、原料チップを空送する場合にサイクロン式エアフィルタを通したりすることにより、微粉体を除去する方法を挙げることができる。
【0050】
加えて、ホッパ内での原料偏析を低減する手段として、使用するホッパの容量を適正化することも好ましい手段である。ここで、ホッパの適正な容量は、押出機の1時間当たりの吐出量に対して15〜120重量%の範囲内であり、押出機の1時間当たりの吐出量に対して20〜100重量%の範囲内であると、より好ましい。
【0051】
2種以上の組成の異なるポリアミドの原料チップを混合する方法としては、押出機直上のホッパ(最終ホッパ)で各原料を連続的に押出機へ定量供給しながら、混合する方法が最も好ましい。また、原料チップサイズを前述の範囲内に制御したものを予め混合した後に、いくつかの中間ホッパ(緩衝ホッパ)を介して、最終ホッパおよび押出機に供給することも可能である。複数種の原料を混合する際には、原料チップを連続的に定量供給する装置から、ホッパ内に複数種の原料を定量的に供給しながら混合する方法、あるいは、ブレンダーやパドルドライヤー等を使用して事前に混合する方法等を挙げることができるが、後者を利用する場合には、混合物の排出時に原料偏析が発生しないように、原料チップサイズを小さくすることが好ましい。
【0052】
(3)樹脂チップ乾燥時の水分率低減
ホッパ内へ供給されるチップは、通常、ブレンダー等の装置によって、加熱され水分が低減される。かかるチップの乾燥に際し、ポリエステルフィルムロールやポリプロピレンフィルムロールの製造においては、一般的に、乾燥時に水分率を低くするほど、押出工程における加水分解が抑えられて良好なフィルムロールが得られると考えられている。しかしながら、本発明者らが検討した結果、ポリアミド系樹脂フィルムロールの製造においては、乾燥時に単純に水分率を低くするだけでは、延伸が困難となってしまい、物性の均一なフィルムロールが得られず、水分率を所定範囲にコントロールし、ある程度の水分を確保することによって、押出工程において加水分解させることなく適度に可塑化させた方が、物性の均一なフィルムロールが得られることが判明した。すなわち、本発明の製造方法によりフィルムロールを得る場合には、チップの水分率を800ppm以上1000ppm以下にコントロールすることが必要である。チップの水分率が1000ppmを上回ると、溶融させた場合に加水分解が助長され、粘度が低下して、未延伸フィルムの縦方向の厚み斑が悪くなり、二軸延伸フィルムの縦方向の厚み斑の増加、物性の変動やバラツキの原因となる。反対に、チップの水分率が800ppmを下回ると、溶融させた場合の粘度が高くなりすぎて、製膜性(延伸し易さ)が悪化する。なお、ホッパ内へ供給されるチップの最適な水分率は、850ppm以上950ppm以下である。
【0053】
(4)ホッパへの樹脂供給時の温度保持
上記の如く、チップの水分率を800ppm以上1000ppm以下に調整した場合であっても、加熱乾燥後のチップを放置して常温(室温)まで温度を下げた後にホッパに供給した場合には、物性の均一なフィルムロールを得ることはできない。すなわち、本発明の製造方法によりフィルムロールを得る場合には、ブレンダー等で加熱乾燥させたチップを高温に保持したまま、ホッパに供給することが必要である。具体的には、ブレンダーで加熱乾燥させたチップは、80℃以上に保持したままホッパに供給することが必要であり、90℃以上に保持したままホッパに供給するとより好ましい。ホッパに供給するチップの温度が80℃を下回ると、樹脂の噛み込みが悪くなり、縦方向の厚み斑や物性の変動やバラツキの原因となり、本発明のフィルムロールが得られなくなる。なお、ブレンダー等の装置により、チップを乾燥する際には、乾燥温度は、150℃以下に調整することが必要である。乾燥温度が150℃を上回ると、乾燥時に加水分解が起こる可能性があるので好ましくない。また、ブレンダーで加熱乾燥させたチップの温度が、80℃を下回った場合には、80℃以上になるように再度加温してホッパに供給することが必要である。
【0054】
(5)溶融樹脂を金属ロールへ接触させる際の吸引
チップを溶融押し出しして未延伸フィルムを得る際には、上記の如く、押出機によりチップを200〜300℃の温度で溶融させてTダイから押し出すことによってフィルム状(シート状)に成形(すなわち、キャスティング)した後、所定の温度に冷却した金属ロール等の冷却ロールに巻き付ける方法によって急冷する。なお、縦方向の厚み斑、物性の変動やバラツキの観点から、好ましい溶融押し出し温度は、240℃〜290度である。本発明の製造方法によりフィルムロールを得る場合には、溶融した樹脂を金属ロールに巻き付ける場合に、エアーギャップ(すなわち、Tダイリップの出口からチルロール表面までの鉛直方向の距離)を20〜60mmに調整するとともに、幅広な吸引口を有するバキュームボックス(バキュームチャンバー)等の吸引装置を利用して、溶融樹脂と冷却ロールの表面に接触する部分を、溶融樹脂の全幅に亘って、巻き取り方向と反対方向に吸引することにより、溶融樹脂を強制的に金属ロールに密着させるのが好ましい。また、その際には、吸引口の部分の吸引風速を、2.0〜7.0m/sec.に調整する必要があり、2.5〜5.5m/sec.に調整するとより好ましい。さらに、バキュームボックスは、吸入口が一連になっているものでも良いが、吸引口における吸引風速の調整を容易なものとするために、吸引口が横方向に所定数のセクションに区分されており各セクション毎に吸引風速の調整を可能としたものとするのが好ましい。また、キャスティングの速度が大きくなると、金属ロールの回転に伴って随伴流が生じ、溶融樹脂の金属ロールへの密着が阻害されてしまうので、吸引装置による吸引をより効果的なものとし、溶融樹脂の金属ロールへの密着度合いを向上させるために、テフロン等の軟質な素材で幅広に形成された遮蔽板を、吸引装置と隣接する上流側(吸引装置に対して金属ロールの回転方向と反対側)に設置して、随伴流を遮断するのが好ましい。さらに、本発明の製造方法によりフィルムロールを得る場合には、バキュームボックスの吸引風速のバラツキを、平均吸引風速(設定値)±20%以内に抑えることが必要であり、±10%以内に抑えるとより好ましい。加えて、オリゴマーの粉塵等によりバキュームボックスの吸引風速が変動しないように、バキュームボックス内にフィルターを設けるとともに、そのフィルター前後の差圧をフィードバックすることにより、吸引力を調節するのが好ましい。
【0055】
(6)延伸条件の適正化
未延伸フィルムを二軸延伸する方法としては、未延伸フィルムをロール式延伸機で縦方向に延伸しテンター式延伸機で横方向に延伸した後に熱固定処理および緩和処理を行う縦・横延伸方法等を採用する必要がある。さらに、本発明の製造方法によりフィルムロールを得る場合には、二軸延伸する方法として、いわゆる縦−縦−横延伸方法を採用する必要がある。かかる縦−縦−横延伸方法とは、実質的に未配向のポリアミドフィルムを縦延伸するにあたり、一段目の延伸を施し、Tg以下に冷却することなく、引続き二段目の延伸を行い、しかる後、3.0倍以上、好ましくは、3.5倍以上の倍率で横延伸し、さらに熱固定する方法である。そして、本発明の製造方法によりフィルムロールを得る場合には、上記した縦−縦−横延伸を行う際に、一段目の縦延伸倍率を二段目の縦延伸倍率より高くすることが必要である。すなわち、そのように一段目の縦延伸倍率を二段目の縦延伸倍率より高くすることにより、沸水収縮率等の物性が良好な上、それらの物性のバラツキが少ないフィルムロールを得ることが可能となる。なお、縦−縦−横延伸を行う場合には、通常、一段目の縦延伸倍率を二段目の縦延伸倍率より低くした方が、一段目の延伸時にロールへの粘着を生ずることなく容易に延伸できるが、テフロン(登録商標)製ロール等の特殊なロールを使用することにより、一段目の縦延伸倍率を二段目の縦延伸倍率より高くしても、ロールへの粘着を起こすことなく容易に延伸することが可能となる。
【0056】
上記の如く縦−縦−横延伸を行う場合には、一段目の縦延伸を、80〜90℃の温度下で約2.0〜2.4倍延伸するものとするのが好ましい。一段目の延伸倍率が上記範囲を外れて高くなると、縦方向の厚み斑が大きくなるので好ましくない。加えて、二段目の縦延伸を、65〜75℃の温度下で約1.3〜1.7倍延伸するものとするのが好ましい。二段目の延伸倍率が上記範囲を外れて低くなると、ボイル歪みが大きくなり実用性のないものとなるので好ましくなく、反対に、二段目の延伸倍率が上記範囲を外れて高くなると、縦方向の強度(5%伸長時強度等)が低くなり実用性のないものとなるので好ましくない。
【0057】
また、上記の如く縦−縦−横延伸を行う場合には、縦延伸方法として、熱ロール延伸、赤外線輻射延伸等を採用することができる。また、このような縦−縦−横延伸方法によってポリアミド系樹脂フィルムを製造した場合には、縦方向の厚み斑、物性の変動やバラツキが小さくなるばかりでなく、横方向の物性変動やバラツキも低減することができる。また、縦−縦−横延伸する場合には、総縦延伸条件を3.0〜4.5倍とするのが好ましい。
【0058】
また、縦−縦−横延伸を行う場合には、横延伸を、120〜140℃の温度下で約4.0〜5.5倍延伸するものとするのが好ましい。横延伸の倍率が上記範囲を外れて低くなると、横方向の強度(5%伸長時強度等)が低くなり実用性のないものとなるので好ましくなく、反対に、横延伸の倍率が上記範囲を外れて高くなると、横方向の熱収縮率が大きくなるので好ましくない。一方、横延伸の温度が上記範囲を外れて低くなると、ボイル歪みが大きくなり実用性のないものとなるので好ましくなく、反対に、横延伸の温度が上記範囲を外れて高くなると、横方向の強度(5%伸長時強度等)が低くなり実用性のないものとなるので好ましくない。
【0059】
さらに、本発明の製造方法によりフィルムロールを得る場合には、縦−縦−横延伸後の熱固定処理を、180〜230℃の温度にて行うのが好ましい。熱固定処理の温度が上記範囲を外れて低くなると、縦方向および横方向の熱収縮率が大きくなるので好ましくなく、反対に、熱固定処理の温度が上記範囲を外れて高くなると、二軸延伸フィルムの衝撃強度が低くなるので好ましくない。
【0060】
加えて、本発明の製造方法によりフィルムロールを得る場合には、熱固定後の緩和処理を、2〜10%緩和させるものとするのが好ましい。緩和処理の割合が上記範囲を外れて低くなると、縦方向および横方向の熱収縮率が大きくなるので好ましくなく、反対に、緩和処理の割合が上記範囲を外れて高くなると、縦方向および幅方向の強度(5%伸長時強度等)が低くなり実用性のないものとなるので好ましくない。
【0061】
また、フィルムロールの幅は、特に制限されるものではないが、取扱い易さの点から、フィルムロールの幅の下限は、0.35m以上であると好ましく、0.50m以上であるとより好ましい。一方、フィルムロールの幅の上限は、2.5m以下であると好ましく、2.0m以下であるとより好ましく、1.5m以下であるとさらに好ましい。加えて、フィルムロールの巻長も、特に制限されないが、巻き易さや取扱い易さの点から、フィルムロールの巻長の下限は、500m以上であると好ましく、1,000m以上であるとより好ましい。一方、フィルムロールの巻長の上限は、2,5000m以下であると好ましく、20,000m以下であるとより好ましく、15,000m以下であるとさらに好ましい。なお、フィルム厚みが15μm程度である場合には、12000m以下であると特に好ましい。また、巻取りコアとしては、通常、3インチ、6インチ、8インチ等の紙、プラスチックコアや金属製コアを使用することができる。
【0062】
一方、ポリアミド系樹脂フィルムロールを構成するフィルムの厚みも、特に限定するものではないが、たとえば、包装用ポリアミド系樹脂フィルムとしては、8〜50μmが好ましく、10〜30μmがさらに好ましい。
【0063】
加えて、本発明のポリアミド系樹脂フィルムロールの製造方法においては、特性を阻害しない範囲内で、フィルムロールを構成するポリアミド系樹脂フィルム内に、滑剤、ブロッキング防止剤、熱安定剤、酸化防止剤、帯電防止剤、耐光剤、耐衝撃性改良剤等の各種の添加剤を含有させることも可能である。特に、二軸延伸フィルムの滑り性を良好にする目的で、各種の無機粒子を含有させることが好ましい。加えて、無機粒子としては、0.5〜5.0μmの平均粒径(すなわち、平均粒子径)を有するものが好ましく、シリカ粒子であると特に好ましい。平均粒径が0.5μmを下回ると、良好な滑り性が得られないし、反対に、平均粒径が5.0μmを上回ると、透明性が不良になったり、印刷時に所謂“抜け”が発生したりするので好ましくない。なお、平均粒子径の測定は、コールターカウンターによって得られる粒度分布から重量平均径を算出する方法を採用することができ、ポリアミド樹脂に添加する前の粒子から測定することも可能であるし、ポリアミド系樹脂フィルムを酸で溶解することにより析出させた粒子から測定することも可能である。また、表面エネルギーを下げる効果を発揮するエチレンビスステアリン酸等の有機滑剤を添加すると、フィルムロールを構成するフィルムの滑り性が優れたものになるので好ましい。
【0064】
さらに、フィルムロールを構成するポリアミド系樹脂フィルムには、用途に応じて寸法安定性を良くするために熱処理や調湿処理を施すことも可能である。加えて、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したり、印刷、蒸着等の加工を施したりすることも可能である。
【0065】
なお、上記した(1)〜(6)の手段の内の特定の何れかのみが、フィルムロールの物性変動の低減に有効に寄与するものではなく、(1)〜(6)の手段を組み合わせて用いることにより、非常に効率的にフィルムロールの物性変動を低減させることが可能となるものと考えられる。そして、未延伸シートの形成時に、上記の如く、ストリーマコロナ放電を利用して溶融樹脂シートを冷却ロールに強力に静電密着させることにより、高速で製膜する場合であっても、フィルムロールの物性変動を低減させることが可能となる。
【0066】
また、本発明の製造方法によって製造されるポリアミド系樹脂フィルムロールは、巻き取り方向において高度に均一な特性を有している。すなわち、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、後述する方法により試料を切り出した場合に、すべての試料について、全方向の沸水収縮率のうちの最大値である最大沸水収縮率を測定したときに、それらの最大沸水収縮率の平均値である平均沸水収縮率が3%以上6%以下となるように調整されている。
【0067】
また、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、後述する方法により試料を切り出した場合に、すべての試料について、長手方向に対し+45度方向の沸水収縮率と長手方向に対し−45度方向の沸水収縮率との差の絶対値である沸水収縮率方向差を求めたときに、それらの沸水収縮率方向差の平均値である平均沸水収縮率方向差が1.5%以下となるように調整されている。
【0068】
本発明における試料の切り出しは、まず、フィルムの巻き終わりから2m以内に1番目の試料切り出し部を、また、フィルムの巻き始めから2m以内に最終の切り出し部を設けるとともに、1番目の試料切り出し部から約100m毎に試料切り出し部を設けるようにする。なお、「約100m毎」というのは、100m±1m程度のところで試料を切り出しても構わないということである。
【0069】
上記試料の切り出しについてより具体的に説明すると、たとえば、長さ498mのポリアミド系樹脂フィルムがロールに巻回されている場合、フィルムの巻き終わりから2m以内までの間で、最初の試料(1)を切り取る。なお、試料の切り出しは、便宜上、フィルムの長手方向に沿う辺と長手方向に対して直交する方向に沿う辺とを有するように矩形状に切り取る(斜めには切り取らない)ようにする。続いて、切り取った部分から100m巻き始め側に離れたところで、2番目の試料(2)を切り取る。同様にして、200m巻き始め側に離れたところで3番目の試料(3)を、300m巻き始め側に離れたところで4番目の試料(4)を、400m巻き始め側に離れたところで5番目の試料(5)を切り取る。このように試料を切り出した場合、残りは100mよりも短くなるため、6番目(最終)の試料(6)はフィルムの巻き始めから2m以内のいずれかの部分を切り取る。そして、切り取られた各試料について、下記の方法で、沸水収縮率(以下、BSという)、最大沸水収縮率(以下、BSxという)、平均沸水収縮率(以下、BSaxという)、沸水収縮率方向差(以下、BSdという)、平均沸水収縮率方向差(以下、BSadという)を測定する。
【0070】
[沸水収縮率(BS)、最大沸水収縮率(BSx)、平均沸水収縮率(BSax)、沸水収縮率方向差(BSd)、平均沸水収縮率方向差(BSad)の測定方法]
ポリアミド系樹脂フィルムロールの各切り出し部から切り出された二軸配向ポリアミド系樹脂フィルムを正方形状に切り出し、23℃、65%RHの雰囲気で2時間以上放置する。この試料の中央を中心とする円(直径約20cm程度)を描き、縦方向(フィルム引出し方向)を0°として、15°間隔で時計回りに0〜165°方向に円の中心を通る直線を引き、各方向の直径を測定し、処理前の長さとする。次いで、切り出した試料を沸水中で30分間加熱処理した後、取り出して表面に付着した水分を拭き取り、風乾してから23℃、65%RHの雰囲気中で2時間以上放置し、上述したように各直径方向に引いた直線の長さを測定して処理後の長さとし、下式1〜5によって、BS(沸水収縮率)、BSx(最大沸水収縮率)、BSax(平均沸水収縮率)、BSd(沸水収縮率方向差)、BSad(平均沸水収縮率方向差)を算出する。
BS=[(処理前の長さ−処理後の長さ)/処理前の長さ]×100(%)・・・1
BSx=15°間隔で0〜165°方向に測定した中で最大の収縮率(%)・・・2
BSax=すべての試料のBSxの総和/試料の数・・・3
BSd=|(45°度方向のBS)−(135°度方向のBS)|・・・4
BSad=すべての試料のBSdの総和/試料の数・・・5
【0071】
なお、ポリアミド系樹脂フィルムロールを構成するポリアミドフィルムのBSxの値は、二軸配向ポリアミド系樹脂フィルムを袋状に成形し熱水処理を施したときの耐熱性(ラミネート強度あるいは耐熱ラミネート強度ともいう)を確保するとともに、フィルム自体の強靭性・耐ピンホール性を高める上で重要であり、BSxの値が3%未満では、強靭性・耐ピンホール性が不十分となり、一方、6%を超えると、ラミネート不良となったり、熱水処理時の耐熱ラミネート強度が不十分となったりするので好ましくない。強靭性・耐ピンホール性とラミネート性や耐熱ラミネート強度を高める上でより好ましいBSxの範囲は3.5〜5.0%である。
【0072】
また、ポリアミド系樹脂フィルムロールを構成するポリアミドフィルムのBSdの値は、沸水処理時に生じるカール現象に大きな影響を及ぼし、BSdの値が大きいほど袋はそり返り易くなってカールが著しくなるが、BSdを1.5%以下、より好ましくは1.2%以下に抑えれば、沸水処理時における袋の反り返りが可及的に抑えられ、S字カール現象の発生を防止することが可能となる。
【0073】
また、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、切り出したすべての試料の最大沸水収縮率(BSx)の変動率が、平均沸水収縮率(BSax)の±2%〜±10%(±2%以上±10%以下)の範囲内となるように調整されることが必要である。ここで、すべての試料の最大沸水収縮率(BSx)の変動率とは、すべての試料の最大沸水収縮率(BSx)中の最大・最小を求め、それらの最大・最小の内の平均沸水収縮率との差の大きい方と平均沸水収縮率との差を求めた場合におけるその差の平均沸水収縮率に対する割合のことをいう。
【0074】
すなわち、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールにおいては、試料(1)〜(6)の沸水収縮率をXn(n=1〜6)とした場合に、Xnの最大値Xmaxと平均沸水収縮率(BSax)との差と、最小値Xminと平均沸水収縮率(BSax)との差とのいずれもが±10%以内であることが必要とされる、ということであり、換言すれば、|BSax−Xn|(なお、||は絶対値を示す)がいずれも10%以下であることが必要とされる、ということである。
【0075】
なお、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、切り出したすべての試料の最大沸水収縮率(BSx)の変動率が、平均沸水収縮率(BSax)の±9%以内の範囲にあると好ましく、±8%以内の範囲にあるとより好ましく、±7%以内の範囲にあるとさらに好ましい。
【0076】
加えて、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、切り出したすべての試料の最大沸水収縮率(BSx)の変動率が小さいほど好ましいが、当該変動率の下限は、測定精度を考慮すると2%程度が限界であると考えている。
【0077】
また、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、切り出したすべての試料の沸水収縮率方向差(BSd)の変動率が、平均沸水収縮率方向差(BSad)の±2%〜±10%(±2%以上±10%以下)の範囲内となるように調整されることが必要である。ここで、すべての試料の沸水収縮率方向差(BSd)の変動率とは、すべての試料の沸水収縮率方向差(BSd)中の最大・最小を求め、それらの最大・最小の内の平均沸水収縮率方向差との差の大きい方と平均沸水収縮率方向差との差を求めた場合におけるその差の平均沸水収縮率方向差に対する割合のことをいう。
【0078】
すなわち、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールにおいては、試料(1)〜(6)の沸水収縮率方向差をYn(n=1〜6)とした場合に、Ynの最大値Ymaxと平均沸水収縮率方向差(BSad)との差と、最小値Yminと平均沸水収縮率方向差(BSad)との差とのいずれもが±10%以内であることが必要とされる、ということであり、換言すれば、|BSad−Yn|(なお、||は絶対値を示す)がいずれも10%以下であることが必要とされる、ということである。
【0079】
なお、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、切り出したすべての試料の沸水収縮率方向差(BSd)の変動率が、平均沸水収縮率方向差(BSad)の±9%以内の範囲にあると好ましく、±8%以内の範囲にあるとより好ましく、±7%以内の範囲にあるとさらに好ましい。
【0080】
加えて、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、切り出したすべての試料の沸水収縮率方向差(BSd)の変動率が小さいほど好ましいが、当該変動率の下限は、測定精度を考慮すると2%程度が限界であると考えている。
【0081】
また、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、長手方向全長に亘る厚みの変動率が、平均厚みに対して±2%〜±10%(±2%以上±10%以下)の範囲内となるように調整されることが必要である。ここで、長手方向全長に亘る厚みの変動率とは、長手方向全長に亘る厚み中の最大・最小を求め、それらの最大・最小の内の平均厚みとの差の大きい方と平均厚みとの差を求めた場合におけるその差の平均厚みに対する割合のことをいう。
【0082】
すなわち、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールにおいては、長手方向全長に亘る厚みの最大値Tmaxと平均厚み(長手方向全長に亘る平均厚みTa)との差と、最小値Tminと平均厚み(Ta)との差とのいずれもが±10%以内であることが必要とされる、ということである。
【0083】
なお、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、長手方向全長に亘る厚みの変動率が、平均厚み(Ta)の±8%以内の範囲にあると好ましく、±6%以内の範囲にあるとより好ましい。
【0084】
加えて、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、長手方向全長に亘る厚みの変動率が小さいほど好ましいが、当該変動率の下限は、製膜装置の性能上から2%程度が限界であると考えている。
【0085】
さらに、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、上記方法により試料を切り出した場合に、すべての試料について、厚み方向の屈折率(Nz)を求めたときに、それらの屈折率の平均値である平均屈折率(Nza)が1.500以上1.520以下となるように調整されることが好ましい。なお、平均屈折率は、下式6によって算出される。
Nza=すべての試料のNzの総和/試料の数・・・6
【0086】
なお、ポリアミド系樹脂フィルムロールを構成するポリアミドフィルムのNzの値は、ラミネート強度と厚み斑等のフィルム品位に大きな影響を及ぼす。したがって、平均屈折率が1.500以上1.520以下であるという要件は、二軸配向ポリアミド系樹脂フィルムをポリオレフィン系樹脂フィルムとラミネートして使用する場合の必須の要件となる。そして、Nzが1.500未満では、ポリオレフィン系樹脂フィルム等とのラミネート強度が不十分となり、製袋後の沸水処理等でラミネート基材との間で剥離が起こり易くなる。一方、このNzは、未延伸のポリアミド系樹脂フィルムを二軸延伸する過程で順次低下していく。換言すると、Nzは延伸の指標の1つとも考えることができ、Nzが大きいということは延伸が不十分であることを表わしており、Nzが1.520を超えるものでは、二軸延伸不足による厚み斑等が顕著に現れて、満足なフィルム品位が得られなくなる。ラミネート強度とフィルム品位の両面を考慮して特に好ましいNzの範囲は1.507〜1.516の範囲である。
【0087】
また、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、切り出したすべての試料の屈折率(Nz)の変動率が、それらの屈折率の平均値(以下、平均屈折率という)に対して±2%以内の範囲となるように調整されることが好ましい。ここで、すべての試料の屈折率(Nz)の変動率とは、すべての試料の屈折率(Nz)中の最大・最小を求め、それらの最大・最小の内の平均屈折率との差の大きい方と平均屈折率との差を求めた場合におけるその差の平均屈折率に対する割合のことをいう。
【0088】
すなわち、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールにおいては、試料(1)〜(6)の屈折率をNz1〜Nz6とした場合に、Nz1〜Nz6の最大値Nzmaxと平均屈折率との差と、Nz1〜Nz6の最小値Nzminと平均屈折率との差とのいずれもが±2%以内であると好ましい、ということであり、換言すれば、|平均屈折率−Nz1|〜|平均屈折率−Nz6|がいずれも2%以下であると好ましい、ということである。また、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、切り出したすべての試料の屈折率(Nz)の変動率が、平均屈折率に対して±1%以内の範囲にあるとより好ましい。
【0089】
加えて、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、切り出したすべての試料の屈折率(Nz)の変動率が小さいほど好ましいが、当該変動率の下限は、測定精度や機械精度の面から0.1%程度が限界であると考えている。
【0090】
上述したように、1本のポリアミド系樹脂フィルムロールにおける最大沸水収縮率、沸水収縮率方向差を所定の範囲の値に調整するとともに、それらの最大沸水収縮率、沸水収縮率方向差の変動を小さくすることで、製袋加工やラミネート加工における外観の悪化を防止することができ、歩留まり良くスムーズに加工することが可能となる。
【実施例】
【0091】
以下、実施例によって本発明を詳細に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。実施例、比較例、参考例、および参考比較例で使用した原料チップA〜Eの性状、実施例、比較例、参考例、および参考比較例で使用した原料チップA〜Eの組成、実施例、および比較例におけるフィルムロールの製造条件を、それぞれ、表1〜3に示す。なお、チップA,C,Dは、ナイロン6(相対粘度=2.8,Tg=41℃)97.00重量%、シリカ粒子3.00重量%からなるものであり、チップB,Eは、ナイロン6(相対粘度=2.8,Tg=41℃)96.45重量%、ポリメタキシリレンアジパミド(相対粘度=2.1)3.00重量%、エチレンビスステアリン酸アマイド0.15重量%、シリカ粒子0.40重量%からなるものである。加えて、チップA,Cに添加されたシリカ粒子は、平均粒子系が約3.0μmのものであり、チップBに添加されたシリカ粒子は、平均粒子系が約1.8μmのものであり、チップD,Eに添加されたシリカ粒子は、平均粒子系が約2.0μmのものである。また、チップA〜Eの形状は、いずれも楕円柱状であり、チップAとチップD、チップBとチップEは、それぞれ、断面長径、断面短径、チップ長さとも同一である。
【0092】
【表1】

【0093】
【表2】

【0094】
【表3】

【0095】
[実施例1]
上記したチップA,Bを別々に、15klのブレンダー装置を用いて約8.0時間に亘って約120℃に加温しながら予備乾燥した。ブレンダー内から各チップを所定量採取して水分率を測定したところ、チップA,Bの水分率は、いずれも800ppmであった。なお、水分率の測定は、カールフィッシャー水分計(KYOTO Electronics社製 MKC−210)を用い、試料重量1g、試料加熱温度230℃の条件下にて行った。
【0096】
しかる後、各ブレンダー内のチップを、押出機直上のホッパに、定量スクリューフィーダーで連続的に別々に供給した。なお、チップAの供給量を5.0重量%とし、チップBの供給量を95.0重量%とした。ホッパは、原料チップが150kg入る容量を有しており、押出機の吐出量は、1時間あたり450kgであった。また、ホッパの傾斜角は70゜に調整した。なお、実施例1においては、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップ(チップA)の平均長径、平均短径、平均チップ長さは、使用量の最も多いポリアミド系樹脂チップ(チップB)の平均長径、平均短径、平均チップ長さに対し、それぞれ±20%以内の範囲に含まれている。
【0097】
また、チップA,Bをホッパ内に供給する際に、各ブレンダー内のチップの温度が低くなりすぎないように乾燥から短時間の内にホッパに供給した。ホッパに供給する直前のチップA,Bの温度は、いずれも約91℃であった。そして、供給されたチップA,Bをホッパ内で混合し、単軸式押出機により270℃でTダイから溶融押出しし、17℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さ257μmの未延伸フィルムを得た。なお、未延伸フィルムの引取速度(金属ロールの回転速度)は、約66m/min.であった。
【0098】
また、溶融した樹脂を金属ロールに巻き付ける際のエアーギャップは、40mmに調整し、1.5mmφの針状体を並設した多針状電極により、11±1.1kvで100mAの直流負電荷を溶融した樹脂(シート状物)に印加して、ストリーマコロナ放電させることにより、溶融した樹脂を金属ロールに静電密着させた。加えて、上記のストリーマコロナ放電においては、電極および金属ロールの周囲を壁部材で囲って外部と遮断し、多針状電極の周囲の湿度を約75%RHに保ち、多針状電極の周囲の温度を約45℃に保った。さらに、溶融した樹脂を金属ロールに巻き付ける際に、溶融した樹脂が金属ロールと接触する部分を、溶融した樹脂の全幅に亘って、バキュームボックスを利用して、樹脂が巻き取られる方向と反対の方向へ吸引することにより、溶融樹脂の金属ロールへの密着を促進した。なお、バキュームボックスの吸引風速は、吸引口の全幅(すなわち、溶融樹脂の全幅)に亘って、5.0±0.5m/sec.となるように調整した。なお、上記した未延伸フィルムの製造においては、多針状電極へのオリゴマーの付着は見られず、静電密着状態は、非常に安定したものであった。
【0099】
しかる後、得られた未延伸フィルムを、テフロン製ロールによって延伸温度約85℃で約2.1倍に縦延伸(第1縦延伸)した後、セラミック製ロールによって延伸温度約70℃で約1.6倍に縦延伸(第2縦延伸)した。さらに、縦延伸されたシートを連続的にテンターに導き、約130℃で4.0倍に横延伸し、約213℃で熱固定して5.0%の横弛緩処理を施した後に冷却し、両縁部を裁断除去することによって、約15μmの二軸延伸フィルムを2000m以上に亘って連続的に製膜してミルロールを作製した。なお、フィルムを2000m連続製造したときのフィルム表面温度の変動幅は、予熱工程で平均温度±0.8℃、延伸工程で平均温度±0.6℃、熱処理工程で平均温度±0.5℃の範囲内であった。さらに、得られたミルロールを、幅400mm、長さ2000mにスリットして、3インチ紙管に巻き取り、2本のポリアミド系樹脂フィルムロール(スリットロール)を得た。そして、得られた2本のスリットロール(すなわち、同一のミルロールから得られたもの)を用いて、以下の方法により特性の評価を行った。なお、以下のBS(沸水収縮率)、BSx(最大沸水収縮率)、BSd(沸水収縮率方向差)、屈折率の測定においては、フィルムの巻き終わりから2m以内に1番目の試料切り出し部を設け、1番目の試料切り出し部から約100m毎に2番目から20番目の試料切り出し部を設け、フィルムの巻き始めから2m以内に21番目の試料切り出し部を設け、それらの1番目から21番目までの各試料切り出し部から試料フィルムを切り出した。評価結果を表4〜8に示す。評価結果を示す際に、衝撃強度、ラミネート強度については、測定した各試料サンプルの数値の平均値と、各試料サンプルの数値の変動範囲とを示した。また、S字カールについては、各評価レベルとなった試料サンプルの個数と、全試料サンプルの総合評価のレベルとを示した。
【0100】
[沸水収縮率]
片方のスリットロールの各切り出し部から切り出された二軸配向ポリアミド系樹脂フィルム(試料フィルム)を一辺21cmの正方形状に切り出し、23℃、65%RHの雰囲気で2時間以上放置した。この試料の中央を中心とする直径20cmの円を描き、縦方向(フィルム引出し方向)を0°として、15°間隔で時計回りに0〜165°方向に円の中心を通る直線を引き、各方向の直径を測定し、処理前の長さとした。次いで、切り出した試料を沸水中で30分間加熱処理した後、取り出して表面に付着した水分を拭き取り、風乾してから23℃、65%RHの雰囲気中で2時間以上放置し、上述したように各直径方向に引いた直線の長さを測定して処理後の長さとし、上式1〜5によって、BS(沸水収縮率)、BSx(最大沸水収縮率)、BSax(平均沸水収縮率)、BSd(沸水収縮率方向差)、BSad(平均沸水収縮率方向差)を算出した。
【0101】
そして、全ての試料の最大沸水収縮率(BSx)中の最大・最小を求め、それらの最大・最小の内の平均沸水収縮率(BSax)との差の大きい方と平均沸水収縮率との差を算出し、その差の平均沸水収縮率(BSax)に対する割合(%)を算出することによって、平均沸水収縮率(BSax)に対する最大沸水収縮率(BSx)の変動率を求めた。また、全ての試料の沸水収縮率方向差(BSd)中の最大・最小を求め、それらの最大・最小の内の平均沸水収縮率方向差(BSad)との差の大きい方と平均沸水収縮率との差を算出し、その差の平均沸水収縮率方向差(BSad)に対する割合(%)を算出することによって、平均沸水収縮率方向差(BSad)に対する沸水収縮率方向差(BSd)の変動率を求めた。
【0102】
[縦方向厚み斑]
スリットロールを長手方向全長に亘って約3cm幅にスリットして厚み斑測定用のスリットロールを作製した。しかる後、アンリツ社製の厚み斑測定装置(広範囲高感度電子マイクロメーターK−313A)を用いて、長手方向全長に亘る平均厚み、最大厚み、最小厚みを求めた。そして、下式7により、それらの最大厚み・最小厚みの内の平均厚みとの差の大きい方と平均厚みとの差を算出し、その差の平均厚みに対する割合(%)を算出することによって、長手方向全長に亘る厚みの変動率を算出した。
厚みの変動率=|最大厚みあるいは最小厚み−平均厚み|/平均厚み・・・7
【0103】
[ラミネート加工性]
上記した沸水収縮率、縦方向厚み斑、屈折率、衝撃強度を測定したスリットロールとは別のスリットロール(同一のミルロールから得られたもの)を用い、そのスリットロールを構成する二軸配向ポリアミド系樹脂フィルムにウレタン系AC剤(東洋モートン社製「EL443」)を塗布した後、その上に、モダンマシナリー社製のシングルテストラミネーター装置を用いて厚さ15μmのLDPE(低密度ポリエチレン)フィルムを315℃で押し出し、さらに、その上に厚さ40μmのLLDPE(直鎖状低密度ポリエチレン)フィルムを連続的にラミネートし、ポリアミド系樹脂/LDPE/LLDPEよりなる3層積層構造のラミネートフィルムロールを得た。また、ラミネートフィルムロールを製造する際の加工性を下記の3段階で評価した。
○:ロールに皺が発生せず、条件調整も不要
△:条件調整によりロールの皺が解消
×:どのように条件調整を行っても、ロールに皺が発生
【0104】
[屈折率]
アタゴ社製の「アッベ屈折計4T型」を用いて、各試料切り出し部から切り出された各試料フィルムを23℃、65%RHの雰囲気中で2時間以上放置した後に、厚み方向の屈折率(Nz)を測定した。また、全試料フィルムの平均の平均屈折率を算出して、表6の如く、全試料中で最大あるいは最小のNzと平均屈折率との差を算出するとともに、その差の平均屈折率に対する割合を変動率として算出した。
【0105】
[S字カール現象]
上記の如くラミネートフィルムロールとして巻き取られたラミネートフィルムを、西部機械社製のテストシーラーを用いて巻き長さ方向に平行に2つに折り畳みつつ縦方向に各両端20mmずつを150℃で連続的に熱シールし、それに垂直方向に10mmを150mm間隔で断続的に熱シールして幅200mmの半製品を得た。これを巻き長さ方向に、両縁部をシール部分が10mmとなるように裁断した後、これと垂直方向にシール部分の境界で切断し、3方シール袋(シール幅:10mm)を作製した。それらの3方シール袋の中から、ラミネートフィルムロールの巻き終わりから2m以内の部分から作製された3方シール袋を1番目のサンプルとして選択し、その1番目のサンプルの作製部分から約100,200,・・・1900m離れた部分から作製された3方シール袋を、それぞれ、2番目〜20番目のサンプルとして選択し、ラミネートフィルムロールの巻き始めから2m以内の部分から作製された3方シール袋を21番目のサンプルとして選択した。そして、それらの21枚の3方シール袋を沸騰水中で30分間熱処理した後、23℃、65%RHの雰囲気で一昼夜保持し、さらに、それらの21枚の3方シール袋を重ねて上から袋全面に1kgの荷重をかけ、一昼夜保持した後に荷重を取り去って袋の反り返り(S字カール)の度合いを以下のようにして評価した。
◎ :全く反り返りがない
○ :わずかに反り返りが見られる
× :明らかに反り返りが見られる
××:反り返りが著しい
【0106】
[衝撃強度]
各切り出し部から切り出された各試料フィルムを23℃、65%RHの雰囲気中で2時間以上放置した後、東洋精機製作所社製の「フィルムインパクトテスター TSS式」を使用し、直径12.7mmの半球型衝突子により破断強度を測定し、衝撃強度とした。また、全試料フィルムの平均の衝撃強度も算出した。
【0107】
[ラミネート強度]
また、そのラミネートフィルムロールから切り出したラミネートフィルムを、幅15mm、長さ200mmに切り出して試験片とし、東洋ボールドウイン社製の「テンシロンUMT−II−500型」を用いて、温度23℃、相対湿度65%の条件下でポリアミド系樹脂フィルム層とLDPE層間の剥離強度を測定した。なお、引張速度は10cm/分、剥離角度は180度とし、剥離部分に水を付けて測定した。また、ラミネート強度の測定は、ラミネートフィルムロールの巻き終わりから2m以内において1番目の試料片を切り出し、1番目の試料片の切り出し部分から約100m毎において2番目から20番目の試料片を切り出し、フィルムの巻き始めから2m以内において21番目の試料片を切り出し、それらの1番目から21番目までの各試料片について測定した。また、それらの測定値の平均も算出した。
【0108】
[実施例2]
溶融状態のシートの引取速度を75m/minに変更し、二軸延伸後の熱固定の温度を約216℃に変更した以外は、実施例1と同様にして、実施例2のポリアミド系樹脂フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表4〜8に示す。
【0109】
[実施例3]
実施例1と同様にして得られた未延伸フィルムを、テフロン製ロールによって延伸温度約90℃で約2.2倍に縦延伸(第1縦延伸)した後、セラミック製ロールによって延伸温度約70℃で約1.5倍に縦延伸(第2縦延伸)した。さらに、縦延伸されたシートを、実施例1と同様に、連続的にステンターに導き、約130℃で4.0倍に横延伸し、約213℃で熱固定して5.0%の横弛緩処理を施した後に冷却し、両縁部を裁断除去することによって、約15μmの二軸延伸フィルムを2000m以上に亘って連続的に製膜した。なお、フィルムを連続製造したときのフィルム表面温度の変動幅は、実施例1と同様であった。得られたフィルムを、実施例1と同様にスリットして巻き取ることによって、実施例3のポリアミド系樹脂フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表4〜8に示す。
【0110】
[実施例4]
実施例1と同様にして得られた未延伸フィルムを、実施例1と同様に二段階に縦延伸した。しかる後、縦延伸されたシートを、連続的にステンターに導き、約130℃で3.6倍に横延伸し、約216℃で熱固定して3.0%の横弛緩処理を施した後に冷却し、両縁部を裁断除去することによって、約15μmの二軸延伸フィルムを2000m以上に亘って連続的に製膜した。なお、フィルムを連続製造したときのフィルム表面温度の変動幅は、実施例1と同様であった。得られたフィルムを、実施例1と同様にスリットして巻き取ることによって、実施例4のポリアミド系樹脂フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表4〜8に示す。
【0111】
[実施例5]
原料チップAと原料チップBとの混合比率を、チップAを15.0重量%としてチップBを85.0重量%とした以外は、実施例1と同様にして、実施例5のポリアミド系樹脂フィルムロールを得た。なお、実施例5においても、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップ(チップA)の平均長径、平均短径、平均チップ長さは、使用量の最も多いポリアミド系樹脂チップ(チップB)の平均長径、平均短径、平均チップ長さに対し、それぞれ±20%以内の範囲に含まれている。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表4〜8に示す。
【0112】
[実施例6]
原料チップA,Bの代わりに、それぞれ、原料チップD,Eを用いた以外は実施例1と同様にして、実施例6のポリアミド系樹脂フィルムロールを得た(すなわち、実施例6においては、5.0重量%のチップDと95.0重量%のチップEとを用いてポリアミド系樹脂フィルムロールを製造した)。なお、実施例6においても、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップ(チップD)の平均長径、平均短径、平均チップ長さは、使用量の最も多いポリアミド系樹脂チップ(チップE)の平均長径、平均短径、平均チップ長さに対し、それぞれ±20%以内の範囲に含まれている。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表4〜8に示す。
【0113】
[実施例7]
ブレンダー内の原料チップを押出機直上のホッパに供給する際にホッパの傾斜角を65゜に変更した以外は実施例1と同様にして、実施例7のポリアミド系樹脂フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表4〜8に示す。
【0114】
[実施例8]
溶融した樹脂を金属ロールへの巻き付ける際におけるバキュームボックスの吸引風速を、吸引口の全幅に亘って3.0±0.5m/sec.となるように調整した以外は、実施例1と同様にして、実施例8のポリアミド系樹脂フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。評価結果を表4〜8に示す。
【0115】
[比較例1]
溶融した樹脂を金属ロールへ静電密着させる際に、金属ロールの回転速度を実施例1と同様に約66m/minに保ったまま、電極を0.5mmφのワイヤーに変更し、11±1.1kvで100mAの直流負電荷を溶融樹脂に印加してグロー放電させたところ、溶融樹脂がワイヤーに巻き付いてしまい、金属ロールに静電密着させることができず、延伸し得る未延伸フィルムを得ることはできなかった。
【0116】
【表4】

【0117】
【表5】

【0118】
【表6】

【0119】
【表7】

【0120】
【表8】

【0121】
[参考例1]
溶融した樹脂を金属ロールへ静電密着させる際の樹脂シートの引取速度(金属ロールの回転速度)を60m/minに変更し、静電密着の方法を0.5mmφのワイヤー電極によるグロー放電(11±1.1kvで100mAの直流負電荷印加)に変更するとともに、二軸延伸後の熱固定の温度を約210℃に変更した以外は、実施例1と同様にして、参考例1のポリアミド系樹脂フィルムロールを得た。なお、フィルムを連続製造したときのフィルム表面温度の変動幅は、実施例1と同様に、予熱工程で平均温度±0.8℃、延伸工程で平均温度±0.6℃、熱処理工程で平均温度±0.5℃の範囲内であった。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考例1におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0122】
[参考例2]
参考例1と同様にして得られた未延伸フィルムを、テフロン製ロールによって延伸温度約90℃で約2.2倍に縦延伸(第1縦延伸)した後、セラミック製ロールによって延伸温度約70℃で約1.5倍に縦延伸(第2縦延伸)した。さらに、縦延伸されたシートを、参考例1と同様に、連続的にステンターに導き、約130℃で4.0倍に横延伸し、約210℃で熱固定して5.0%の横弛緩処理を施した後に冷却し、両縁部を裁断除去することによって、約15μmの二軸延伸フィルムを2000m以上に亘って連続的に製膜した。なお、フィルムを連続製造したときのフィルム表面温度の変動幅は、参考例1と同様であった。得られたフィルムを、参考例1と同様にスリットして巻き取ることによって、参考例2のポリアミド系樹脂フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考例2におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0123】
[参考例3]
参考例1と同様にして得られた未延伸フィルムを、参考例1と同様に二段階に縦延伸した。しかる後、縦延伸されたシートを、連続的にステンターに導き、約130℃で3.6倍に横延伸し、約215℃で熱固定して3.0%の横弛緩処理を施した後に冷却し、両縁部を裁断除去することによって、約15μmの二軸延伸フィルムを2000m以上に亘って連続的に製膜した。なお、フィルムを連続製造したときのフィルム表面温度の変動幅は、参考例1と同様であった。得られたフィルムを、参考例1と同様にスリットして巻き取ることによって、参考例3のポリアミド系樹脂フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考例3におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0124】
[参考例4]
原料チップAと原料チップBとの混合比率を、チップAを15.0重量%としてチップBを85.0重量%とした以外は、参考例1と同様にして、参考例4のポリアミド系樹脂フィルムロールを得た。なお、参考例4においても、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップ(チップA)の平均長径、平均短径、平均チップ長さは、使用量の最も多いポリアミド系樹脂チップ(チップB)の平均長径、平均短径、平均チップ長さに対し、それぞれ±20%以内の範囲に含まれている。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考例4におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0125】
[参考例5]
原料チップA,Bの代わりに、それぞれ、原料チップD,Eを用いた以外は参考例1と同様にして、参考例5のポリアミド系樹脂フィルムロールを得た(すなわち、参考例5においては、5.0重量%のチップDと95.0重量%のチップEとを用いてポリアミド系樹脂フィルムロールを製造した)。なお、参考例5においても、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップ(チップD)の平均長径、平均短径、平均チップ長さは、使用量の最も多いポリアミド系樹脂チップ(チップE)の平均長径、平均短径、平均チップ長さに対し、それぞれ±20%以内の範囲に含まれている。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考例5におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0126】
[参考例6]
ブレンダー内の原料チップを押出機直上のホッパに供給する際にホッパの傾斜角を65゜に変更した以外は参考例1と同様にして、参考例6のポリアミド系樹脂フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考例6におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0127】
[参考例7]
溶融した樹脂を金属ロールへの巻き付ける際におけるバキュームボックスの吸引風速を、吸引口の全幅に亘って3.0±0.5m/sec.となるように調整した以外は、参考例1と同様にして、参考例7のポリアミド系樹脂フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考例7におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0128】
[参考比較例1]
参考例1と同様にして得られた未延伸フィルムを、テフロン製ロールによって延伸温度約90℃で約1.5倍に縦延伸(第1縦延伸)した後、セラミック製ロールによって延伸温度約70℃で約2.2倍に縦延伸(第2縦延伸)した。さらに、縦延伸されたシートを、連続的にステンターに導き、参考例1と同様に横延伸し、熱固定して横弛緩処理を施した後に冷却し、両縁部を裁断除去することによって、約15μmの二軸延伸フィルムを2000m以上に亘って連続的に製膜した。なお、フィルムを連続製造したときのフィルム表面温度の変動幅は、参考例1と同様であった。しかる後、得られたフィルムを、参考例1と同様にスリットして巻き取ることによって、参考比較例1のポリアミド系樹脂フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考比較例1におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0129】
[参考比較例2]
原料チップAの代わりに原料チップCを用いた以外は参考例1と同様にして、参考比較例2のポリアミド系樹脂フィルムロールを得た。なお、参考比較例2においては、使用量の最も多いポリアミド系樹脂チップ以外のポリアミド系樹脂チップ(チップC)の平均長径、平均チップ長さは、使用量の最も多いポリアミド系樹脂チップ(チップB)の平均長径、平均チップ長さに対し、それぞれ±20%以内の範囲に含まれていない。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考比較例2におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0130】
[参考比較例3]
原料チップA,Bの予備乾燥条件を、約4.0時間に亘って約100℃に加温する方法に変更した以外は、参考例1と同様にして、参考比較例3のポリアミド系樹脂フィルムロールを得た。なお、予備乾燥後に、ブレンダー内から各チップを所定量採取して水分率を測定したところ、チップA,Bの水分率は、いずれも1500ppmであり、ホッパに供給する直前のチップA,Bの温度は、いずれも約85℃であった。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考比較例3におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0131】
[参考比較例4]
原料チップA,Bを、予備乾燥した後に押出機直上のホッパに供給する前に、各ブレンダー内で約5時間に亘って放置した以外は、参考例1と同様にして、参考比較例4のポリアミド系樹脂フィルムロールを得た。なお、ホッパに供給する直前のチップA,Bの水分率は、いずれも800ppmであり、ホッパに供給する直前のチップA,Bの温度は、いずれも約30℃であった。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考比較例4におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0132】
[参考比較例5]
溶融した樹脂を金属ロールへの巻き付ける際においてバキュームボックスによる吸引を行わなかった以外は、参考例1と同様にして、参考比較例5のポリアミド系樹脂フィルムロールを得た。そして、得られたフィルムロールの特性を実施例1と同様の方法によって評価した。参考比較例5におけるフィルムロールの製造条件を、表9,10に示し、フィルムロールの特性の評価結果を表11〜15に示す。
【0133】
【表9】

【0134】
【表10】

【0135】
【表11】

【0136】
【表12】

【0137】
【表13】

【0138】
【表14】

【0139】
【表15】

【0140】
[実施例のフィルムの効果]
表4〜8によれば、実施例1〜8の製造方法においては、溶融シートの引取速度が高いにも拘わらず(66m/min,75m/min)、製造されたフィルムロールのロール全体に亘る縦方向の厚み斑が非常に小さく、沸水収縮率や屈折率等の物性の変動が小さくなっていることが分かる。また、実施例1〜8のフィルムロールは、いずれも、ラミネート加工性が良好であることが分かる。さらに、実施例1〜8のフィルムロールは、いずれも、S字カール現象が起こらず、実施例3〜7のフィルムロールを構成するフィルムは、衝撃強度(強靱性、耐ピンホール性)が良好であり、ラミネート強度が高いことが分かる。これに対して、溶融樹脂を金属ロールへ静電密着させる際にストリーマコロナ放電を行うことなくグロー放電を行った比較例1では、上述の如く、延伸し得る未延伸フィルムを得ることはできず、実施例1と同様な速度で製膜することは不可能であった。
【0141】
また、表11〜15から、参考例1〜7のフィルムロールは、いずれも、ロール全体に亘る縦方向の厚み斑が非常に小さく、沸水収縮率や屈折率等の物性の変動が小さく、S字カール現象が起こらず、ラミネート加工性が良好であることが分かる。その上、参考例1〜7のフィルムロールを構成するフィルムは、いずれも、衝撃強度(強靱性、耐ピンホール性)が良好であり、ラミネート強度が高いことが分かる。これに対して、参考比較例1〜5のフィルムロールは、ロール全体に亘る縦方向の厚み斑や、沸水収縮率や屈折率等の物性の変動が大きくなっており、S字カール現象が見られたり、ラミネート加工性が不良であったりすることが分かる。
【産業上の利用可能性】
【0142】
本発明の製造方法は、上記の如く、生産性向上の面で優れた効果を有するので、ポリアミド系樹脂フィルムロールの製造に好適に用いることができる。また、本発明の製造方法によって得られるポリアミド系樹脂フィルムロールは、上記の如く優れた加工特性を有しているので、食品のレトルト加工用途に好適に用いることができる。
【図面の簡単な説明】
【0143】
【図1】移動冷却体に電極が配置されてストリーマコロナ放電が行われている状態を示す説明図である。
【符号の説明】
【0144】
1・・ダイス、2・・シート状溶融体、3・・冷却ドラム、4・・未延伸シート、5・・直流高圧電源、6・・電極、7・・ストリーマコロナ放電。

【特許請求の範囲】
【請求項1】
幅が0.2m以上3.0m以下で長さが300m以上30000m以下のポリアミド系樹脂フィルムを巻き取ってなるポリアミド系樹脂フィルムロールの製造方法であって、
ポリアミド系樹脂を移動冷却体面上へシート状に溶融押出し冷却することにより未延伸シートを得る溶融押出冷却工程、未延伸シートを縦方向および横方法に二軸延伸する二軸延伸工程、および二軸延伸された二軸延伸フィルムをロール状に巻き取る巻取工程を含んでおり、
前記溶融押出冷却工程が、
前記ポリアミド系樹脂の移動冷却体面への溶融押出し冷却に際し、直流高圧を印可した電極と前記溶融状態のポリアミド系樹脂シートとの間に、ストリーマコロナ状態のコロナ放電を行い、溶融状態のポリアミド系樹脂シートに移動冷却体面と密着するに十分な電荷を付与せしめるものであり、
ロール状に巻き取られたポリアミド系樹脂フィルムが、
フィルムの巻き終わりから2m以内に1番目の試料切り出し部を、また、フィルムの巻き始めから2m以内に最終の切り出し部を設けるとともに、1番目の試料切り出し部から約100m毎に試料切り出し部を設けたとき、下記要件(1)、(2)を満たすとともに、下記要件(3)を満たすものであることを特徴とするポリアミド系樹脂フィルムロールの製造方法。
(1)前記各切り出し部から切り出された各試料について、全方向の沸水収縮率のうちの最大値である最大沸水収縮率を測定したときに、それらの最大沸水収縮率の平均値である平均沸水収縮率が2%〜6%であるとともに、すべての試料の最大沸水収縮率の変動率が、前記平均沸水収縮率に対して±2%〜±10%の範囲内である
(2)前記各切り出し部から切り出された各試料について、長手方向に対し+45度方向の沸水収縮率と長手方向に対し−45度方向の沸水収縮率との差の絶対値である沸水収縮率方向差を求めたときに、それらの沸水収縮率方向差の平均値である平均沸水収縮率方向差が1.5%以下であるとともに、すべての試料の沸水収縮率方向差の変動率が、前記平均沸水収縮率方向差に対して±2%〜±10%の範囲内である
(3)巻取られたロールの長手方向全長に亘る厚みの変動率が、平均厚みに対して±2%〜±10%の範囲内である
【請求項2】
ロール状に巻き取られたポリアミド系樹脂フィルムが、
各切り出し部から切り出された各試料について、厚み方向の屈折率を測定したときに、それらの屈折率の平均値である平均屈折率が1.500以上1.520以下であるとともに、すべての試料の屈折率の変動率が、前記平均屈折率に対して±2%以内の範囲であることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項3】
ロール状に巻き取られたポリアミド系樹脂フィルムが、
各切り出し部から切り出された各試料について、厚み方向の屈折率を測定したときに、それらの屈折率の平均値である平均屈折率が1.500以上1.520以下であるとともに、すべての試料の屈折率の変動率が、前記平均屈折率に対して±1%以内の範囲であることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項4】
ポリアミド系樹脂フィルムを構成するポリアミドの主成分がナイロン6であることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項5】
異なる2種以上のポリアミド系樹脂の混合物から形成されたポリアミド系樹脂フィルムを巻き取ることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項6】
巻き取ったポリアミド系樹脂フィルムがポリオレフィン系樹脂フィルムとラミネートされるものであることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項7】
テンター延伸法により延伸したポリアミド系樹脂フィルムを巻き取ることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項8】
逐次二軸延伸したポリアミド系樹脂フィルムを巻き取ることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項9】
実質的に未配向のポリアミド系樹脂からなるシート状物を、前記ポリアミド系樹脂のガラス転移温度+20℃よりも高温で3倍以上の倍率となるように少なくとも2段階で縦方向に延伸を施した後に、3倍以上の倍率となるように横方向に延伸を施したポリアミド系樹脂フィルムを巻き取ることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項10】
最終的な延伸処理を施した後に熱固定したポリアミド系樹脂フィルムを巻き取ることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項11】
熱固定後に弛緩処理を施したポリアミド系樹脂フィルムを巻き取ることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項12】
巻き取られたポリアミド系樹脂フィルム中に、滑剤、ブロッキング防止剤、熱安定剤、酸化防止剤、帯電防止剤、耐光剤、耐衝撃性改良剤のうちの少なくとも1種が添加されていることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項13】
巻き取られたポリアミド系樹脂フィルム中に、無機粒子が添加されていることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項14】
無機粒子が、平均粒径0.5〜5.0μmのシリカ粒子であることを特徴とする請求項13に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項15】
巻き取られたポリアミド系樹脂フィルム中に、高級脂肪酸が添加されていることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。
【請求項16】
前記溶融押出冷却工程におけるストリーマコロナ状態のコロナ放電が、直流高圧を印可した多針状電極と溶融状態のポリアミド系樹脂シートとの間で行われることを特徴とする請求項1に記載のポリアミド系樹脂フィルムロールの製造方法。

【図1】
image rotate


【公開番号】特開2006−15732(P2006−15732A)
【公開日】平成18年1月19日(2006.1.19)
【国際特許分類】
【出願番号】特願2005−132858(P2005−132858)
【出願日】平成17年4月28日(2005.4.28)
【出願人】(000003160)東洋紡績株式会社 (3,622)
【Fターム(参考)】