説明

ポリエステル樹脂及びそれを用いてなる感圧式接着剤組成物

【課題】タック、基材との密着性、耐熱性、耐湿熱性及び透明性に優れ、更に屈折率の高い接着剤層を形成し得るポリエステル樹脂を含む感圧式接着剤組成物、及び該感圧式接着剤組成物を用いてなる積層体の提供。
【解決手段】芳香環構造を有する二塩基酸系成分(a1)を含む二塩基酸系成分(A)と、側鎖にアルキル基を有するジオール(b1)を含むジオール成分(B)と、3価以上の多価アルコール(c1)、3価以上の多価カルボン酸(c2)、一分子中に水酸基1個とカルボキシル基2個とを有するオキシジカルボン酸(c3)、及び一分子中に水酸基2個とカルボキシル基1個とを有するジオキシカルボン酸(c4)から選ばれる少なくとも1つの多官能化合物(C)と、1官能のカルボン酸(d1)及び1官能のアルコール(d2)から選ばれる少なくとも1つの単官能化合物(D)と、を反応して得られる、ガラス転移温度が−80〜0℃のポリエステル樹脂。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、各種被着体との接着性、耐熱性、耐湿熱性及び透明性に優れた感圧式接着剤組成物に使用することができるポリエステル樹脂に関するものであり、特に光学部材の積層に好適な前記ポリエステル樹脂を含む感圧式接着剤組成物及びそれを用いてなる積層体に関するものである。
【背景技術】
【0002】
近年のエレクトロニクスの飛躍的な進歩により、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、リアプロジェクションディスプレイ(RPJ)、ELディスプレイ、発光ダイオ−ドディスプレイなどの様々なフラットパネルディスプレイ(FPD)が、様々な分野で表示装置として使用されようになってきた。例えば、これらFPDは、パーソナルコンピューターのディスプレイや液晶テレビをはじめ屋内で使用されるばかりでなく、カーナビゲーション用ディスプレイ等のように車両に搭載して使用されたりする。これらLCDを構成する液晶セル用部材には、偏光フィルムや位相差フィルムが積層されている。又、これらの表示装置には、外部光源からの反射を防ぐための反射防止フィルムや、表示装置の表面の傷付き防止のための保護フィルム(プロテクトフィルム)などが使用されている。更にFPDを表示装置として利用するだけではなく、それらの表面にタッチパネルの機能を設けて、入力装置としても利用されることがある。このタッチパネルにも、保護フィルム、反射防止フィルムやITO蒸着樹脂フィルムなどが使用されている。
【0003】
前記表示装置に使用される種々のフィルムは、感圧式接着剤により被着体に貼着され、使用されている。表示装置に用いられるものであるから、感圧式接着剤は、まず透明性に優れることが要求されるので、アクリル系樹脂を主剤とする感圧式接着剤が一般に使用されている。
【0004】
ところで、前記した種々のフィルムのうち偏光フィルムは、ポリビニルアルコール系偏光子の両面をトリアセチルセルロース系やシクロオレフィン系の保護フィルムで挟んだ3層構造を呈する。各層を構成する材料の特性故に、そもそも熱や湿度によって、偏光フィルムは伸縮による顕著な寸法変化を生ずる。
【0005】
又、近年では、光学部材の接着処理おいて、光を有効利用するという観点から、光学部材と被着体との間における屈折率差に基づく界面反射の抑制が求められ、光学部材の屈折率と被着体の屈折率との中間の屈折率を有する感圧接着剤層(以下、「接着剤層」と略す場合もある。)の使用が有利であることが知られている。ちなみに界面での屈折率差が大きいと全反射を生じる入射角が小さくなり、光の有効利用度を低下させる。
【0006】
しかしながら従来のアクリル系樹脂を用いた接着剤層の屈折率は、1.46前後であるのに対して、光学部材を形成する材料の屈折率は、例えばガラスで1.52前後、メタクリル系樹脂で1.51前後、ポリカーボネート系樹脂で1.54前後、ポリエチレンテレフタレート(PET)系樹脂で1.60前後であるため、両者の屈折率の差が大きく、又、例えばガラスからなる光学部材とメタクリル系樹脂やポリカーボネート系樹脂、あるいはPET樹脂からなる光学部材とを接着する際に、前記した中間の屈折率を得ることもできない。
【0007】
従って、偏光フィルムを液晶セル用のガラス部材に貼着するためのアクリル系感圧式接着剤は、偏光フィルム自体の寸法変化を抑えることや、接着剤層の屈折率をより高めることが求められる。このために、感圧式接着剤層自体を硬くしたり、接着強さを大きくしたりすることによって、比較的小さい寸法の変化、あるいは比較的短期間の寸法の変化を抑制することはできる。又、芳香環含有の単量体を使用したり、芳香族化合物や硫黄原子を含む化合物、あるいは無機化合物を使用したりすることである程度の屈折率向上は可能である。
【0008】
しかし、近年の液晶パネルの大画面化に伴い、偏光フィルムのサイズも大型化し、偏光フィルムの熱変形量が増大するようになった。従来の感圧式接着剤を使用した場合、接着剤層に残る貼着時の応力の緩和が充分ではないので、偏光フィルムのひずみに接着剤層が充分には追随できず、その結果、大型液晶パネルを高温に曝したり、高湿度に曝したりすると、偏光フィルムの変色や透明性の低下を引き起こしたり、偏光フィルムが大型液晶セルのガラス基板から剥がれたり、偏光フィルムに応力集中が生じ、大型液晶パネルに光漏れが生じたり、あるいは揮発性ガスを発生したりするという問題がある。
【0009】
又、液晶パネルを長期にわたって使用する間にも偏光フィルムは寸法変化し、その応力が接着剤層に蓄積されることとなる。応力が接着剤層に蓄積され続けると、偏光フィルムと液晶セル用ガラス部材間の接着力の分布が不均一となる。そして、長期間の使用中に特に偏光フィルムの周縁部に応力が集中し、その結果液晶素子の周縁部が中央より明るかったり、あるいは暗くなったりするなどの液晶素子表面に色むら・白ヌケが発生する。
【0010】
又、液晶セル用のガラス面に偏光フィルムを貼り付けて積層体とした後、検品工程において、積層工程でのエアーや粉塵の巻き込み等のあるものについては、ガラスセル面から偏光フィルム等を剥がして、もう一度新しい偏光フィルム等を貼り直すことが行われる。しかし、貼着後、一般に積層体は、接着性促進のために高温下で一定時間保管し、その後検査されるので、その間に剥離強度が高くなり過ぎ、偏光フィルム等を剥ぎ取り難いばかりでなく、剥がした後に糊残りが生じたりして、再剥離性が不充分である。
【0011】
上記したように、液晶セル用のガラス部材に偏光フィルムを積層するために使用する感圧式接着剤には、良好な光学特性(透明性)、耐熱性及び耐湿熱性、良好な応力緩和性、屈折率の制御性、再剥離性等が求められる。そして、位相差フィルムや各種ディスプレイのカバーフィルムを積層するための感圧式接着剤にも同様の性能が求められる。
【0012】
これら種々の要求に対して、従来、様々な感圧式接着剤が提案されてきた。例えば、アクリル系樹脂を主剤とする種々の感圧式接着剤が知られている(特許文献1〜5参照)。又、アクリル系樹脂にポリエステルやポリウレタンを併用する感圧式接着剤も知られている(特許文献6〜9参照)。しかし、一般的にアクリル系樹脂と、ポリエステル系樹脂やポリウレタン系樹脂とは相溶性が悪く、アクリル系樹脂に対し、ポリエステル系樹脂やポリウレタン樹脂を少量混合する程度であれば透明性をさほど損なうことはないが、ポリエステル系樹脂やポリウレタン系樹脂を多く混合しようとすると、感圧式接着剤自体が白化したり、分離したりする。偏光フィルム等を液晶セル用のガラスに貼着するための感圧式接着剤には、極めて高度な透明性が要求される。そして、上記のような、相溶性の悪い感圧式接着剤を用いて偏光フィルム等を液晶セル用のガラスに貼着しようとしても、接着剤層に相分離や揺らぎが発生してしまうという問題点があった。
【0013】
ところで、耐薬品性、加工性の良さから、繊維、塗料の他、食品包装用積層体形成用や金属板とプラスチックフィルムとの積層用をはじめとする感圧式接着剤以外の接着剤(以下、単に接着剤という)等の様々な技術分野では、従来からポリエステル系接着剤が使用されてきた。しかし、感圧式接着剤の技術分野では、ポリエステル系感圧式接着剤は講学上検討されたことはあったようであるが、実務上はほとんど検討されてなく、アクリル系感圧式接着剤がその大部分を占めていた。
【0014】
感圧式接着剤は、感圧式接着シートを形成するために用いられる。感圧式接着シートの基本的積層構成は、シート状基材/感圧式接着剤層/剥離シートのような片面感圧式接着シート、あるいは剥離シート/感圧式接着剤層/シート状基材/感圧式接着剤層/剥離シートのような両面感圧式接着シートである。使用時に、剥離シートが剥がされ、感圧式接着剤層が被着体に貼付される。感圧式接着剤は、貼着の際被着体に感圧式接着剤層が触れるその瞬間に感圧式接着剤層がタックを有すのみならず、接着剤とは異なり、貼着中も完全に固化することなく、タックと適度な固さを有しつつ、貼着状態を維持するための凝集力を有することが必要である。凝集力は分子量に大きく依存する。
【0015】
アクリル系樹脂は、付加重合により形成されるので、数十万以上の分子量のものを簡単に形成することができる。一方、ポリエステル系樹脂は重縮合により形成されるので、そのような高分子量のものを形成することは事実上困難である。ポリエステル系樹脂の場合、縮合と分解とが平衡状態に達してしまうと、分子量はもはやそれ以上大きくはならないからであり、反応条件を変え、更に縮合を進めようとすると劣化との競合となるからである。従って、タックを有しつつ、凝集力を発現するためには、分子量が比較的大きく、凝集力を発現しやすいアクリル系樹脂を主剤とし、その主剤に対して、比較的少量の硬化剤を用い、タックを発現させやすいアクリル系感圧式接着剤が好適であるといえる。一方、比較的分子量の小さいポリエステル系樹脂は、比較的多量の硬化剤でしっかり架橋させ、接着性能を発現するための接着剤に好適であるといえる。
【0016】
又、ポリエステル系樹脂の原材料は、アクリル系樹脂の原材料に比して高価である。更に重縮合反応は逐次反応なので付加重合に比して、分子量を大きくするためには必然的に長時間を要する。その結果、ポリエステル系樹脂は、アクリル系樹脂に比して高価となる。そこで、長年にわたり、ポリエステル系樹脂は接着剤に適用され、アクリル系樹脂は感圧式接着剤に適用されてきた。
【0017】
しかし、感圧式接着シートの用いられる分野も多岐にわたり、要求レベルが上がったり、新たな要求が追加されたり、従来のアクリル系感圧式接着剤では種々の要求に充分応えられなくなりつつある。そこで、ポリエステル系樹脂の感圧式接着剤への適用が検討されるようになってきた。
【0018】
例えば、ダイマー酸と、30mol%以上の側鎖にアルキル基を有するグリコール成分とから形成されるガラス転移温度(Tg)が−60〜0℃のポリエステル樹脂に種々の硬化剤を配合してなる感圧式接着剤が知られている(例えば、特許文献10参照)。しかし、エポキシ樹脂を硬化剤とする場合、その反応には比較的高温、長時間を要する。一方、硬化剤としてイソシアネート化合物を用いる実施例7、8は、主剤として無水トリメリット酸を構成成分とするポリエステル樹脂を用いるので、後述する特許文献12、13と同様の問題点があった。
【0019】
又、側鎖にメチル基を有するグリコールとカルボン酸とのエステルをポリイソシアネートで連結した単位が繰り返されてなり、かつTgが−40℃以下の脂肪族ポリエステルからなる感圧式接着剤が知られている(例えば、特許文献11参照)。特許文献11に開示される感圧式接着剤は生分解性を目的とするものであり、脂肪族系ポリエステルの感圧式接着剤なので、タックも得やすく比較的柔軟な感圧式接着剤層を得ることができるが、耐熱性が不充分である。例えば、液晶セル用のガラス部材に偏光フィルムを積層するための感圧式接着剤として用いた場合には、貼着後高温下や高温高湿度下に長時間置くと、浮きや剥がれが生じる。
【0020】
又、芳香族ジカルボン酸10モル%以上50モル%未満を含むカルボン酸成分と、側鎖に炭化水素基を有するグリコール5モル%以上を含む多価アルコール成分とを重縮合してなり、かつ、数平均分子量が5000以上であるポリエスエテル系樹脂を含有してなることを特徴とする感圧式接着剤が知られている(例えば、特許文献12参照)。
【0021】
又、芳香族ジカルボン酸を含むジカルボン酸成分と、側鎖に炭化水素基を有するグリコールを含むジオール成分と、3価以上の多価アルコール及び/又は3価以上の多価カルボン酸を重縮合してなるポリエステル系樹脂であって、3価以上の多価アルコール及び/又は3価以上の多価カルボン酸由来の構造部位が、該ポリエステル系樹脂中に0.1〜5モル%含有するポリエステル系樹脂を含有してなることを特徴とする感圧式接着剤が知られている(例えば、特許文献13参照)。
【0022】
特許文献12、13には、ポリエステル系樹脂を主剤とし、ポリエステル系樹脂中の水酸基及び/又はカルボキシル基と架橋剤との反応を利用し、感圧式接着剤層の凝集力を高める旨、開示されている。架橋剤との反応を担う水酸基及び/又はカルボキシル基は、多官能のアルコールや多官能のカルボン酸成分を利用して導入されるものと参酌される。感圧式接着剤層の凝集力を大きくするためには、ポリエステル系樹脂中のこれら官能基を増やすことが必要と解される。しかし、官能基を増やすことによって凝集力が大きくなり、耐湿熱性は向上するが、一方で、接着力が低下してはがれ易くなるという欠点が生じる。更に、偏光フィルムや位相差フィルム等の光学フィルムに適用した場合、形成された感圧式接着剤層に、部分凝集や密度の不均一さに伴う揺らぎ(光学干渉ムラ)が発生する。又貼着後、これら部分凝集等を起点として、発泡やズレ等の現象を引き起こすだけでなく、偏光フィルム等を剥がした後に糊残りが生じたりして、再剥離性が不充分であるため、光学フィルムを貼着するための感圧式接着剤には適さない。又、多官能のアルコールや多官能のカルボン酸成分の水酸基やカルボン酸は、いずれも一級の官能基であるため、エステル化反応途中に部分凝集等の3次元化を引き起こし易く、ゲル化し易いため、高分子量とすることが困難である。従って、凝集力向上のための官能基を増やしたくても、なかなか増やせないので、期待したほど、感圧式接着剤層の溶剤不溶解分率(ゲル分率)が上げられず、凝集力を向上できない。
【特許文献1】特開平01−066283号公報
【特許文献2】特開平10−279907号公報
【特許文献3】特開2002−121521号公報
【特許文献4】特開2003−013029号公報
【特許文献5】特開2002−014225号公報
【特許文献6】特開2003−073646号公報
【特許文献7】特開2004−002827号公報
【特許文献8】特開2004−083648号公報
【特許文献9】特開2002−053835号公報
【特許文献10】特開平04−328186号公報
【特許文献11】特開平11−021340号公報
【特許文献12】特開2007−045914号公報
【特許文献13】特開2007−099879号公報
【発明の開示】
【発明が解決しようとする課題】
【0023】
本発明は、架橋点として利用可能な官能基を多数含み、かつ接着力の低下しない高分子量のポリエステル樹脂を提供することを目的とする。本発明のポリエステル樹脂を用いた感圧式接着剤組成物は、高架橋性を有するために耐熱性と耐湿熱性に優れ、かつ、タック、基材との密着性に優れる高屈折率の感圧式接着剤層を形成し得る。
【課題を解決するための手段】
【0024】
本発明者らは、上記問題を解決するため、鋭意検討した結果、本発明に達した。即ち、第1の発明は、芳香環構造を有する二塩基酸系成分(a1)を含む二塩基酸系成分(A)と、側鎖にアルキル基を有するジオール(b1)を含むジオール成分(B)と、3価以上の多価アルコール(c1)、3価以上の多価カルボン酸(c2)、一分子中に水酸基1個とカルボキシル基2個とを有するオキシジカルボン酸(c3)、及び一分子中に水酸基2個とカルボキシル基1個とを有するジオキシカルボン酸(c4)から選ばれる少なくとも1つの多官能化合物(C)と、1官能のカルボン酸(d1)及び1官能のアルコール(d2)から選ばれる少なくとも1つの単官能化合物(D)と、を反応して得られる、ガラス転移温度が−80〜0℃のポリエステル樹脂に関する。
【0025】
又、第2の発明は、芳香環構造を有する二塩基酸系成分(a1)由来の構造を5〜50mol%含有することを特徴とする第1の発明のポリエステル樹脂に関する。
【0026】
又、第3の発明は、側鎖にアルキル基を有するジオール(b1)由来の構造を5〜40mol%含有することを特徴とする第1又は2の発明のポリエステル樹脂に関する。
【0027】
又、第4の発明は、3価以上の多価アルコール(c1)、3価以上の多価カルボン酸(c2)、一分子中に水酸基1個とカルボキシル基2個とを有するオキシジカルボン酸(c3)、及び一分子中に水酸基2個とカルボキシル基1個とを有するジオキシカルボン酸(c4)から選ばれる少なくとも1つの多官能化合物(C)由来の構造を0.1〜10mol%含有することを特徴とする第1〜3いずれかの発明のポリエステル樹脂に関する。
【0028】
又、第5の発明は、1官能のカルボン酸(d1)及び1官能のアルコール(d2)から選ばれる少なくとも1つの単官能化合物(D)由来の構造を0.1〜10mol%含有することを特徴とする第1〜4いずれかの発明のポリエステル樹脂に関する。
【0029】
又、第6の発明は、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が、2.0〜6.0であることを特徴とする第1〜5いずれかの発明のポリエステル樹脂に関する。
【0030】
又、第7の発明は、重量平均分子量が30,000〜1,000,000であることを特徴とする第1〜6いずれかの発明のポリエステル樹脂に関する。
【0031】
又、第8の発明は、第1〜7いずれかの発明のポリエステル樹脂、及び該ポリエステル樹脂と反応し得る反応性化合物(E)を含有することを特徴とする感圧式接着剤組成物に関する。
【0032】
又、第9の発明は、反応性化合物(E)が、多官能エポキシ化合物、多官能アジリジン化合物、多官能カルボジイミド化合物、多官能オキサゾリン化合物、多官能イソシアネート化合物、及び金属キレート化合物からなる群より選ばれる少なくとも1種であることを特徴とする第8の発明の感圧式接着剤組成物に関する。
【0033】
又、第10の発明は、光学部材上に、第8又は9の発明の感圧式接着剤組成物から形成される感圧式接着剤層が積層されてなる積層体に関する。
【0034】
又、第11の発明は、液晶セル用ガラス部材、第8又は9の発明の感圧式接着剤組成物から形成される感圧式接着剤層、及び光学部材が順次積層されてなる液晶セル用部材に関する。
【発明の効果】
【0035】
本発明により、架橋点として利用可能な官能基を多数含み、かつ接着力の低下しない高分子量のポリエステル樹脂を安定に再現性良く得ることができるようになった。本発明のポリエステル樹脂を感圧式接着剤組成物に用いることにより、高架橋性を有するために耐熱性と耐湿熱性に優れ、かつ、タック、基材との密着性に優れる高屈折率の感圧式接着剤層を提供できるようになった。
【発明を実施するための最良の形態】
【0036】
本発明の、ガラス転移温度が−80〜0℃であるポリエステル樹脂は、芳香環構造を有する二塩基酸系成分(a1)[以下、「二塩基酸系成分(a1)」と表記する場合がある。]を含む二塩基酸系成分(A)と、側鎖にアルキル基を有するジオール(b1)[以下、「ジオール(b1)」と表記する場合がある。]を含むジオール成分(B)と、3価以上の多価アルコール(c1)、3価以上の多価カルボン酸(c2)、一分子中に水酸基1個とカルボキシル基2個とを有するオキシジカルボン酸(c3)、及び一分子中に水酸基2個とカルボキシル基1個とを有するジオキシカルボン酸(c4)から選ばれる少なくとも1つの多官能化合物(C)[以下、「多官能化合物(C)」と表記する場合がある。]と、1官能のカルボン酸(d1)及び1官能のアルコール(d2)から選ばれる少なくとも1つ単官能化合物(D)[以下、「単官能化合物(D)」と表記する場合がある。]と、を重縮合反応させることにより得ることができる。
【0037】
本発明に用いられる二塩基酸系成分(A)としては、公知のジカルボン酸類やそれらの酸無水物類、更にジカルボン酸類や酸無水物類とメタノールやエタノール等のモノアルコールとのエステル化物類が挙げられるが、本発明は、二塩基酸系成分(A)の中に芳香環構造を有する二塩基酸系成分(a1)を含むことを特徴としている。芳香環構造を有する二塩基酸系成分(a1)としては、例えば、o−フタル酸、イソフタル酸、テレフタル酸、1,4−ジメチルテレフタル酸、1,3−ジメチルイソフタル酸、5−スルホ−1,3−ジメチルイソフタル酸、4,4−ビフェニルジカルボン酸、1,4−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、ジフェニルメタン−4,4’−ジカルボン酸、フェニルインデンジカルボン酸等の芳香族ジカルボン酸類;
無水フタル酸、1,8−ナフタレンジカルボン酸無水物、2,3−ナフタレンジカルボン酸無水物等の芳香族ジカルボン酸無水物類;などが挙げられる。
【0038】
又、上記のような芳香族ジカルボン酸類や芳香族ジカルボン酸無水物類をアルコールによりエステル化した化合物、例えば炭素数1〜4のアルキルアルコールのエステル化物を用いることもできる。芳香族ジカルボン酸類や芳香族ジカルボン酸無水物類のアルコールによるエステル化物を用いる場合には、ジオール成分(B)や多官能化合物(C)や単官能化合物(D)と脱水縮合ではなく、脱アルコールによるエステル交換反応によって、エステル結合を生成する。
アルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、n−アミルアルコール、ヘキサノール、ヘプタノール、n−オクタノール、2−エチルヘキサノール、イソオクタノール、ノナノール、デカノール、イソウンデカノール、ラウリルアルコール、セチルアルコール、ステアリルアルコール等の直鎖又は分岐脂肪族アルコール類;
ベンジルアルコール、α−メチルベンジルアルコール、フェネチルアルコール等の芳香脂肪族モノアルコール類;
シクロペンタノール、シクロヘキサノール、シクロヘキサンメタノール、シクロヘプタノール、シクロオクタノール、トリシクロデカンメタノール等の脂環族モノアルコール類が挙げられる。アルコールの中でも脱アルコールのし易さの点から、メタノールが好ましい。
【0039】
更に、芳香族トリカルボン酸無水物や芳香族テトラカルボン酸無水物をアルコールでハーフエステル化した化合物を芳香族ジカルボン酸として使用することができる。
【0040】
芳香族トリカルボン酸無水物としては、例えば、1,2,3−ベンゼントリカルボン酸無水物、トリメリット酸無水物、1,2,4−ナフタレントリカルボン酸無水物、1,4,5−ナフタレントリカルボン酸無水物、2,3,6−ナフタレントリカルボン酸無水物、1,2,8−ナフタレントリカルボン酸無水物、3,4,4’−ベンゾフェノントリカルボン酸無水物、3,4,4’−ビフェニルエーテルトリカルボン酸無水物、3,4,4’−ビフェニルトリカルボン酸無水物、2,3,2’−ビフェニルトリカルボン酸無水物、3,4,4’−ビフェニルメタントリカルボン酸無水物、3,4,4’−ビフェニルスルホントリカルボン酸無水物等が挙げられる。
【0041】
芳香族テトラカルボン酸無水物としては、例えば、ピロメリット酸無水物、エチレングリコールジ無水トリメリット酸エステル、プロピレングリコールジ無水トリメリット酸エステル、ブチレングリコールジ無水トリメリット酸エステル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸無水物、1,4,5,8−ナフタレンテトラカルボン酸無水物、2,3,6,7−ナフタレンテトラカルボン酸無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸無水物、3,3’,4,4’−ジメチルジフェニルシランテトラカルボン酸無水物、3,3’,4,4’−テトラフェニルシランテトラカルボン酸無水物、1,2,3,4−フランテトラカルボン酸無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン無水物、3,3’,4,4’−パーフルオロイソプロピリデンジフタル酸無水物、3,3’,4,4’−ビフェニルテトラカルボン酸無水物、ビス(フタル酸)フェニルホスフィンオキサイド無水物、p−フェニレン−ビス(トリフェニルフタル酸)無水物、m−フェニレン−ビス(トリフェニルフタル酸)無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルエーテル無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルメタン無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸無水物、9,9−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]フルオレン酸無水物、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸無水物、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−6−メチル−1−ナフタレンコハク酸無水物等が挙げられる。
【0042】
これら二塩基酸系成分(a1)は、単独で又は2種以上で用いることができる。これらの中でも、耐熱性、耐湿熱性の点から、テレフタル酸、イソフタル酸が好ましい。
【0043】
芳香環構造を有する二塩基酸系成分(a1)以外の二塩基酸系成分(A)としては、例えば、シュウ酸、マロン酸、コハク酸、アジピン酸、セバチン酸、アゼライン酸、スベリン酸、マレイン酸、クロロマレイン酸、フマル酸、ドデカン二酸、ピメリン酸、シトラコン酸、グルタル酸、イタコン酸等の脂肪族ジカルボン酸類;
ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、ノルボルネンジカルボン酸等の脂環族ジカルボン酸類;
ヘキサヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、1,2−シクロヘキサンジカルボン酸無水物等の脂環族ジカルボン酸無水物類;
無水コハク酸、メチル無水コハク酸物、2,2−ジメチル無水コハク酸、ブチル無水コハク酸、イソブチル無水コハク酸、ヘキシル無水コハク酸、オクチル無水コハク酸、ドデセニル無水コハク酸、フェニル無水コハク酸、無水グルタル酸、3−アリル無水グルタル酸、2,4−ジメチル無水グルタル酸、2,4−ジエチル無水グルタル酸、ブチル無水グルタル酸、ヘキシル無水グルタル酸、無水マレイン酸、2−メチル無水マレイン酸、2,3−ジメチル無水マレイン酸、ブチル無水マレイン酸、ペンチル無水マレイン酸、ヘキシル無水マレイン酸、オクチル無水マレイン酸、デシル無水マレイン酸、ドデシル無水マレイン酸、2,3−ジクロロ無水マレイン酸、フェニル無水マレイン酸、2,3−ジフェニル無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水フタル酸、4−メチル無水フタル酸、ダイマー酸、1,2,3,6−テトラヒドロ無水フタル酸、3−メチル−1,2,3,6−テトラヒドロ無水フタル酸、4−メチル−1,2,3,6−テトラヒドロ無水フタル酸、3−メチル−1,2,3,6−テトラヒドロ無水フタル酸、4−メチル−1,2,3,6−テトラヒドロ無水フタル酸、メチルブテニル−1,2,3,6−テトラヒドロ無水フタル酸、無水クロレンド酸、無水ヘッド酸、ビフェニルジカルボン酸無水物、無水ハイミック酸、エンドメチレン−1,2,3,6−テトラヒドロ無水フタル酸、メチル−3,6−エンドメチレン−1,2,3,6−テトラヒドロ無水フタル酸、1−シクロペンテン−1,2−ジカルボン酸無水物、メチルシクロヘキセンジカルボン酸無水物、無水トリメリット酸、1,8−ナフタレンジカルボン酸無水物、オクタヒドロ−1,3−ジオキソ−4,5−イソベンゾフランジカルボン酸無水物等の酸無水物類が挙げられる。
【0044】
これらのジカルボン酸類、その酸無水物類、あるいはそれらのエステル化物類は、それぞれを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0045】
上記の二塩基酸系成分(A)は、芳香環構造を有する二塩基酸系成分(a1)を含むことが重要であり、本発明のポリエステル樹脂中に該二塩基酸系成分(a1)由来の構造を5〜50mol%含有することが好ましく、10〜35mol%含有することが、接着性、耐熱性、耐湿熱性及び透明性に優れたポリエステル樹脂を得られるため、最も好ましい。二塩基酸系成分(a1)由来の構造が5mol%よりも少ないか、あるいは50mol%よりも多いと、得られるポリエステル樹脂の接着特性バランス(特に、タックと凝集力との両立)を確保することが困難である場合があり、又、耐熱性及び耐湿熱性が低下する場合がある。
【0046】
次に本発明に使用するジオール成分(B)としては、例えば、エチレングリコール、プロピレングリコール、ジプロピレングリコール、ジエチレングリコール、トリエチレングリコール、2−メチル−1,3−プロパンジオール、2−メチル−2−エチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオール、2−メチル−2−プロピル−1,3−プロパンジオール、2−ブチル−2−メチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、2,4−ジエチル−1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、1,3,5−トリメチル−1,3−ペンタンジオール、2−メチル−1,8−オクタンジオール、3,3’−ジメチロールヘプタン、ポリオキシエチレングリコール(付加モル数10以下)、ポリオキシプロピレングリコール(付加モル数10以下)、プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、ネオペンチルグリコール、オクタンジオール、3−ブチル−3−エチル−1,5−ペンタンジオール、2−エチル−1,6−ヘキサンジオール、シクロヘキサンジオール、シクロヘキサンジメタノール,トリシクロデカンジメタノール、シクロペンタジエンジメタノール、ダイマージオール等の脂肪族あるいは脂環族ジオール類;
1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、1,2−ビス(2−ヒドロキシエトキシ)ベンゼン、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、4,4’−メチレンジフェノール、4,4’−(2−ノルボルニリデン)ジフェノール、4,4’−ジヒドロキシビフェノール、o−、m−、及びp−ジヒドロキシベンゼン、4,4’−イソプロピリデンフェノール、1,2−インダンジオール、1,3−ナフタレンジオール、1,5−ナフタレンジオール、1,7−ナフタレンジオール、9,9’−ビス(4−ヒドロキシフェニル)フルオレン、9,9’−ビス(3−メチル−4−ヒドロキシフェニル)フルオレンあるいはビスフェノールAやビスフェノールF等のビスフェノール類にエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加させてなるビスフェノール類等の芳香族ジオール類等を挙げることができる。
【0047】
これらのジオール成分(B)は、それぞれを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0048】
本発明におけるジオール成分(B)は、結晶化を抑制し、接着特性バランス(特に、タックと凝集力との両立)を確保するためには、側鎖にアルキル基を有するジオール(b1)を含有することが重要であり、本発明のポリエステル樹脂中にジオール(b1)由来の構造を5〜40mol%含有することが好ましい。ジオール(b1)由来の構造が5mol%よりも少ないか、あるいは40mol%よりも多いと、得られるポリエステル樹脂の接着特性バランス(特に、タックと凝集力との両立)を維持することが困難である場合があり、又、耐熱性及び耐湿熱性が低下する場合がある。
【0049】
側鎖にアルキル基を有するジオール(b1)としては、特に限定されないが、上述したジオール成分(B)中、例えば、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、2−メチル−1,3−プロパンジオール、2−メチル−2−エチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオール、2−メチル−2−プロピル−1,3−プロパンジオール、2−ブチル−2−メチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2−メチル−2,4−ペンタンジオール、2,4−ジエチル−1,5−ペンタンジオール、3−ブチル−3−エチル−1,5−ペンタンジオール、1,3,5−トリメチル−1,3−ペンタンジオール、2−メチル−1,6−ヘキサンジオール、2−メチル−1,8−オクタンジオール等が挙げられ、これらを単独で又は2種以上で用いることができる。
【0050】
次に、3価以上の多価アルコール(c1)、3価以上の多価カルボン酸(c2)、一分子中に水酸基1個とカルボキシル基2個とを有するオキシジカルボン酸(c3)、及び一分子中に水酸基2個とカルボキシル基1個とを有するジオキシカルボン酸(c4)から選ばれる少なくとも1つの多官能化合物(C)について説明する。多官能化合物(C)を使用することにより、ポリエステル樹脂に分岐構造を導入することができるとともに、後述する反応性化合物(E)と反応しうる官能基を多く導入することができる。このことにより本発明のポリエステル樹脂を含む感圧式接着剤は、凝集力、耐熱性、耐湿熱性に優れる。
【0051】
本発明のポリエステル樹脂は、3価以上の多価アルコール(c1)、3価以上の多価カルボン酸(c2)、一分子中に水酸基1個とカルボキシル基2個とを有するオキシジカルボン酸(c3)、及び一分子中に水酸基2個とカルボキシル基1個とを有するジオキシカルボン酸(c4)から選ばれる少なくとも1つの多官能化合物(C)由来の構造を0.1〜10mol%含有することが好ましい。即ち、分岐構造を導入した場合の官能基(水酸基及び/又はカルボキシル基)の量は、多官能化合物(C)由来の構造に依存する。分岐構造を導入した場合の官能基(水酸基及び/又はカルボキシル基)は、後述の反応性化合物(E)と架橋して感圧式接着剤層を形成し、凝集力、接着性、耐熱性、耐湿熱性の向上に寄与する。しかし、多官能化合物(C)によって導入された官能基(水酸基及び/又はカルボキシル基)が多すぎると接着力が低下したりポットライフが短くなったりする。そこで、感圧式接着剤組成物としてのポットライフと、感圧式接着剤層の性能とのバランスから、多官能化合物(C)由来の構造は、ポリエステル樹脂中に0.1〜10mol%であることが好ましい。
【0052】
本発明に用いられる3価以上の多価アルコール(c1)としては、特に限定されないが、例えばトリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、1,2,6−ヘキサントリオール、等の脂肪族多価アルコールが挙げられ、これらを単独で又は2種以上で用いることができる。
【0053】
又、本発明に用いられる3価以上の多価カルボン酸(c2)としては、特に限定されないが、例えばトリメリット酸、トリメシン酸、ピロメリット酸などの芳香族多価カルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸等の脂肪族多価カルボン酸が挙げられ、中でも芳香族カルボン酸が好ましい。
【0054】
又、本発明に用いられる一分子中に水酸基1個とカルボキシル基2個とを有するオキシジカルボン酸(c3)としては、例えば、2−ヒドロキシブタン二酸(別名:リンゴ酸)、2,3−ジヒドロキシブタン二酸(別名:酒石酸)、4−ヒドロキシフタル酸などが挙げられる。
【0055】
又、本発明に用いられる一分子中に水酸基2個とカルボキシル基1個とを有するジオキシカルボン酸(c4)としては、例えば、ジメチロールプロピオン酸、ジメチロールブタン酸などが挙げられる。
【0056】
本発明に用いられる、多官能化合物(C)は、それぞれ単独で又は2種以上組み合わせて使用することができる。
【0057】
次に、1官能のカルボン酸(d1)及び1官能のアルコール(d2)から選ばれる少なくとも1つの単官能化合物(D)について説明する。単官能化合物(D)を使用することにより、本発明のポリエステル樹脂の基材に対する濡れ性を向上することができ、結果として優れた接着性を付与することができる。更に、上記多官能性化合物(C)を使用するにあたって、単官能化合物(D)を併用することで、ゲル化することなく安定にポリエステル樹脂を得ることができる。
【0058】
本発明のポリエステル樹脂は、1官能のカルボン酸(d1)及び1官能のアルコール(d2)から選ばれる少なくとも1つの単官能化合物(D)由来の構造を0.1〜10mol%含有することが好ましい。0.1mol%未満では、基材への濡れ性を付与することができない場合がある。10mol%以上では、架橋性官能基の数が少なくなり、架橋性が乏しくなって耐熱性や耐湿熱性が低下する場合がある。
【0059】
本発明に用いられる1官能のカルボン酸(d1)は、従来公知のモノカルボン酸を挙げることができる。本発明に1官能のカルボン酸(d1)を用いる目的は、前述したように接着力を付与するとともに、反応途中のゲル化を防ぐためでもある。接着力を付与するためには、1官能のカルボン酸(d1)の中でも炭素数の多い、所謂高級脂肪酸と称されるものが好ましい。1官能のカルボン酸(d1)としては、例えば、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレイン酸、エレオステアリン酸等が挙げられる。又、2級の水酸基を有するリシノール酸や12−ヒドロキシステアリン酸等も用いることができる。
【0060】
又、本発明に用いられる1官能のアルコール(d2)は、従来公知のモノアルコールを挙げることができる。本発明に1官能のアルコール(d2)を用いる目的は、1官能のカルボン酸と同様に接着力を付与するとともに、反応途中のゲル化を防ぐためでもある。接着力を付与するためには、1官能のアルコール(d2)の中でも炭素数の多い、所謂高級アルコールと称されるものが好ましい。1官能のアルコール(d2)としては、例えば、カプリルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、ペンタデシルアルコール、ステアリルアルコール、ノナデシルアルコール、エイコシルアルコール、セリルアルコール、メリシルアルコール等が挙げられる。
【0061】
ここで本発明のポリエステル樹脂の反応工程を詳細に説明する。まず、二塩基酸系成分(A)と、ジオール成分(B)と、多官能化合物(C)と、単官能化合物(D)とを仕込む。3価以上の多価アルコール(c1)を用いる場合には、1官能のカルボン酸(d1)を用い、3価以上の多価カルボン酸(c2)を用いる場合には、1官能のアルコール(d2)を用いる。いずれの場合も、反応系全体の水酸基がカルボキシル基より過剰になるようにアルコール成分とカルボン酸成分とを仕込む。所定の脱水反応もしくはエステル交換反応によりエステル化反応を行い、中間体を得る。その後、中間体を5mmHg以下の真空下で減圧反応を行うと、中間体の末端水酸基が脱グリコール反応によって外れて、更にエステル化反応することにより分子量が増大し、感圧式接着剤に必要な凝集力をもつポリエステル樹脂を得ることができる。
【0062】
このポリエステル樹脂は、多官能化合物(C)成分に由来する、分岐構造を有する。分岐構造を形成することにより、Mw/Mn比が増大するとともに、末端の水酸基の数が増加し、架橋点として利用可能な官能基を増やすことができる。
【0063】
一方、同時に仕込んだ単官能化合物(D)中の水酸基又はカルボキシル基は、脱水反応時に多官能化合物(C)中の水酸基又はカルボキシル基の一部と反応して、それらの官能基の一部を消費するとともに、エステル化反応が終了した時点で、単官能化合物由来の構造が、ポリエステル樹脂の側鎖として導入される。
【0064】
すなわち、本発明のポリエステル樹脂の特徴は、以下の(I)〜(III)で表される。(I)二塩基酸系成分(A)とジオール成分(B)は、ポリエステル樹脂の主鎖を形成する。(II)多官能化合物(C)は、ポリエステル樹脂に分岐構造を与える。(III)単官能化合物(D)は、ポリエステル樹脂に側鎖を形成させる。
【0065】
主鎖を高分子量にすると、必然的に、単位重量あたりの、末端の官能基数が減少する。単位重量あたりの官能基数が少ないと、後述する反応性化合物(E)を含有しても、硬化性が乏しく充分な凝集力を発現しない。ここで分岐構造を与えることにより、末端の官能基数が増大し、反応性化合物(E)との架橋反応が進行して、強い凝集力を発現する。しかしながら、架橋反応が進行するとともに、接着力は低下する傾向を示す。この様に単に、分岐構造を増やしただけでは凝集力と接着力のバランスが維持できない。単官能化合物(D)は、この凝集力と接着力のバランスを維持するためのものである。ポリエステル樹脂に側鎖、特に比較的長いアルキル鎖を側鎖として導入することにより、基材への濡れ性を向上させて接着力を維持することができる。
【0066】
一方、特許文献12、13に開示されているような多官能のアルコールや多官能のカルボン酸成分のみを用いた場合には、いずれも一級の官能基であるため脱水反応時にはすでに分岐構造をとり、これを減圧反応するとすべての水酸基が同時に脱グリコール反応するため、高分子量化の速度が非常に速く、ゲル化しやすい。従って、多官能のアルコールや多官能のカルボン酸を用いる場合には、比較的少量を用いて、分子量を大きくするか、比較的多量を用いて分子量を小さくする方法がとられる。又、多官能のアルコールや多官能のカルボン酸成分のみを用いた場合には、分岐構造による末端の官能基数の増加で、反応性化合物(E)との架橋反応が進みすぎて、接着力の低下を生じる。この様に、特許文献12、13に開示されているような方法では、高分子量化と架橋性の両方を満たすことができない。又、高分子量化と架橋性の両方を満たすことができたとしても、高い接着力は得られない。
【0067】
二塩基酸系成分(A)と、ジオール成分(B)と、多官能化合物(C)と、単官能化合物(D)との重縮合反応により本発明のポリエステル樹脂を形成する際、無触媒でも反応は進行するが、反応をより円滑に進行させるため、触媒を適宜使用することもできる。用いる触媒としては、アンモニア、アミン類、4級アンモニウム塩類、4級ホスホニウム塩類、アルカリ金属水酸化物類、アルカリ土類金属水酸化物類、ルイス酸類、錫、鉛、チタン、鉄、亜鉛、ジルコニウム、コバルト等を含有した有機金属化合物類、金属ハロゲン化物類等が挙げられる。
【0068】
アミン類としては、例えば、トリエチルアミン、ピリジン、アニリン、モルホリン、N−メチルモルホリン、ピロリジン、ピペリジン、N−メチルピペリジン、シクロヘキシルアミン、n−ブチルアミン、ジメチルオキサゾリン、イミダゾール、N−メチルイミダゾール、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、N,N−ジメチルイソプロパノールアミン、N−メチルジエタノールアミン等を挙げることができる。
【0069】
4級アンモニウム塩類としては、例えば、テトラメチルアンモニウムブロマイド、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムフルオライドトリヒドレート、テトラメチルアンモニウムヘキサフルオロホスフェート、テトラメチルアンモニウムヒドロゲンフタレート、テトラメチルアンモニウムヒドロキサイドペンタヒドレート、テトラメチルアンモニウムヒドロキサイド、テトラメチルアンモニウムアイオダイド、テトラメチルアンモニウムニトレート、テトラメチルアンモニウムパークロレート、テトラメチルアンモニウムテトラフルオロボレート、テトラメチルアンモニウムトリブロマイド、フェニルトリメチルアンモニウムブロマイド、テトラエチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラエチルアンモニウムフルオライドトリヒドレート、テトラエチルアンモニウムヒドロキサイド、テトラエチルアンモニウムアイオダイド、テトラエチルアンモニウムパークロレート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウム−p−トルエンスルホネート、テトラプロピルアンモニウムブロマイド、テトラプロピルアンモニウムクロライド、テトラプロピルアンモニウムアイオダイド、テトラプロピルアンモニウムヒドロキサイド、テトラプロピルアンモニウムパークロレート、テトラ−n−プロピルアンモニウムヒドロゲンスルフェート、テトラ−n−プロピルアンモニウムパールテネート(VII)、テトラブチルアンモニウムブロマイド、テトラブチルアンモニウムトリブロマイド、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムアイオダイド、テトラブチルアンモニウムヒドロキサイド、テトラブチルアンモニウムヘキサフルオロホスフェート、テトラブチルアンモニウムヒドロゲンサルフェート、テトラブチルアンモニウムニトレート、テトラブチルアンモニウムテトラヒドロボレート、テトラブチルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムシアノトリヒドロボレート、テトラブチルアンモニウムジフルオロトリフェニルスタンネート、テトラブチルアンモニウムフルオライドトリヒドレート、テトラブチルアンモニウムテトラチオフェネート(IV)、テトラブチルアンモニウムフルオライドヒドレイト、テトラ−n−ブチルアンモニウムジヒドロゲントリフルオライド、テトラ−n−ブチルアンモニウムトリフルオロメタンスルホネート、トリブチルアンモニウムビス(2,3−ジメルカプト−2−ブテンジニロリレート−S,S’)ニコレート、テトラ−n−ヘプチルアンモニウムブロマイド、テトラ−n−ヘプチルアンモニウムクロライド、テトラ−n−ヘプチルアンモニウムアイオダイド、テトラ−n−ヘキシルアンモニウムベンゾエート、テトラ−n−ヘキシルアンモニウムブロマイド、テトラ−n−ヘキシルアンモニウムクロライド、テトラ−n−ヘキシルアンモニウムアイオダイド、テトラ−n−ヘキシルアンモニウムパークロレート、テトラオクチルアンモニウムブロマイド、テトラオクタデシルアンモニウムブロマイド等を挙げることができる。
【0070】
4級ホスホニウム塩類としては、例えば、ベンジルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムアイオダイド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイド、テトラブチルホスホニウムテトラフルオロボレート、テトラブチルホスホニウムヘキサフルオロホスフェート、テトラブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムベンゾトリアゾレート、テトラブチルホスホニウムビス(1,2−ベンゼンジチオレート)ニコレート(III)、テトラブチルホスホニウムビス(4−メチル−1,2−ベンゼンジチオレート)ニコレート(III)、テトラブチルホスホニウムビス(4,5−メルカプト−1,3−ジチオール−2−チオネート−S4、S5)ニコレート(III)等を挙げることができる。
【0071】
アルカリ金属もしくはアルカリ土類金属の水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物類;
水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム等のアルカリ土類金属水酸化物類;
を挙げることができる。
【0072】
有機錫化合物類としては、例えば、ジブチル錫ジクロライド、ジブチル錫オキサイド、ジブチル錫ジブロマイド、ジブチル錫ジマレエート、ジブチル錫ジラウレート(DBTDL)、ジブチル錫ジアセテート、ジブチル錫スルファイド、トリブチル錫スルファイド、トリブチル錫オキサイド、トリブチル錫アセテート、トリエチル錫エトキサイド、トリブチル錫エトキサイド、ジオクチル錫オキサイド、トリブチル錫クロライド、トリブチル錫トリクロロアセテート、2−エチルヘキサン酸錫等を挙げることができる。
【0073】
有機ジルコニウム化合物類としては、例えば、酢酸ジルコニウム、安息香酸ジルコニウム、ナフテン酸ジルコニウム等を挙げることができる。
【0074】
有機チタン化合物類としては、例えば、ジブチルチタニウムジクロライド、テトラブチルチタネート、テトラブトキシチタネート、テトラエチルチタネート、テトライソプロピルチタネート、ブトキシチタニウムトリクロライド等を挙げることができる。
【0075】
有機鉛化合物類としては、例えば、酢酸鉛、オレイン酸鉛、2−エチルヘキサン酸鉛、安息香酸鉛、ナフテン酸鉛などを挙げることができる。
【0076】
有機鉄化合物類としては、例えば、2−エチルヘキサン酸鉄、鉄アセチルアセトネートなどを挙げることができる。
【0077】
有機コバルト化合物類としては、例えば、酢酸コバルト、安息香酸コバルト、2−エチルヘキサン酸コバルト等を挙げることができる。
【0078】
有機亜鉛化合物類としては、例えば、酢酸亜鉛、蓚酸亜鉛、ナフテン酸亜鉛、2−エチルヘキサン酸亜鉛等を挙げることができる。
【0079】
金属ハロゲン化物類としては、例えば、塩化第一錫、臭化第一錫、ヨウ化第一錫等を挙げることができる。
【0080】
更には、三フッ化ホウ素、酢酸マンガン、酸化ゲルマニウム、三酸化アンチモン、三塩化アルミニウム、塩化亜鉛、塩化チタン等のルイス酸類が挙げられるが、これらに限定されるものではない。触媒は一種のみを用いても、又は二種以上を併用しても良い。触媒の使用量としては、全反応成分100重量部に対して10重量部以下の量で用いる。0.0001〜1重量部の範囲がより好ましい。10重量部を超える量を用いると、生成物が着色したり、失活していない触媒が残存して負触媒として働き、分解反応を生じたりするという不都合を生じる場合がある。
【0081】
本発明のポリエステル樹脂は、従来公知のポリエステルの反応方法に従って製造することができる。例えば、以下のような方法で得ることができる。二塩基酸系成分(A)と、ジオール成分(B)と、多官能化合物(C)と、単官能化合物(D)とを、160〜260℃、好ましくは180〜250℃で脱水反応やエステル交換反応させ、その後、5mmHg以下の減圧下状態で180〜280℃、好ましくは200〜260℃に加熱して脱グリコール反応を行い作製する。冷却後、所定の不揮発分になるように、有機溶剤を加えて溶解調整する。又、多官能化合物(C)と単官能化合物(D)とは、二塩基酸系成分(A)と、ジオール成分(B)と一緒に最初から反応容器に仕込んでおいても良いし、二塩基酸系成分(A)とジオール成分(B)との脱水反応やエステル交換反応の後に加えて反応しても良い。尚、重合温度が上記下限値未満では反応が充分に進行しない。一方重合温度が上限値をこえると分解等の副反応が起こったり、着色し易くなったりして好ましくない。又、反応時間は通常1〜60時間程度とすることができる。
【0082】
本発明のポリエステル樹脂は、感圧式接着剤層としてバランスの良い接着特性(特に、タックと凝集力との両立)を発揮し得るように、ガラス転移温度(Tg)が−80〜0℃となるように、二塩基酸系成分(A)と、ジオール成分(B)と、多官能化合物(C)と、単官能化合物(D)との各成分を適宜選択すればよく、ポリエステル樹脂のガラス転移温度(Tg)が−60〜−10℃となるように各成分を選択することがより好ましい。ポリエステル樹脂のガラス転移温度が−80℃未満の場合、該ポリエステル樹脂を用いて得られる感圧式接着剤層の凝集力が低下し、浮き剥がれが生じる。一方、ガラス転移温度が0℃を超えると、感圧式接着層が硬くなりすぎ、充分なタックを発現しなかったり、プラスチック同士やガラス板とプラスチックフィルムとを積層した場合には、接着強度が弱くなったりするだけでなく、溶媒への溶解性が低下し、又、感圧式接着剤の粘度が上昇するため、塗加工時の取り扱いが困難となる。尚、ガラス転移温度は、DSC(示差走査熱量計)を用いて求めた値である。
【0083】
本発明におけるポリエステル樹脂の重量平均分子量(Mw)は、30,000〜1,000,000の範囲にあることが接着性の点で好ましく、50,000〜500,000の範囲にあることがより好ましい。このようなポリエステル樹脂を使用すると、密着性、濡れ性に優れる感圧式接着剤が得られる。Mwが30,000未満であると感圧式接着剤層としての凝集力を発現しにくくなったり、耐熱性や耐湿熱性が低下したりする場合がある。一方、Mwが1,000,000を超えると、溶剤で希釈しても感圧式接着剤の流動性が不良となる場合があり、感圧式接着シートを作製する際、塗工性が低下する可能性がある。
【0084】
又、本発明におけるポリエステル樹脂の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、2.0〜6.0の範囲にあることが好ましく、2.0〜4.0の範囲にあることがより好ましい。Mw/Mnが下限値未満であると、Mwの場合と同様、感圧式接着剤層としての凝集力を発現しにくくなり、耐熱性や耐湿熱性が低下する傾向にある。一方、上限値を超えると、溶剤で希釈しても感圧式接着剤の流動性が低下し、感圧式接着シートを作製する際、塗工性が低下する場合がある。通常、感圧式接着剤の場合は、接着剤とは異なり、Mw/Mn比が2.0以上であることが好ましい。即ち、Mw/Mn比が大きく低分子量成分もある程度含有することによって、感圧式接着シートを作製する際、シート状基材に対する親和性(濡れ性)が向上し、基材密着性が向上する。更に、形成された感圧式接着シートを被着体に貼着する際、硬化状態にある感圧式接着剤層が低分子量成分由来の硬化した成分を含むことによって、感圧式接着剤層の被着体に対する付着性を向上することができる。
【0085】
本発明におけるポリエステル樹脂の酸価と水酸基価との合計は、0.1〜30mgKOH/gの範囲に制御されていることが好ましく、0.5〜20mgKOH/gの範囲がより好ましい。酸価と水酸基価との合計が、0.1mgKOH/g未満であると、後述の反応性化合物(E)との反応点が少なくなり、形成される感圧式接着剤層の凝集力が不足しやすく、偏光フィルム等を剥ぎ取り難いばかりでなく、剥がした後に糊残りが生じたりして、再剥離性が不充分となる場合がある。又、酸価と水酸基価との合計が、30mgKOH/gを超えると、ポットライフが短くなり、塗加工時や接着加工時の作業性を低下させる場合がある。
【0086】
本発明の感圧式接着剤組成物は、上記ポリエステル樹脂と、当該ポリエステル樹脂と反応し得る反応性化合物(E)[以下、「反応性化合物(E)」と表記する場合がある。]と、を含有することを特徴とする。即ち、本発明に用いられる反応性化合物(E)とは、前記したポリエステル樹脂中の水酸基及び/又はカルボキシル基と反応しうる官能基を分子内に有する化合物である。反応性化合物(E)としては、主にポリエステル樹脂中の水酸基と反応しうる官能基を有する化合物(e1)[以下、「化合物(e1)」と表記する場合がある。]と、主にポリエステル樹脂中のカルボキシル基と反応しうる官能基を有する化合物(e2)[以下、「化合物(e2)」と表記する場合がある。]と、が挙げられる。化合物(e1)としては、例えば、多官能イソシアネート化合物、多官能シラン化合物、多官能酸無水物、N−メチロール基含有化合物、及びメラミン化合物等が挙げられる。又、化合物(e2)としては、例えば、多官能エポキシ化合物、多官能アミン化合物、多官能アジリジン化合物、多官能カルボジイミド化合物、多官能オキサゾリン化合物、及び金属キレート化合物などが挙げられる。特にポリエステル樹脂の酸価が1〜30mgKOH/gである場合には、化合物(e2)を使用するのが好ましく、特にエポキシ化合物、アジリジン化合物、カルボジイミド化合物、オキサゾリン化合物、もしくは金属キレート化合物がより好ましく用いられる。又、ポリエステル樹脂の水酸基価が1mg〜30mgKOH/gである場合には、化合物(e1)を使用するのが好ましく、特に多官能イソシアネート化合物、もしくは多官能シラン化合物がより好ましい。これらは、架橋反応後の感圧式接着剤層の被着体への接着性やシート状基材に対する密着性に優れていることから好ましく用いられる。更に反応性化合物(E)として、化合物(e1)と、化合物(e2)とを併用することも好ましい形態の一つである。
【0087】
多官能エポキシ化合物としては、例えば、ビスフェノールA−エピクロロヒドリン型のエポキシ系樹脂、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、1、3−ビス(N、N’−ジグリシジルアミノメチル)シクロヘキサンなどが挙げられる。
【0088】
多官能アジリジン化合物としては、例えば、N,N’−ジフェニルメタン−4,4’−ビス(1−アジリジンカルボキサイト)、N,N’−トルエン−2,4−ビス(1−アジリジンカルボキサイト)、ビスイソフタロイル−1−(2−メチルアジリジン)、トリ−1−アジリジニルホスフィンオキサイド、N,N’−ヘキサメチレン−1,6−ビス(1−アジリジンカルボキサイト)、トリメチロールプロパン−トリ−β−アジリジニルプロピオネート、テトラメチロールメタン−トリ−β−アジリジニルプロピオネート、トリス−2,4,6−(1−アジリジニル)−1、3、5−トリアジン、トリメチロールプロパントリス[3−(1−アジリジニル)プロピオネート]、トリメチロールプロパントリス[3−(1−アジリジニル)ブチレート]、トリメチロールプロパントリス[3−(1−(2−メチル)アジリジニル)プロピオネート]、トリメチロールプロパントリス[3−(1−アジリジニル)−2−メチルプロピオネート]、2,2’−ビスヒドロキシメチルブタノールトリス[3−(1−アジリジニル)プロピオネート]、ペンタエリスリトールテトラ[3−(1−アジリジニル)プロピオネート]、ジフェニルメタン−4,4−ビス−N,N’−エチレンウレア、1,6−ヘキサメチレンビス−N,N’−エチレンウレア、2,4,6−(トリエチレンイミノ)−Syn−トリアジン、ビス[1−(2−エチル)アジリジニル]ベンゼン−1,3−カルボン酸アミド等が挙げられる。
【0089】
多官能カルボジイミド化合物としては、例えば、カルボジイミド基(−N=C=N−)を分子内に2個以上有する化合物が好ましく用いられ、公知のポリカルボジイミドを用いることができる。
【0090】
又、多官能カルボジイミド化合物としては、カルボジイミド化触媒の存在下でジイソシアネートを脱炭酸縮合反応させることによって生成した高分子量ポリカルボジイミドも使用できる。このような化合物としては、以下のジイソシアネートを脱炭酸縮合反応させたものが挙げられる。
【0091】
ジイソシアネートとしては、4,4’−ジフェニルメタンジイソシアネート、3,3’−ジメトキシ−4,4’−ジフェニルメタンジイソシアネート、3,3’−ジメチル−4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、3,3’−ジメチル−4,4’−ジフェニルエーテルジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、1−メトキシフェニル−2,4−ジイソシアネート、イソホロンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、テトラメチルキシリレンジイソシアネートの内の一種、または、これらの混合物を使用することができる。
【0092】
カルボジイミド化触媒としては、1−フェニル−2−ホスホレン−1−オキシド、3−メチル−2−ホスホレン−1−オキシド、1−エチル−3−メチル−2−ホスホレン−1−オキシド、1−エチル−2−ホスホレン−1−オキシド、あるいはこれらの3−ホスホレン異性体等のホスホレンオキシドを利用することができる。
【0093】
このような多官能カルボジイミド化合物としては、例えば、日清紡績株式会社製のカルボジライトシリーズが挙げられる。その中でもカルボジライトV−01、03、05、07、09は有機溶剤との相溶性に優れており好ましい。
【0094】
多官能オキサゾリン化合物としては、分子内にオキサゾリン基を2個以上有する化合物が好ましく用いられ、具体的には、2’−メチレンビス(2−オキサゾリン)、2,2’−エチレンビス(2−オキサゾリン)、2,2’−エチレンビス(4−メチル−2−オキサゾリン)、2,2’−プロピレンビス(2−オキサゾリン)、2,2’−テトラメチレンビス(2−オキサゾリン)、2,2’−ヘキサメチレンビス(2−オキサゾリン)、2,2’−オクタメチレンビス(2−オキサゾリン)、2,2’−p−フェニレンビス(2−オキサゾリン)、2,2’−p−フェニレンビス(4,4’−ジメチル−2−オキサゾリン)、2,2’−p−フェニレンビス(4−メチル−2−オキサゾリン)、2,2’−p−フェニレンビス(4−フェニル−2−オキサゾリン)、2,2’−m−フェニレンビス(2−オキサゾリン)、2,2’−m−フェニレンビス(4−メチル−2−オキサゾリン)、2,2’−m−フェニレンビス(4,4’−ジメチル−2−オキサゾリン)、2,2’−m−フェニレンビス(4−フェニレンビス−2−オキサゾリン)、2,2’−o−フェニレンビス(2−オキサゾリン)、2,2’−o−フェニレンビス(4−メチル−2−オキサゾリン)、2,2’−ビス(2−オキサゾリン)、2,2’−ビス(4−メチル−2−オキサゾリン)、2,2’−ビス(4−エチル−2−オキサゾリン)、2,2’−ビス(4−フェニル−2−オキサゾリン)等を挙げることができる。または、2−イソプロペニル−2−オキサゾリンや、2−イソプロペニル−4,4−ジメチル−2−オキサゾリンなどのビニル系単量体と、これらのビニル系単量体と共重合しうる他の単量体との共重合体でもよい。
【0095】
多官能イソシアネート化合物としては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、芳香脂肪族ポリイソシアネート、脂環族ポリイソシアネート等が挙げられる。
【0096】
芳香族ポリイソシアネートとしては、例えば、1,3−フェニレンジイソシアネート、4,4’−ジフェニルジイソシアネート、1,4−フェニレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−トルイジンジイソシアネート、2,4,6−トリイソシアネートトルエン、1,3,5−トリイソシアネートベンゼン、ジアニシジンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、4,4’,4”−トリフェニルメタントリイソシアネート等を挙げることができる。
【0097】
脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(別名:HMDI)、ペンタメチレンジイソシアネート、1,2−プロピレンジイソシアネート、2,3−ブチレンジイソシアネート、1,3−ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート等を挙げることができる。
【0098】
芳香脂肪族ポリイソシアネートとしては、例えば、ω,ω’−ジイソシアネート−1,3−ジメチルベンゼン、ω,ω’−ジイソシアネート−1,4−ジメチルベンゼン、ω,ω’−ジイソシアネート−1,4−ジエチルベンゼン、1,4−テトラメチルキシリレンジイソシアネート、1,3−テトラメチルキシリレンジイソシアネート等を挙げることができる。
【0099】
脂環族ポリイソシアネートとしては、例えば、3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート(別名:IPDI、イソホロンジイソシアネート)、1,3−シクロペンタンジイソシアネート、1,3−シクロヘキサンジイソシアネート、1,4−シクロヘキサンジイソシアネート、メチル−2,4−シクロヘキサンジイソシアネート、メチル−2,6−シクロヘキサンジイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)、1,4−ビス(イソシアネートメチル)シクロヘキサン等を挙げることができる。
【0100】
又、上記ポリイソシアネートのトリメチロールプロパンアダクト体や、イソシアヌレート環を有する3量体等も使用することができる。更には、ポリフェニルメタンポリイソシアネート(別名:PAPI)、ナフチレンジイソシアネート、及びこれらのポリイソシアネート変性物等を使用し得る。尚、ポリイソシアネート変性物としては、カルボジイミド基、ウレトジオン基、ウレトイミン基、水と反応したビュレット基、イソシアヌレート基のうちのいずれかの基、又はこれらの基の2種以上を有する変性物を使用できる。又、ポリオールとジイソシアネートとの反応物も多官能イソシアネート化合物として使用することができる。
【0101】
これら多官能イソシアネート化合物のうち、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート(別名:IPDI、イソホロンジイソシアネート)、キシリレンジイソシネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)(別名:水添MDI)等の無黄変型又は難黄変型のポリイシソアネート化合物を用いると耐候性、耐熱性あるいは耐湿熱性の点から、特に好ましい。
【0102】
反応性化合物(E)として多官能イソシアネート化合物を使用する場合、反応促進のため、必要に応じて公知の触媒を使用することができる。例えば三級アミン系化合物、有機金属系化合物等が挙げられ、単独でもあるいは複数を使用することもできる。
【0103】
金属キレート化合物としては、例えば、アルミニウム、鉄、銅、亜鉛、スズ、チタン、チタン、ニッケル、アンチモン、マグネシウム、バナジウム、クロム、ジルコニウムなどの多価金属がアセチルアセトンやアセト酢酸エチルに配位した化合物が挙げられる。
【0104】
多官能シラン化合物としては、シランカップリング剤が挙げられる。シランカップリング剤としては、例えば、γ−(メタ)アクリロキシメチルトリメトキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン、γ−(メタ)アクリロキシプロピルトリエトキシシラン、γ−(メタ)アクリロキシプロピルトリブトキシシラン、γ−(メタ)アクリロキシプロピルメチルジメトキシシラン、γ−(メタ)アクリロキシプロピルメチルジエトキシシランなどの(メタ)アクリロキシ基を有するアルコキシシラン化合物;
ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルメチルジメトキシシランなどのビニル基を有するアルコキシシラン化合物;
5−ヘキセニルトリメトキシシラン、9−デセニルトリメトキシシラン、スチリルトリメトキシシランなどのアルコキシシラン化合物;
γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシランなどのアミノアルキル基を有するアルコキシシラン化合物;
γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、β−メルカプトメチルフェニルエチルトリメトキシシラン、メルカプトメチルトリメトキシシラン、6−メルカプトヘキシルトリメトキシシラン、10−メルカプトデシルトリメトキシシランなどのメルカプト基を有するアルコキシシラン化合物;
テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランなどのテトラアルコキシシラン化合物;
3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、フェニルトリメトキシシラン、ヘキサメチルシラザン、ジフェニルジメトキシシラン、1, 3,5−トリス(3−トリメトキシシリルプロピル)イソシアヌレート、ビニルトリス( 2−メトキシエトキシ)シラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシランなどが挙げられる。
【0105】
N−メチロール基含有化合物としては、アミノ樹脂、フェノール樹脂が挙げられ、尿素、メラミン、ベンゾグアナミン、フェノール、クレゾール類、ビスフェノール類等の化合物とホルムアルデヒドとの付加化合物、又は、その部分縮合物が挙げられる。
【0106】
多官能酸無水物は、カルボン酸無水物基を2つ以上有する化合物であり特に限定されるものではないが、テトラカルボン酸二無水物、ヘキサカルボン酸三無水物、ヘキサカルボン酸二無水物、無水マレイン酸共重合樹脂などが挙げられる。又、反応中に脱水反応を経由して無水物と成りうるポリカルボン酸、ポリカルボン酸エステル、ポリカルボン酸ハーフエステルなどは、本発明でいう多官能酸無水物に含まれる。
【0107】
更に詳しく例示すると、テトラカルボン酸二無水物としては、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、オキシジフタル酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、ジフェニルスルフィドテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、ペリレンテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、新日本理化株式会社製「リカシッドTMTA−C」、「リカシッドMTA−10」、「リカシッドMTA−15」、「リカシッドTMEGシリーズ」、「リカシッドTDA」などが挙げられる。
【0108】
これらの反応性化合物(E)は、単独で用いてもよいし、あるいは複数を使用することもできる。
【0109】
本発明の感圧式接着剤組成物は、ポリエステル樹脂100重量部に対して、反応性化合物(E)を0.001〜20重量部含有することが好ましく、0.01〜10重量部含有することがより好ましい。反応性化合物(E)の使用量が20重量部を越えると、架橋反応が進みすぎて、得られる感圧式接着剤組成物と基材との接着性が低下傾向となり、繰り返し使用時での安定性や耐久性に劣る場合がある。又、0.001重量部未満では、充分な架橋構造が得られないため、凝集力が低下し、耐熱性、耐湿熱性が低下する場合がある。ポリエステル樹脂中の水酸基やカルボキシル基と、反応性化合物(E)中の反応性官能基との反応により、樹脂組成物が三次元架橋し、各種基材や被着体との接着性を確保するだけでなく、従来よりも過酷な条件下における耐熱性及び耐湿熱性をも向上することができるため、光学部材用として好ましく使用することができる。
【0110】
本発明の感圧式接着剤組成物には、本発明の効果を損なわない範囲で有れば、各種樹脂、カップリング剤、軟化剤、染料、顔料、酸化防止剤、紫外線吸収剤、耐候安定剤、タッキファイヤ、可塑剤、充填剤及び老化防止剤等を配合しても良い。
【0111】
本発明の感圧式接着剤組成物を使用して、接着剤層とシート状基材とからなる積層製品(以下、「接着シート」という。)を得ることができる。例えば、種々のシート状基材に本発明の感圧式接着剤組成物を塗工、乾燥・硬化することによって接着シートを得ることができる。
【0112】
感圧式接着剤組成物を塗工するに際し、適当な液状媒体、例えば、トルエン、キシレン、ヘキサン、ヘプタン等の炭化水素系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;ジクロロメタン、クロロホルム等のハロゲン化炭化水素系溶剤;ジエチルエーテル、メトキシトルエン、ジオキサン等のエーテル系溶剤、その他の炭化水素系溶媒等の有機溶媒を添加して、粘度を調整することもできるし、感圧式接着剤組成物を加熱して粘度を低下させることもできる。ただし、水酸基を含有する溶剤は用いることができない。
【0113】
シート状基材としては、セロハン、各種プラスチックシート、ゴム、発泡体、布帛、ゴムびき布、樹脂含浸布、ガラス板、金属板、木材等の平坦な形状のものが挙げられる。又、各種基材は単独でも用いることもできるし、複数のものを積層してなる多層状態にあるものも用いることができる。更に表面を剥離処理したものを用いることもできる。
【0114】
各種プラスチックシートとしては、各種プラスチックフィルムともいわれ、ポリビニルアルコールフィルムやトリアセチルセルロースフィルム、ポリプロピレン、ポリエチレン、ポリシクロオレフィン、エチレン−酢酸ビニル共重合体などのポリオレフィン系樹脂のフィルム、ポリエチレンテレフタレート,ポリブチレンテレフタレート,ポリエチレンナフタレートなどのポリエステル系樹脂のフィルム、ポリカーボネート系樹脂のフィルム、ポリノルボルネン系樹脂のフィルム、ポリアリレート系樹脂のフィルム、アクリル系樹脂のフィルム、ポリフェニレンサルファイド樹脂のフィルム、ポリスチレン樹脂のフィルム、ビニル系樹脂のフィルム、ポリアミド系樹脂のフィルム、ポリイミド系樹脂のフィルム、エポキシ系樹脂のフィルムなどが挙げられる。
【0115】
常法にしたがって適正な方法で上記シート状基材に感圧式接着剤組成物を塗工した後、感圧式接着剤組成物が有機溶媒や水等の液状媒体を含有する場合には、液状媒体を除去したり、感圧式接着剤組成物が揮発すべき液状媒体を含有しない場合は、溶融状態にある接着剤層を冷却して固化したりして、シート状基材の上に感圧式接着剤層を形成することができる。感圧式接着剤層の厚さは、0.1μm〜200μmであることが好ましく、1μm〜100μmであることがより好ましい。0.1μm未満では充分な接着力が得られないことがあり、200μmを超えても接着力等の特性はそれ以上向上しない場合が多い。
【0116】
本発明の感圧式接着剤組成物をシート状基材に塗工する方法としては、特に制限は無く、マイヤーバー、アプリケーター、刷毛、スプレー、ローラー、グラビアコーター、ダイコーター、リップコーター、コンマコーター、ナイフコーター、リバースコ−ター、スピンコーター等種々の塗工方法が挙げられる。乾燥方法には特に制限はなく、熱風乾燥、赤外線や減圧法を利用したものが挙げられる。乾燥条件としては接着剤組成物の硬化形態、膜厚や選択した溶剤にもよるが、通常60〜180℃程度の熱風加熱でよい。
【0117】
本発明の積層体は、偏光フィルム、位相差フィルム、楕円偏光フィルム、反射防止フィルム、輝度向上フィルム等の種々の光学特性を持つ、いわゆるシート(前述の通り「フィルム」ともいう)状の光学部材に、本発明の感圧式接着剤組成物から形成される感圧式接着剤層が積層された状態のものである。感圧式接着剤層の他の面には、剥離処理されたシート状基材を積層することができる。
【0118】
本発明の積層体は、(ア)剥離処理されたシート状基材の剥離処理面に感圧式接着剤組成物を塗工、乾燥し、シート状の光学部材を感圧式接着剤層の表面に積層したり、(イ)シート状の光学部材に感圧式接着剤組成物を塗工、乾燥し、感圧式接着剤層の表面に剥離処理されたシート状基材の剥離処理面を積層したりすることによって得ることができる。
【0119】
このようにして得た積層体から感圧式接着剤層の表面を覆っていた剥離処理されたシート状基材を剥がし、例えば、感圧式接着剤層を液晶セル用ガラス部材に貼着することによって、「シート状の光学部材/感圧式接着剤層/液晶セル用ガラス部材」という構成の液晶セル用部材を得ることができる。
【0120】
本発明の感圧式接着剤組成物は、ポリエステル樹脂で構成されているため、基材への密着性が向上しており、耐可塑剤性や低温接着性に優れ、発泡体の様な基材に対する密着性が必要とされる用途にも、好適に使用される。本発明のポリエステル樹脂は、主鎖骨格に芳香環を有するため、該ポリエステル樹脂を使用した感圧式接着剤組成物から得られる接着剤層の屈折率は、1.45以上を維持することが可能である。光学部材用フィルムやガラス等の光学用部材に使用される材料の屈折率は、1.50〜1.58程度のものであり、感圧式接着剤組成物を乾燥及び/又は硬化させた後の屈折率が1.45未満であると光学フィルムや光学用部材との屈折率差が大きくなる。そのため、例えば、該感圧式接着剤組成物から得られる接着剤層が光学フィルムの一種であるフィルム導光板上に設けられた場合、浅い角度で全反射が起こり、光の有効的な利用性が低下する場合がある。又、光学フィルムや光学用部材との屈折率差を低減するために、本発明の感圧式接着剤組成物の乾燥及び/又は硬化後の屈折率が1.49〜1.60の範囲で制御できることも重要である。特に1.50〜1.55の範囲で制御が可能である。
【0121】
本発明の感圧式接着剤組成物は、ポリエステル樹脂特有の凝集力を維持しつつ、主鎖骨格に芳香環を導入したポリマーを形成することができるため、アクリル系樹脂では得られなかった接着物性を発現させることができる。本発明の感圧式接着剤組成物は、光学部材用途として好適である他、一般ラベル・シール、塗料、弾性壁材、塗膜防水材、床材、タッキファイヤ、接着剤、積層構造体用接着剤、シーリング剤、成形材料、表面改質用コーティング剤、バインダー(磁気記録媒体、インキバインダー、鋳物バインダー、焼成レンガバインダー、グラフト材、マイクロカプセル、グラスファイバーサイジング用等)、ウレタンフォーム(硬質、半硬質、軟質)、ウレタンRIM、UV・EB硬化樹脂、ハイソリッド塗料、熱硬化型エラストマー、マイクロセルラー、繊維加工剤、可塑剤、吸音材料、制振材料、界面活性剤、ゲルコート剤、人工大理石用樹脂、人工大理石用耐衝撃性付与剤、インキ用樹脂、フィルム(ラミネート接着剤、保護フィルム等)、合わせガラス用樹脂、反応性希釈剤、各種成形材料、弾性繊維、人工皮革、合成皮革等の原料として、又、各種樹脂添加剤及びその原料等としても非常に有用に使用できる。
【実施例】
【0122】
以下に、この発明の具体的な実施例を比較例と併せて説明するが、この発明は、下記実施例に限定されない。又、下記実施例および比較例中、「部」及び「%」は、特にことわらない限りそれぞれ「重量部」及び「重量%」を表す。
【0123】
[ポリエステル樹脂の合成]
(合成例1)
重合槽、攪拌機、温度計、水分離装置、還流冷却器、窒素導入管を備えた重合反応装置の重合槽に、二塩基酸系成分(A)と、ジオール成分(B)と、多官能化合物(C)と、単官能化合物(D)とをそれぞれ下記の比率で仕込んだ。
[重合槽]
セバシン酸(A) 165.40部
テレフタル酸(a1) 138.70部
エチレングリコール(B) 45.59部
ネオペンチルグリコール(b1) 57.35部
2−ブチル−2−エチル−1,3−プロパンジオール(b1)83.82部
トリメチロールプロパン(c1) 2.46部
ラウリン酸(d1) 6.68部
【0124】
重合槽内の空気を窒素ガスで置換した後、攪拌しながら窒素雰囲気下、160℃に昇温した。160℃で脱水を確認した後、約8時間かけて徐々に240℃まで昇温して脱水反応を行った。次いで、酸価が15mgKOH/g以下になったら150℃まで温度を下げて、触媒としてテトラブチルチタネート0.067部を加えて、昇温しながら徐々に減圧し、3〜5mmHg、240℃で5時間反応を行い、所定の分子量になったら、トルエン/酢酸エチル混合溶液(重量比=1/3)に溶解して反応を終了した。この樹脂溶液は淡黄色透明な粘凋の液体であった。その特性値を表−1に示す。
【0125】
(合成例2〜12)
表−1の比率に従って各種原料を仕込み、合成例1と同様の方法でポリエステル樹脂を合成し、樹脂溶液を得た。その特性値を表−1に示す。
【0126】
合成例1〜12より得られた各樹脂溶液について、溶液の外観、重量平均分子量(Mw)、重量平均分子量(Mw)/数平均分子量(Mn)、酸価(AV)、水酸基価(OHV)、ガラス転移温度(Tg)、固形分及び粘度を以下の方法に従って求め、結果を表−1に示した。又、1H−NMR、13C−NMR(いずれも日本電子社製:ECX−400)及び誘導体化法を用いた熱分解GC−MS(日本電子社製:DX303HF)により求めた、各ポリエステル樹脂に含まれる各成分由来の構造部位の含有量(mol%)を表−2に示した。
【0127】
<溶液外観>
各樹脂溶液の外観を目視にて評価した。
【0128】
<重量平均分子量(Mw)、数平均分子量(Mn)の測定>
Mw、Mnの測定は東ソー株式会社製GPC(ゲルパーミエーションクロマトグラフィー)「HPC−8020」を用いた。GPCは溶媒(THF;テトラヒドロフラン)に溶解した物質をその分子サイズの差によって分離定量する液体クロマトグラフィーであり、数平均分子量(Mn)と重量平均分子量(Mw)との決定はポリスチレン換算で行った。又、重量平均分子量(Mw)を数平均分子量(Mn)で除したMw/Mnを求めた。
【0129】
<酸価(AV)の測定>
共栓三角フラスコ中に試料(ポリエステル樹脂の溶液:約50%)約1gを精密に量り採り、トルエン/エタノール(容量比:トルエン/エタノール=2/1)混合液100mlを加えて溶解する。これに、フェノールフタレイン試液を指示薬として加え、0.1Nアルコール性水酸化カリウム溶液で滴定した。溶液が淡紅色を呈し、30秒間保持するまで滴定を続けた。酸価は次式により求めた。酸価は樹脂の乾燥状態の数値とした(単位:mgKOH/g)。
【0130】
酸価(mgKOH/g)={(5.61×a×F)/S}/(不揮発分濃度/100)
ただし、S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.1Nアルコール性水酸化カリウム溶液の力価
【0131】
<水酸基価(OHV)の測定>
共栓三角フラスコ中に試料(ポリエステル樹脂の溶液:約50%)約1gを精密に量り採り、トルエン/エタノール(容量比:トルエン/エタノール=2/1)混合液100mlを加えて溶解する。更にアセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mlとした溶液)を正確に5ml加え、約1時間攪拌した。これに、フェノールフタレイン試液を指示薬として加え、0.5Nアルコール性水酸化カリウム溶液で滴定する。溶液が淡紅色を呈し、30秒間持続するまで滴定を続けた。水酸基価は次式により求めた。水酸基価は樹脂の乾燥状態の数値とした(単位:mgKOH/g)。
【0132】
水酸基価(mgKOH/g)=[{(b−a)×F×28.05}/S]/(不揮発分濃度/100)+D
ただし、S:試料の採取量(g)
a:0.5Nアルコール性水酸化カリウム溶液の消費量(ml)
b:空実験の0.5Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.5Nアルコール性水酸化カリウム溶液の力価
D:酸価(mgKOH/g)
【0133】
<ガラス転移温度(Tg)の測定>
ロボットDSC(示差走査熱量計)「RDC220」(セイコーインスツルメンツ社製)に「SSC5200ディスクステーション」(セイコーインスツルメンツ社製)を接続して測定した。アルミニウムパンに試料約10mgを秤量してDSC装置にセットし(リファレンス:試料を入れていない同タイプのアルミニウムパンとした。)、300℃の温度で5分間加熱した後、液体窒素を用いて−120℃まで急冷処理した。その後10℃/分で昇温し、得られたDSCチャートからガラス転移温度(Tg)を算出した(単位:℃)。
【0134】
<固形分の測定>
各樹脂溶液約1gを金属容器に秤量し、150℃オーブンにて20分間乾燥して、残分を秤量して残率計算をし、固形分濃度とした(単位:%)。
【0135】
<溶液粘度(Vis)の測定>
各樹脂溶液を25℃中でB型粘度計(東京計器社製)にて、12rpm、1分間回転の条件で測定した(単位:mPa・s)。
【0136】
【表1】

【0137】
【表2】

【0138】
(実施例1)
合成例1で得られたポリエステル樹脂溶液を固形分換算で100重量部量り採り、反応性化合物(E)として、トリレンジイソシアネートのトリメチロールプロパンアダクト体(以下TDITMPと略す)2.0重量部を加え、更に固形分が40%となるようにトルエンを加えてよく撹拌して、本発明の感圧式接着剤組成物を得た。これを剥離処理されたポリエステルフィルム(以下、「剥離フィルム」という。)上に乾燥後の厚みが25μmになるように塗工し、100℃で2分間乾燥させ、接着剤層を形成した。乾燥後、接着剤層に、ポリビニルアルコール(PVA)系偏光子の両面をトリアセチルセルロース系保護フィルム(以下、「TACフィルム」という)で挟んだ多層構造の偏光フィルムの片面を貼り合せ、「剥離フィルム/接着剤層/TACフィルム/PVA/TACフィルム」なる構成の積層体を得た。次いで、得られた積層体を温度23℃相対湿度50%の条件で1週間熟成(暗反応)させて、接着剤層の反応を進行させ、接着加工した偏光板(積層体)を得た。
【0139】
(実施例2〜8)
実施例1と同様の方法で、表−3の処方に従って感圧式接着剤組成物を得た。更に実施例1と同様の方法で接着剤層を形成し、接着加工した偏光板(積層体)を得た。
【0140】
(比較例1〜11)
実施例1と同様の方法で、表−3の処方に従って感圧式接着剤組成物を得た。更に実施例1と同様の方法で接着剤層を形成し、接着加工した偏光板(積層体)を得た。合成例11は、反応途中でゲル化したため感圧式接着剤組成物を得ることができなかった。
【0141】
実施例及び比較例で得られた感圧式接着剤組成物ないしは接着加工した偏光板(積層体)について、塗膜の屈折率、ゲル分率、接着力、耐熱性、耐湿熱性を以下の方法で評価した。結果を表−3に示す。
【0142】
<塗膜の屈折率の評価方法>
実施例及び比較例で得られた感圧式接着剤組成物を剥離フィルム上に塗工し、120℃のオーブンにて乾燥して、厚さ25μmの感圧式接着剤層を設けた後、ポリエステルフィルムを貼り合わせて積層させ、感圧式接着シートを作製した。その後、アッベ屈折率計「DR−M2」[ATAGO社製]にて、25℃雰囲気下、ナトリウムD線を照射して、接着シート上の接着剤層の屈折率を測定した。
【0143】
<ゲル分率>
実施例及び比較例で得られた感圧式接着剤組成物を剥離フィルム上に塗工し、100℃のオーブンにて2分間乾燥して、厚さ25μmの感圧式接着剤層を設けた後、厚さ50μmのポリエステルフィルムを貼り合わせて積層させ、温度23℃相対湿度50%の条件で1週間熟成(暗反応)させて感圧式接着シートを作製した。次いで、200メッシュのステンレス製金網(サイズ:5cm×11cm)を小数点以下4桁まで精秤し、上記感圧式接着剤層の剥離フィルムを剥がして露出した感圧式接着剤層の面を金網に張り合わせて、ポリエステルフィルム/接着剤層/金網の積層体(積層体のサイズ:5cm×11cm)を作成し、この積層体の重量を精秤した。この積層体を小さく丸めて、酢酸エチルを50ml入れた容量200mlのガラス瓶に入れ、23℃の温度下で24時間静置して接着剤層を溶剤抽出した。積層体をガラス瓶から取り出し、新しい酢酸エチルで洗浄した後、100℃で恒量になるまで乾燥して精秤した。次に金網からポリエステルフィルムを剥がして、酢酸エチルでポリエステルフィルムに付着した接着剤を完全に取り除き、ポリエステルフィルムの重量を精秤した。以下の式によりゲル分率を算出した。
【0144】
G=100×(W2−W0−W3)/(W1−W0−W3)
G:ゲル分率(%)
W0:金網の重量
W1:(金網+接着剤層+ポリエステルフィルム)の初期の重量
W2:(金網+接着剤層+ポリエステルフィルム)の抽出後の重量
W3:ポリエステルフィルムの重量
ゲル分率の評価基準
30%以上 :「優秀」
20%以上〜30%未満 :「実用レベル」
20%未満 :「実用不可」
【0145】
<接着力の測定>
実施例及び比較例で得られた感圧式接着剤組成物を剥離フィルム上に塗工し、100℃のオーブンにて2分間乾燥して、厚さ25μmの感圧式接着剤層を設けた後、厚さ50μmのポリエステルフィルムを貼り合わせて積層させ、温度23℃相対湿度50%の条件で1週間熟成(暗反応)させ、感圧式接着シートを作製した。次いで、感圧式接着シートを100mm×25mmの大きさに切断し、感圧式接着シートから剥離フィルムを剥がして、露出した接着剤層の面を厚さ1.1mm、大きさ110mm×30mmのフロートガラス板に貼り付ける。次いで、2kg/cm2の加圧ロールを用い、5mm/minの速度で1往復圧着させてから、23℃−50%RHの雰囲気下で24時間放置した。その後、引っ張り試験機にて300mm/minの速度で180度方向に引き剥がして、剥離強度を測定した。
【0146】
剥離強度の評価基準
3000gf/25mm以上 :「優秀」
2000gf/25mm以上〜3000gf/25mm未満 :「実用レベル」
2000gf/25mm未満 :「実用不可」
【0147】
<耐熱性、耐湿熱性の評価方法>
接着加工した偏光板(積層体)を150mm×80mmの大きさに裁断し、剥離フィルムを剥がし、厚さ1.1mmのフロートガラス板の両面に、それぞれの偏光板の吸収軸が直交するようにラミネーターを用いて貼着した。続いて、この偏光板が貼り付けられたガラス板を50℃−5気圧の条件のオートクレーブ内に20分保持させて、偏光板をガラス板に強固に密着させ、偏光板とガラス板との積層物を得た。耐熱性の評価として、上記積層物を120℃で1000時間放置した後の浮きハガレ、及び積層物に光を透過させたときの光漏れ(白抜け)を目視で観察した。又、耐湿熱性の評価として、上記積層物を80℃、相対湿度90%で1000時間放置した後の浮きハガレ、及び積層物に光を透過させたときの光漏れ(白抜け)を目視で観察した。耐熱性、耐湿熱性について、下記の3段階の評価基準に基づいて評価を行った。
【0148】
○:「浮きハガレ・白ぬけが全く認められず、実用上全く問題なし。」
△:「若干浮きハガレ・白ぬけが認められるが、実用上問題がない。」
×:「全面的に浮きハガレ・白ぬけがあり、実用不可である。」
をそれぞれ意味する。
【0149】
【表3】

【0150】
以上のように、本発明の感圧式接着剤組成物は、架橋性、接着性、耐熱性、耐湿熱性、及び屈折率の制御性に優れていることがわかった。これに対して、芳香環構造を有する二塩基酸成分を含有しない合成例7のポリエステル樹脂を用いた場合、屈折率が1.48以下となり、光学用途には適さなかった。更に耐熱性、耐湿熱性も劣っていた。又、合成例8のポリエステル樹脂のように、側鎖にアルキル基を有するジオール成分を含有しないものは、耐熱性と耐湿熱性が劣った。多官能化合物(C)を使用しない合成例9のポリエステル樹脂を用いた場合、反応性化合物(E)の添加量を増やしてもゲル分率が低く、耐熱性と耐湿熱性が劣った。合成例10、12の様に単官能化合物(D)を使用しないポリエステル樹脂を用いた場合は、少量の反応性化合物(E)の添加でゲル分率は高くなるものの、接着力が低く実用レベルに達しなかった。又、合成例11の様に、単官能化合物(D)を使用しないで、多官能化合物(C)を比較的多量に用いたものは、反応途中でゲル化してしまった。

【特許請求の範囲】
【請求項1】
芳香環構造を有する二塩基酸系成分(a1)を含む二塩基酸系成分(A)と、側鎖にアルキル基を有するジオール(b1)を含むジオール成分(B)と、3価以上の多価アルコール(c1)、3価以上の多価カルボン酸(c2)、一分子中に水酸基1個とカルボキシル基2個とを有するオキシジカルボン酸(c3)、及び一分子中に水酸基2個とカルボキシル基1個とを有するジオキシカルボン酸(c4)から選ばれる少なくとも1つの多官能化合物(C)と、1官能のカルボン酸(d1)及び1官能のアルコール(d2)から選ばれる少なくとも1つの単官能化合物(D)と、を反応して得られる、ガラス転移温度が−80〜0℃のポリエステル樹脂。
【請求項2】
芳香環構造を有する二塩基酸系成分(a1)由来の構造を5〜50mol%含有することを特徴とする請求項1記載のポリエステル樹脂。
【請求項3】
側鎖にアルキル基を有するジオール(b1)由来の構造を5〜40mol%含有することを特徴とする請求項1又は2記載のポリエステル樹脂。
【請求項4】
3価以上の多価アルコール(c1)、3価以上の多価カルボン酸(c2)、一分子中に水酸基1個とカルボキシル基2個とを有するオキシジカルボン酸(c3)、及び一分子中に水酸基2個とカルボキシル基1個とを有するジオキシカルボン酸(c4)から選ばれる少なくとも1つの多官能化合物(C)由来の構造を0.1〜10mol%含有することを特徴とする請求項1〜3いずれかに記載のポリエステル樹脂。
【請求項5】
1官能のカルボン酸(d1)及び1官能のアルコール(d2)から選ばれる少なくとも1つの単官能化合物(D)由来の構造を0.1〜10mol%含有することを特徴とする請求項1〜4いずれかに記載のポリエステル樹脂。
【請求項6】
重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が、2.0〜6.0であることを特徴とする請求項1〜5いずれかに記載のポリエステル樹脂。
【請求項7】
重量平均分子量が、30,000〜1,000,000であることを特徴とする請求項1〜6いずれかに記載のポリエステル樹脂。
【請求項8】
請求項1〜7いずれかに記載のポリエステル樹脂、及び該ポリエステル樹脂と反応し得る反応性化合物(E)を含有することを特徴とする感圧式接着剤組成物。
【請求項9】
反応性化合物(E)が多官能エポキシ化合物、多官能アジリジン化合物、多官能カルボジイミド化合物、多官能オキサゾリン化合物、多官能イソシアネート化合物、及び金属キレート化合物からなる群より選ばれる少なくとも1種であることを特徴とする請求項8記載の感圧式接着剤組成物。
【請求項10】
光学部材上に、請求項8又は9記載の感圧式接着剤組成物から形成される感圧式接着剤層が積層されてなる積層体。
【請求項11】
液晶セル用ガラス部材、請求項8又は9記載の感圧式接着剤組成物から形成される感圧式接着剤層、及び光学部材が順次積層されてなる液晶セル用部材。

【公開番号】特開2009−221440(P2009−221440A)
【公開日】平成21年10月1日(2009.10.1)
【国際特許分類】
【出願番号】特願2008−70524(P2008−70524)
【出願日】平成20年3月19日(2008.3.19)
【出願人】(000222118)東洋インキ製造株式会社 (2,229)
【Fターム(参考)】