説明

マイクロチップ、核酸抽出用のキット及び核酸の抽出方法

低コストに作製、調製することができ、液体試料の流れの澱みの発生が抑えられ、マイクロビーズの注入、充填、輸送を円滑に簡便に行うことができ、更にはゴミの発生も抑えることのできる新しい技術手段とこれを用いる新しい核酸抽出方法を提供する。上下基板(1、2)の接合面に設けられた溝部(11、21)によって微細流路(3)が形成されるマイクロチップであって、微細流路(3)には、その断面の上下、左右又は上下左右の中央部に流路断面が縮小された隙間部(31)が設けられており、マイクロビーズが堰止めされる。

【発明の詳細な説明】
【技術分野】
本発明は、マイクロチップ、核酸抽出用のキット及び核酸の抽出方法に関する。
本出願は、日本国において2003年3月24日に出願された日本特許出願番号2003−081605を基礎として優先権を主張するものであり、この出願は参照することにより、本出願に援用される。
【背景技術】
従来、ガラス等の基板表面にリソグラフィー等の微細加工技術によって深さ100μm、幅500μm程度までの大きさの溝を形成して、この溝を液体や気体の微細流路とし、化学反応、生化学反応、溶媒抽出、気液分離、更にはこれらに基づく微量成分の化学分析や非接触光学分析等を可能としたマイクロチップ技術が知られている。
このマイクロチップ技術については、本出願の発明者らによって、微細流路内に反応担体としてのマイクロビーズを挿入し、かつ微細流路内にダム形状の堰止め部を設けるようにした方策も提案されている(文献1)。
近年の分子遺伝子や分子生物学の進展とその医療等への応用の拡大に伴って、液体試料中からの核酸の抽出が大変に重要な課題になっていることから、マイクロチップ技術を核酸の抽出に利用することが検討されてきており、これまでにも、シリカビーズを用いる方法やシリカマイクロピラーを用いる方法、シリカフィルタを用いる方法等が提案されている(文献2−4)。
しかしながら、これまでのマイクロチップ技術においては、例えばシリカマイクロピラーやシリカフィルタを用いた核酸抽出の方法では高いコストで、汚れた場合に交換できないという基本的な問題があり、また、これまでのシリカ等のマイクロビーズを用いる方法においては、微細流路内への注入のために大きな圧力が必要であってビーズの充填が容易ではなかった。
そして、マイクロビーズをダム形状の堰止め部により堰止める従来の方法においては、液体試料の流れに澱みが発生しやすく、シリカ等のマイクロビーズの輸送を円滑に行うことが難しくなることがあるという問題があった。
また、従来では、ガラス、石英等をマイクロチップ基板として、微細流路を形成した場合には、流路内にゴミが生じやすく、しかもその除去が難しい場合があるという問題もあった。
以下、関連文献を示す。これらの文献は参照することにより、本出願に援用される。
1:K.Sato et al.,Anal.Chem.72,1144−1147(2000)
2:L.Ceriotti et al.,(2002)Proceedings of the micro TAS 2002 symposium,Nara,pp.175−177
3:J.Kim et al.,(2002)Proceedings of the micro TAS 2002 symposium,Nara,pp.224−226
4:Q.Wu et al.,,(2002)Proceedings of the micro TAS 2002 symposium,Nara,pp.198−200
【発明の開示】
そこで、上述のような従来技術の問題を解消するために、本発明の目的は、核酸の抽出に有効であるだけでなく、各種の反応担体としても有用なマイクロビーズを用いるマイクロチップ技術として、低コストに作製、調製することができ、流体試料の流れの澱みの発生が抑えられ、マイクロビーズの注入、充填、輸送を円滑に簡便に行うことができ、更にはゴミの発生も抑えることのできる新しい技術のマイクロチップと、これを用いる新しい核酸抽出方法を提供することである。
上述の目的を達成するために、本発明に係るマイクロチップは、上下基板の接合面に設けられた溝部によって微細流路が形成されており、微細流路には、その断面の上下、左右又は上下左右の中央部に流路断面が縮小された隙間部が設けられている。この隙間部は、溝部内の突起部により形成されてもよい。また、隙間部は、上下基板の各々に設けた溝部内の突起部の対向により形成されてもよい。また、隙間部は、一方の基板の溝部内への他方の基板の突起部の挿入により形成されてもよい。また、隙間部は、上下基板の少なくとも一方の可動突起部によりその断面の大きさが可変とされてもよい。
また、隙間部の断面の大きさは、微細流路内に挿入したマイクロビーズを堰止めする大きさである。微細流路の内壁面は、表面処理剤で修飾されてもよい。
また、本発明に係る核酸抽出用のキットは、上述のマイクロチップと、表面水酸基を持つマイクロビーズとを備える。この表面水酸基を持つマイクロビーズは、直径10μm以下のシリカマイクロビーズ、中空のシリカマイクロビーズ及び樹脂マイクロビーズのうちの少なくとも1種であってもよい。内壁面に表面水酸基を持つマイクロチップ微細流路は、その表面水酸基が表面処理剤により被覆処理されてもよい。この表面処理剤は、トリアルキルハロゲノシランを主成分とするシランカップリング剤である。
更に、本発明に係る核酸の抽出方法は、上述の核酸抽出用のキットを用い、マイクロチップの微細流路内のマイクロビーズの表面に被処理液中の核酸を吸着させる。更に、核酸の吸着は、カオトロピックイオンの存在下に行ってもよい。
【図面の簡単な説明】
図1は、マイクロチップを模式的に例示した分解斜視図である。
図2A及び図2Bは、図1のA及びB方向からの隙間部31の断面図である。
図3A〜3Cは、隙間部31の他の例を示した断面図である。
図4A及び図4Bは、更に、別の隙間部31の例を示した断面図である。
図5は、実施例としてのDNAの吸着について例示した光学顕微鏡写真の模式図である。
【発明を実施するための最良の形態】
以下、本発明に係るマイクロチップ、核酸抽出用のキット及び核酸の抽出方法の実施の形態について、図面を参照して説明する。
図1及び2は、本発明に係るマイクロチップの部分的な構造を模式的に示すものであり、図1は、下の基板1と上の基板2が分離された状態を示しており、図2は、上下の基板1、2が接合した状態での微細流路3に設けられた隙間部31について、図1の矢印A及びBの方向から見た部分断面を示している。
例えば、図1及び図2に示すマイクロチップにおいては、上下基板1、2の接合面に設けられた溝部11、21によって微細流路3が形成されている。そして、微細流路3には、その断面の上下の中央部に流路断面が縮小された隙間部31が設けられている。
より具体的には、この図1及び図2の例の場合には、上下の基板1、2の各溝部11、21が対向することで微細流路3が形成されるとともに、各溝部11、21内に設けた突起部12、22が対向することによって隙間部31が形成されるようにしている。
隙間部31については、微細流路3の断面の中央部であればよく、図2に例示したスリット状の開口のように、上下の中央部だけでなく、例えば図3Aに模式的に示すように、左右の中央部でも、あるいは図3Bに示すように、上下左右の中央部でもよい。もちろん、この隙間部31の断面形状も各種であってよく、例えば図3Cに示すように、断面円形等の各種のものであってよい。これらの形状については、マイクロチップの溝部11、21及び突起部12、22を形成するための微細加工の手段やその条件、更には、微細流路内に注入するマイクロビーズの種類や大きさ等を考慮して決めることができる。
そして、隙間部31の形成については、上下の基板1、2の各々の溝部11、21内に設けた突起部12、22によるものでなくてもよい。例えば図4に示すように、微細流路3そのものは、例えば下側の基板1に設けた溝部11によって形成し、上側の基板2は、そのカバー板として存在させ、この微細流路3の構造において、上側の基板2に設けた突起部23を溝部11に挿入し、このものを溝部11内の突起部12と対向させることによって隙間部31を形成することも可能である。
もちろん、隙間部31については、以上の突起部12、22、23による構成以外に様々であってよい。
また、これらの突起部12、22、23は、基板1、2のリソグラフィーエッチング等による微細加工によって形成するだけでなく、例えばポリマの硬化による形成等の手段によるものとしてもよい。更に微細流路3に対しての外部からの微小部材の作用、更には、微細流路3そのものの変形等の手段によって隙間部31を形成してもよい。
いずれの場合であっても、本発明に係るマイクロチップにおいては、微細流路3や隙間部31の作製、調製を簡便に、低コストで行うことができ、しかも、微細流路3の断面の中央部に隙間部31を設けることによって、微細流路3内にマイクロビーズを注入する場合に、液体や気体等の流体の流れの澱みの発生を抑え、マイクロビーズの注入を円滑に、しかも簡便に行うことを可能とするとともに、マイクロビーズの堰止めも可能とする。
微細流路3に設けられる隙間部31については、このようにマイクロビーズを用いるものとしては、その断面の大きさが微細流路3内に注入したマイクロビーズを堰止めすることのできるものとする。また、この隙間部31については、例えば上述の突起部、あるいはこれと同様の機能を有する部材等を可動とし、その断面の大きさを可変とすることも考慮される。断面の大きさを可変とした隙間部31においては、微細流路3内のマイクロビーズを堰止めした後に、その断面を大きく拡大して、マイクロビーズを下流域に移流させることを可能とする。通常、マイクロビーズの排出のためには、注入とは逆方向に排出しなければならないが、この断面可変の隙間部31によれば、注入と同じ順方向に排出することが可能になる。
例えば、上述のような本発明に係るマイクロチップにおいては、その利用目的や対象物の種類、性質に応じて、微細流路3内に試料物質や不純物、ゴミ等が付着しないように、その内壁面を表面処理剤で修飾することができる。例えば、ガラスや石英等から作製されたマイクロチップの場合には、通常、微細流路3の内壁表面には表面水酸基が存在し、この表面水酸基が核酸等と結合して、核酸等の物質の抽出、分離等を難しくすることがある。このような場合には、表面処理剤によって表面水酸基を被覆して不活化させることが有効である。本発明に係るマイクロチップは、マイクロビーズと組み合わせることによって特徴のある化学合成、あるいは分析用のキットとして極めて有用なものとなる。特に、本発明では、このようなキットとして、以上のようなマイクロチップと、表面水酸基を持つマイクロビーズとを備える核酸抽出用のキットを提供する。
そして、この場合の表面水酸基を持つマイクロビーズとしては、直径10μm以下のシリカマイクロビーズ、中空のシリカマイクロビーズ、及び表面に水酸基が付与されたポリスチレン等の樹脂製のビーズが好適なものとして示される。直径が10μm以上のシリカマイクロビーズの場合には、その比重の大きさによって微細流路3での輸送が困難である。
また、本発明の核酸抽出用のキットでは、微細流路内壁面に表面水酸基を持つものに対しては、この表面水酸基をシランカップリング剤で被覆処理することが好ましい。
なかでも、ハロゲン原子を一個有するトリアルキルハロゲノシラン、すなわち一般式が、

で表わされる化合物を用いたシランカップリング剤が好ましい。ここで、式中のR、R及びRは、同一又は別異なアルキル基を示し、Xは、塩素原子等のハロゲン原子を示す。塩素原子等のハロゲン原子を2個以上有するシラン化合物の場合には、反応基であるハロゲン原子が内壁表面の水酸基と反応するだけでなく、分子相互の重合反応等によってゴミを生成させることがあるため、その使用には制約がある。
核酸抽出の方法としては、例えば図1及び図2のマイクロチップの例において、液導入口部4からマイクロビーズ含有液を注入して、微細流路3においてその隙間部31で堰止め、次いで液導入口部5より試料を導入してマイクロビーズに核酸を吸着させる。残余の液は排出口部6より排出する。この吸着によって核酸が抽出されることになる。吸着された核酸は、脱着液の導入によってマイクロビーズより脱着させることができる。そして、この核酸抽出は、カオトロピックイオンの存在下に行うことが好適でもある。
本発明によって、簡便に、そして高効率で、核酸の抽出が可能とされる。
以下に実施例を示し、更に詳しく説明する。もちろん、以下の実施例によって発明が限定されるものではない。
実施例1.マイクロビーズの輸送
中央部に堰止め構造を有する直径50μm、長さ60mmの微細流路を有するガラス製マイクロチップを用意した(図1)。微細流路の上方と下方の両側に突起部によるダム形状の堰止め構造の隙間部を形成した。微細流路の中央の隙間部は上下に2μm、左右に50μmのスリット状であった。微細流路の片方の口を注入口、他方を排出口とし、注入口に液貯めを設け、排出口にマイクロチューブを接続した。排出口のマイクロチューブにはシリンジポンプを接続し、シリンジポンプの動作によって液貯めに注入した液体が吸引され、微小流路中に注入できる実験システムを組み立てた。ここで、純水に懸濁したマイクロビーズを液貯めに注入し、マイクロビーズの微小流路中での輸送を光学顕微鏡を用いて観察した。マイクロビーズとして、シリカマイクロビーズ(直径10μm以下)、シリカマイクロビーズ(直径10μm以上)、中空のシリカマイクロビーズ(直径2〜20μm)、表面に水酸基を付加したポリスチレンマイクロビーズ(直径20μm)を用意した。毎分10μlの流速で吸引した。シリカマイクロビーズ(直径10μm以上)以外のマイクロビーズはすべて微細流路内を良好に輸送され、堰止め構造の隙間部の直前部分にビーズのカラムを形成することができた。他方、直径10ミクロンよりも大きなシリカマイクロビーズで、同様な実験を行ったところ、微小流路の途中で輸送が止まり、カラムの形成が不十分であった。特に、中空のシリカマイクロビーズと表面に水酸基を付加したポリスチレンマイクロビーズは、シリカナノビーズ(直径が1μm以下のビーズ)並みに輸送が良好であった。
シリンジポンプに純水を入れ、微細流路に注入したところ、シリカマイクロビーズ(直径10μm以上)以外のマイクロビーズは、微細流路中を輸送され、液貯めに排出されることができた。
実施例2.微小流路の内壁の表面修飾処理
ガラスや石英等から作製したマイクロチップの場合には、微細流路の内壁表面への核酸の付着を防ぐため、微細流路の内壁の表面水酸基を被覆する必要がある。表面水酸基の被覆には、アルキル基と反応基を持つシランカップリング剤等による表面修飾処理が広く利用されている。したがって、微小流路の内壁処理もシランカップリング剤を用いて表面修飾処理を施せばよい。しかしながら、通常用いられているoctadecyltrichlorosilaneは、表面修飾のための反応基である塩素基を3つ持ち、微細流路の内壁の表面水酸基と反応するだけでなく、分子同士の重合により高分子を形成する。したがって、octadecyltrichlorosilaneの分子同士が反応し、高分子化することによってゴミを生じる。微細流路でなく、スライドガラスのような平板な基板の表面修飾処理では生じたゴミは溶媒で洗い流すことができ、問題は生じない。しかしながら、微細流路の内壁の処理では生じたゴミを容易には洗い流すことができない。微細流路内に堰止め構造が設けられている場合は特に取り除くのが難しい。微細流路中に残ったゴミは、微細流路中での液体やビーズの輸送の障害となるばかりでなく、核酸の吸着過程にも支障となる。また、反応基である塩素基が2つであるdichlorodimethylsilaneも広く用いられているが、沸点が低く(70°C)、揮発性が高いために安全性が低い上に、反応基が2つであるため、分子同士の重合による高分子化を完全には防ぐことができない。
そこで、反応基が単数で原理的に高分子化せず、沸点が高く揮発性が低いことにより安全性が高く、常温で液体の扱いやすい表面修飾処理剤を検討した。例えばtrietylchlorosilaneは、反応基部位である塩素基が1つであり、原理的に高分子化をしない。加えて、沸点が145°C、融点が−50°Cであるため、常温で揮発性が低く、液体であるため、toluene等の溶媒への希釈が容易であり、扱いやすい。
triethylchlorosilane又はoctadecyltrichlorosilaneを用いて微細流路の内壁の表面修飾処理を行った。脱水tolueneを溶媒として用い、各々の5%溶液を調製した。実施例1.で述べた実験システムを用いて、両者を比較した。調製された溶液を液貯めに注入し、シリンジポンプで吸引することにより、微細流路中に溶液を注入した。流量は毎分10μlとし、50μlの溶液を注入し、表面修飾を行った。そして、脱水tolueneを50μl以上注入し、表面処理後の微細流路を洗浄した。その洗浄中の微細流路を光学顕微鏡で観察した。octadecyltrichlorosilaneでは微細流路内にゴミを生じたが、triethylchlorosilaneでは生じなかった。triethylchlorosilaneでは更に濃度を10%に上げ、同様の処理を試した。ゴミは生じなかった。
実施例3.微細流路内での核酸の抽出
実施例1.で述べた実験システムを用いて核酸の吸着を試した。微細流路の内壁表面は10%triethylchlorosilaneを用いて実施例2.で述べたとおりに行った。核酸としてColE1DNAを用いた。カオトロピックイオン溶液として飽和ヨウ化ナトリウム水溶液を用いた。実施例1.で述べたマイクロビーズ0.2gを1lの割合で、ヨウ化ナトリウム溶液中に懸濁し、25μlを液貯めから微細流路中に注入し、カラムを形成させた。溶媒としてヨウ化ナトリウムを用い、1%DNA溶液を調製し、液貯めから微細流路内に注入した。次に、DNAの蛍光染色色素であるSYBRGreen I溶液を液貯めから微細流路内に注入した。微細流路を光学顕微鏡にて観察したところ、図5に示すように、シリカマイクロビーズ41のカラム部42のみが蛍光を発していることが確認された。実施例1.で用いたシリカマイクロビーズ41にDNAが吸着することが確かめられた。カラム部42以外の微細流路からは蛍光は見られず、微細流路の内壁表面へのDNAの吸着が生じないことも確認された。
実施例1.で述べた実験システムを用いて核酸の吸着と脱着を試した。実験システムは上述と同様とした。微細流路中に実施例1.で述べたマイクロビーズを注入し、カラムを形成した後、核酸を注入した。核酸としてはラムダDNAを用いた。マイクロビーズへのラムダDNAの吸着を光学顕微鏡を用いて確認した。60°C以上の温純水を用意し、液貯めより微細流路に注入した。マイクロビーズからラムダDNAの脱着を確認した。
以上より、核酸のマイクロビーズへの吸着と脱着が確認されたことにより、核酸の抽出を微細流路中で実現できることがわかった。
なお、本発明は、図面を参照して説明した上述の実施例に限定されるものではなく、添付の請求の範囲及びその主旨を逸脱することなく、様々な変更、置換又はその同等のものを行うことができることは当業者にとって明らかである。
【産業上の利用可能性】
以上詳しく説明したとおり、発明によって、核酸の抽出に有効であるだけでなく、各種の反応担体としても有用なマイクロビーズを用いるマイクロチップ技術として、低コストに作製、調製することができ、流体試料の流れの澱みの発生が抑えられ、マイクロビーズの注入、充填、輸送を円滑に簡便に行うことができ、更にはゴミの発生も抑えることのできる新しい技術手段とこれを用いる新しい核酸抽出方法を提供することができる。
【図1】




【図5】


【特許請求の範囲】
【請求項1】
上下基板の接合面に設けられた溝部によって微細流路が形成されるマイクロチップであって、
上記微細流路には、その断面の上下、左右又は上下左右の中央部に流路断面が縮小された隙間部が設けられていることを特徴とするマイクロチップ。
【請求項2】
上記隙間部は、上記溝部内の突起部により形成されていることを特徴とする請求の範囲第1項記載のマイクロチップ。
【請求項3】
上記上下基板の各々に設けた溝部内の突起部の対向により隙間部が形成されていることを特徴とする請求の範囲第2項記載のマイクロチップ。
【請求項4】
上記隙間部は、一方の基板の溝部内への他方の基板の突起部の挿入により形成されていることを特徴とする請求の範囲第1項乃至第3項のいずれか1項記載のマイクロチップ。
【請求項5】
上記隙間部は、上記上下基板の少なくとも一方の可動突起部によりその断面の大きさが可変とされていることを特徴とする請求の範囲第1項乃至第4項のいずれか1項記載のマイクロチップ。
【請求項6】
上記隙間部の断面の大きさは、上記微細流路内に挿入したマイクロビーズを堰止めする大きさであることを特徴とする請求の範囲第1項乃至第5項のいずれか1項記載のマイクロチップ。
【請求項7】
上記微細流路の内壁面は、表面処理剤で修飾されていることを特徴とする請求の範囲第1項乃至第6項のいずれか1項記載のマイクロチップ。
【請求項8】
請求の範囲第1項乃至第7項のいずれか1項記載のマイクロチップと、
表面水酸基を持つマイクロビーズとを備えている核酸抽出用のキット。
【請求項9】
上記表面水酸基を持つマイクロビーズは、直径10μm以下のシリカマイクロビーズ、中空のシリカマイクロビーズ及び樹脂マイクロビーズのうちの少なくとも1種であることを特徴とする請求の範囲第8項記載の核酸抽出用のキット。
【請求項10】
上記内壁面に表面水酸基を持つマイクロチップ微細流路は、その表面水酸基が表面処理剤により被覆処理されていることを特徴とする請求の範囲第8又は第9項記載の核酸抽出用のキット。
【請求項11】
上記表面処理剤は、トリアルキルハロゲノシランを主成分とするシランカップリング剤であることを特徴とする請求の範囲第10項記載の核酸抽出用のキット。
【請求項12】
請求の範囲第8項乃至第11項のいずれか1項記載の核酸抽出用のキットを用いる核酸の抽出方法であって、
マイクロチップの微細流路内のマイクロビーズの表面に被処理液中の核酸を吸着させることを特徴とする核酸の抽出方法。
【請求項13】
カオトロピックイオンの存在下に行うことを特徴とする請求の範囲第12項記載の核酸の抽出方法。

【国際公開番号】WO2004/086055
【国際公開日】平成16年10月7日(2004.10.7)
【発行日】平成18年6月29日(2006.6.29)
【国際特許分類】
【出願番号】特願2005−504072(P2005−504072)
【国際出願番号】PCT/JP2004/003998
【国際出願日】平成16年3月24日(2004.3.24)
【出願人】(000002185)ソニー株式会社 (34,172)
【出願人】(591243103)財団法人神奈川科学技術アカデミー (271)
【Fターム(参考)】