説明

マイクロチップ

【課題】増幅反応を行うことにより特定の目的物質の存在を検出するとともに、増幅阻害の影響を精度良く検出可能なマイクロチップを提供する。
【解決手段】検体液と、ポジティブコントロールと、試薬分岐部で分岐させた試薬(1)と、酵素分岐部で分岐させた酵素(1)とを合流させて第1混合液を形成し、検体液と、ネガティブコントロールと、前記試薬分岐部で分岐させた試薬(2)と、前記酵素分岐部で分岐させた酵素(2)とを合流させて第2混合液を形成し、ネガティブコントロールと、試薬分岐部で分岐させた試薬(3)と、酵素分岐部で分岐させた酵素(3)とを合流させて第3混合液を形成し、第1混合液乃至第3混合液のそれぞれを核酸増幅反応により増幅させ、増幅の有無に基づいて増幅反応を前記検出部で検出するよう構成するマイクロチップ。

【発明の詳細な説明】
【技術分野】
【0001】
本願発明は、遺伝子検査用のマイクロチップに関する。
【背景技術】
【0002】
近年、マイクロマシン技術及び超微細加工技術を駆使することにより、従来の試料調製、化学分析、化学合成などを行うための装置、手段(例えばポンプ、バルブ、流路、センサーなど)を微細化して1チップ上に集積化したシステムが注目されている。これは、μ−TAS(Micro Total Analysis System)とも呼ばれ、マイクロチップといわれる部材に、試薬と検体(例えば、検査を受ける被験者の尿、唾液、血液を処理して抽出したDNA処理した抽出溶液など)を合流させ、その反応を検出することにより検体の特性を調べる方法である。
【0003】
マイクロチップは、樹脂材料やガラス材料からなる基体に、フォトリソプロセス(パターン像を薬品によってエッチングして溝を作成する方法)や、レーザ光を利用して溝加工を行い、試薬や検体を流すことができる微細な流路と試薬を蓄える液溜部を設けており、さまざまなパターンが提案されている。
【0004】
そして、これらマイクロチップを用いて検体の特性を調べる際は、マイクロポンプなどでマイクロチップ内に収容されているプライマーや酵素等を含有する試薬や検体を送液することにより、試薬と検体とを核酸増幅反応により増幅させて検出部に導き、検出を行う。検出部では、例えば光学的な検出方法などによって目的物質の検出が行われる。
【0005】
核酸増幅反応としては、遺伝子の検出ではPCR(polymerase chain reaction)法によるものがあり、その有用性は広く認められている(例えば特許文献1)。
【0006】
特許文献1等に記載のPCR法では、プライマー試薬、基質試薬、酵素試薬及びその他の試薬を、DNAの試料と合流させて混合液を作成し、混合液をPCR法に基づく温度サイクルを実施すること鋳型DNAを増幅させるものである。
【0007】
しかしながら、PCR法は検体中に存在する微量の遺伝子を数十万〜数百万倍以上にも増幅できることから、コンタミネーションあるいは、反応阻害物質の混入あるいは、試薬の不活性化、不適切な反応条件、等による増幅不調の障害、等の影響による検査エラーが生じる場合がある。検査エラーへの対応として検査エラーが発生したことを検知するためにコントロールを平行して分析することが通例である。
【0008】
特許文献2では、コントロールとしてポジティブコントロールとネガティブコントロールを用い、検体と試薬の混合液(1)、ポジティブコントロールと試薬の混合液(2)、ネガティブコントロールと試薬との混合液(3)、を得る。そして次に、
(a)混合液(1)と混合液(2)の混合物、
(b)混合液(1)のみ、
(c)混合液(2)のみ、
(d)混合液(3)のみ、
の各流体を増幅部で核酸増幅反応させ、当該増産物質を検出するマイクロリアクタが開示されている。
【特許文献1】特開2007−43998号公報
【特許文献2】国際公開第07/058077号パンフレット
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかし、特許文献2に開示されているマイクロリアクタでは流体(a)、流体(b)とでは検体から持ち込まれる阻害物質の割合が異なるために、増幅阻害の影響を精度良く検出できないという問題があった。
【0010】
また酵素を用いた核酸増幅反応において、酵素は熱により失活しやすく、その影響により増幅効率が低下してしまうという問題がある。
【0011】
本願発明は上記問題に鑑み、増幅反応を行うことにより特定の目的物質の存在を検出するとともに、増幅阻害の影響を精度良く検出可能なマイクロチップを得ることを目的とする。
【課題を解決するための手段】
【0012】
上記の目的は、下記に記載する発明により達成される。
【0013】
1.検体もしくは検体から抽出したDNAを含む検体液が注入される検体収容部と、
核酸増幅反応に用いる少なくともプローブ、プライマー、dNTPを含む試薬が収容される試薬収容部と、
核酸の増幅反応に用いる酵素が収容される酵素収容部と、
ポジティブコントロールが収容されるポジティブコントロール収容部と、
ネガティブコントロールが収容されるネガティブコントロール収容部と、
これらの各収容部に連通する微細流路と、
増幅反応を検出する検出部と、
を有するマイクロチップであって、
前記試薬収容部の試薬を三つの微細流路に分岐させる試薬分岐部と、
前記酵素収容部の酵素を三つの微細流路に分岐させる酵素分岐部と、
前記検体収容部から前記微細流路内を送液された検体液を二つの微細流路に分岐させる第1分岐部と、
前記ネガティブコントロール収容部から前記微細流路内を送液されたネガティブコントロールを二つの微細流路に分岐させる第2分岐部と、
を有し、
前記微細流路は、
前記第1分岐部で分岐させた一方の検体液と、前記ポジティブコントロール収容部からのポジティブコントロールと、前記試薬分岐部で分岐させた試薬(1)と、前記酵素分岐部で分岐させた酵素(1)とを合流させて第1混合液を形成し、
前記第1分岐部で分岐させた他方の検体液と、前記第2分岐部で分岐させた一方のネガティブコントロールと、前記試薬分岐部で分岐させた試薬(2)と、前記酵素分岐部で分岐させた酵素(2)とを合流させて第2混合液を形成し、
前記第2分岐部で分岐させた他方のネガティブコントロールと、前記試薬分岐部で分岐させた試薬(3)と、前記酵素分岐部で分岐させた酵素(3)とを合流させて第3混合液を形成し、
前記第1混合液乃至第3混合液のそれぞれを核酸増幅反応により増幅させ、増幅の有無に基づいて増幅反応を前記検出部で検出するよう構成されていることを特徴とするマイクロチップ。
【0014】
2.前記ポジティブコントロール収容部から前記微細流路内を送液されたポジティブコントロールを二つの微細流路に分岐させる第3分岐部を有し、
前記微細流路は、
前記試薬分岐部では、更に四つ目の微細流路に試薬を分岐させ、
前記酵素分岐部では、更に四つ目の微細流路に酵素を分岐させ、
前記第3分岐部で分岐させたポジティブコントロールと、前記試薬分岐部で分岐させた試薬(4)と、前記酵素分岐部で分岐させた酵素(4)とを合流させて第4混合液を形成し、
第4混合液を核酸増幅反応により増幅させ、増幅の有無に基づいて増幅反応を前記検出部で検出するよう構成されていることを特徴とする1.に記載のマイクロチップ。
【0015】
3.前記増幅の有無を増幅させた検出対象の核酸と、前記試薬収容部からのプローブとのハイブリダイゼーションにより検出するよう構成されていることを特徴とする1.又は2.に記載のマイクロチップ。
【0016】
4.前記増幅の有無を増幅させた検出対象の核酸と、前記試薬収容部からのプローブとのハイブリダイゼーション反応時の乖離温度により検出するよう構成されていることを特徴とする1.又は2.に記載のマイクロチップ。
【発明の効果】
【0017】
本発明によれば、一箇所に収容した酵素を分割し、分割した酵素を用いて増幅反応を行うことにより、特定の目的物質の存在を検出するとともに、増幅阻害の影響を精度よく検出することが可能なマイクロチップを得ることが可能となる。
【発明を実施するための最良の形態】
【0018】
本発明を実施の形態に基づいて説明するが、本発明は該実施の形態に限られない。
【0019】
[分析システムの装置構成]
図1は、本実施形態に係るマイクロチップを用いるマイクロチップ分析システム8の外観図である。マイクロチップ分析システム8は、マイクロチップ1に予め注入された検体と試薬とを自動的に反応させ、反応結果を自動的に出力する装置である。
【0020】
マイクロチップ分析システム8の筐体82には、マイクロチップ1を装置内部に挿入するための挿入口83、表示部84、メモリカードスロット85、プリント出力口86、操作パネル87、外部入出力端子88が設けられている。
【0021】
検査担当者は、図1の矢印方向にマイクロチップ1を挿入し、操作パネル87を操作して検査を開始させる。マイクロチップ分析システム8の内部では、マイクロチップ1内の反応の検査が自動的に行われ、検査が終了すると表示部84に結果が表示される。検査結果は操作パネル87の操作により、プリント出力口86よりプリントを出力したり、メモリカードスロット85に挿入されたメモリカードに記憶したりすることができる。また、外部入出力端子88から例えばLANケーブルを使って、パソコンなどにデータを保存することができる。検査終了後、検査担当者はマイクロチップ1を挿入口83から取り出す。
【0022】
図2は、本実施形態に係るマイクロチップを用いるマイクロチップ分析システム8の概略斜視図であり、図3は構成図である。図2及び図3においては、マイクロチップが図1に示す挿入口83から挿入され、セットが完了している状態を示している。
【0023】
マイクロチップ分析システム8は、マイクロチップ1に予め注入された検体及び試薬を送液するための駆動液L0を貯留する駆動液タンク70、マイクロチップ1に駆動液L0を供給するためのマイクロポンプ5、マイクロポンプ5とマイクロチップ1とを駆動液L0が漏れないように接続するポンプ接続部6、マイクロチップ1の必要部分を温調する温度調節ユニット3、マイクロチップ1をずれないように温度調節ユニット3及びポンプ接続部6に密着させるためのチップ押圧板2、チップ押圧板2を昇降させるための押圧板駆動部21、マイクロチップ1をマイクロポンプ5に対して精度良く位置決めする規制部材22、マイクロチップ1内の検体と試薬との反応状態等を検出する光検出部4(4a及び4b)、等を備えている。
【0024】
チップ押圧板2は、初期状態においては、図3に示す位置より上方に退避している。これにより、マイクロチップ1は矢印X方向に挿抜可能であり、検査担当者は挿入口83(図1参照)から規制部材22に当接するまでマイクロチップ1を挿入する。その後、チップ押圧板2は、押圧板駆動部21により下降してマイクロチップ1に当接し、マイクロチップ1の下面が温度調節ユニット3及びポンプ接続部6に密着される。
【0025】
温度調節ユニット3は、マイクロチップ1と対向する面にペルチェ素子31及びヒータ32を備え、マイクロチップ1がマイクロチップ分析システム8にセットされたときに、ペルチェ素子31及びヒータ32がマイクロチップ1に密着するようになっている。試薬が収容されている部分をペルチェ素子31で冷却して試薬が変性させないようにする。また検体と試薬とが反応する反応部139をヒータ32で加熱したり、ペルチェ素子31で冷却したりしてPCR法による増幅反応を行わせたりする。
【0026】
また、温度領域の異なるヒータを反応にあわせて回転させたり、チップ自身を回転させたりすることにより、加熱及び冷却の温度サイクルをかけるようにしてもよい。
【0027】
更に反応部139での加熱時の制御温度は適宜変更することが可能であり、制御温度を切り換えることにより、検出対象の核酸が含まれているか否かをハイブリダイゼーション反応による増幅の有無により検出するようにしても良い。
【0028】
PCR法による増幅反応においては、温度条件を厳密にしないと反応の成否に影響したり、反応の制御に支障が生じたりする。そのためPCR法では、温度条件のみならずその加熱時間を厳密に管理することが求められる。微細流路内に中間温度領域が存在すると、副反応として非特異的な増幅が生じ、これにより標的物質の増幅が阻害されてしまう。このため目的の増幅反応が充分に起こらない可能性もある。したがって核酸増幅などが行われる微細流路とその両端との温度差は、画然としていることが望ましい。
【0029】
発光部4a及び受光部4bから構成される光検出部4では、発光部4aからの光をマイクロチップ1に照射し、マイクロチップ1を透過した光を受光部4bにより検出する。受光部4bはチップ押圧板2の内部に一体的に設けられている。発光部4a及び受光部4bは、図3に示すマイクロチップ1の検出部148に対向するように設けられている。
【0030】
蛍光を検出する際には、検出部148の斜め45℃の方向から、蛍光検出波長に関連する波長をフィルターによりカットした励起光をあて、励起光入射と90度方向に設けた受光部に、励起光をカットするフィルターを介して受光させるようにしても良い。
【0031】
マイクロポンプ5は、ポンプ室52、ポンプ室52の容積を変化させる圧電素子51、ポンプ室52のマイクロチップ1側に位置する第1絞り流路53、ポンプ室の駆動液タンク70側に位置する第2絞り流路54、等から構成されている。第1絞り流路53及び第2絞り流路54は絞られた狭い流路となっており、また、第1絞り流路53は第2絞り流路54よりも長い流路となっている。
【0032】
駆動液L0を順方向(マイクロチップ1に向かう方向)に送液する場合には、まず、ポンプ室52の容積を急激に減少させるように圧電素子51を駆動する。そうすると、短い絞り流路である第2絞り流路54において乱流が発生し、第2絞り流路54における流路抵抗が長い絞り流路である第1絞り流路53に比べて相対的に大きくなる。これにより、ポンプ室52内の駆動液L0は、第1絞り流路53の方に支配的に押し出され送液される。次に、ポンプ室52の容積を緩やかに増加させるように圧電素子51を駆動する。そうすると、ポンプ室52内の容積増加に伴って駆動液L0が第1絞り流路53及び第2絞り流路54から流れ込む。このとき、第2絞り流路54の方が第1絞り流路53と比べて長さが短いので、第2絞り流路54の方が第1絞り流路53と比べて流路抵抗が小さくなり、ポンプ室52内には第2絞り流路54の方から支配的に駆動液L0が流入する。以上の動作を圧電素子51が繰り返すことにより、駆動液L0が順方向に送液されることになる。また圧電素子51への駆動電圧を変更することにより駆動液L0の送液圧力を変更することが可能である。
【0033】
一方、駆動液L0を逆方向(駆動液タンク70に向かう方向)に送液する場合には、まず、ポンプ室52の容積を緩やかに減少させるように圧電素子51を駆動する。そうすると、第2絞り流路54の方が第1絞り流路53と比べて長さが短いので、第2絞り流路54の方が第1絞り流路53と比べて流路抵抗が小さくなる。これにより、ポンプ室52内の駆動液L0は、第2絞り流路54の方に支配的に押し出され送液される。次に、ポンプ室52の容積を急激に増加させるように圧電素子51を駆動する。そうすると、ポンプ室52内の容積増加に伴って駆動液L0が第1絞り流路53及び第2絞り流路54から流れ込む。このとき、短い絞り流路である第2絞り流路54において乱流が発生し、第2絞り流路54における流路抵抗が長い絞り流路である第1絞り流路53に比べて相対的に大きくなる。これにより、ポンプ室52内には第1絞り流路53の方から支配的に駆動液L0が流入する。以上の動作を圧電素子51が繰り返すことにより、駆動液L0が逆方向に送液されることになる。
【0034】
ポンプとしては、このようなマイクロポンプに限らず、必要に応じてシリンジポンプやダイヤフラム型のマイクロポンプ、電気浸透流ポンプなどを使用してもかまわない。
【0035】
ポンプ接続部6は、必要なシール性を確保して駆動液の漏出を防止するために、ポリテトラフルオロエチレン、シリコン樹脂などの柔軟性(弾性、形状追随性)をもつ樹脂によって密着面が形成されることが好ましい。このような柔軟性を有する密着面は、例えばマイクロチップの構成基材自体によるものであっても良く、また、ポンプ接続部6における流路開口の周囲に貼着された柔軟性を有する別途の部材によるものであっても良い。
【0036】
[マイクロチップ1の構成]
次に図4乃至図6に基づいて、マイクロチップ1の構成について説明する。図4はマイクロチップ1の主要部における各流路エレメントの関係を表す構成概略図であり、図5及び図6は、2層構造のマイクロチップ1の流路構成の一例を示す模式図であり、図5は第1層(上層)の流路構成を示すものであり、図6は第2層(下層)の流路構成を示すものである。
【0037】
図4に示すマイクロチップ1においては、検体液は、検体収容部stEからの微細流路を送液され第1分岐部SP1で2分割され、下流側の微細流路に送液される。ネガティブコントロールは、ネガティブコントロール収容部stNから微細流路を送液され第2分岐部SP2で2分割され、下流側の微細流路に送液される。試薬は試薬収容部stから三つの微細流路を試薬(1)〜試薬(3)に3分割されて送液される。酵素は酵素収容部stPyから三つの微細流路を酵素(1)〜酵素(3)に3分割されて送液される。なお本実施形態においてはマイクロチップ1内で用いる酵素は全て一箇所の酵素収容部stPyから微細流路を送液され、各反応部139に供給される。
【0038】
そして「第1混合液L1」は、ポジティブコントロール収容部stPからのポジティブコントロールと、第1分岐部SP1で分岐した一方の検体液と、試薬収容部stから試薬分岐部SP9により分岐されて送液された試薬(1)と、酵素収容部stPyから酵素分岐部SP4により分割された酵素(1)と、を合流させることにより形成される。
【0039】
「第2混合液L2」は、第1分岐部SP1で分岐したうちの他方の検体液と、第2の分岐部SP2で分岐した一方のネガティブコントロールと、試薬分岐部SP9で分岐させた試薬(2)と、酵素分岐部SP4により分岐させた酵素(2)とを合流させることにより形成する。
【0040】
「第3混合液L3」は、第2分岐部SP2で分岐したうちの他方のネガティブコントロールと、試薬分岐部SP9で分岐させた試薬(3)と、酵素分岐部SP4により分岐させた酵素(3)と、を合流させることにより形成する。
【0041】
そして第1混合液L1、第2混合液L2及び第3混合液L3はそれぞれに対応する反応部139で増幅反応させてから、検出部148でプローブDNA(あるいは単にプローブとも称す)とハイブリダイゼーションさせ、この反応生成物に基づいて増幅反応を前記検出部で検出する。以上が全体の概略である。
【0042】
なお、あらかじめ試薬中に、増幅反応に伴って蛍光を発するいわゆるインターカレータや、蛍光のFLET現象を利用した、taqmanプローブ(ロシュ・ダイアグノスティックス社製)、モレキュラービーコンプローブ、サイクリングプローブなどの蛍光プローブを用いて反応の進行をリアルタイムの測定したり、増幅反応物にインターカレータを挿入して、検出部148でゆっくりと加熱して、その乖離温度を計測したりすることにより検出するようにしてもよい。
【0043】
ここで「プローブDNA」とは、DNAの相補性を利用して、検出対象の遺伝子と相補関係となるDNA断片のことである。ハイブリダイゼーションにより検出対象の遺伝子と結合させる。
【0044】
「ポジティブコントロール」は、単独でも、検出対象の遺伝子と同様の核酸増幅反応とプローブDNAとのハイブリダイゼーション反応及び、後述の蛍光物質との生成反応を起こす。その配列は、検体を検出する特異的な配列で、プライマーがハイブリダイズする部分とその間の配列が検体と同じものである。コントロールに使用する核酸(DNA,RNA)は、公知技術文献に記載されているものを使用すれば良い。
【0045】
「ネガティブコントロール」は、単独では蛍光物質との生成反応を起こさない。核酸(DNA,RNA)以外の試薬などをすべて含み、コンタミネーションの有無のチェック、バックグラウンド補正用に用いる。
【0046】
「dNTP」とは、dATP、dCTP、dGTP、dTTPの4種類ヌクレオチド三リン酸の混合物であり、伸張反応の基質として用いられる。
【0047】
そして「試薬」には、プローブDNA、プライマー、dNTPが含まれる。
【0048】
「酵素」として、本実施形態においては、例えばDNAポリメラーゼを用いることができる。DNAポリメラーゼは、DNA鎖を鋳型として新たなDNA鎖を合成する。天然型のDNAポリメラーゼの他、活性を有する変異体酵素も包含される。またDNAポリメラーゼとしては、鎖置換(Strand displacement)活性を有するDNAポリメラーゼ、5′→3′エキソヌクレアーゼ活性を有していないDNAポリメラーゼ、逆転写酵素活性やエンドヌクレアーゼ活性を併せ持つDNAポリメラーゼ、反応温度まで加熱されないと活性が生じないようにブロックされたDNAポリメラーゼなどが挙げられる。なお「試薬」の中には、当該酵素を活性化するために、マグネシウム塩なども含まれる。
【0049】
また「乖離温度」とは、2本鎖構造の核酸が壊れてそれぞれ一本鎖に乖離(変性ともいう)する温度のことであり、変性温度とも称される。乖離温度は、相同性の高い2本鎖においては高く、相同性の低い2本鎖では低い傾向を示す。
【0050】
図5は、本実施形態に係るマイクロチップ1の一例を示すものである。同図においては被覆基板が取り外された状態での微細流路及び流路エレメントの配置を模式的に示している。
【0051】
マイクロチップ1には、疎水性の基材を用いて、液状の試薬と同じく液状の検体(試料)をマイクロチップ1上で混合・反応させるための微細流路及び流路エレメントが配設されている。微細流路はマイクロメーターオーダーで形成されており、例えば幅wは数十〜数百μm、好ましくは50〜300μmで、高さhは25〜1000μm程度、好ましくは50〜300μmである。
【0052】
以下、マイクロチップにおける反応及び検出の工程について説明する。図5及び図6に示すマイクロチップ1は、第1層と第2層の二つの層からなる流路が形成されたマイクロチップであり。c1乃至c7は接続孔であり両図において同一部位を示しており、二つの層を連通させるものである。そして当該接続孔c1乃至c7により図5に示す第1層と図6に示す第2層の間を流体が往来する。
【0053】
図に示すマイクロチップ1においては、混合液L1、L2、L3の各混合液Lに対応した複数の反応検出流路が配置されている。図4で示した概略図と同様に、最も左側の(混合流路138a、反応部139aを含む)反応検出流路は、検体、ポジティブコントロール、試薬及び酵素から形成された第1混合液L1の反応検出に用いられ、それに隣接する(混合流路138b、反応部139bを含む)反応検出流路は、検体、ネガティブコントロール、試薬及び酵素とから構成された第2混合液体L2の反応検出に用いられる。
【0054】
更に、その隣には不図示の第3混合液L3の反応検出に用いる反応検出流路が配置されている。
【0055】
これら複数の反応検出を比較することにより増幅阻害の影響を精度良く検知することができる。またこれらの反応検出流路は同様の形状で配置され基本的に同様の流路構成であるので、以下では、これらを代表して最も左側の反応検出流路について説明する。
【0056】
g(g1乃至g3、g6乃至g8)は、マイクロチップ1の一方の面から外部へ解放された上流開口部である。これらの上流開口部gは、ポンプ接続部6を介してマイクロチップ1をマイクロポンプ5に重ね合わせて接続した際に、マイクロポンプ5の接続面に設けられた流路開口と位置合わせされてマイクロポンプ5に連通される。そして当該上流開口部から送液を行うための駆動液L0が注入される。
【0057】
iは試薬或いは検体等の液体(以下、単に試薬液ともいう)を注入する注入孔であり、マイクロチップ1の外部へ解放された開口となっている。各注入孔iそれぞれの近傍の上流開口部gを開口した状態で試薬液を注入する。注入された液体は、近傍の上流開口部gに向かって微細流路を送られることになる。本実施形態においては当該液体を蓄えておく微細流路の一部を試薬収容部st(st1乃至st8)として用いている。
【0058】
図6に示す酵素収容部stPyには酵素が収容されており、一箇所の当該酵素収容部stPyからマイクロチップ内の微細流路を経由して各反応部139に送液される。なお同図に示すマイクロチップ1では一箇所の酵素分岐部SP4により酵素を3つに分岐させる例を示しているがこれに限られず、二つに分岐させる酵素分岐部SP4を多段階に複数設けることにより、三つあるいはそれ以上の微細流路に分岐させる構成としてもよい。
【0059】
図5に示すポジティブコントロール収容部stPにはポジティブコントロールが収容されており、検体収容部stEには検体もしくは検体から抽出したDNAを含む検体液が収容されている。また後述するが、試薬収容部st6にはプローブDNAが収容されている。
【0060】
試薬液注入時には、上流開口部g及び注入孔iのみが開いており、試薬注入後に注入孔iのみを封止する。そして試薬収容部st、上流開口部gに連通するマイクロポンプ5から送り込まれる駆動液L0により、空気を間に介して試薬或いは検体等の液体は送液される。
【0061】
130は混合液収容部であり、上流側で合流した試薬収容部st1〜st3からの試薬液が混合される。例えば、試薬収容部st1にはdNTP等の基質が、試薬収容部st2にはプライマーが収容される。
【0062】
j(j1乃至j6)は合流部であり、SP1は第1分岐部である。合流部jでは上流側の微細流路から送液された試薬液を合流させる。第1分岐部SP1では、上流側の検体収容部stEから送液された検体液を2分割に分岐させる。分岐された一方は、第1流路131を送液されて合流部j4で、ポジティブコントロール収容部stPから送液されたポジティブコントロールと試薬収容部st41、st42等からの試薬と、接続孔c2を経由して酵素収容部stPyから送液された酵素と、が合流して「第1混合液」が作成される。
【0063】
同様に、第1分岐部SP1で分岐された他方の検体は、第2流路132を送液されて合流部j5で、不図示のネガティブコントロール収容部stNから送液されたネガティブコントロールと試薬収容部st42、st43等からの試薬と、接続孔c3を経由して酵素収容部stPyから送液された酵素と、が合流して「第2混合液」が作成される。
【0064】
合流部j4、j5の接続孔c4、c5の下流側には、図6に示すように第1混合液と第2混合液とを十分に分子拡散させて混合するための混合流路138a、138bが設けられている。混合流路138aの下流には反応部139aが、混合流路138bの下流には反応部139bがそれぞれ設けられている。
【0065】
反応部139a(あるいは139b)は、混合流路138a(あるいは138b)で十分混合された検体と試薬との混合液を加熱反応させる部位で、マイクロチップ1をマイクロチップ分析システム8にセットした際に、反応部139aにマイクロチップ分析システム8のヒータ32及びペルチェ素子31が対向するようになっている。反応部139aをヒータ32により加熱することにより核酸の変性が行われ、放熱或いはペルチェ素子31で冷却することによりアニーリングが行われる。加熱及び冷却を繰り返すことにより核酸増幅反応が行われる。当該核酸増幅反応により反応部139aで増幅された増幅産物は、検出部148aへ送液され、光検出部4により検出が行われる。
【0066】
検出部148aにおいて、増幅産物を検出する手段について説明する。検出部148aでは増幅産物をそのまま光検出することはできず、一般には、増幅産物を検出部148aの流路壁に担持されている反応物質と反応させることにより増幅産物を検出部148aにトラップさせ、更に増幅産物に蛍光標識したプローブDNAを結合させて光学的に検出できるようにしている。検出部148aの少なくともその検出部分は、光学的測定を可能とするために透明な材質、好ましくは透明なプラスチックとなっている。
【0067】
ここで具体的に遺伝子検査を例にして説明する。
【0068】
(1)試薬はビオチン修飾したプライマーであり、反応部139aにおいて検体の遺伝子増幅を行い、増幅された遺伝子を変性処理により一本鎖にした反応後の検体を検出部148aに送る。検出部148aの流路壁には予めストレプトアビジン等のビオチン親和性タンパク質(アビジン、ストレプトアビジン、エクストラアビジン、好ましくはストレプトアビジン)が反応物質として担持されて固定化されている。反応部139aで反応後の検体が検出部148aに流入すると、ビオチン親和性タンパク質と、プローブDNAに標識されたビオチンと、の結合反応によって検体の遺伝子が検出部148aの流路壁に固定化(トラップ)される。前述したビオチン親和性タンパク質とビオチンとの結合反応は、公知のアビチン−ビオチン反応である。
【0069】
更に、増幅産物(この例では増幅遺伝子)をトラップする工程を経て、増幅遺伝子をトラップした検出部148aに、末端にFITC(Fluorescein isothiocyanate)で蛍光標識したプローブDNAを流し、これを検出部148aの流路壁に固定化した遺伝子にハイブリダイズさせる。(予め増幅遺伝子と蛍光標識したプローブDNAとをハイブリダイズさせたものを検出部でトラップしも良い。)
(2)微細流路内にFITCに特異的に結合する抗FITC抗体で表面を修飾した金コロイド液を流し、これにより遺伝子にハイブリダイズしたFITC修飾プローブに、その金コロイドを吸着させる。
【0070】
(3)上記微細流路の金コロイドの濃度を光学的に測定する。
【0071】
なお蛍光色素FITCの蛍光を測定することも可能である。しかしながら、蛍光色素の光褪色、バックグラウンドノイズなどを考慮する必要がある。このため本実施形態においては、前述のとおり最終的に可視光により、高感度で測定できる方式を採用している。
【0072】
以上のように、検出部148aでは、微細流路に収容される各試薬が順に送液され検出部148aに固定化されている反応物質と反応を行うが、この順序は予め決まっている。
【0073】
反応部139aから検出部148aに送液された増幅産物は、当該検出部148aにて反応物質と反応を開始する(例えばアビチン−ビオチン反応)。
【0074】
次に、上流開口部g6から駆動液L0の送り込みを開始し、試薬収容部st6に収容されているプローブDNAを下流側の検出部148aに送液することにより検出部148aの反応物質とハイブリダイゼーション反応が行われる。
【0075】
その後、上流開口部g7から駆動液L0の送り込みを開始し、試薬収容部st7の色素液(例えばPEG化金コロイド)を検出部148aに送液することにより検出部148aにて抗原抗体反応が開始される。金コロイドが増幅産物と反応した後、検出部148aにて検出する際、余分な金コロイドが存在する。この余剰な金コロイドを洗い流すため、上流開口部g8から駆動液L0の送液を開始することにより試薬収容部st8の洗浄液が、検出部148aに送液される。
【0076】
検出部148aに送液され検出のための反応が行われた増幅産物は、光検出部4により検出が行われる。検出後の増幅産物は、廃液部160に送液される。
【0077】
(1)第1混合液から生成された増幅生産物を検出する検出部148aと(2)第2混合液から生成された増幅生産物を検出する検出部148bからの検出結果を比較することにより、検査は正常に行われたか否かを判断することができる。また更に、(3)第3混合液から生成された増幅生産物を検出する検出部148c(不図示)での検出結果をベースラインレベルとして用いることにより、上記(1)、(2)の検出結果を補正することが可能となり、精度良く検査を行うことが可能となる。
【0078】
つまり、陽性すなわち検体に標的遺伝子が含まれる場合、検体とポジティブコントロールとの「第1混合液」、及び検体とネガティブコントロールとの「第2混合液」のいずれ混合液による反応生成物からも蛍光発光が生じる。陰性すなわち検体に標的遺伝子が含まれない場合、「第1混合液」は、ポジティブコントロールの反応による蛍光発光が生じるが、「第2混合液」は、反応が生じず蛍光発光は生じない。これら2つのケースは、正常な反応が行われた検査結果として扱うことができる。
【0079】
その一方で、例えば、検体に増幅阻害物質が混入した場合は、「第1混合液」及び「第2混合液」のいずれ混合液による反応生成物からも蛍光発光は生じない、偽陰性となる。また、「第1混合液」による反応生成物では蛍光発光無し、「第2混合液」による反応生成物では蛍光発光有りの場合は、マイクロチップ1に収容した試薬の失活などの異常が考えられる。これら2つのケースは、異常な反応を行った検査結果として、再検査を促すことが可能となる。
【0080】
そして本実施形態においては、一箇所の酵素収容部stPyから酵素をマイクロチップ1の全域に供給しているので、DNAポリメラーゼ等の酵素は、複数の反応部139間においてほぼ同等の増幅効率を得ることができる。このことにより上記検査を精度よく行うことが可能となる。更に「第2混合液」は検体をネガティブコントロールで希釈していることにより、「第1混合液」との比較において、増幅阻害の影響による検査異常を精度良く検知することが可能となる。更に「第3混合液」をベースラインとして用いることにより、更に検査精度を向上させることが可能なマイクロチップを得ることが可能となる。
【0081】
[第2の実施形態に係るマイクロチップ1の構成]
次に図7に基づいて、第2の実施形態に係るマイクロチップ1の構成について説明する。図7は第2の実施形態に係るマイクロチップ1の主要部における各流路エレメントの関係を表す構成概略図である。
【0082】
同図に示すマイクロチップ1においては、図4に示したマイクロチップ1に対して第3分岐部SP3を追加して、第4の混合液を形成する。図4に示したマイクロチップ1と同一の構成に関しては同一符号を付すことにより説明に代える。
【0083】
図7に示すマイクロチップ1においては、ポジティブコントロールは、ポジティブコントロール収容部stPから微細流路内を送液され第3分岐部SP3で2分割され、下流側の微細流路に送液される。試薬は試薬収容部stから三つの微細流路を試薬(1)〜試薬(4)に4分割されて送液される。酵素は酵素収容部stPyから三つの微細流路を酵素(1)〜酵素(4)に4分割されて送液される。なお本実施形態においてはマイクロチップ1内で用いる酵素は全て一箇所の酵素収容部stPyから微細流路を送液され、各反応部139に供給される。
【0084】
そして「第4混合液L4」は、ポジティブコントロール収容部stPからの第3分岐部で分岐された他方のポジティブコントロールと、試薬収容部stから試薬分岐部SP9により分岐されて送液された試薬(4)と、酵素収容部stPyから酵素分岐部SP4により分割された酵素(4)と、を合流させることにより形成される。
【0085】
「第1混合液L1」、「第2の混合液L2」、及び「第3の混合液L3」は、図4で示した実施形態と同様の流路構成としているので説明は省略する。
【0086】
そして第1混合液L1、第2混合液L2、第3混合液L3及び第4混合液はそれぞれの対応する反応部139で増幅反応させてから、検出部148でプローブDNAとハイブリダイゼーションさせ、この反応生成物に基づいて増幅反応を検出部148で検出する。
【0087】
第4混合液に対して増幅検出するのは、当該ポジティブコントロール由来の流路で増幅が確認できた場合でも、検体由来の阻害物質があった場合にはポジティブコントロール及び検体由来の第1混合液では増幅しないことになる。つまり第4混合液と第1混合液による増幅検出を比較することにより、検体由来の増幅阻害物質による偽陰性と判定されることを防止することができる。
【0088】
本実施形態によれば、一箇所の酵素収容部stPyから酵素をマイクロチップ1の全域に供給しているので、DNAポリメラーゼ等の酵素は、複数の反応部139間においてほぼ同等の増幅効率を得ることができる。このことにより上記検査を精度よく行うことが可能となる。更に第1乃至第4混合液の増幅反応を検出すことにより特定の目的物質の存在を検出するとともに、増幅阻害の影響を精度良く検出可能であり、更に増幅反応のレベルにより変化するベースラインレベルを修正することが可能なマイクロチップを得ることが可能となる。
【図面の簡単な説明】
【0089】
【図1】本実施形態に係るマイクロチップを用いるマイクロチップ分析システム8の外観図である。
【図2】マイクロチップ分析システム8の概略斜視図である。
【図3】マイクロチップ分析システム8の構成図である。
【図4】本実施形態に係るマイクロチップ1の主要部における各流路エレメントの関係を表す構成概略図である。
【図5】2層構造のマイクロチップ1の流路構成の第1層の流路構成を示すものである。
【図6】2層構造のマイクロチップ1の流路構成の第2層の流路構成を示すものである。
【図7】第2の実施形態に係るマイクロチップ1の主要部における各流路エレメントの関係を表す構成概略図である。
【符号の説明】
【0090】
1 マイクロチップ
3 温度調節ユニット
st1乃至st8 試薬収容部
stE 検体収容部
stPy 酵素収容部
stP ポジティブコントロール収容部
stN ネガティブコントロール収容部
139 反応部
148 検出部
160 廃液部
70 駆動液タンク
SP1、SP2、SP3 分岐部
SP4 酵素分岐部
SP9 試薬分岐部

【特許請求の範囲】
【請求項1】
検体もしくは検体から抽出したDNAを含む検体液が注入される検体収容部と、
核酸増幅反応に用いる少なくともプローブ、プライマー、dNTPを含む試薬が収容される試薬収容部と、
核酸の増幅反応に用いる酵素が収容される酵素収容部と、
ポジティブコントロールが収容されるポジティブコントロール収容部と、
ネガティブコントロールが収容されるネガティブコントロール収容部と、
これらの各収容部に連通する微細流路と、
増幅反応を検出する検出部と、
を有するマイクロチップであって、
前記試薬収容部の試薬を三つの微細流路に分岐させる試薬分岐部と、
前記酵素収容部の酵素を三つの微細流路に分岐させる酵素分岐部と、
前記検体収容部から前記微細流路内を送液された検体液を二つの微細流路に分岐させる第1分岐部と、
前記ネガティブコントロール収容部から前記微細流路内を送液されたネガティブコントロールを二つの微細流路に分岐させる第2分岐部と、
を有し、
前記微細流路は、
前記第1分岐部で分岐させた一方の検体液と、前記ポジティブコントロール収容部からのポジティブコントロールと、前記試薬分岐部で分岐させた試薬(1)と、前記酵素分岐部で分岐させた酵素(1)とを合流させて第1混合液を形成し、
前記第1分岐部で分岐させた他方の検体液と、前記第2分岐部で分岐させた一方のネガティブコントロールと、前記試薬分岐部で分岐させた試薬(2)と、前記酵素分岐部で分岐させた酵素(2)とを合流させて第2混合液を形成し、
前記第2分岐部で分岐させた他方のネガティブコントロールと、前記試薬分岐部で分岐させた試薬(3)と、前記酵素分岐部で分岐させた酵素(3)とを合流させて第3混合液を形成し、
前記第1混合液乃至第3混合液のそれぞれを核酸増幅反応により増幅させ、増幅の有無に基づいて増幅反応を前記検出部で検出するよう構成されていることを特徴とするマイクロチップ。
【請求項2】
前記ポジティブコントロール収容部から前記微細流路内を送液されたポジティブコントロールを二つの微細流路に分岐させる第3分岐部を有し、
前記微細流路は、
前記試薬分岐部では、更に四つ目の微細流路に試薬を分岐させ、
前記酵素分岐部では、更に四つ目の微細流路に酵素を分岐させ、
前記第3分岐部で分岐させたポジティブコントロールと、前記試薬分岐部で分岐させた試薬(4)と、前記酵素分岐部で分岐させた酵素(4)とを合流させて第4混合液を形成し、
第4混合液を核酸増幅反応により増幅させ、増幅の有無に基づいて増幅反応を前記検出部で検出するよう構成されていることを特徴とする請求項1に記載のマイクロチップ。
【請求項3】
前記増幅の有無を増幅させた検出対象の核酸と、前記試薬収容部からのプローブとのハイブリダイゼーションにより検出するよう構成されていることを特徴とする請求項1又は2に記載のマイクロチップ。
【請求項4】
前記増幅の有無を増幅させた検出対象の核酸と、前記試薬収容部からのプローブとのハイブリダイゼーション反応時の乖離温度により検出するよう構成されていることを特徴とする請求項1又は2に記載のマイクロチップ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2009−183179(P2009−183179A)
【公開日】平成21年8月20日(2009.8.20)
【国際特許分類】
【出願番号】特願2008−24970(P2008−24970)
【出願日】平成20年2月5日(2008.2.5)
【出願人】(303000420)コニカミノルタエムジー株式会社 (2,950)
【Fターム(参考)】