説明

マイクロポンプ、マイクロポンプシステム及びマイクロ流体デバイス

【課題】駆動直後における出力が高いマイクロポンプを提供する。
【解決手段】マイクロポンプ11は、第1のマイクロ流路12aと、第1のガス発生材13と、第1のガス発生材13に光を照射する第1の光源15と、第1及び第2の光伝送経路14a、14bと、接続機構16とを備えている。第1のガス発生材13は、第1のマイクロ流路12aにガスを供給する。第1及び第2の光伝送経路14a、14bは、第1の光源15と第1のガス発生材13との間に配されている。第1及び第2の光伝送経路14a、14bは、互いに光学的に接続されていない。接続機構16は、第1の光伝送経路14aと第2の光伝送経路14bとを光学的に接続している。第1の光伝送経路14aと第2の光伝送経路14bとは、接続機構16により光学的に接続されたときに、第1の光源15からの光を第1のガス発生材13に導くように配されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロポンプ、マイクロポンプシステム及びマイクロ流体デバイスに関する。
【背景技術】
【0002】
従来、例えば特許文献1などにおいて、マイクロポンプを備えるマイクロ流体デバイスが提案されている。特許文献1に記載のマイクロポンプは、一主面に開口するように形成されたマイクロ流路を有する基材と、マイクロ流路の開口を覆うように基材に貼付されたガス発生フィルムとを有する。ガス発生フィルムには、例えば光応答性ガス発生材が含まれている。ガス発生フィルムに、例えばLEDなどの光源からの光が照射されることにより、ガス発生フィルムからガスがマイクロ流路に供給される。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010−89259号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載のマイクロポンプでは、光照射によりポンプの駆動が開始される。しかしながら、光源から出射される光の光量は、光源への電力供給が開始されてから徐々に増大するため、光源から出射される光の光量が供給される電力に応じた光量に達するまでには、ある程度の時間を要する。このため、マイクロポンプの駆動直後における出力が低いという問題がある。
【0005】
本発明は、駆動直後における出力が高いマイクロポンプを提供することを主な目的とする。
【課題を解決するための手段】
【0006】
本発明に係るマイクロポンプは、第1のマイクロ流路と、第1のガス発生材と、第1の光源と、第1及び第2の光伝送経路と、接続機構とを備えている。第1のガス発生材は、光が照射された際にガスを発生させ、第1のマイクロ流路にガスを供給する。第1の光源は、第1のガス発生材に光を照射する。第1及び第2の光伝送経路は、第1の光源と第1のガス発生材との間に配されている。第1及び第2の光伝送経路は、互いに光学的に接続されていない。接続機構は、第1の光伝送経路と第2の光伝送経路とを光学的に接続している。第1の光伝送経路と第2の光伝送経路とは、接続機構により光学的に接続されたときに、第1の光源からの光を第1のガス発生材に導くように配されている。
【0007】
接続機構は、第1の光伝送経路と第2の光伝送経路とを隔離する第2のマイクロ流路を有していてもよい。接続機構は、第2のマイクロ流路の第1の光伝送経路と第2の光伝送経路との間に位置する部分に、第1の光伝送経路と第2の光伝送経路とを光学的に接続する第1の液体を供給する機構であってもよい。
【0008】
接続機構は、光が照射された際にガスを発生させ、第2のマイクロ流路にガスを供給する第2のガス発生材と、第2のガス発生材に光を照射する第2の光源とをさらに有していてもよい。
【0009】
本発明に係るマイクロポンプは、第3のマイクロ流路と、光が照射された際にガスを発生させ、第3のマイクロ流路にガスを供給する第3のガス発生材と、第3のガス発生材に光を照射する第3の光源と、第3の光源と、第3のガス発生材との間に配されており、互いに光学的に接続されていない第3及び第4の光伝送経路と、第3の光伝送経路と第4の光伝送経路とを隔離しており、第1のマイクロ流路に接続された第4のマイクロ流路と、第4のマイクロ流路の第3の光伝送経路と第4の光伝送経路との間に位置する部分よりも第1のマイクロ流路側に配されており、第3の光伝送経路と第4の光伝送経路とを光学的に接続できる屈折率を有する第2の液体とをさらに備えていてもよい。
【0010】
本発明に係るマイクロポンプシステムは、本発明に係るマイクロポンプと、マイクロポンプを制御する制御部とを備えている。制御部は、第1の光源を駆動した状態で接続機構に第1の光伝送経路と第2の光伝送経路とを光学的に接続させる。
【0011】
本発明に係るマイクロ流体デバイスは、検出部と、検出器と、被検出物供給部と、検出用試薬供給部とを備えている。検出部には、被検出物及び検出用試薬が供給される。検出部において、被検出物と検出用試薬とが混合される。検出器は、検出部において検出用試薬と混合された被検出物を検出する。被検出物供給部は、検出部に被検出物を供給する。検出用試薬供給部は、検出部に検出用試薬を供給する。被検出物供給部と検出用試薬供給部との少なくとも一方が本発明に係るマイクロポンプを有する。
【0012】
被検出物供給部と検出用試薬供給部とのうちの一方がマイクロポンプを有し、被検出物供給部と検出用試薬供給部とのうちの一方は、検出部に被検出物または検出用試薬を供給する際に、被検出物供給部と検出用試薬供給部とのうちの他方にガスを供給するように構成されていてもよい。
【発明の効果】
【0013】
本発明によれば、駆動直後における出力が高いマイクロポンプを提供することができる。
【図面の簡単な説明】
【0014】
【図1】第1の実施形態におけるマイクロポンプシステムの模式的断面図である。
【図2】第1の実施形態におけるマイクロポンプシステムの動作を説明するための模式的断面図である。
【図3】第2の実施形態におけるマイクロポンプシステムの模式的断面図である。
【図4】第3の実施形態におけるマイクロポンプシステムの模式的断面図である。
【図5】第4の実施形態におけるマイクロ流体デバイスの模式図である。
【図6】第4の実施形態における供給部の模式図である。
【図7】第5の実施形態におけるマイクロ流体デバイスの模式図である。
【図8】第5の実施形態における第1の被検出物供給部の模式図である。
【図9】第5の実施形態における第2の被検出物供給部の模式図である。
【図10】第5の実施形態における検出用試薬供給部の模式図である。
【発明を実施するための形態】
【0015】
以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
【0016】
また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
【0017】
(第1の実施形態)
(マイクロポンプシステム1の構成)
図1は、第1の実施形態におけるマイクロポンプシステムの模式的断面図である。図1に示されるように、マイクロポンプシステム1は、制御部10と、マイクロポンプ11とを有する。マイクロポンプ11は、制御部10によって制御される。
【0018】
マイクロポンプ11は、基材12を有する。基材12は、例えば、樹脂、セラミックス、ガラス等により構成することができる。基材12を構成する樹脂としては、例えば、有機シロキサン化合物、ポリメタクリレート樹脂、環状ポリオレフィン樹脂などが挙げられる。有機シロキサン化合物の具体例としては、ポリジメチルシロキサン(PDMS)、ポリメチル水素シロキサンなどが挙げられる。
【0019】
基材12には、第1のマイクロ流路12aが形成されている。なお、本発明において、「マイクロ流路」とは、マイクロ流路を流れる液体が、表面張力と毛細管現象との影響を強く受け、通常の寸法の流路を流れる液体とは異なる挙動を示す形状寸法に形成された流路をいう。すなわち、「マイクロ流路」とは、マイクロ流路を流れる液体に所謂マイクロ効果が発現する形状寸法を有する流路をいう。
【0020】
基材12には、第1のガス発生材13が配されている。この第1のガス発生材13により第1のマイクロ流路12aの一方側の開口部が覆われている。第1のガス発生材13は、光が照射された際にガスを発生させる。第1のガス発生材13において発生されたガスの少なくとも一部は、第1のマイクロ流路12aに供給される。
【0021】
第1のガス発生材13は、光応答性ガス発生剤を含む。光応答性ガス発生剤は、光が照射された際にガスを発生させる。光応答性ガス発生剤としては、例えば、アゾ化合物、アジド化合物等が挙げられる。
【0022】
光応答性ガス発生剤として好ましく用いられるアゾ化合物の具体例としては、例えば、2,2’−アゾビス(N−シクロヘキシル−2−メチルプロピオンアミド)、2,2’−アゾビス[N−(2−メチルプロピル)−2−メチルプロピオンアミド]等が挙げられる。
【0023】
光応答性ガス発生剤として好ましく用いられるアジド化合物としては、例えば、スルフォニルアジド基またはアジドメチル基を有する化合物が挙げられる。アジドメチル基を有する化合物の具体例としては、例えば、グリシジルアジドポリマー等が挙げられる。
【0024】
第1のガス発生材13は、バインダー樹脂、光増感剤等をさらに含んでいてもよい。好ましく用いられるバインダー樹脂の具体例としては、例えば、アクリル樹脂、グリシジルアジドポリマーなどが挙げられる。好ましく用いられる光増感剤の具体例としては、例えば、ベンゾフェノン、ジエチルチオキサントン、アントラキノン、ベンゾイン、アクリジン誘導体などが挙げられる。
【0025】
基材12の側方には、第1の光源15が配されている。第1の光源15は、第1のガス発生材13に、第1のガス発生材13がガスを発生させる波長域の光を照射するためのものである。第1の光源15は、例えば、LED(Light Emitting Diode)により構成することができる。
【0026】
基材12には、第1の光伝送経路14aと、第2の光伝送経路14bとが配されている。第1及び第2の光伝送経路14a、14bは、第1の光源15と第1のガス発生材13との間に配されている。第1の光伝送経路14aと第2の光伝送経路14bとは、光学的に接続されていない。
【0027】
なお、第1及び第2の光伝送経路14a、14bは、例えば、導波路によって構成することができる。また、第1及び第2の光伝送経路14a、14bのそれぞれの一部を光ファイバにより構成し、残りの一部を導波路により構成してもよい。
【0028】
マイクロポンプ11には、接続機構16が設けられている。接続機構16は、第1の光伝送経路14aと第2の光伝送経路14bとを光学的に接続する機構である。第1及び第2の光伝送経路14a、14bは、この接続機構16により光学的に接続されたときに、第1の光源15からの光を第1のガス発生材13に導くように構成されている。
【0029】
具体的には、接続機構16は、第2のマイクロ流路16aを有する。第2のマイクロ流路16aは、基材12に設けられている。第2のマイクロ流路16aの先端部は、第1の光伝送経路14aと第2の光伝送経路14bとの間に位置している。即ち、第2のマイクロ流路16aは、第1の光伝送経路14aと第2の光伝送経路14bとを隔離している。
【0030】
第2のマイクロ流路16a内には、第1の液体16bが配されている。第1の液体16bは、第1及び第2の光伝送経路14a、14bと同等の屈折率を有するものである。このため、第1の液体16bは、第1の光伝送経路14aと第2の光伝送経路14bとの間に位置した際に第1の光伝送経路14aと第2の光伝送経路14bとを光学的に接続し得るものである。接続機構16は、第2のマイクロ流路16aの第1の光伝送経路14aと第2の光伝送経路14bとの間に位置する部分に、第1の液体16bを供給する機構である。
【0031】
接続機構16は、第2のガス発生材16cと、第2の光源16dとを有する。第2のガス発生材16cは、光が照射された際にガスを発生させ、そのガスを第2のマイクロ流路16aに供給する。第2のガス発生材16cの詳細については、第1のガス発生材13の記載を援用するものとする。
【0032】
第2の光源16dは、第2のガス発生材16cに、第2のガス発生材16cがガスを発生させる波長域の光を照射するためのものである。第2の光源16dは、第1の光源15と同様に、LED等により構成することができる。
【0033】
(マイクロポンプシステム1の動作)
次に、図1及び図2を参照しながら、マイクロポンプシステム1の動作について説明する。まず、制御部10は、第1の光源15をオン状態(発光状態)とする。この状態では、第1の液体16bは、第2のマイクロ流路16aの第1の光伝送経路14aと第2の光伝送経路14bとの間に位置する部分には存在しない。このため、第1の光伝送経路14aと第2の光伝送経路14bとは光学的に接続されていない。よって、第1の光源15の光は第1のガス発生材13には実質的に到達しない。従って、第1のガス発生材13からは実質的にガスが発生せず、マイクロポンプシステム1は作動しない。
【0034】
次に、その状態で、第2の光源16dをオン状態(発光状態)とする。これにより、第2の光源16dからの光が第2のガス発生材16cに照射され、第2のガス発生材16cからのガスが第2のマイクロ流路16aに供給される。その結果、図2に示されるように、第1の液体16bが第2のマイクロ流路16aの第1の光伝送経路14aと第2の光伝送経路14bとの間に位置する部分に移送される。ここで、第1の液体16bの屈折率は、第1の光伝送経路14aと第2の光伝送経路14bとを光学的に接続し得る範囲にある。従って、第1の光伝送経路14aと第2の光伝送経路14bとが光学的に接続される。その結果、第1の光源15からの光が第1のガス発生材13に供給されるようになる。これにより、第1のガス発生材13からガスが発生し、第1のマイクロ流路12aに供給され、マイクロポンプシステム1が駆動される。
【0035】
このように、マイクロポンプシステム1では、第1の光源15と第1のガス発生材13との間に第1及び第2の光伝送経路14a、14bが配されており、第1の光伝送経路14aと第2の光伝送経路14bとは、接続機構16によって光学的に接続される。このため、第1の光源15を予めオン状態としておき、その後に第1の光伝送経路14aと第2の光伝送経路14bとを光学的に接続して第1のガス発生材13に第1の光源15の光を供給することができる。よって、第1のガス発生材13への光照射が開始された直後から高強度の光を第1のガス発生材13に照射することができる。従って、駆動直後における出力を高くすることができる。
【0036】
以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
【0037】
(第2の実施形態)
図3は、第2の実施形態におけるマイクロポンプシステム1aの模式的断面図である。
【0038】
第1の実施形態では、第1及び第2のガス発生材13,16cをガス発生フィルムにより構成する例について説明した。但し、本発明は、この構成に限定されない。図3に示すように、第1のマイクロ流路12aに接続されたガス発生室を設け、そのガス発生室内に第1のガス発生材13を配してもよい。同様に、第2のマイクロ流路16aに接続されたガス発生室を設け、そのガス発生室内に第2のガス発生材16cを配してもよい。
【0039】
(第3の実施形態)
図4は、第3の実施形態におけるマイクロポンプシステムの模式的断面図である。
【0040】
図4に示す第3の実施形態におけるマイクロポンプシステム1bは、第1の実施形態におけるマイクロポンプシステム1を応用したものである。マイクロポンプシステム1bは、連動して作動する複数のポンプ機能を有するものである。
【0041】
(マイクロポンプシステム1bの構成)
マイクロポンプシステム1bは、マイクロポンプシステム1の構成に加え、第3のマイクロ流路12bと、第3のガス発生材17と、第3の光源20と、第3の光伝達経路18aと、第4の光伝達経路18bと、第4のマイクロ流路12cと、第2の液体19とをさらに備えている。
【0042】
第3のマイクロ流路12bは、基材12に設けられている。第3のマイクロ流路12bの一方側の開口は、第3のガス発生材17により覆われている。第3のガス発生材17は、光が照射された際にガスを発生させる。第3のガス発生材17において発生されたガスの少なくとも一部は、第3のマイクロ流路12bに供給される。なお、第3のガス発生材17については、第1のガス発生材13の説明を援用するものとする。
【0043】
第3の光源20は、基材12の側方に配されている。第3の光源20は、第3のガス発生材17に、第3のガス発生材17がガスを発生させる波長域の光を照射するためのものである。第3の光源20は、例えば、LEDにより構成することができる。
【0044】
第3の光伝達経路18aと第4の光伝達経路18bとは、基材12に設けられている。第3及び第4の光伝達経路18a、18bは、第3の光源20と第3のガス発生材17との間に配されている。第3の光伝達経路18aと第4の光伝達経路18bとは、光学的に接続されていない。
【0045】
なお、第3及び第4の光伝達経路18a、18bは、例えば、導波路によって構成することができる。また、第3及び第4の光伝達経路18a、18bのそれぞれの一部を光ファイバにより構成し、残りの一部を導波路により構成してもよい。
【0046】
第4のマイクロ流路12cは、基材12に設けられている。第4のマイクロ流路12cの一方側端部は、第1のマイクロ流路12aに接続されており、他方側端部は、第3の光伝達経路18aと第4の光伝達経路18bとの間に位置している。即ち、第4のマイクロ流路12cは、第3の光伝達経路18aと第4の光伝達経路18bとを隔離している。
【0047】
第4のマイクロ流路12cの第3の光伝達経路18aと第4の光伝達経路18bとの間に位置する部分よりも第1のマイクロ流路12a側の部分に、第2の液体19が配されている。第2の液体19は、第3及び第4の光伝達経路18a、18bと同等の屈折率を有するものである。このため、第2の液体19は、第3の光伝達経路18aと第4の光伝達経路18bとの間に位置した際に第3の光伝達経路18aと第4の光伝達経路18bとを光学的に接続し得るものである。
【0048】
(マイクロポンプシステム1bの動作)
次に、マイクロポンプシステム1bの動作について説明する。マイクロポンプシステム1bにおいても、マイクロポンプシステム1と同様に、まず、制御部10により、第1の光源15がオン状態とされる。同様に、第3の光源20も制御部10によりオン状態とされる。その状態で、第2の光源16dがオン状態とされる。すると、第1の液体16bが第1の光伝送経路14aと第2の光伝送経路14bとの間に移送され、第1の光源15からの光が第1のガス発生材13に導かれる。その結果、第1のガス発生材13からガスが発生し、第1のマイクロ流路12aを経由してガスがマイクロポンプシステム1b外に押出される。これにより、第1のポンプ機構が作動する。
【0049】
第1のポンプ機構が作動されると、第1のマイクロ流路12aに供給されたガスの一部が第4のマイクロ流路12cにも供給される。これにより、第2の液体19が第3の光伝達経路18aと第4の光伝達経路18bとの間に移送される。その結果、第3の光伝達経路18aと第4の光伝達経路18bとが第2の液体19を介して光学的に接続される。このため、第3の光源20からの光が第3のガス発生材17に導かれるようになる。よって、第3のガス発生材17からガスが発生する。発生したガスは、第3のマイクロ流路12bを経由してマイクロポンプシステム1b外に押出される。これにより、第2のポンプ機構が作動する。
【0050】
このように、マイクロポンプシステム1bでは、第1のポンプ機構と第2のポンプ機構とが連動して作動する。また、第1のポンプ機構と第2のポンプ機構との作動タイミングは、第4のマイクロ流路12cの長さと、第2の液体19の配置位置により調整することができる。
【0051】
なお、第2の実施形態では、第4のマイクロ流路12cを第1のマイクロ流路12aと接続したが、第2のマイクロ流路16aと接続してもよい。そうした場合であっても、第1及び第2のポンプ機構を連動して作動させることができる。
【0052】
(第4の実施形態)
図5は、第4の実施形態におけるマイクロ流体デバイスの模式図である。図5に示すマイクロ流体デバイス2は、マイクロポンプシステム1を利用したデバイスであり、例えば検査、測定などに使用することができるデバイスである。
【0053】
図5に示すように、マイクロ流体デバイス2は、検出部21と検出器22とが設けられている。検出部21には、第1及び第2の被検出物供給部23,24と、検出用試薬供給部25とが接続されている。第1の被検出物供給部23は、第1の被検出物を検出部21に供給する。第2の被検出物供給部24は、第2の被検出物を検出部21に供給する。本実施形態では、第1の被検出物が検体であり、第2の被検出物が抗体である。被検出物が一種類である場合は、第1の被検出物供給部23のみを設けるようにしてもよい。
【0054】
検出用試薬供給部25は、検出用試薬を検出部21に供給する。検出用試薬の種類は、被検出物の種類等に応じて適宜選択することができる。
【0055】
検出器22は、検出用試薬と反応した被検出物を検出するものである。
【0056】
第1及び第2の被検出物供給部23,24と、検出用試薬供給部25との少なくともひとつは、マイクロポンプシステム1を備えている。具体的には、本実施形態では、第1及び第2の被検出物供給部23,24と、検出用試薬供給部25とのすべてがマイクロポンプシステム1を備えている。
【0057】
詳細には、図6に示されるように、第1及び第2の被検出物供給部23,24と、検出用試薬供給部25とのそれぞれは、マイクロポンプシステム1と、マイクロポンプシステム1に接続された供給部26とを有する。供給部26は、第1及び第2の被検出物並びに検出用試薬のいずれかが供給される供給口28が接続されたマイクロ流路29を有する。マイクロ流路29には、ポンプ27が接続されている。供給口28から第1及び第2の被検出物並びに検出用試薬のいずれかが供給された状態で、ポンプ27が駆動されることにより、マイクロ流路29に設けられた秤量部30により所望の体積の被検出物または検出用試薬が秤量される。その後、マイクロポンプシステム1が駆動されることにより、マイクロ流路31を経由してマイクロ流路29にガスが供給され、その結果、秤量された被検出物または検出用試薬が検出部21に供給される。そして、検出部21においては、供給された第1及び第2の被検出物と検出用試薬とが混合され、検出器22によって検出用試薬と混合された被検出物の検出が行われる。
【0058】
このようにマイクロ流体デバイス2では、第1及び第2の被検出物供給部23,24と、検出用試薬供給部25とのそれぞれがマイクロポンプシステム1を有するため、第1及び第2の被検出物と検出用試薬とを正確なタイミングで検出部21に供給することができる。従って、被検出物の検出を正確且つ迅速に行うことができる。
【0059】
(第5の実施形態)
図7は、第5の実施形態におけるマイクロ流体デバイスの模式図である。図8は、第5の実施形態における第1の被検出物供給部の模式図である。図9は、第5の実施形態における第2の被検出物供給部の模式図である。図10は、第5の実施形態における検出用試薬供給部の模式図である。
【0060】
第5の実施形態におけるマイクロ流体デバイス2aは、第4の実施形態におけるマイクロ流体デバイス2と以下の点において異なる。
【0061】
まず、図8に示されるように、第1の被検出物供給部23のマイクロ流路29にマイクロ流路32が接続されている。このマイクロ流路32は、図9に示されるように、第2の被検出物供給部24のマイクロ流路31に接続されている。また、第2の被検出物供給部24のマイクロ流路29には、マイクロ流路33が接続されている。このマイクロ流路33は、図10に示されるように、検出用試薬供給部25のマイクロ流路31に接続されている。
【0062】
このため、第1の被検出物供給部23のマイクロポンプシステム1が駆動されると、まず、第1の被検出物供給部23から第1の被検出物が検出部21に供給される。それと共に、第1の被検出物供給部23から、マイクロ流路32を経由して、第2の被検出物供給部24のマイクロ流路29にガスが供給される。その結果、第2の被検出物供給部24から第2の被検出物が検出部21に供給される。それと共に、第2の被検出物供給部24から、マイクロ流路33を経由して、検出用試薬供給部25のマイクロ流路29にガスが供給される。その結果、検出用試薬供給部25から検出用試薬が検出部21に供給される。
【0063】
このように、本実施形態のマイクロ流体デバイス2aでは、マイクロポンプシステム1が駆動されると、第1の被検出物、第2の被検出物及び検出用試薬が、自動的に、且つこの順番で連続して検出部21に供給される。従って、例えば、第1及び第2の被検出物供給部23,24と検出用試薬供給部25を、個別に制御する場合とは異なり、容易に検出を行うことができる。
【符号の説明】
【0064】
1,1a、1b…マイクロポンプシステム
2,2a…マイクロ流体デバイス
10…制御部
11…マイクロポンプ
12…基材
12a…第1のマイクロ流路
12b…第3のマイクロ流路
12c…第4のマイクロ流路
13…第1のガス発生材
14a…第1の光伝送経路
14b…第2の光伝送経路
15…第1の光源
16…接続機構
16a…第2のマイクロ流路
16b…第1の液体
16c…第2のガス発生材
16d…第2の光源
17…第3のガス発生材
18a…第3の光伝達経路
18b…第4の光伝達経路
19…第2の液体
20…第3の光源
21…検出部
22…検出器
23…第1の被検出物供給部
24…第2の被検出物供給部
25…検出用試薬供給部
26…供給部
27…ポンプ
28…供給口
29,31〜33…マイクロ流路
30…秤量部

【特許請求の範囲】
【請求項1】
第1のマイクロ流路と、
光が照射された際にガスを発生させ、前記第1のマイクロ流路にガスを供給する第1のガス発生材と、
前記第1のガス発生材に光を照射する第1の光源と、
前記第1の光源と前記第1のガス発生材との間に配されており、互いに光学的に接続されていない第1及び第2の光伝送経路と、
前記第1の光伝送経路と前記第2の光伝送経路とを光学的に接続する接続機構と、
を備え、
前記第1の光伝送経路と前記第2の光伝送経路とは、前記接続機構により光学的に接続されたときに、前記第1の光源からの光を前記第1のガス発生材に導くように配されている、マイクロポンプ。
【請求項2】
前記接続機構は、前記第1の光伝送経路と前記第2の光伝送経路とを隔離する第2のマイクロ流路を有し、前記第2のマイクロ流路の前記第1の光伝送経路と前記第2の光伝送経路との間に位置する部分に、前記第1の光伝送経路と前記第2の光伝送経路とを光学的に接続する第1の液体を供給する機構である、請求項1に記載のマイクロポンプ。
【請求項3】
前記接続機構は、
光が照射された際にガスを発生させ、前記第2のマイクロ流路にガスを供給する第2のガス発生材と、
前記第2のガス発生材に光を照射する第2の光源と、
をさらに有する、請求項2に記載のマイクロポンプ。
【請求項4】
第3のマイクロ流路と、
光が照射された際にガスを発生させ、前記第3のマイクロ流路にガスを供給する第3のガス発生材と、
前記第3のガス発生材に光を照射する第3の光源と、
前記第3の光源と、前記第3のガス発生材との間に配されており、互いに光学的に接続されていない第3及び第4の光伝送経路と、
前記第3の光伝送経路と前記第4の光伝送経路とを隔離しており、前記第1のマイクロ流路に接続された第4のマイクロ流路と、
前記第4のマイクロ流路の前記第3の光伝送経路と前記第4の光伝送経路との間に位置する部分よりも前記第1のマイクロ流路側に配されており、前記第3の光伝送経路と前記第4の光伝送経路とを光学的に接続できる屈折率を有する第2の液体と、
をさらに備える、請求項1〜3のいずれか一項に記載のマイクロポンプ。
【請求項5】
請求項1〜4のいずれか一項に記載のマイクロポンプと、
前記マイクロポンプを制御する制御部と、
を備え、
前記制御部は、前記第1の光源を駆動した状態で前記接続機構に前記第1の光伝送経路と前記第2の光伝送経路とを光学的に接続させる、マイクロポンプシステム。
【請求項6】
被検出物及び検出用試薬が供給され、前記被検出物と前記検出用試薬とが混合される検出部と、
前記検出部において前記検出用試薬と混合された前記被検出物を検出する検出器と、
前記検出部に前記被検出物を供給する被検出物供給部と、
前記検出部に前記検出用試薬を供給する検出用試薬供給部と、
を備え、
前記被検出物供給部と前記検出用試薬供給部との少なくとも一方が請求項1〜4のいずれか一項に記載のマイクロポンプを有する、マイクロ流体デバイス。
【請求項7】
前記被検出物供給部と前記検出用試薬供給部とのうちの一方が前記マイクロポンプを有し、
前記被検出物供給部と前記検出用試薬供給部とのうちの一方は、前記検出部に前記被検出物または前記検出用試薬を供給する際に、前記被検出物供給部と前記検出用試薬供給部とのうちの他方にガスを供給するように構成されている、請求項6に記載のマイクロ流体デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2013−71191(P2013−71191A)
【公開日】平成25年4月22日(2013.4.22)
【国際特許分類】
【出願番号】特願2011−210465(P2011−210465)
【出願日】平成23年9月27日(2011.9.27)
【出願人】(000002174)積水化学工業株式会社 (5,781)
【Fターム(参考)】