説明

マイクロ反応装置および触媒反応方法

【課題】反応原料を微細な反応流路に流通させることによって複数の触媒反応を進行させるとともに、その反応を効率よく行うことが可能なマイクロ反応装置を提供する。
【解決手段】反応原料を流通させる微細な反応流路を有する反応器と、前記反応流路に形成された触媒層と、を備えたマイクロ反応装置であって、前記触媒層は、複数の触媒である触媒C、触媒C、・・・触媒C(nは2以上の整数)によって形成され、触媒Cの形成領域、触媒Cの形成領域、・・・触媒Cの形成領域が、前記反応流路の上流側から、C、C、・・・Cの順番で配列されて設けられていることを特徴とする、マイクロ反応装置を用い、反応原料を反応流路に流通させている間に、触媒C、触媒C、・・・触媒C(nは2以上の整数)による触媒反応を、該触媒の配列の順番に進行させ、容易に目的生成物を得ることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の触媒反応を進行させることができるマイクロ反応装置に関する。
【背景技術】
【0002】
マイクロ反応装置は、径が数μm〜数百μmの流路内において化学反応・分離等を行う反応器であり、従来のバッチ方式に比べ数多くの利点を有している。
特に、化学反応では、触媒が不可欠な場合や触媒によって反応効率が高まる場合が多く、例えば、不活性材料からなる固体表面にマイクロチャンネルを刻設し、そのマイクロチャンネルの壁面に触媒能を有する有機分子を固定させたマイクロリアクターを用い、ベンゾイルチロシンパラニトロアニリドの加水分解によるパラニトロアニリンの生成反応や、ピルビン酸の還元によるL−乳酸の生成反応が行われている(特許文献1)。
【0003】
特許文献1の反応例は一種類の触媒による一段階の触媒反応であるが、マイクロ反応装置をより多くの有用な反応に利用するためには、より複雑な反応系に利用可能なマイクロ反応装置の開発が望まれる。
【0004】
複数の触媒を用いる反応例としては、非特許文献1に記載されたNO(硝酸イオン)の還元反応が挙げられる。NOは、地下水等に含まれていることがある。NOを含む地下水を飲料水として飲み続けると、人体に有害であり、メトヘモグロビン血症、糖尿病、高血圧などを引き起こすと指摘されている。このNOを触媒反応を用いて無害な物質に分解する方法として、二種類の触媒を利用する触媒反応が提案されている(非特許文献1)。
【特許文献1】特開2003−260351号公報
【非特許文献1】T.Okuhara et al., Chemistry Letters, Vol.34, No.11, p.1510−1511(2005)
【発明の開示】
【発明が解決しようとする課題】
【0005】
非特許文献2のように、複数の触媒を利用した段階的反応を経て化学変換を行う場合には、その反応の各段階毎に独立した反応器が必要であるが、本発明者らは、異なる触媒による2以上の触媒反応が段階的に進行する化学反応を、マイクロ反応流路を利用して効率よく行うことができることを見出した。
【0006】
本発明の課題は、反応原料を微細な反応流路に流通させることによって複数の触媒反応を進行させるとともに、その反応を効率よく行うことが可能なマイクロ反応装置を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するため、本発明の第1の態様に係るマイクロ反応装置は、反応原料を流通させる微細な反応流路を有する反応器と、前記反応流路に形成された触媒層と、を備えたマイクロ反応装置であって、前記触媒層は、複数の触媒である触媒C、触媒C、・・・触媒C(nは2以上の整数)によって形成され、触媒Cの形成領域、触媒Cの形成領域、・・・触媒Cの形成領域が、前記反応流路の上流側から、C、C、・・・Cの順番で配列されて設けられていることを特徴とする。
【0008】
本発明において、「触媒」とは、単体で触媒活性を有する物質、担体に触媒活性を有する物質を担持させた触媒組成物、または、それらに助触媒を担持させた触媒組成物、酵素等であり、ある特定の化学反応を促進する物質または組成物のことである。
【0009】
本発明によれば、反応原料を反応流路に流通させている間に、触媒C、触媒C、・・・触媒C(nは2以上の整数)による触媒反応を、該触媒の配列の順番に進行させることができる。特に、本発明によれば、触媒の種類と配列の順番を適宜変更することにより、容易に目的生成物を得ることができる。更に、新規な反応経路による新規な生成反応を、容易に実現することができる。
【0010】
本発明の第2の態様に係るマイクロ反応装置は、反応原料を流通させる微細な反応流路を有する反応器と、前記反応流路に形成された触媒層と、を備えたマイクロ反応装置であって、前記触媒層は、複数の触媒である触媒C、触媒C、・・・触媒C(nは2以上の整数)によって形成され、触媒Cの形成領域、触媒Cの形成領域、・・・触媒Cの形成領域が、前記反応流路の上流側から、C、C、・・・Cの順番で繰り返し配列されて設けられていることを特徴とする。
【0011】
本発明によれば、反応原料を反応流路に流通させている間に、触媒C、触媒C、・・・触媒C(nは2以上の整数)による触媒反応を、該触媒の配列の順番に繰り返し進行させることができる。
【0012】
また、本発明の第3の態様に係るマイクロ反応装置は、第1または第2の態様において、前記複数の触媒C、C、・・・Cは、触媒Cによる第1の触媒反応と、触媒Cによる第2の触媒反応と、・・・触媒Cによる第nの触媒反応(nは2以上の整数)と、を含み、前記各触媒反応の少なくとも一部は逐次反応で進行するものであることを特徴とする。
【0013】
本発明に係るマイクロ反応装置は、反応原料から、触媒Cによる第1の触媒反応、触媒Cによる第2の触媒反応、・・・触媒Cによる第nの触媒反応(nは2以上の整数)を含む逐次反応を進行させることによって、目的生成物を生成させる反応に用いられる。
【0014】
このような逐次反応をバッチ式反応容器で行う場合には、一般的には、その各反応段階に応じた数の反応器が必要である。また、バッチ式反応容器を用いた反応では、時間とともに反応原料(反応基質)とその反応生成物(中間生成物も含む)の濃度が変化する。
【0015】
一方、微細な反応流路を有する反応器に、反応原料を流通させて反応を行うフロー型反応器の場合は、該反応器の反応開始部位からの距離によって、反応原料(反応基質)とその反応生成物(中間生成物も含む)の濃度が決まる。本発明は、この特性を利用したものである。
【0016】
本発明によれば、上記反応において、n=2の場合、まず触媒Cの形成領域において、反応原料から、第1の触媒反応を進行させて、次位の触媒反応である第2の触媒反応に供される中間生成物を十分な濃度になるように生成させ、続いて、触媒Cの形成領域において、前記第2の触媒反応を進行させることができる。
【0017】
n=3の場合、前記第2の触媒反応に続いて、第3の触媒反応が行われる。
この場合もn=2の場合と同様に、第1の触媒反応を進行させて、次位の触媒反応である第2の触媒反応に供される反応中間体を十分な濃度になるように生成させ、続いて、触媒Cの形成領域において、前記第2の触媒反応を進行させることができる。更に、触媒Cの形成領域においては、第3の触媒反応に供される反応中間体を十分な濃度になるように生成させ、続いて、触媒Cの形成領域において第3の触媒反応を進行させることができる。
【0018】
すなわち、触媒Cの形成領域、触媒Cの形成領域、・・・触媒Cの形成領域が、前記反応流路の上流側から、C、C、・・・Cの順番で配列されて設けられているので、反応原料の濃度と前記各触媒の形成領域の長さを適宜設定することにより、先行する触媒反応によって次位の触媒反応に供される反応中間体を十分な濃度になるように生成させることができ、反応原料が反応流路をワンパスで流通している間に、一連の逐次反応を効率よく行うことができる。
【0019】
また、本発明の第4の態様に係るマイクロ反応装置は、第3の態様において、前記逐次反応は、構造的に不安定な中間生成物を経て進行するものであることを特徴とする。
【0020】
本発明において、「構造的に不安定な中間生成物」とは、生成した中間生成物が分解する、異性化する、または該中間生成物が生成した反応の逆反応が起こりやすい等の理由により、その構造で存在できる時間が短い(寿命が短い)中間生成物のことである。
バッチ方式では、先の触媒反応により生成する中間生成物が構造的に不安定な場合、先の反応に用いる触媒と、次の反応に用いる触媒とを混合することにより、先の反応から次の反応が行われるまでのタイムラグを少なくする方法が用いられるが、触媒の種類によっては混合ができない場合もある。
【0021】
本発明によれば、構造的に不安定な中間生成物を生成する反応に用いる触媒のすぐ下流に次の触媒を並べて設けることにより、先の反応から次の反応が行われるまでのタイムラグを少なくし、効率よく中間生成物を次の反応の反応原料として用いることができる。このことによって、それぞれの触媒活性を最大に発揮させることができる上、先の反応に用いる触媒と次の反応に用いる触媒とが混合できないものであっても、先の反応で生成した構造的に不安定な中間生成物を効率よく利用できる反応装置構成とすることができ、バッチ方式では生成しない物質の生成が期待できる。
【0022】
また、本発明の第5の態様に係るマイクロ反応装置は、第1または第2の態様において、前記複数の触媒C、C、・・・Cは、前記反応原料に含まれる複数の反応基質に独立的に作用するものであることを特徴とする。
【0023】
本発明において、「複数の触媒が複数の反応基質に独立的に作用する」とは、例えば、地下水中に含まれる有害物質であるNO(基質1)と有機物(基質2)の無害化処理を行うため、NOの還元に用いられる触媒1と有機物の分解に用いられる触媒2のように、触媒1と触媒2の作用が互いに無関係(独立)であることである。
【0024】
本発明によれば、反応原料に含まれる複数の反応基質に対して、それぞれの反応基質に独立的に作用する触媒C、触媒C、・・・触媒C(nは2以上の整数)による触媒反応を、該触媒の配列の順番に進行させることができる。
【0025】
また、本発明の第6の態様に係るマイクロ反応装置は、第1の態様乃至第5の態様のいずれかにおいて、配列された複数の触媒の形成領域の間に、触媒非形成領域が設けられていることを特徴とする。
【0026】
本発明によれば、前記触媒非形成領域を、触媒反応以外の他の反応や、上流側の触媒反応の不活性化などに用いることができ、より複雑な反応に利用可能となる。例えば、上流側の触媒が光触媒である場合には、その下流側に設けられた触媒非形成領域において、該光触媒の形成領域で生成した活性種の濃度を減少させることができ、その光触媒反応の作用を制御することが可能である。
【0027】
また、上流側の触媒反応によって中間生成物が複数生じ、該複数種の中間生成物の寿命に差がある場合には、触媒の配列の間隔、反応原料の流通の速度を制御することによって、反応の選択性を上げることも期待できる。例えば、反応基質Aから触媒Cの触媒反応によって、寿命の異なる中間生成物B(長寿命)とB’(短寿命)が生成する場合、触媒Cの形成領域と触媒Cの形成領域の間隔を広く、または、反応原料の流通の速度を遅くすることによって、より寿命の長い中間生成物Bを選択的に利用した反応系を構築することが可能となる。
【0028】
また、本発明の第7の態様に係るマイクロ反応装置は、第1の態様乃至第5の態様のいずれかにおいて、配列された触媒の形成領域のうち、隣り合う二種類の触媒の形成領域が重なる触媒混合領域が設けられていることを特徴とする。
【0029】
本発明によれば、隣り合う二種類の触媒のうち、反応流路の上流側に配列された触媒形成領域の触媒による触媒反応の途中から、下流側に配列された触媒形成領域の触媒による触媒反応を開始することができる。
【0030】
また、本発明の第8の態様に係るマイクロ反応装置は、第7の態様において、前記触媒混合領域における二種類の触媒のうち、上流側に配列された触媒形成領域の触媒は、下流側に向かってその量が減少するように設けられ、下流側に配列された触媒形成領域の触媒は、下流側に向かってその量が増加するように設けられていることを特徴とする。
【0031】
本発明によれば、触媒混合領域において、前記二種類の触媒うち、先行する触媒反応に係る触媒(上流側に配列された触媒)と、次に進行する触媒反応に係る触媒(下流側に配列された触媒)の量に勾配をつけることができ、先行する触媒反応から次の触媒反応に移行するために最適な反応条件を設定することができる。
【0032】
また、本発明の第9の態様に係るマイクロ反応装置は、第1の態様乃至第8の態様のいずれかにおいて、前記反応器は光透過性材料より形成され、前記触媒層は、光触媒によって形成され、前記触媒層の表面に光を照射する光照射手段を備えていることを特徴とする。
本発明によれば、第1の態様乃至第8の態様のいずれかに係るマイクロ反応装置を、光触媒反応に利用することができる。
【0033】
また、本発明の第10の態様に係る触媒反応方法は、反応器に設けられた微細な反応流路に反応原料を流通させて、前記反応流路に形成された触媒層の触媒作用により反応を進行させる触媒反応方法であって、前記触媒層には、複数の触媒である触媒C、触媒C、・・・触媒C(nは2以上の整数)が前記反応流路の上流側から順番に配列されており、前記複数の触媒による触媒反応を、前記反応原料が前記反応流路を流通している間に、該触媒の配列の順番で進行させることを特徴とする。
【0034】
本発明によれば、反応原料を反応器に設けられた微細な反応流路に導入し、該反応原料を反応流路に流通させている間に、触媒C、触媒C、・・・触媒C(nは2以上の整数)による触媒反応を、該触媒の配列の順番で進行させることができる。
【0035】
また、本発明の第11の態様に係る触媒反応方法は、反応器に設けられた微細な反応流路に反応原料を流通させて、前記反応流路に形成された触媒層の触媒作用により反応を進行させる触媒反応方法であって、前記触媒層には、複数の触媒である触媒C、触媒C、・・・触媒C(nは2以上の整数)が前記反応流路の上流側から順番に繰り返し配列されており、前記複数の触媒による触媒反応を、前記反応原料が前記反応流路を流通している間に、前記触媒の配列の順番で進行させることを特徴とする。
【0036】
本発明によれば、反応原料を反応器に設けられた微細な反応流路に導入し、該反応原料を反応流路に流通させている間に、触媒C、触媒C、・・・触媒C(nは2以上の整数)による触媒反応を、該触媒の配列の順番で繰り返し進行させることができる。
【0037】
また、本発明の第12の態様に係る触媒反応方法は、第10または第11の態様において、前記複数の触媒C、C、・・・Cは、触媒Cによる第1の触媒反応と、触媒Cによる第2の触媒反応と、・・・触媒Cによる第nの触媒反応(nは2以上の整数)と、を含み、前記各触媒反応の少なくとも一部は逐次反応で進行するものであることを特徴とする。
【0038】
本発明によれば、反応原料が反応流路をワンパスで流通している間に、触媒C、触媒C、・・・触媒C(nは2以上の整数)による触媒反応を、該触媒の配列の順番で進行させて、一連の逐次反応を効率よく行うことができる。
【0039】
また、本発明の第13の態様に係る触媒反応方法は、第12の態様において、前記逐次反応は、構造的に不安定な中間生成物を経て進行するものであることを特徴とする。
【0040】
逐次反応では、生成した中間生成物が分解する、異性化する、または該中間生成物が生成した反応の逆反応が起こりやすい等の理由により、その構造で存在できる時間が短い(短寿命である)ため、該中間生成物から次の生成物が効率よく得られない場合がある。
【0041】
本発明によれば、構造的に不安定な中間生成物を生成する反応に用いる触媒のすぐ下流に次の触媒を並べて設けることにより、先の反応から次の反応が行われるまでのタイムラグを少なくし、その短寿命の中間生成物を効率よく次の反応に用いることができる。このことによって、それぞれの触媒活性を最大に発揮させることができる上、先の反応に用いる触媒と次の反応に用いる触媒とが混合できないものであっても、先の反応で生成した構造的に不安定な中間生成物を効率よく利用できる構成とすることができ、バッチ方式では生成しない物質の生成が期待できる。
【0042】
また、本発明の第14の態様に係る触媒反応方法は、第10または第11の態様において、前記複数の触媒C、C、・・・Cは、前記反応原料に含まれる複数の反応基質に独立的に作用するものであることを特徴とする。
【0043】
本発明によれば、複数の反応基質を含む反応原料が反応流路をワンパスで流通している間に、それぞれの反応基質に独立的に作用する触媒C、触媒C、・・・触媒C(nは2以上の整数)による触媒反応を、該触媒の配列の順番に進行させることができる。
【発明の効果】
【0044】
本発明によれば、反応原料を反応流路に流通させている間に、該反応原料中において、触媒C、触媒C、・・・触媒C(nは2以上の整数)による触媒反応を、該触媒の配列の順番に進行させることができ、複数の触媒反応をワンパスで行うことができる。
【発明を実施するための最良の形態】
【0045】
[実施例1]
以下、本発明に係るマイクロ反応装置の一実施例について説明する。図1は、本発明に係るマイクロ反応装置の一例を示す斜視図であり、図2は、本発明に係るマイクロ反応装置の他の一例を示す斜視図である。
本発明に係るマイクロ反応装置1は、反応原料を流通させる微細な反応流路3を有する反応器2と、前記反応流路3内に形成された触媒層4と、を備えている。
【0046】
反応原料を流通させる微細な反応流路3を有する反応器2としては、例えば、図1のように、エッチング、機械加工、または射出成形等によって、幅500μm、深さ10−500μm程度の反応流路3を成す溝が形成された基板5表面に、反応流路3に反応原料を供給するための供給口7、および、反応流路3を通過した反応液が取り出される取り出し口8が設けられた天板6が接合された公知の反応器2を用いることができる。また、図2のように、前記反応流路3の途中に他の供給口9および他の排出口10を設ければ、反応途中における添加剤の導入、反応中に発生したガス成分の排出等を行うこともできる。
【0047】
供給口7、供給口9、排出口8、および排出口10にはそれぞれチューブコネクタ11が設けられ、マイクロチューブ12が接続されている。供給口7および供給口9のマイクロチューブ12は、シリンジポンプ等の原料送り込み手段(図示せず)に接続されており、一定の速度で反応原料が送り込まれるように構成されている。
【0048】
前記反応器2を形成する基板5および天板6の材料は、反応原料、中間生成物、生成物等の化学物質や、用いられる各触媒の性質に応じて選定することができる。例えば、用いられる触媒として光触媒が含まれている場合には、前記基板5および前記天板6は、ホウ珪酸ガラス、または、石英で形成されていることが好ましい。
【0049】
前記反応器2の反応流路3には、触媒層4が形成されている。該触媒層4は、複数の触媒である触媒C、触媒C、・・・触媒C(nは2以上の整数)によって形成され、各触媒の形成領域が、前記反応流路3に配列されて設けられている。前記複数の触媒の形成領域の配列構成については、後で詳細に説明する。
【0050】
それぞれの触媒は、異なる触媒反応に係るものである。触媒は、前記反応流路3に固定または担持して設けられるものであればよく、光触媒、金属または金属化合物触媒、錯体触媒、酵素、などが挙げられる。
【0051】
前記触媒層4を形成する複数の触媒として光触媒が含まれている場合には、光反応を誘起するために光を照射する光照射手段(図示せず)が設けられる。光源としては紫外発光ダイオードを用いることが望ましい。光源として発光ダイオードを用いることによって、マイクロ反応装置1の省スペース化と低フォトンコストを実現することができる。紫外発光ダイオードの波長は、用いる光触媒の種類に応じて選択することができ、200nm〜400nmであることが好ましい。
【0052】
次に、反応流路3における前記触媒の形成領域の配列構成を、n=2およびn=3の場合について説明する。図3(A)は、反応流路に二種類の触媒を連続して並べて配列した場合(n=2の場合)の例を示す図であり、図3(B)は、反応流路に三種類の触媒を連続して並べて配列した場合(n=3の場合)の例を示す図である。
【0053】
図3(A)に示す反応流路3には、触媒C、および、触媒Cの形成領域、図3(B)においては、触媒C、触媒C、および触媒Cの形成領域が連続して形成されており、各触媒の形成領域において、それぞれの触媒による触媒反応が進められるように構成されている。このような構成の反応流路3を備えたマイクロ反応装置を用いて逐次反応を行った場合について、図11を用いて説明する。
【0054】
図11は、本実施例に係るマイクロ反応装置において、反応基質Mから触媒Cによる第1の触媒反応によって中間生成物Mが生成し、次に中間生成物Mから触媒Cによる第2の触媒反応によって中間生成物Mが生成し、中間生成物Mから触媒Cによる第3の触媒反応によって目的生成物Mが生成する反応(M→M→M→M)を行った場合の、M、M、M、Mの濃度変化を示す図である。分かりやすく説明するために、各段階の反応は収率が100%の理想的な状態で行われるものと仮定している。
【0055】
このように、触媒Cの形成領域、触媒Cの形成領域、・・・触媒Cの形成領域が、前記反応流路の上流側から、C、C、・・・Cの順番で配列されて設けられていることによって、先行する触媒反応によって、次位の触媒反応に供される中間生成物を十分な濃度で生成させるように各触媒領域の範囲を設定し、反応原料が反応流路をワンパスで流通している間に、一連の逐次反応を効率よく行うことができる。
【0056】
次に、図4(A)は、反応流路に配列された二種類(n=2)の触媒の形成領域の間に触媒非形成領域21が設けられている場合の例を示す図であり、図4(B)は、反応流路に配列された三種類(n=3)の触媒の形成領域の間に触媒非形成領域21が設けられている場合の例を示す図であり、図4(C)は、反応流路に配列された三種類(n=3)の触媒の形成領域の間に触媒非形成領域21が設けられている場合の他の例を示す図である。
【0057】
n=2の場合、図4(A)のように、触媒Cの形成領域と触媒Cの形成領域との間に、触媒非形成領域21が設けられる。n=3以上の場合には、図4(B)のように、それぞれの触媒の形成領域の間に、触媒非形成領域21を設けることができるし、また、図4(C)のように、一部の触媒の形成領域の間のみに、触媒非形成領域21を設けることもできる。
【0058】
前記触媒非形成領域21を、触媒反応以外の他の反応や、上流側の触媒反応の不活性化などに用いることによって、より複雑な反応を行うことができる。例えば、触媒Cが光触媒である場合には、触媒非形成領域21において、該光触媒(触媒C)の形成領域で生成した活性種の濃度を減少させることができ、その光触媒反応の作用を制御することが可能である。
【0059】
図5(A)は、反応流路に配列された二種類(n=2)の触媒の触媒の形成領域が設けられ、該二種類の触媒の形成領域が重なる触媒混合領域22が設けられている場合の例を示す図であり、図5(B)は、反応流路に配列された三種類(n=3)の触媒の触媒の形成領域のうち、隣り合う二種類の触媒の形成領域が重なる触媒混合領域22が設けられている場合の例を示す図であり、図5(C)は、反応流路に配列された三種類(n=3)の触媒の触媒の形成領域のうち、隣り合う二種類の触媒の形成領域が重なる触媒混合領域22が設けられている場合の他の例を示す図であり、図5(D)は、反応流路に配列された三種類(n=3)の触媒の触媒の形成領域のうち、隣り合う二種類の触媒の形成領域が重なる触媒混合領域22が設けられている場合の更に他の例を示す図である。
【0060】
n=2の場合、図5(A)のように、触媒Cの形成領域と触媒Cの形成領域とが重なる触媒混合領域22が設けられる。
n=3以上の場合には、図5(B)のように、隣り合う二種類の触媒の形成領域それぞれに対して、触媒混合領域22を設けることができるし、また、図5(C)および図5(D)のように、図3および図4の構成を組み合わせて複数の触媒を配列して設けることが可能である。
【0061】
前記触媒混合領域22において、二種類の触媒は、それぞれの担持量に勾配をつけて設られることが望ましい。図6は、図5(A)と同様に二種類の触媒が反応流路3に設けられ、それぞれの触媒の担持量に勾配をつけた場合の例を示す図である。
【0062】
二種類の触媒のうち、上流側に設けられている触媒Cは、触媒混合領域22において、下流側に向かってその量が漸次減少するように設けられている。下流側に設けられている触媒Cは、触媒混合領域22において、下流側に向かってその量が漸次増加するように設けられている。触媒の量は、図6(A)のように連続的に増減させることも可能であり、図6(B)のように段階的に増減させることも可能である。
【0063】
反応流路3に配列された二種類の触媒の形成領域に触媒混合領域22を設け、該触媒混合領域22において、二種類の触媒の担持量に勾配をつけることによって、先行する触媒反応から次の触媒反応に移行するために最適な条件を設定することができる。
【0064】
[反応例1−1]
実施例1に係るモデル反応として、地下水中のNO(硝酸イオン)の無害化プロセスが挙げられる。地下水中に含まれる、人体に有害なNOをNO(亜酸化窒素)に変換する方法として、二種類の触媒を利用する触媒反応が提案されている[Chemistry
Letters Vol.34, No.11, p.1510-1511(2005)]。本実施例では、更に他の触媒を用いたNOからN(窒素)への還元反応を含む3種類の触媒(触媒C、触媒C、および触媒C)による、NOの無害化プロセスを効率よく行うことができるマイクロ反応装置について説明する。NOからNへの変換は、式1に示すような逐次反応で進行する。
【0065】
【化1】

【0066】
触媒Cは、活性炭に担持したCu−Pdクラスター触媒(以下、Cu−Pdクラスター/AC)である。触媒Cは、βゼオライトに担持したPd触媒(以下、Pd/βゼオライト)である。触媒Cは、活性炭に担持したPd触媒(以下、Pd/AC)である。
Cu−Pdクラスター/AC(触媒C)は、NOをNOへと還元する(第1の触媒反応)。Pd/βゼオライト(触媒C)は、NOをNOとNに分解する(第2の触媒反応)。Pd/AC(触媒C)は、NOをNへと還元する(第3の触媒反応)。
【0067】
図7は反応例1−1に使用されるマイクロ反応装置の平面概略図である。
図7のマイクロ反応装置31の反応器32には、反応流路33が設けられ、第1の触媒反応に用いられる触媒CであるCu−Pdクラスター/ACの形成領域34と、第2の触媒反応に用いられる触媒CであるPd/βゼオライトの形成領域35と、第3の触媒反応に用いられる触媒CであるPd/ACの形成領域36が、反応流路32の上流側から、前記逐次反応の順番に配列されて設けられている。
【0068】
NOを含む地下水(以下、反応溶液40)は、供給口41から導入される。
供給口42は、第1の触媒反応に必要な添加剤である水素(H)を導入するためのものであり、Cu−Pdクラスター/ACの形成領域34の上流側に設けられている。Hは、反応流路33内において、反応溶液40にスラグ流または環状流(パイプフロー)を生成させる圧力で導入される。スラグ流または環状流を生成した反応溶液40が、Cu−Pdクラスター/ACの形成領域34を流通する間に、第1の触媒反応によって、反応溶液40中のNOはNOへと還元される。
【0069】
次に、前記Cu−Pdクラスター/ACの形成領域34の下流側には、供給口43が設けられ、該供給口43が設けられた位置より更に下流には、第1の触媒非形成領域37が設けられている。供給口43は、前記還元反応によってアルカリ性になった反応溶液40を中和させるために二酸化炭素(CO)を導入するためのものである。Cu−Pdクラスター/ACの形成領域34を脱出した反応溶液40(アルカリ性)に、前記供給口43からCOが導入され、該反応溶液40が第1の触媒非形成領域37を流通している間に中和される。
【0070】
前記第1の触媒非形成領域37に続いて、Pd/βゼオライトの形成領域35が設けられている。中和された反応溶液40は、該Pd/βゼオライトの形成領域35を流通し、その間に第2の触媒反応によって、反応溶液40中のNOがNとNOに分解される。
【0071】
前記Pd/βゼオライトの形成領域35の下流側には、気液分離器46を構成する第2の触媒非形成領域38と、分岐反応流路49および排出口44が設けられている。該第2の触媒非形成領域38において、反応流路33の表面は、その上流側から親水性処理され、前記排出口44へと続く分岐反応流路49表面まで親水性表面を備える親水性流路47となっている。そして、前記分岐反応流路49との分岐点50より下流の反応流路33の表面には疎水性処理が施されている。
【0072】
反応流路33を流通する反応溶液40中の水成分(地下水)は、前記分岐点50において親水性流路47から分岐反応流路49に導かれ、排出口44から排出される。一方、前記第2の触媒反応後の反応溶液40中に含まれる気体成分NおよびNO(HおよびCOも含まれる)は、疎水性流路48を流通して送られる。このようにして、第2の触媒非形成領域38を気液分離器46として利用し、反応溶液40中の気体成分と液体成分とを分離することができる。
【0073】
前記気液分離器46によって、水成分とNおよびNOとが分離され、すなわち、地下水からNO由来の窒素成分が除かれ、NOが除去された浄化地下水が排出口44から排出されている。ここで、分離された気体成分に含まれるNOは、地球温暖化ガスであり、依然として有害である。したがって、NOを無害化するために、前記第2の触媒非形成領域38の下流にはPd/ACの形成領域36が設けられている。該Pd/ACによる第3の触媒反応によって、NOはNに還元され、排出口45からNおよび未反応のHを含む無害な混合気体成分が排出される。更に、過剰に加えられたCOも排出される。
【0074】
このようにして、汚染された地下水を反応流路33に流通させている間に、触媒C(Cu−Pdクラスター/AC)、触媒C(Pd/βゼオライト)、触媒C(Pd/AC)による触媒反応を、該触媒の配列の順番に開始、進行させることができ、複数の触媒反応をワンパスで行うことができる。
【0075】
[反応例1−2]
実際の汚染された地下水は、有害物質としてNOだけでなく有機物も含むので、このNOの無害化プロセスの前段に、酸化チタン担持領域を設け、前記有機物を酸化分解により除去する工程を加え、該有機物を基質とする酸化分解反応を触媒する酸化チタンと、NOを基質とする還元反応を触媒するCu−Pdクラスター/AC、Pd/βゼオライト、およびPd/ACのように、複数の反応基質に独立的に作用する触媒を設ける構成とすることも可能である。
【0076】
[反応例1−3]
実施例1に係る他の反応例として、式2に示すような逐次反応が挙げられる。
【0077】
【化2】

【0078】
このような逐次反応をバッチ式反応容器で行った場合の反応基質A、中間生成物B、および目的生成物Dの時間的濃度変化の典型例を図7に示す。バッチ式反応容器を用いた逐次反応では、時間とともに反応原料(反応基質)とその反応生成物(中間生成物も含む)の濃度が変化する。
【0079】
一方、本実施例に係るマイクロ反応装置のような、微細な反応流路に反応原料を流通させて反応を行うフロー型反応器の場合には、該反応器の反応開始部位からの距離によって、反応原料(反応基質)とその反応生成物(中間生成物も含む)の濃度が決まる。すなわち、図8のグラフにおける横軸(時間)は、反応開始地点(ゼロ点)からの距離に置き換えることができる。
【0080】
したがって、反応流路上の各地点における反応基質Aおよび中間生成物Bの濃度を考慮して、触媒Cおよび触媒Cの担持量を設定することによって、反応基質A→中間生成物B→目的生成物Dの逐次反応に最適な条件を設定することができる。
例えば、図9のように、中間生成物Bの濃度に合わせて触媒Cおよび触媒Cの担持量に勾配をつけることができる。触媒の担持量は、図6(A)のように連続的に増減させることも可能であり、図6(B)のように段階的に増減させることも可能である。
【0081】
[実施例2]
次に、本発明に係るマイクロ反応装置の他の実施例について説明する。
マイクロ反応装置の基本的な構成は、実施例1と同様であるのでその詳細は省略する。本実施例は、反応流路における複数の触媒(触媒Cおよび触媒C)の形成領域の配列構成に特徴を有するものである。
【0082】
図10は、本実施例に係るマイクロ反応装置の反応流路における、複数の触媒の配列構成を示す図であり、触媒Cおよび触媒Cを反応流路の上流側から、C、Cの順番で繰り返し配列して設けられた場合の一例を示す図である。
【0083】
前述の式2のような逐次反応において、中間生成物Bが安定であり、中間生成物Bの寿命が長い(存在時間が長い)場合には、図3(A)、図4(A)または図5(A)に示したように、触媒Cおよび触媒Cを並べて配列した構成でも良いが、中間生成物Bが構造的に不安定であり、中間生成物Bの寿命が短い(存在時間が短い)場合には、触媒C形成領域を長く設けても、触媒C形成領域で生成された中間生成物Bがすぐに消滅してしまい、反応基質A→中間生成物B→目的生成物Dの反応効率が悪くなってしまう。
【0084】
このような場合には、構造的に不安定な中間生成物を生成する反応に用いる触媒のすぐ下流に次の触媒を並べて設けることにより、先の反応から次の反応が行われるまでのタイムラグを少なくし、効率よく中間生成物を次の反応に用いることができる。このことによって、それぞれの触媒活性を最大に発揮させることができる上、先の反応に用いる触媒と次の反応に用いる触媒とが混合できないものであっても、先の反応で生成した構造的に不安定な中間生成物を効率よく利用できる構成とすることができ、バッチ方式では生成しない物質の生成が期待できる。
【0085】
また、図10(A)に示すように触媒Cと触媒CとをC、Cの順番で繰り返し配列して設けることによって、構造的に不安定で寿命が短い中間生成物Bを何度も生成させてA→B→Dの反応を繰り返し行うことができ、効率よく目的生成物Dを生成させることができる。このように、触媒を繰り返し配列した反応系は、バッチ式反応容器を用いた手法では実現困難である。
【0086】
更に、中間生成物が複数生じ、該複数種の中間生成物の寿命に差がある場合には、触媒の配列の間隔、反応原料の流通の速度を制御することによって、反応の選択性を上げることも期待できる。例えば、反応基質Aから触媒Cの触媒反応によって、寿命の異なる中間生成物B(長寿命)とB’(短寿命)が生成する場合、触媒Cの形成領域と触媒Cの形成領域の間隔を狭く設定し、触媒の繰り返し配列によって、何度も反応基質A→中間生成物B、B’→目的生成物Dを行うことにより、B’の収率を上げることができる。また、触媒Cの形成領域と触媒Cの形成領域の間隔を広く、または、反応原料の流通の速度を遅くすることによって、より寿命の長い中間生成物Bを選択的に利用した反応系を構築することができる。
【0087】
図12は、実施例2に係るマイクロ反応装置において、反応基質Mから触媒Cによる第1の触媒反応によって構造的に不安定な中間生成物Mが生成し、次に中間生成物Mから触媒Cによる第2の触媒反応によって目的生成物Mが生成する反応(M→M→M)を行った場合の、M、M、Mの濃度変化を示す図である。第1の触媒反応によって生成する構造的に不安定な中間生成物Mは、触媒を必要とせず、または触媒Cによって、Mへの可逆反応が起こる物質であるものとする。分かりやすく説明するために、各段階の反応は効率よく理想的な状態で行われるものと仮定している。
【0088】
触媒C形成領域と触媒C形成領域を1サイクルの反応とすると、まず、1順目の触媒C形成領域において、M→Mの反応が進行し、十分な濃度の中間生成物Mが生成する。十分な濃度の中間生成物Mを含む反応溶液が、触媒C形成領域を流通し、M→Mの反応が進行する。しかし、中間生成物Mは反応基質Mへの可逆反応が起こるため不安定であり、前記反応溶液が触媒C形成領域に到達した際に含まれていた中間生成物Mがすべて目的生成物Mに変換されず、触媒C形成領域において再び反応基質Mが生成することとなる。
【0089】
続いて、2順目の触媒C形成領域に、反応基質Mと目的生成物Mとが含まれる反応溶液が導入される。ここで、再び反応基質Mは、中間生成物Mに変換される。そして、中間生成物Mと目的生成物Mとが含まれる反応溶液が、2順目の触媒C形成領域を流通し、M→Mの反応が進行する。1順目と同様に中間生成物Mから反応基質Mへの可逆反応が起こるが、反応溶液中の目的生成物Mの含有量は増加する。
【0090】
2順目と同様に、3順目以降の反応を進行させて、反応溶液中に目的生成物Mを蓄積することができるので、中間生成物Mが構造的に不安定であるため、1サイクルの反応での収率の低い物質であっても、その収率を高めることが可能となる。
【0091】
[反応例2−1]
実施例2に係るモデル反応として、固体酸および活性金属による難脱硫性硫黄化合物の脱硫プロセスが挙げられる。
自動車排気ガス、特にディーゼル車の排気ガスに含まれる窒素酸化物(NOx)や粒子状物質(PM)による大気汚染は深刻な状況であり、排気ガス中のNOxおよびPMの低減が急務である。そのためのディーゼル車のNOx還元処理装置およびPM除去装置等の排気ガス後処理装置の機能を十分に発揮させるためには、軽油中の硫黄分を更に低減させることが課題となる。
【0092】
従来、脱硫反応塔を用いた脱硫処理方法に用いる触媒として、アルミナ(Al)に異性化能を有する固体酸と、脱硫性能を有する活性金属としてのコバルト(Co)とモリブデン(Mo)を担持させた触媒が開発されている[FocusNEDO,第6号(2002年11月号),p.1−4,「石油精製汚染物質低減等技術開発−軽油の低硫黄化技術の開発−」]。この触媒は、難脱硫性硫黄化合物であるアルキルジベンゾチオフェン類を処理するためのものである。アルキルジベンゾチオフェン類の処理工程を以下の式3に示す。
【0093】
【化3】

【0094】
このように、異性化能を有する固体酸(触媒C)を触媒として、アルキルジベンゾチ
オフェン類を異性化して、硫黄原子近傍のアルキル基による立体障害を除き、脱硫性能を
有する活性金属触媒(触媒C)によって脱硫することによって行われる。
【0095】
しかし、既述の脱硫反応塔を用いた脱硫処理方法では、式4に示すように、異性化能を有する固体酸触媒(触媒C)と、脱硫性能を有する活性金属触媒(触媒C)とをアルミナに担持させた触媒を一つの触媒Cとして用い、脱硫処理が行われている。これは、固体酸による異性化反応は可逆反応であり、アルキル基の立体障害の少ない異性化体はその寿命が短く、異性化反応後、速やかに脱硫反応を行う必要があるためであると考えられる。すなわち、異性化触媒と脱硫触媒を同じ担体に担持させることによって、異性化反応が起こるとほぼ同時に脱硫反応が行われるように構成されていると考えられる。
【0096】
【化4】

【0097】
反応例2−1は、実施例2のマイクロ反応装置を用い、異性化能を有する固体酸触媒(
触媒C)と、脱硫性能を有する活性金属触媒(触媒C)のそれぞれの機能を分離し、ア
ルキルジベンゾチオフェン類の脱硫を行うものである。
【0098】
式2における反応基質Aがアルキルジベンゾチオフェン類、寿命の短い中間生成物Bが異性化体、目的生成物Dが脱硫体であり、使用するマイクロ反応装置の反応流路には、図9(a)のように異性化能を有する固体酸触媒(触媒C)と脱硫性能を有する活性金属触媒(触媒C)とがC、Cの順番で繰り返し配列されて設られる。
【0099】
このことによって、異性化能を有する固体酸触媒(触媒C)と、脱硫性能を有する活性金属触媒(触媒C)の機能を分離し、それぞれの触媒能が有効に発揮されるとともに、アルキルジベンゾチオフェン類→異性化体→脱流体の反応を繰り返し行うことによって、寿命の短い異性化体から脱流体への反応も確実に行うことができる。
【産業上の利用可能性】
【0100】
本発明は、反応原料を微細な反応流路に流通させることによって、複数の触媒反応を進行させるマイクロ反応装置として有効である。
【図面の簡単な説明】
【0101】
【図1】本発明に係るマイクロ反応装置の一例を示す斜視図である。
【図2】本発明に係るマイクロ反応装置の他の一例を示す斜視図である。
【図3】(A)は、反応流路に二種類の触媒を連続して並べて配列した場合(n=2の場合)の例を示す図であり、(B)は、反応流路に三種類の触媒を連続して並べて配列した場合(n=3の場合)の例を示す図である。
【図4】(A)は、反応流路に配列された二種類(n=2)の触媒の形成領域の間に触媒非形成領域21が設けられている場合の例を示す図であり、(B)は、反応流路に配列された三種類(n=3)の触媒の形成領域の間に触媒非形成領域21が設けられている場合の例を示す図であり、(C)は、反応流路に配列された三種類(n=3)の触媒の形成領域の間に触媒非形成領域21が設けられている場合の他の例を示す図である。
【図5】(A)は、反応流路に配列された二種類(n=2)の触媒の触媒の形成領域が設けられ、該二種類の触媒の形成領域が重なる触媒混合領域22が設けられている場合の例を示す図であり、(B)は、反応流路に配列された三種類(n=3)の触媒の触媒の形成領域のうち、隣り合う二種類の触媒の形成領域が重なる触媒混合領域22が設けられている場合の例を示す図であり、(C)は、反応流路に配列された三種類(n=3)の触媒の触媒の形成領域のうち、隣り合う二種類の触媒の形成領域が重なる触媒混合領域22が設けられている場合の他の例を示す図であり、(D)は、反応流路に配列された三種類(n=3)の触媒の触媒の形成領域のうち、隣り合う二種類の触媒の形成領域が重なる触媒混合領域22が設けられている場合の更に他の例を示す図である。
【図6】(A)は、図5(A)において、二種類の触媒の担持量に連続的な勾配をつけた場合の例を示す図であり、(B)は、図5(A)において、二種類の触媒の担持量に段階的な勾配をつけた場合の例を示す図である。
【図7】反応例1−1に使用されるマイクロ反応装置の平面概略図である。
【図8】反応基質A→中間生成物B→目的生成物Dの逐次反応をバッチ式反応容器で行った場合の、反応基質A、中間生成物B、および目的生成物Dの時間的濃度変化を示す図である。
【図9】反応基質A→中間生成物B→目的生成物Dの逐次反応をマイクロ反応装置で行った場合の、反応基質A、中間生成物B、および目的生成物Dの濃度と、マイクロ反応装置の反応流路上の位置との関係を示す図である。
【図10】実施例2に係るマイクロ反応装置の反応流路における、複数の触媒の配列構成を示す図である。
【図11】実施例1に係るマイクロ反応装置を用いた反応例を説明する図である。
【図12】実施例2に係るマイクロ反応装置を用いた反応例を説明する図である。
【符号の説明】
【0102】
1 マイクロ反応装置、 2 反応器、 3 反応流路、 4 触媒層、
5 基板、 6 天板、 7、9、 供給口、 8、10 排出口、
11 チューブコネクタ、 12 マイクロチューブ、
21 触媒非形成領域、 22 触媒混合領域、
31 マイクロ反応装置、 32 反応器、 33 反応流路、
34 Cu−Pdクラスター/ACの形成領域、
35 Pd/βゼオライトの形成領域、 36 Pd/ACの形成領域、
37 第1の触媒非形成領域、 38 第2の触媒非形成領域、
40 反応溶液(NOを含む地下水)、
41、42、43 供給口、 44、45 排出口、
46 気液分離器、 47 親水性流路、 48 疎水性流路、
49 分岐反応流路、 50 分岐点

【特許請求の範囲】
【請求項1】
反応原料を流通させる微細な反応流路を有する反応器と、前記反応流路に形成された触媒層と、を備えたマイクロ反応装置であって、
前記触媒層は、複数の触媒である触媒C、触媒C、・・・触媒C(nは2以上の整数)によって形成され、
触媒Cの形成領域、触媒Cの形成領域、・・・触媒Cの形成領域が、前記反応流路の上流側から、C、C、・・・Cの順番で配列されて設けられていることを特徴とする、マイクロ反応装置。
【請求項2】
反応原料を流通させる微細な反応流路を有する反応器と、前記反応流路に形成された触媒層と、を備えたマイクロ反応装置であって、
前記触媒層は、複数の触媒である触媒C、触媒C、・・・触媒C(nは2以上の整数)によって形成され、
触媒Cの形成領域、触媒Cの形成領域、・・・触媒Cの形成領域が、前記反応流路の上流側から、C、C、・・・Cの順番で繰り返し配列されて設けられていることを特徴とする、マイクロ反応装置。
【請求項3】
請求項1または2に記載されたマイクロ反応装置において、前記複数の触媒C、C、・・・Cは、触媒Cによる第1の触媒反応と、触媒Cによる第2の触媒反応と、・・・触媒Cによる第nの触媒反応(nは2以上の整数)と、を含み、
前記各触媒反応の少なくとも一部は逐次反応で進行するものであることを特徴とする、マイクロ反応装置。
【請求項4】
請求項3に記載されたマイクロ反応装置において、前記逐次反応は、構造的に不安定な中間生成物を経て進行するものであることを特徴とする、マイクロ反応装置。
【請求項5】
請求項1または2に記載されたマイクロ反応装置において、前記複数の触媒C、C、・・・Cは、前記反応原料に含まれる複数の反応基質に独立的に作用するものであることを特徴とする、マイクロ反応装置。
【請求項6】
請求項1から5のいずれか1項に記載のマイクロ反応装置において、配列された複数の触媒の形成領域の間に、触媒非形成領域が設けられていることを特徴とする、マイクロ反応装置。
【請求項7】
請求項1から5のいずれか1項に記載のマイクロ反応装置において、配列された触媒の形成領域のうち、隣り合う二種類の触媒の形成領域が重なる触媒混合領域が設けられていることを特徴とする、マイクロ反応装置。
【請求項8】
請求項7に記載されたマイクロ反応装置において、前記触媒混合領域における二種類の触媒のうち、上流側に配列された触媒形成領域の触媒は、下流側に向かってその量が減少するように設けられ、下流側に配列された触媒形成領域の触媒は、下流側に向かってその量が増加するように設けられていることを特徴とする、マイクロ反応装置。
【請求項9】
請求項1から8のいずれか1項に記載のマイクロ反応装置において、前記反応器は光透過性材料より形成され、前記触媒層は、光触媒によって形成され、前記触媒層の表面に光を照射する光照射手段を備えていることを特徴とする、マイクロ反応装置。
【請求項10】
反応器に設けられた微細な反応流路に反応原料を流通させて、前記反応流路に形成された触媒層の触媒作用により反応を進行させる触媒反応方法であって、
前記触媒層には、複数の触媒である触媒C、触媒C、・・・触媒C(nは2以上の整数)が前記反応流路の上流側から順番に配列されており、
前記複数の触媒による触媒反応を、前記反応原料が前記反応流路を流通している間に、該触媒の配列の順番で進行させることを特徴とする、触媒反応方法。
【請求項11】
反応器に設けられた微細な反応流路に反応原料を流通させて、前記反応流路に形成された触媒層の触媒作用により反応を進行させる触媒反応方法であって、
前記触媒層には、複数の触媒である触媒C、触媒C、・・・触媒C(nは2以上の整数)が前記反応流路の上流側から順番に繰り返し配列されており、
前記複数の触媒による触媒反応を、前記反応原料が前記反応流路を流通している間に、前記触媒の配列の順番で進行させることを特徴とする、触媒反応方法。
【請求項12】
請求項10または11に記載された触媒反応方法において、前記複数の触媒C、C、・・・Cは、触媒Cによる第1の触媒反応と、触媒Cによる第2の触媒反応と、・・・触媒Cによる第nの触媒反応(nは2以上の整数)と、を含み、
前記各触媒反応の少なくとも一部は逐次反応で進行するものであることを特徴とする、触媒反応方法。
【請求項13】
請求項12に記載された触媒反応方法において、前記逐次反応は、構造的に不安定な中間生成物を経て進行するものであることを特徴とする、マイクロ反応装置。
【請求項14】
請求項10または11に記載された触媒反応方法において、前記複数の触媒C、C、・・・Cは、前記反応原料に含まれる複数の反応基質に独立的に作用するものであることを特徴とする、触媒反応方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2008−194593(P2008−194593A)
【公開日】平成20年8月28日(2008.8.28)
【国際特許分類】
【出願番号】特願2007−30880(P2007−30880)
【出願日】平成19年2月9日(2007.2.9)
【出願人】(304021417)国立大学法人東京工業大学 (1,821)
【出願人】(000005902)三井造船株式会社 (1,723)
【Fターム(参考)】