説明

マイクロ流体装置および外付けの圧電アクチュエータ

【課題】高性能なマイクロ流体装置および外付けの圧電アクチュエータを提供すること。
【解決手段】流体ポンピング装置100、200は、マイクロ流体装置130、230に外付けに連結された圧電アクチュエータ110を含んでいる。圧電アクチュエータは、バイアス電圧の印加に応じた長軸に沿った軸方向変位を有している。圧電アクチュエータの軸方向変位は、マイクロ流体装置の内部のバルブ245および内部のポンプチャンバ140の一方を作動させる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、マイクロ流体装置および外付けの圧電アクチュエータに関する。
【背景技術】
【0002】
往復運動をするマイクロポンプが、液体クロマトグラフィー機器への試料の投与などの、さまざまな用途のために使用されている。一般的なマイクロポンプは、入口バルブ、ポンプチャンバおよび出口チャンバを含んでおり、ポンプチャンバは、膨張して入口バルブから流体を受け入れることと、収縮して流体を出口バルブから排出することとを交互に繰り返すことにより、流体をポンピングする。一般に、ポンプチャンバの一部を形成する仕切り板または膜の往復運動により、ポンプチャンバが膨張および収縮される。往復運動を生み出すためのさまざまな技術は、例えば、熱空気式(サーモニューマチック)アクチュエータ、静電アクチュエータ、空気式アクチュエータ、および圧電アクチュエータの使用を組み込んでいる。従来のマイクロポンプの性能は一般に、許容できる最も大きなサイズの泡により制限される。
【0003】
圧電アクチュエータを有する従来のマイクロポンプは一般に、横ひずみ構成を有しており、これは、ポンプチャンバの仕切り板に取り付けられた第1の側と、電気信号に応じて自由に伸張する第2の側とを有する平坦な圧電ディスクを含んでいる。圧電ディスクの長軸は、仕切り板の頂面に実質的に平行にされており、その結果、圧電ディスクが仕切り板上で効率的に平坦になるようにされている。バイアス電圧が印加されると、圧電ディスクは横方向に収縮し、圧電ディスクと仕切り板との間に曲げモーメントを生じさせる。曲げモーメントにより、仕切り板がたわみ、ポンプチャンバ内の流体が排出される。この構成は製造が比較的容易であり、変位量が大きいが、大きな圧力を生み出すことはできない。例えば、従来の横ひずみマイクロポンプは、約0.06バール〜約2.0バールの圧力を生み出すことができる。
【0004】
入口および出口バルブは、例えば圧電アクチュエータを使用し、類似のやり方でポンプチャンバへと、動的に作動されてもよく、または、入口および出口バルブは、受動的な逆止弁であってもよい。しかし、受動的な逆止弁は通常、高圧圧電駆動のマイクロポンプ用に適さない。これは、各サイクルでポンピングされる流体の量が制限され、逆止弁を作動させるために有限の流体体積が求められるためである。圧電駆動のバルブは、例えば約3バールの差圧に限定されてもよい。圧電駆動の入口および出口バルブの多くは、運動の範囲を大きくするために、曲げ態様アクチュエータに頼っている。
【0005】
従来のマイクロポンプの中には、横方向ではなく長手方向に膨張および収縮する圧電アクチュエータを有する例もある。ここでも、このようなマイクロポンプは通常、仕切り板の頂面に実質的に平行な長軸を有する平坦な圧電ディスクを含んでおり、その結果、圧電ディスクは仕切り板上で効率的に平坦になるようにされている。しかし、バイアス電圧が印加されると、圧電ディスクは下方に垂直に伸張し、曲げモーメントを生じさせて仕切り板をたわませる。しかし、このような構成は製造するのが困難であり、ON/OFF流量比に乏しい。また、一例では、熱的に平衡な圧電アクチュエータが、バルブチャンバの内部に配置されている。このマイクロポンプは、高いON/OFF流量比を生み出すことができ、比較的高い圧力に対して封止することができるが、圧電アクチュエータが張力を受け、バルブチャンバ内の作動流体が、圧電アクチュエータに接触する。ゆえに、マイクロポンプは高圧システム用には適していない。高圧システムでは、さまざまな流体が使用されて、汚染の危険が生じる場合がある。さらに、圧電アクチュエータはバルブチャンバの内部にあるため、バルブチャンバを圧電アクチュエータに対して除去または交換することができない。
【発明の概要】
【課題を解決するための手段】
【0006】
一実施形態において、流体移送装置は、マイクロ流体装置に外付けに連結された圧電アクチュエータを含んでいる。圧電アクチュエータは、バイアス電圧の印加に応じた長軸に沿った軸方向の変位を有しており、圧電アクチュエータの軸方向の変位が、マイクロ流体装置の内部のバルブおよび内部のポンプチャンバの一方を作動させる。
別の実施形態において、流体移送装置は、ポンプチャンバを備えるマイクロ流体装置と、マイクロ流体装置に連結された第1圧電アクチュエータとを含んでいる。第1圧電アクチュエータは、第1バイアス電圧の選択的な印加に応じ第1長軸に沿って伸張および収縮して前記ポンプチャンバを圧縮するよう構成されており、第1圧電アクチュエータはマイクロ流体装置に外付けされている。
【0007】
別の実施形態において、流体移送装置は、二次元の(平らな)マイクロ流体装置、第1圧電アクチュエータ、第2圧電アクチュエータおよび第3圧電アクチュエータを含んでいる。二次元のマイクロ流体装置は、入口バルブ、入口ポートを介して入口バルブに流体連通されたポンプチャンバ、および、出口ポートを介してポンプチャンバに流体連通された出口バルブを含んでいる。第1圧電アクチュエータは、マイクロ流体装置に外付けされ、入口バルブに機械的に連結されており、第1バイアス電圧の選択的な印加に応じた第1軸方向変位を有し、機械的な連結を介して入口バルブを閉鎖および開放する。第2圧電アクチュエータは、マイクロ流体装置に外付けされ、ポンプチャンバに機械的に連結されており、第2バイアス電圧の選択的な印加に応じた第2軸方向変位を有し、機械的な連結を介してポンプチャンバを圧縮および膨張させる。第3圧電アクチュエータは、マイクロ流体装置に外付けされ、出口バルブに機械的に連結されており、第3バイアス電圧の選択的な印加に応じた第3軸方向変位を有し、機械的な連結を介して出口バルブを閉鎖および開放する。このようにして、入口バルブが開き、ポンプチャンバが膨張し、出口バルブが閉じられたときに、流体が、入口バルブに接続された装置入口ポートから、ポンプチャンバへと、入口ポートを介して引き入れられる。同様に、入口バルブが閉じ、ポンプチャンバが圧縮し、出口バルブが開いたときに、流体が、出口バルブに接続された装置出口ポートへと、出口ポートを介して、ポンプチャンバから排出される。
【図面の簡単な説明】
【0008】
【図1A】一実施形態に係る流体移送装置を示す断面図である。
【図1B】一実施形態に係る流体移送装置を示す断面図である。
【図2A】一実施形態に係る流体移送装置を示す断面図である。
【図2B】一実施形態に係る流体移送装置を示す断面図である。
【図3】一実施形態に係る多弁式流体移送装置を示す断面図である。
【図4A】一実施形態に係る多弁式一体型流体移送装置を示す断面図である。
【図4B】一実施形態に係る多弁式一体型流体移送装置を示す断面図である。
【図5A】一実施形態に係る、一体型流体移送装置の多弁式マイクロ流体装置を示す断面図である。
【図5B】一実施形態に係る、一体型流体移送装置の多弁式マイクロ流体装置を示す断面図である。
【図6】一実施形態に係る作動装置を示す断面図である。
【図7】一実施形態に係る、図6の作動装置を組み込んだ、多弁式一体型流体移送装置を示す断面図である。
【図8A】一実施形態に係る、隆起したパターンを有するバルブチャンバを示す断面図である。
【図8B】一実施形態に係る、隆起したパターンを有するバルブチャンバを示す断面図である。
【図9A】一実施形態に係る、隆起したパターンを有するポンプチャンバを示す断面図である。
【図9B】一実施形態に係る、隆起したパターンを有するポンプチャンバを示す断面図である。
【図10A】一実施形態に係る、窪んだパターンを有するポンプチャンバを示す断面図である。
【図10B】一実施形態に係る、窪んだパターンを有するポンプチャンバを示す断面図である。
【図11A】一実施形態に係る、ガス透過性膜を有するポンプチャンバを示す断面図である。
【図11B】一実施形態に係る、ガス透過性膜を有するポンプチャンバを示す断面図である。
【図12A】一実施形態に係る、連続的なフローを有する多弁式一体型流体移送装置を示す断面図である。
【図12B】一実施形態に係る、連続的なフローを有する多弁式一体型流体移送装置を示す断面図である。
【発明を実施するための形態】
【0009】
例示的な実施形態は、添付図面とともに読んだときに、以下の詳細な説明から最もよく理解される。さまざまな特徴は必ずしも等尺で描かれているわけでないことを強調しておく。事実、説明を明瞭にするために、寸法は任意で大きくまたは小さくされている場合がある。適切かつ実際的であれば、類似の参照番号は類似の要素を示す。
以下の詳細な説明において、限定ではなく説明を目的とし、特定の詳細を開示する例示的な実施形態が、本教示に係る実施形態の徹底した理解を与えるために説明されている。しかし、本明細書に開示された特定の詳細から逸脱した本教示に係る他の実施形態が、添付の特許請求の範囲内に留まることは、本開示の益を享受してきた者にとって明らかであろう。さらに、周知の装置および方法の説明は、実施形態の例の説明を不明瞭にしないために、省略される場合がある。このような方法および装置は本教示の範囲内にある。
【0010】
一般に、図面および図面中に示されたさまざまな要素は、等尺に描かれていないと理解される。さらに、添付図面に示すように、「上方」、「下方」、「頂部」、「底部」、「上側」、「下側」、「左」、「右」、「垂直」および「水平」などの相対的な用語は、さまざまな要素の互いに対する関係を説明するために使用される。これらの相対的な用語は、図面に示された方位に加えて、装置および/または要素の異なる方位を包含するよう意図されていると理解される。例えば、図面の視点に対して装置が反転されれば、例えば別の要素の「上方」にあると説明された要素は、その要素の「下方」にくることになる。同様に、図面の視点に対して装置が90度回転されれば、例えば「垂直」であると説明された要素は、「水平」になることになる。
【0011】
マイクロポンプなどの流体ポンピング装置または流体移送装置を製造するために、さまざまな実施形態により、1つ以上の外付けの圧電アクチュエータに連結された二次元のマイクロ流体装置が提供される。例えば、マイクロ流体装置は、入口、第1バルブチャンバ、ポンピングチャンバ、第2バルブチャンバおよび出口を含んでいてもよい。第1圧電アクチュエータが、第1バルブチャンバ中の第1バルブを開閉するように構成されており、第2圧電アクチュエータが、ポンピングチャンバを圧縮および膨張させるように構成されており、第3圧電アクチュエータが、第3バルブチャンバ中の第2バルブを開閉するように構成されている。第1、第2および第3圧電アクチュエータはそれぞれ、対応するバルブまたはポンピングチャンバと相互作用するように、長尺の長軸に沿って、軸方向に伸張および収縮するよう構成されている。
【0012】
第2バルブを閉じ、第1バルブを開き、ポンプチャンバを膨張させることで、流体が入口から引き込まれる。第1バルブを閉じ、第2バルブを開き、ポンプチャンバを圧縮することで、流体が装置から排出される。ゆえに、流体移送装置は、流体をポンピングし、例えば約50バール〜約1000バールを超える圧力の範囲の実質的な圧力を生み出すことができる。例えば、試料の投与のためおよび/または分析ポンプそれ自体として、高性能液体クロマトグラフィー(HPLC)機器用に、さまざまな実施形態を使用してもよい。
【0013】
図1Aおよび図1Bは、一実施形態に係る、圧電アクチュエータを含む流体移送装置を示す断面図である。
図1Aおよび図1Bを参照して、流体移送装置100は、二次元のマイクロ流体ポンプ装置130を含んでおり、これは内部のポンプチャンバ140、入口ポート131および出口ポート132を含んでいる。マイクロ流体ポンプ装置130は、可撓性の膜120を含んでもおり、これは内部のポンプチャンバ140の上壁を形成している。以下に詳細に説明するように、可撓性の膜120は、その初期位置(図1Aに示す)から撓んだ位置(図1Bに示す)へと下方に曲げられて(または変形されて)、出口ポート132を介して流体をポンプチャンバ140から排出し、その曲げられた位置からその初期位置へと上方に曲げ解除されて、入口ポート131を介して流体をポンプチャンバ140へと引き入れ、ポンピング動作を提供する。マイクロ流体ポンプ装置130は、ステンレス鋼または他の金属材料などの耐久性のある材料で形成されていてもよい。代わりに、マイクロ流体ポンプ装置130は、本教示の範囲を逸脱することなく、ガラス、セラミック、ケイ素、または、(ポリイミド、ポリカーボネートもしくは他のプラスチックなどの)ポリマーなどの他の材料で形成されていてもよい。同様に、可撓性の膜120は、ステンレス鋼などの可撓性の材料で形成されていてもよい。代わりに、可撓性の膜120は、本教示の範囲を逸脱することなく、ポリマー、ガラス、セラミックおよび金属などの材料、または、それらの何らかの組み合わせで形成されていてもよい。さまざまな実施形態において、マイクロ流体ポンプ装置130の内面(例えば、ポンプチャンバ140の壁)は、非反応性のコーティングで被覆されていてもよく、これは、ポリマー、セラミック、ガラス、金属またはフッ素重合体コーティングなどを含んでいてもよい。
【0014】
流体移送装置100はさらに、ボス115を介してマイクロ流体ポンプ装置130に外付けに連結された圧電アクチュエータ110を含んでいる。圧電アクチュエータ110は外付けに連結されることで、完全にポンプチャンバ140の外部に配置されており、それゆえに、ポンプチャンバ140内にある、または、ポンプチャンバ140を通過する作動流体に接触することがない。ゆえに、圧電アクチュエータ110は高圧のシステムで使用することができる。高圧のシステムでは、圧電アクチュエータ110がマイクロ流体ポンプ装置130に外付けにされていない場合、圧電アクチュエータ110の汚染の危険が生じる。さまざまな構成で、圧電アクチュエータ110はまた、マイクロ流体ポンプ装置130から取り外し可能にされていてもよい。ゆえに、圧電アクチュエータ110を外付けに連結することで、マイクロ流体ポンプ装置130の取り換えを容易にすることができる。
【0015】
図示した構成では、圧電アクチュエータ110は長尺の形状を有しており、図1Aおよび図1Bに示すように、長さが幅よりも大きくされている。圧電アクチュエータ110の長軸Lは、マイクロ流体ポンプ装置130の上面(可撓性の膜120)に対して実質的に垂直に配置されている。これは従来のシステムと異なっている。従来のシステムでは、圧電アクチュエータの長軸が、マイクロ流体装置の上面に平行にされており、その結果、マイクロ流体装置上で本質的に平坦になっている。圧電アクチュエータ110は、実質的に矩形の形状を有するものとして示されているが、本教示の範囲を逸脱することなく、長さLを有するさまざまな長尺の形状を組み込んでもよいことが理解される。
【0016】
圧電アクチュエータ110は、バイアス電圧の印加に応じた長軸Lに沿った軸方向の変位を有している。例えば、バイアス電圧(例えば100V)の印加に際し、圧電アクチュエータ110は、収縮した位置(図1Aに示す)から伸張した位置(図1Bに示す)へと伸張し、ボス115を介し、軸方向の変位に対応した距離だけ、ポンプチャンバ140内へと、可撓性の膜120を下方に屈曲させる。このようにして、可撓性の膜120の下方の動きはポンプチャンバ140を圧縮し、その結果、ポンプチャンバ140は、膨張した位置(図1Aに示す)から圧縮された位置(図1Bに示す)へと移行する。膨張した位置から圧縮された位置への動きにより、ポンプチャンバ140は流体を出口ポート132から排出する。ボス115により、圧電アクチュエータ110の断面(例えば矩形)から、可撓性の膜120に圧力が加えられる円形の領域への移行が提供される。
【0017】
同様に、バイアス電圧が低下する(例えば、0Vが印加される)と(これには、バイアス電圧の除去が含まれているが)、圧電アクチュエータ110は、伸張した位置(図1Bに示す)から、その初期の収縮した位置(図1Aに示す)へと収縮し、マイクロ流体ポンプ装置130の可撓性の膜120が曲げ解除されてポンプチャンバ140から上方へと移動することを可能にする。このようにして、可撓性の膜120の曲げ解除の動きによりポンプチャンバ140が膨張され、その結果、ポンプチャンバ140は、その圧縮された位置(図1Bに示す)から、その初期の膨張した位置(図1Aに示す)へと移行する。圧縮された位置から膨張した位置への動きにより、ポンプチャンバ140は入口ポート131を介して流体を引き込む。圧電アクチュエータ110へのバイアス電圧の印加が周期的な仕方で繰り返されて、ポンプチャンバ140を交互に膨張および圧縮し、それぞれ、流体が入口ポート131を介して引き込まれ、出口ポート132を介して排出されるようにする。
【0018】
図示した例示的な実施形態では、流体移送装置100は、圧電アクチュエータ110に連結された高剛性アクチュエータ150をも含んでいる。高剛性アクチュエータ150は、低コンプライアンス低速アクチュエータであってもよく、例えば、圧電アクチュエータ110がマイクロ流体ポンプ装置130に対して適切に配置されるようにするために、マイクロ流体ポンプ装置130に対する圧電アクチュエータ110の位置を調整するよう構成されていてもよい。くわえて、高剛性アクチュエータ150は、バイアス電圧の印加に際し圧電アクチュエータ110が上方向に伸張するのを防止する障壁を提供して、軸方向の変位が下方向に生じるようにし、より効率的に可撓性の膜120を屈曲させる。圧電アクチュエータ110と同様に、高剛性アクチュエータ150は、マイクロ流体ポンプ装置130に対して外付けされており、マイクロ流体部の容易な取り換えを可能にする。例えば、圧電アクチュエータ110とマイクロ流体ポンプ装置130との間に生じる緩やかな熱的不良を吸収するよう、高剛性アクチュエータ150を調整してもよい。
【0019】
図示した例では、高剛性アクチュエータ150は、調整可能なネジ駆動(スクリュードライブ)として実施されている。ネジ駆動は、ネジ駆動を時計回りまたは反時計回り方向に適切に移動させることにより、圧電アクチュエータ110の位置を長軸Lに沿って調整するよう構成されている。ネジ駆動は、ロータリーモータを例えばロータリーステッパモータなどの微細ピッチ(ファインピッチ)の調整可能なネジに連結することにより実現されていてもよい。無論、他の種類の高剛性アクチュエータ150を組み込んでもよく、または、本教示の範囲を逸脱することなく、高剛性アクチュエータ150をまったく無くしてもよい。高剛性アクチュエータ150の他の考え得る実施態様は、例えば、空気圧アクチュエータ、熱アクチュエータまたはウェッジドライブを含んでいる。
【0020】
図2Aおよび図2Bは、一実施形態に係る、圧電アクチュエータを含む流体移送装置を示す断面図である。
図2Aおよび図2Bを参照して、流体移送装置200は、圧電アクチュエータ110、ボス115および高剛性アクチュエータ150を含んでおり、これらは、図1Aおよび図1Bを参照して上に説明したのと同じ説明を目的とするものである。流体移送装置200はさらに、二次元のマイクロ流体ポンプ装置230を含んでおり、これは内部のポンプチャンバ240、可撓性の膜220、入口ポート231および出口ポート232を含んでいる。マイクロ流体ポンプ装置230はバルブ245をも含んでおり、これは、可撓性の膜220と出口ポート232の突出部246との作用により、ポンプチャンバ240内に形成されている。以下に詳細に説明するように、可撓性の膜220は、その初期位置(図2Aに示す)から撓んだ位置(図2Bに示す)へと下方に曲げられて(または変形されて)、突出部246と機械的に接触し、流体が入口ポート231に入ること、または、出口ポート232から出ることを防止し、それにより、効率的にバルブ245を閉鎖する。次いで、可撓性の膜220は、撓んだ位置から、その初期位置へと上方に曲げ解除されて、流体が入口ポート231へ入ること、または、出口ポート232から出ることを可能にし、効率的にバルブ245を開放する。
【0021】
上述したように、圧電アクチュエータ110、ボス115および高剛性アクチュエータ150はそれぞれ、マイクロ流体ポンプ装置230に外付けされている。例えば、圧電アクチュエータ110は、外付けに連結されることで、完全にポンプチャンバ240の外部に配置されており、それゆえに、(ポンプチャンバ240および/またはバルブ245内にある、または、ポンプチャンバ240および/またはバルブ245を通過する)流体に接触することがない。圧電アクチュエータ110、ボス115および高剛性アクチュエータ150は同様に、マイクロ流体ポンプ装置230から取り外し可能であってもよい。
【0022】
マイクロ流体ポンプ装置230は、ステンレス鋼または他の金属などの耐久性のある材料で形成されていてもよい。代わりに、マイクロ流体ポンプ装置230は、本教示の範囲を逸脱することなく、ガラス、セラミック、ケイ素、または、(ポリイミド、ポリカーボネートもしくは他のプラスチックなどの)ポリマーなどの他の材料で形成されていてもよい。同様に、可撓性の膜220は、ステンレス鋼などの可撓性の材料で形成されていてもよい。代わりに、可撓性の膜220は、本教示の範囲を逸脱することなく、ポリマー、ガラス、セラミックおよび金属などの別の材料、または、それらの何らかの組み合わせで形成されていてもよい。上述したように、さまざまな実施形態において、マイクロ流体ポンプ装置230の内面(例えば、バルブチャンバ240の壁)は、非反応性のコーティングで被覆されていてもよく、これは、ポリマー、セラミック、ガラス、金属またはフッ素重合体コーティングなどを含んでいてもよい。
【0023】
上述したように、圧電アクチュエータ110は、バイアス電圧(図示せず)の印加に応じた長軸Lに沿った軸方向の変位を有している。例えば、バイアス電圧(例えば100V)の印加に際し、圧電アクチュエータ110は、収縮した位置(図2Aに示す)から伸張した位置(図2Bに示す)へと伸張し、ボス115を介し、軸方向の変位に対応した距離だけ、ポンプチャンバ240内へと、マイクロ流体ポンプ装置230の可撓性の膜220を下方に屈曲させる。上述したように、このようにして、可撓性の膜220は、出口ポート232の突出部246を被覆し、バルブ245(図2Bに示す)を効率的に閉鎖する。同様に、バイアス電圧の印加が低下する(例えば、0Vが印加される)と、圧電アクチュエータ110は、伸張した位置(図2Bに示す)から、その初期の収縮した位置(図2Aに示す)へと収縮し、マイクロ流体ポンプ装置230の可撓性の膜220がポンプチャンバ240から上方へと移動することを可能にする。このようにして、可撓性の膜220の上方への動きによりバルブチャンバ240が膨張され、突出部246が被覆解除されて、バルブ245(図2Bに示す)を効率的に開放する。バルブ245を開放することで、バルブチャンバ240が入口ポート231を介して流体を引き込むことが可能になる。圧電アクチュエータ110へのバイアス電圧の印加が周期的な仕方で繰り返されて、バルブ245を交互に開放および閉鎖し、それぞれ、流体が入口ポート231を介して引き込まれ、出口ポート232を介して排出されるようにする。
【0024】
図3は、一実施形態に係る多弁式流体移送装置を示す断面図である。
図3を参照して、流体移送装置300は、入口バルブ装置301、ポンプ装置302および出口バルブ装置303を含んでおり、それらは、導管306および307を介してそれぞれ互いに流体連通状態にある別体のマイクロ流体装置として示されている。図示された実施形態では、入口バルブ装置301が、図2Aおよび図2Bに示す流体移送装置200と実質的に同じであってもよく、ポンプ装置302が、図1Aおよび図1Bに示す流体移送装置100と実質的に同じであってもよい。以下に詳細に説明するように、出口バルブ装置303は、入口ポートおよび出口ポートが逆にされていることを除いて、図2Aおよび図2Bに示す流体移送装置200に類似していてもよい。別の実施形態では、入口バルブ装置301、ポンプ装置302および出口バルブ装置303は、単一の一体のユニットとして製造されていてもよく、その一例が図4Aおよび図4Bに示されている。
【0025】
入口バルブ装置301は、入口バルブチャンバ341の入口バルブ346の作動用に、ボス316を介してマイクロ流体バルブ装置331の可撓性の膜321に機械的に連結された第1圧電アクチュエータ311を含んでいる。上述したように、第1圧電アクチュエータ311は、第1バイアス電圧(図示せず)の選択的な印加に応じた、その長軸に沿った第1軸方向変位を有している。すなわち、第1バイアス電圧の連続的な印加および低下(例えば除去)により、圧電アクチュエータ311がそれに応じて伸張および収縮して、マイクロ流体バルブ装置331の可撓性の膜321を曲げ、および、曲げ解除し、入口バルブ346を交互に閉鎖および開放する。閉鎖されたとき、入口バルブ346は、流体移送装置300の装置入口ポート361に対応する入口ポート324へと流体が引き込まれるのを防止し、または、突出部347に対して可撓性の膜321を押圧することにより、流体が出口ポート325から放出されるのを防止する。開放されたとき、入口バルブ346は、流体が入口ポート324へと引き込まれること、および、出口ポート325から放出されることを可能にする。
【0026】
ポンプ装置302は、ポンプチャンバ342の作動用に、ボス317を介してマイクロ流体バルブ装置332の可撓性の膜322に機械的に連結された第2圧電アクチュエータ312を含んでいる。上述したように、第2圧電アクチュエータ312は、第2バイアス電圧(図示せず)の選択的な印加に応じた、その長軸に沿った第2軸方向変位を有している。すなわち、第2バイアス電圧の連続的な印加および低下(例えば除去)により、圧電アクチュエータ312がそれに応じて伸張および収縮して、マイクロ流体バルブ装置332の可撓性の膜322を曲げ、および、曲げ解除し、ポンプチャンバ342を交互に圧縮および膨張させる。圧縮されたとき、ポンプチャンバ342は、流体を出口ポート327から排出する(例えば、(上述した)入口バルブ346が閉じられて、入口ポート326へと流体が引き込まれるのを防止し、(以下に説明する)出口バルブ348が開かれて、出口ポート327から流体が放出されることを可能にする)。膨張されたときに、ポンプチャンバ342は入口ポート326を介して流体を引き込む(例えば、(以下に説明する)出口バルブ348が閉じられて、出口ポート327を介して流体が放出されることを防止し、(上述した)入口バルブ346が開かれて、入口ポート326を介して流体が引き込まれるのを可能にする)。
【0027】
出口バルブ装置303は、入口バルブチャンバ343の入口バルブ348の作動用に、ボス318を介してマイクロ流体バルブ装置333の可撓性の膜323に機械的に連結された第3圧電アクチュエータ313を含んでいる。上述したように、第3圧電アクチュエータ313は、第3バイアス電圧(図示せず)の選択的な印加に応じた、その長軸に沿った第3軸方向変位を有している。すなわち、第3バイアス電圧の連続的な印加および低下(例えば除去)により、圧電アクチュエータ313がそれに応じて伸張および収縮して、マイクロ流体バルブ装置333の可撓性の膜323を曲げ、および、曲げ解除し、出口バルブ348を交互に閉鎖および開放する。閉鎖されたとき、出口バルブ348は、突出部349に対して可撓性の膜323を押圧することにより、入口ポート328へと流体が引き込まれるのを防止し、または、流体移送装置300の装置出口ポート362に対応する出口ポート329から流体が放出されるのを防止する。開放されたとき、出口バルブ348は、流体が入口ポート328へと引き込まれること、および、出口ポート329から放出されることを可能にする。
【0028】
入口バルブ装置301、ポンプ装置302および出口バルブ装置303は、高剛性アクチュエータ351、352および353をそれぞれ含んでおり、これらは、対応する第1、第2および第3圧電アクチュエータ311、312および313に連結されている。図1A〜図2Bの高剛性アクチュエータ150を参照して上述したように、高剛性アクチュエータ351、352および353は、第1、第2および第3圧電アクチュエータ311、312および313のそれぞれの位置を調整するように構成された低コンプライアンス低速アクチュエータであってもよい。図示した例では、高剛性アクチュエータ351、352および353は、調整可能なネジ駆動として実施されている。ネジ駆動は、ネジ駆動を時計回りまたは反時計回り方向に適切に移動させることにより、第1、第2および第3圧電アクチュエータ311、312および313の位置を、対応する長軸に沿って調整するよう構成されている。
【0029】
入口バルブ装置301および出口バルブ装置303の作動は、ポンプ装置302の作動と協調されていて、流体移送装置300を介した、装置入口ポート361から装置出口ポート362への流体の移動を可能にする。例えば、上述したように、装置出口ポート362から流体を排出するために、第1および第2バイアス電圧を第1および第2圧電アクチュエータ311および312にそれぞれ印加して、入口バルブ装置301の入口バルブ346を閉じさせ、ポンプ装置302のポンプチャンバ342を圧縮させる。同時に、第3バイアス電圧を第3圧電アクチュエータ313に対して低下させて(例えば0Vを印加して)、出口バルブ装置303の出口バルブ348を開かせ、ポンプチャンバ342内の流体を、出口ポート327を介し装置出口ポート362を通って排出できるようにする。装置入口ポート361へ流体を引き入れるために、第1および第2バイアス電圧を第1および第2圧電アクチュエータ311および312に対してそれぞれ低下させて(例えば0Vを印加して)、入口バルブ装置301の出口バルブ346を開かせ、ポンプ装置302のポンプチャンバ342を膨張させる。同時に、第3バイアス電圧を第3圧電アクチュエータ313に印加して、出口バルブ装置303の出口バルブ348を閉じさせ、入口ポート326を介し装置入口ポート361を通って、流体をポンプチャンバ342内へと引き込むことができるようにする。
【0030】
さまざまな実施形態で、第1、第2および第3バイアス電圧の印加および低下(例えば除去)のタイミングは、ソフトウェア、ファームウェア、配線論理回路、または、それらの組み合わせを使用して、プロセッサすなわち中央処理装置(CPU)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、または、それらの組み合わせなどの制御器(図示せず)により制御されていてもよい。プロセッサすなわちCPUを使用する場合、制御器から第1、第2および第3圧電アクチュエータ311〜313への信号を制御する実行可能なソフトウェア/ファームウェアおよび/または実行可能なコードを記憶するために、メモリ(図示せず)が含まれている。メモリは、不揮発性読出し専用メモリ(ROM)および揮発性ランダムアクセスメモリ(RAM)のどのような数、種類および組み合わせであってもよく、プロセッサすなわちCPUにより実行可能なコンピュータプログラムおよびソフトウェアアルゴリズムなどのさまざまな種類の情報を記憶していてもよい。メモリは、ディスクドライブ、プログラム可能読取り専用記憶装置(EPROM)、消去及びプログラム可能読取り専用記憶装置(EEPROM)、CD、DVD、ユニバーサルシリアルバス(USB)ドライブなどの有形のコンピュータ読み取り可能な記憶媒体のどのような数、種類および組み合わせを含んでいてもよい。当業者には明らかであると思われるが、第1、第2および第3バイアス電圧は、対応する第1、第2および第3圧電アクチュエータ311〜313のいずれか1つの特性に応じて、同じもしくは異なる電圧源からであってもよく、および/または、互いに同じもしくは異なっていてもよい。
【0031】
さまざまな実施形態で、第1、第2および第3圧電アクチュエータ311、312および313それぞれの変位は、約100μm未満に制限されており、さまざまな構成で約10μm未満であってもよい。ゆえに、各ポンプストロークにおいて装置出口ポート362から排出される流体体積は、例えば、通常で約20ナノリットルのオーダーと、比較的小さい。しかし、第1、第2および第3圧電アクチュエータ311、312および313は、例えば約10サイクル/秒〜約10,000サイクル/秒と、比較的高周波で作動することができ、流体の流れが約10μL/分を超えることができるようにする。
【0032】
図4Aおよび図4Bは、一実施形態に係る、単一のユニットで形成された多弁式一体型流体移送装置を示す断面図である。特に図4Bは、A-A’線に沿った図4Aの断面を示している。
図4Aを参照して、一体型流体移送装置400は、入口バルブ装置401、ポンプ装置402および出口バルブ装置403を含んでおり、それらは、一体型の二次元のマイクロ流体装置410を共有している。すなわち、図示された実施形態では、入口バルブチャンバ441、ポンプチャンバ442および出口バルブチャンバ443が、単一のマイクロ流体装置410の別個の領域として形成されている。マイクロ流体装置410は、膜プレート420、孔プレート430および接続プレート440と呼ばれる3つの別個の層またはプレートを含んでおり、これらはそれぞれ、例えば電気化学エッチングを使用して、片側または両側にパターン形成されている。パターン形成された膜プレート420、孔プレート430および接続プレート440は、整列され互いに接合されて、一体型流体移送装置400のさまざまな特徴を生み出している。一体型流体移送装置400は、装置入口ポート461、入口バルブチャンバ441、ポンプチャンバ442、出口バルブチャンバ443および装置出口ポート462が含まれており、かつ、入口および出口ポート424〜429と、装置入口ポート461、入口バルブチャンバ441、ポンプチャンバ442、出口バルブチャンバ443および装置出口ポート462の間の流体連通を可能にする流体導管405〜408とを含んでいる。
【0033】
入口バルブチャンバ441および出口バルブチャンバ443は、対応する入口バルブ446および出口バルブ448を含んでおり、これらは、第1および第3圧電アクチュエータ411および413それぞれの作動により、膜プレート420の第1および第3可撓領域421および423を曲げるおよび曲げ解除することにより機能する。同様に、ポンプチャンバ442は、第2圧電アクチュエータ412の作動により、膜プレート420の第2可撓領域422を曲げるおよび曲げ解除することにより機能する。膜プレート420、孔プレート430および接続プレート440は、例えばステンレス鋼のシートなどの金属または他の可撓性の材料で形成されていてもよい。金属を使用する場合、膜プレート420、孔プレート430および接続プレート440は、整列され、高温の金属拡散接合を使用して互いに融合されてもよい。
【0034】
図4Bに示すように、第1、第2および第3可撓領域421、422および423は、円形であってもよい。突出部447および449は、同様に円形であってもよく、それぞれ、第1および第3可撓領域421および423内で中央に位置決めされている。第1、第2および第3可撓領域421、422および423は、例えば約1.0mm〜10mm、より詳しくは約4.0mm〜5.0mmの直径を有していて、同じ寸法であってもよい。別の構成では、第1、第2および第3可撓領域421、422および423は、本教示の範囲を逸脱することなく、円以外の形状であってもよく、かつ/または、互いに異なる寸法とされていてもよい。
【0035】
より詳しくは、入口バルブ装置401は、入口バルブチャンバ441の入口バルブ446の作動用に、ボス416を介して膜プレート420の第1可撓領域421に機械的に連結された第1圧電アクチュエータ411を含んでいる。上述したように、第1圧電アクチュエータ411は、第1バイアス電圧(図示せず)の選択的な印加に応じた、その長軸に沿った第1軸方向変位を有しており、その結果、第1バイアス電圧の連続的な印加および低下(例えば除去)により、第1圧電アクチュエータ411がそれに応じて伸張および収縮して、第1可撓領域421を曲げ、および、曲げ解除し、入口バルブ446を交互に閉鎖および開放する。閉鎖されたとき、入口バルブ446は、突出部447に対して第1可撓領域421を押圧することにより、(導管405を介して装置入口ポート461に接続された)入口ポート424へと流体が引き込まれるのを防止し、または、流体が出口ポート425から放出されるのを防止する。開放されたとき、入口バルブ446は、流体が入口ポート424へと引き込まれること、および、出口ポート425から放出されることを可能にする。
【0036】
ポンプ装置402は、ポンプチャンバ442の作動用に、ボス417を介して膜プレート420の第2可撓領域422に機械的に連結された第2圧電アクチュエータ412を含んでいる。上述したように、第2圧電アクチュエータ412は、第2バイアス電圧(図示せず)の選択的な印加に応じた、その長軸に沿った第2軸方向変位を有しており、その結果、第2バイアス電圧の連続的な印加および低下(例えば除去)により、第2圧電アクチュエータ412がそれに応じて伸張および収縮して、第2可撓領域422を曲げ、および、曲げ解除し、ポンプチャンバ442を交互に圧縮および膨張させる。圧縮されたとき、ポンプチャンバ442は、流体を出口ポート427から排出する(例えば、(上述した)入口バルブ446が閉じられて、入口ポート426へと流体が引き込まれるのを防止し、(以下に説明する)出口バルブ448が開かれて、出口ポート427から流体が放出されることを可能にする)。膨張されたときに、ポンプチャンバ442は入口ポート426を介して流体を引き込む(例えば、(以下に説明する)出口バルブ448が閉じられて、出口ポート427から流体が放出されることを防止し、(上述した)入口バルブ446が開かれて、入口ポート426を介して流体が引き込まれるのを可能にする)。
【0037】
出口バルブ装置403は、入口バルブチャンバ443の入口バルブ448の作動用に、ボス418を介して膜プレート420の第3可撓領域423に機械的に連結された第3圧電アクチュエータ413を含んでいる。上述したように、第3圧電アクチュエータ413は、第3バイアス電圧(図示せず)の選択的な印加に応じた、その長軸に沿った第3軸方向変位を有しており、その結果、第3バイアス電圧の連続的な印加および低下(例えば除去)により、圧電アクチュエータ413がそれに応じて伸張および収縮して、第3可撓領域423を曲げ、および、曲げ解除し、出口バルブ448を交互に閉鎖および開放する。閉鎖されたとき、出口バルブ448は、突出部449に対して第3可撓領域423を押圧することにより、入口ポート428へと流体が引き込まれるのを防止し、または、(導管408を介して装置出口ポート462に接続された)出口ポート429から流体が放出されるのを防止する。開放されたとき、出口バルブ448は、流体が入口ポート428へと引き込まれること、および、出口ポート429から放出されることを可能にする。
【0038】
入口バルブ装置401、ポンプ装置402および出口バルブ装置403は、高剛性アクチュエータ451、452および453をそれぞれ含んでおり、これらは、対応する第1、第2および第3圧電アクチュエータ411、412および413に連結されている。図1A〜図2Bの高剛性アクチュエータ150を参照して上述したように、高剛性アクチュエータ451、452および453はそれぞれ、第1、第2および第3圧電アクチュエータ411、412および413それぞれの位置を調整するように構成された低コンプライアンス低速アクチュエータであってもよい。図示した例では、高剛性アクチュエータ451、452および453は、調整可能なネジ駆動として実施されている。ネジ駆動は、ネジ駆動を時計回りまたは反時計回り方向に適切に移動させることにより、第1、第2および第3圧電アクチュエータ411、412および413の位置を、対応する長軸に沿って調整するよう構成されている。
【0039】
図3に示す流体移送装置300を参照して上述したのと実質的に同様に、入口バルブ装置401および出口バルブ装置403の作動は、制御器(図示せず)により、ポンプ装置402の作動と協調されていて、流体移送装置400を介した、装置入口ポート461から装置出口ポート462への流体の移動を可能にする。ゆえに、制御器(および関連するメモリ)の構造および/または作動に関する特定の詳細は繰り返さないこととする。流体移送装置400として構成されたマイクロポンプは、例えば約50バール〜約1000バール超の圧力を生み出してもよい。
【0040】
流体移送装置400の全体的なコンプライアンスは、バルブポート(例えば、入口バルブ446の出口ポート425および出口バルブ448の入口ポート428)から移送される流体の量によりある程度決定される。入口および出口バルブ446および448も流体連通を有している(例えば、入口および出口バルブチャンバ441および443とそれぞれ接続している入口ポート424および出口ポート429)。引きずられる流体の量を減少させるために、ポンプチャンバ442は、(導管406を介して)入口バルブ446の出口ポート425および(導管407を介して)出口バルブ448の入口ポート428の両方に接続されている。このように、入口および出口バルブチャンバ441および443に収容された流体は、流体移送装置400の全体的なコンプライアンスを決定する役目を果たさない。例示した構成では、ポンプチャンバ442の深さが、対応するチャンバ容積を減少させるために、例えば約10μm〜約100μmのオーダーとされていてもよい。流体移送装置400のコンプライアンスがそれほど重要でない用途に関し、ポンプチャンバ442の深さは、より大きくてもよく、かつ/または、ポンプチャンバ442は、出口ポート425および入口ポート428のそれぞれの外部にある装置入口ポート461または装置出口ポート462に接続されていてもよい。
【0041】
図5Aおよび図5Bは、一実施形態に係る、一体型流体移送アセンブリの多弁式二次元マイクロ流体装置を示す断面図である。より詳しくは、図5Aは、二次元のマイクロ流体装置510Aの断面図であり、図5Bは、二次元のマイクロ流体装置510Bの断面図であり、これらはそれぞれ、以下に説明するように、封止層を介して取り外し可能な膜プレート420を含んでいる。
【0042】
図4Aおよび図4Bの流体移送装置400および対応する二次元のマイクロ流体装置410を参照しながら上述したように、二次元のマイクロ流体装置510Aは、図5Aに示すように、膜プレート420、孔プレート430および接続プレート440を含んでおり、これらはパターン形成され整列され互いに接合されて、一体型流体移送装置のさまざまな特徴を生み出している。加えて、膜プレート420の底面は、第1Oリング571、第2Oリング572および第3Oリング573を含む一連のOリングを含む封止層により、孔プレート430の頂面に取り外し可能に接続されている。第1Oリング571は、第1可撓領域421を包囲して、入口バルブチャンバ441の周辺部を封止しており、第2Oリング572は、第2可撓領域422を包囲して、ポンプチャンバ442の周辺部を封止しており、第3Oリング573は、第3可撓領域423を包囲して、出口バルブチャンバ443の周辺部を封止している。第1、第2および第3Oリング571〜573はそれぞれ、Viton(登録商標)、PTFE、Kalrez(登録商標)などのコンプライアントポリマーで形成されていてもよい。ゆえに、膜プレート420を第1、第2および第3Oリング571〜573に対して圧縮することで、それぞれの封止が形成されて、膜プレート420を孔プレート430に対して良好に封止することができる。あるいは、二次元のマイクロ流体装置510Aの組み立ておよび作動は、二次元のマイクロ流体装置410を参照しながら上述したものと実質的に同一である。
【0043】
同様に、図5Bを参照して、図4Aおよび図4Bの流体移送装置400および対応する二次元のマイクロ流体装置410を参照しながら上述したように、二次元のマイクロ流体装置510Bは、膜プレート420、孔プレート430および接続プレート440を含んでおり、これらはパターン形成され整列され互いに接合されて、一体型流体移送装置のさまざまな特徴を生み出している。加えて、膜プレート420の底面は、封止膜570を含む封止層により、孔プレート430の頂面に取り外し可能に接続されている。封止膜570は、ポリイミド、PEEK、PAEKまたはVespel(登録商標)などのポリマーで形成されていてもよい。ゆえに、膜プレート420を封止膜570に対して圧縮することで、入口バルブチャンバ441、ポンプチャンバ442および出口バルブチャンバ443を包囲する封止が形成されて、膜プレート420を孔プレート430に対して良好に封止することができる。あるいは、二次元のマイクロ流体装置510Bの組み立ておよび作動は、二次元のマイクロ流体装置410を参照しながら上述したものと実質的に同一である。
【0044】
図6は、一実施形態に係る作動装置を示す断面図である。例えば、作動装置は、圧電アクチュエータと、二次元のマイクロ流体装置を駆動するための高剛性アクチュエータとを含んでおり、図6に示す圧電アクチュエータおよび高剛性アクチュエータは、図1および図2を参照して上述した圧電アクチュエータ110および高剛性アクチュエータ150、図3を参照して上述した第1、第2および第3圧電アクチュエータ311〜313および第1、第2および第3高剛性アクチュエータ351〜353、ならびに/または、図4Aおよび図4Bを参照して上述した第1、第2および第3圧電アクチュエータ411〜413および第1、第2および第3高剛性アクチュエータ451〜453の詳細な構成であってもよい。
【0045】
図6を参照して、作動装置600は、例示的な高剛性アクチュエータアセンブリ650および例示的な圧電アクチュエータアセンブリ610を含んでいる。図示した実施形態では、高剛性アクチュエータアセンブリ650はネジ駆動である。ネジ駆動は例えば、フレーム680に取り付けられ、張力逃し(ストレインリリーフ)656を介して微細ピッチ(例えば、M3、0.2mmピッチ)の調整ネジ654に連結されたロータリーモータ652を含んでいる。張力逃し656は例えば、ロータリーモータ652と調整ネジ654との調整不良を吸収する。調整ネジ654は、フレーム680にネジ止めされ、模式的にバネとして示すように、ネジ事前負荷658によりネジ山に対して事前負荷されていてもよい。第1玉軸受け面659が、調整ネジ654の遠位端に機械加工または接着されている。調整ネジ654が伸張されると、第1玉軸受け面659は、圧電アクチュエータアセンブリ610の第1噛み合いソケット671に収まり、それにより、調整ネジ654の変位を圧電アクチュエータアセンブリ610に伝達する。
【0046】
第1噛み合いソケット671は、第1支持プレート672に取り付けられており、第1支持プレート672は、フレーム680に対して長手(垂直)方向に自由に動くことができる。しかし、第1支持プレート672は横方向に拘束されており、その結果、以下に説明するように、例えば圧電アクチュエータ611の長軸周りに回転することができない。ゆえに、調整ネジ654が時計回りまたは反時計回り方向に回転したときに、関連するトルクは、第1支持プレート672に吸収されるのであり、圧電アクチュエータ611へと連結されることはない。例えば、圧電アクチュエータ611は、焼結した材料で形成されていてもよく、それゆえ、調整ネジ654の作動により捩れまたは張力を受けた場合に、破断しやすい可能性がある。第1支持プレート672は、第1支持プレート672のそれぞれの側にある2つのバネとして模式的に示す第1バネサポート(支持体)682によりフレーム680に接続されている。第1バネサポート682は、第1支持プレート672および取り付けられた第2噛み合いソケット673を引っ張り、圧電アクチュエータ611の一端に取り付けられた第2玉軸受け面674へと接触させる。
【0047】
圧電アクチュエータ611は事実上、作動装置600の核である。圧電アクチュエータ611は、さまざまな圧電アクチュエータであってよく、収容されていてもまたは露出していてもよく、さまざまな圧電材料で形成されていてもよい。例えば、圧電アクチュエータ611は、Thorlabsが提供する圧電アクチュエータAE0505D16Fなどの積載型の圧電アクチュエータであっても、Physik Instrumenteが提供する圧電チューブアクチュエータPT-120などの圧電チューブであってもよいが、本教示の範囲を逸脱することなく、他の種類の圧電アクチュエータを組み込んでもよい。図6では、圧電アクチュエータ611は、ひずみゲージ612とともに示されている。圧電アクチュエータ611が、第1および第2電圧リード615および616の間の電圧の印加に応じて伸張すると、または、第1および第2電圧リード615および616からの電圧の低下に応じて収縮すると、ひずみゲージ612の抵抗は変化する。ひずみゲージ612は模式的に示されており、一定の電流が第1ひずみゲージリード613を通って印加されていてもよく、第1ひずみゲージリード613と第2ひずみゲージリード614との間に誘導された電圧を測定することにより、ひずみゲージ抵抗が監視されていてもよい。一実施形態では、ひずみゲージ612は、例えば2つの活性センサおよび2つのダミー抵抗を有する抵抗ブリッジに配置されていてもよい。
【0048】
圧電アクチュエータ611には非常に小さなトルクが加えられるべきであるので、圧電アクチュエータ611の一方の端部に取り付けられた上記第2玉軸受け面674と、圧電アクチュエータ611の反対側の端部に取り付けられた第3玉軸受け面675とを介して、圧電アクチュエータ611との機械的な接触が設けられている。第3玉軸受け面675は、第2支持プレート677に取り付けられた第3噛み合いソケット676に接触する。第2支持プレート677は、第2バネサポート684によりフレーム680に接続されていてもよい。第2バネサポート684は、第2支持プレート677のそれぞれの側にある2つのバネとして模式的に示されている。このようにして、調整ネジ654が後退したときに、第1バネサポート682および第2バネサポート684により、圧電アクチュエータ611が長手(垂直)方向に自由に動くことが可能になる。これは、対応するマイクロ流体装置(図6に図示せず)が除去または挿入された場合に、特に重要である。対応するマイクロ流体装置の例には、上述したように、図1A、図1Bおよび図3に示すマイクロ流体ポンプ装置130および333、図2A、図2Bおよび図3に示すマイクロ流体ポンプ装置230、331および333、ならびに、図4A、図4B、図5Aおよび図5Bに示す一体型のマイクロ流体装置410、510Aおよび510Bが含まれる。第4噛み合いソケット679が、膜に対して、または、圧電アクチュエータアセンブリ610に取り付けられた対応するマイクロ流体装置の膜に取り付けられた軸受けサポートに対して、軽く(例えば、数ニュートンの力)押圧されるように、第1バネサポート682および/または第2バネサポート684の位置は選ばれてもよい。
【0049】
ひずみゲージ612は、例えば2つの目的のために機能してもよい。第1に、ひずみゲージ612は、圧電アクチュエータ610の伸張を監視し、圧電アクチュエータ610が正確に動くことができるようにする。これは、圧電アクチュエータ610が、特に積載圧電アクチュエータ610として実施されたときに、印加された電圧に対して実質的なクリープおよびヒステリシスを示す場合があるという点で、有益である。この理由で、対応するマイクロ流体装置により放出された流体を正確に計量するために、圧電アクチュエータ610の物理的な変位を計測し、圧電アクチュエータ610に印加された電圧周りに制御ループを配置することが必要となる。例えば約100Vのオーダーのバイアス電圧を、第1および第2電圧リード615および616の間に印加した場合、圧電アクチュエータ610は数ミクロン伸張することになる。例えば、圧電アクチュエータ610を上述した圧電アクチュエータAE0505D16Fにより実施した場合、約100Vの印加により圧電アクチュエータ610は約12μm伸張する。この12μmの変位の実質的な部分は、印加された電圧により即座に起こることになるが、圧電アクチュエータ610が「クリープ」し続ける数分の間にわたって起こる、数ミクロンの追加の変位が存在する。
【0050】
第二に、ひずみゲージ612は、調整ネジ654を位置決めするために、例えば制御器(図示せず)により、ロータリーモータ652にフィードバックを提供する。例えば、対応するマイクロ流体装置が圧電アクチュエータ610の下方に挿入されたときに、圧電アクチュエータ610に小さな追加の力が加えられる。この力は、圧電アクチュエータ610の小さな圧縮として検知することができる。調整ネジ654に取り付けられた第1玉軸受け面659は、この段階で第1噛み合いソケット671と接触していない。対応するマイクロ流体装置を作動させることが望まれる場合、ロータリーモータ652が前進させられて、ひずみゲージ612の抵抗信号が監視される。第1玉軸受け面659が第1噛み合いソケット671と接触するまでは、抵抗に変化はない。しかし、接触が起こると、調整ネジ654は圧電アクチュエータ611を圧縮し、対応するマイクロ流体装置の膜上に押し下げる。圧電アクチュエータ611の圧縮は、ひずみゲージ612により、抵抗の低下として検知される。このようにして、ひずみゲージ612の抵抗設定点を、調整ネジ654からの適切な事前負荷を決定するために使用してもよい。
【0051】
ゼロ印加バイアスでの圧電アクチュエータ611の圧縮を監視する際、ひずみゲージ612はまた、起こり得る熱ドリフトを監視するために使用されてもよい。圧電アクチュエータ611は数センチメートルの長さであってもよいため、数度の温度変化により、圧電アクチュエータ611の遠位端が数ミクロン(圧電アクチュエータ611の変位に類似する大きさ)移動する場合がある。ゼロ印加バイアスでのひずみゲージ612の信号が一定のままであるようにすることにより、モータ652は、この熱ドリフトを打ち消してもよい。さまざまな実施形態で、ロータリーモータ652、ひずみゲージ612、ならびに、第1および第2電圧リード615および616に接続された電圧源(図示せず)の作動および/または監視は、制御器(図示せず)により行われてもよい。制御器は、ソフトウェア、ファームウェア、配線論理回路、または、それらの組み合わせを使用した、プロセッサすなわちCPU、ASIC、FPGA、または、それらの組み合わせを含んでいてもよく、これらは、図3を参照して上述した制御器と類似していても、または同一であってもよい。
【0052】
図7は、一実施形態に係る、図6の作動装置を組み込んだ、多弁式流体移送装置を示す断面図である。
図7を参照して、多弁式一体型流体移送装置700は、対応するマイクロ流体装置410に連結された3つのアクチュエータ装置(第1アクチュエータ装置701、第2アクチュエータ装置702および第3アクチュエータ装置703)を含んでいる。第1、第2および第3アクチュエータ装置701、702および703はそれぞれ、図6を参照して上述した圧電アクチュエータ600と実質的に同一であり、ゆえに説明を繰り返さないことを理解されたい。同様に、マイクロ流体装置410は図4Aおよび図4Bを参照して上述しており、ゆえに説明を繰り返さない。
【0053】
図示した実施形態では、マイクロ流体装置410は、外付けの第1、第2および第3アクチュエータ装置701、702および703に挿入または取り付けされる。装置入口ポート461および装置出口ポート462への流体接続が形成された後、入口バルブチャンバ441、ポンプチャンバ442および出口バルブチャンバ443に対応する第1、第2および第3アクチュエータ装置701、702および703の調整可能なネジ654a、654bおよび654cが、ひずみゲージ612a、612b、および612cがそれぞれの設定点に達するまで伸張される。
【0054】
入口バルブチャンバ441、ポンプチャンバ442および出口バルブチャンバ443を介して低圧の流体を流すことにより、一体型流体移送装置700に流体が注入される。入口バルブ446に対応する圧電アクチュエータ611aは、100Vを印加することにより伸張されて、入口バルブ446を閉じる。ポンプチャンバ442に対応する圧電アクチュエータ611bは、100V未満の連続的に変化する電圧を印加することにより伸張されて、ポンプチャンバ442を圧縮する。圧電アクチュエータ611aおよび611bの伸張を、対応するひずみゲージ612aおよび612bを使用して監視してもよく、印加された電圧を制御して、連続的な流体のフローを供給してもよい。
【0055】
ポンプチャンバ442に対応する圧電アクチュエータ611bが最大の伸張に達すると、出口バルブ448に対応する圧電アクチュエータ611cが、100Vを印加することにより伸張されて、出口バルブ448を閉じ、入口バルブ446に対応する圧電アクチュエータ611aは、0Vを印加することにより収縮されて、入口バルブ446を前もって開く。一方、ポンプチャンバ442に対応する圧電アクチュエータ611bは、0Vを印加することにより収縮されて、それによりポンプチャンバ442を膨張することが可能になる。次いで、圧電アクチュエータ611a〜611cへの100Vおよび0Vの交互の印加を繰り返すことにより、ポンピング作動が継続する。すなわち、入口バルブ446に対応する圧電アクチュエータ611aが、100Vを印加することにより再び伸張されて、入口バルブ446を閉じ、一方、出口バルブ448に対応する圧電アクチュエータ611cが、0Vを印加することにより再び収縮されて、出口バルブ448を開く。
【0056】
本例では、ポンプチャンバ442に対応する圧電アクチュエータ611bが、各ポンプサイクルで約6μm伸張することになり、それにより、装置出口ポート462から約20nLが排出される。対応するひずみゲージ612a〜612cを使用することにより、圧電アクチュエータ611a〜611cを、その行程の1/1000に制御することは比較的直接的であり、これにより、本例において、20ピコリットル/分の精度で流体フローを制御することが可能になる。さらに、圧電アクチュエータ611a〜611cは高周波で作動することができ、120μL/分の流量に対応して、100Hzまで、信頼できる動作が可能である。
【0057】
さまざまな構成で、圧電アクチュエータ611bの変位は、ポンプチャンバ442の深さに対して比較的小さくてもよい。このような構成では、一体型流体移送装置700に適切に流体が注入されていることが重要であり、さもなければ、閉じ込められた気泡が性能を低下させる場合がある。例えばHPLC機器で使用される流体は通常、一体型流体移送装置700に入る前にガス抜きされる。これにより、小さな気泡が流体に放散しやすくなるため、流体の注入が簡単になる。しかしそれでも、流体中の気泡は最小にされるべきである。流体中の気泡の形成を低減する目的で、マイクロ流体装置410のポンプチャンバ442、入口バルブ446および出口バルブ448などのポンプチャンバおよびバルブに流体を注入するための例示的な方法を以下に説明する。
【0058】
装置出口ポート462がまず、装置入口ポート461の上方に配置されなければならない。例えば、マイクロ流体装置410が(例えば、最大約90度まで)回転されてもよく、その結果、装置出口ポート462は実質的に装置入口ポート461の上方に配置される。メタノールなどの有機的な流体を注入のために使用し、次いで、水、アセトニトリルおよびメタノールなどの所望の動作流体と置き換えてもよい。流体注入の前にマイクロ流体装置410全体をポンピングし、次いで、大半の流体に対してより容易に解ける二酸化炭素(CO2)を再充填してもよい。また、注入を促進するために、入口および出口バルブチャンバ441および443およびポンプチャンバ442の内面を親水性または疎水性のポリマーで被覆してもよい。親水性または疎水性のポリマーは、入口バルブチャンバ441、ポンプチャンバ442および/または出口バルブチャンバ443に流体が入るときに泡が閉じ込められないようにパターン化されていてもよい。
【0059】
くわえて、図8A〜図9Bに示す(例えば、複数のリブを含んでいてもよい)例示的な隆起されたパターン、および、図10Aおよび図10Bに示す(例えば、複数の溝を含んでいてもよい)例示的な窪んだパターンなどの機械的な特徴が、入口および出口バルブチャンバ441および443および/またはポンプチャンバ442の1つ以上に組み込まれていてもよい。隆起されたパターンは、流体が入口および出口バルブチャンバ441および443ならびに/またはポンプチャンバ442に入ったときに、流体の滴が大きくなるのを抑制する。隆起されたパターンの隆起部またはリブのそれぞれと、対応する入口(または前の隆起部)との間の区域が流体で完全に満たされるまで、流体は次の区分へと通過することがない。このようにして、入口および出口バルブチャンバ441および443ならびに/またはポンプチャンバ442は、取り込まれた空気が極めて少ない状態で満たされてもよい。
【0060】
図8Aおよび図8Bは、一実施形態に係る、隆起したパターンを有するバルブチャンバを示す断面図である。特に、図8BはB-B'線に沿った図8Aの断面図である。図8Aおよび図8Bを参照して、本入口バルブチャンバ841は入口バルブ846を含んでおり、入口バルブ846は、上述したように、圧電アクチュエータ(図示せず)の作動に応答して、可撓性の膜821を突出部847へと屈曲させる、および突出部847から屈曲解除することにより形成される。流体は、入口ポート824を介して入口バルブチャンバ841に入り、出口ポート825を介して入口バルブチャンバ841から出る。入口バルブチャンバ841は、第1および第2リブまたは隆起部845および846を有する隆起したパターンをさらに含んでおり、第1および第2リブまたは隆起部845および846は、突出部847を包囲する隆起した同心円とされている。無論、本教示の範囲を逸脱することなく、より多くの、または、より少ない隆起部が含まれていてもよい。
【0061】
図9Aおよび図9Bは、一実施形態に係る、隆起したパターンを有するポンプチャンバを示す断面図である。特に、図9BはC-C'線に沿った図9Aの断面図である。図9Aおよび図9Bを参照して、本ポンプチャンバ942は、上述したように、圧電アクチュエータ(図示せず)の作動に応じて、可撓性の膜922を曲げるおよび曲げ解除することにより形成される。流体は、入口ポート926を介してポンプチャンバ942に入り、出口ポート927を介してポンプチャンバ942から出る。ポンプチャンバ942は、第1〜第5隆起部951〜955を有する隆起したパターンをさらに含んでいる。図示した例では、第3隆起部953がポンプチャンバ942の内径を横切っており、第1および第2隆起部951および952が、第3隆起部953から左に向かって弓状に延びており、第4および第5隆起部954および955が、第3隆起部953から右に向かって弓状に延びている。無論、本教示の範囲を逸脱することなく、より多くの、または、より少ない隆起部が含まれていてもよい。
【0062】
図10Aおよび図10Bは、一実施形態に係る、窪んだパターンを有するポンプチャンバを示す断面図である。特に、図10BはD-D'線に沿った図10Aの断面図である。図10Aおよび図10Bを参照して、本ポンプチャンバ1042は、上述したように、圧電アクチュエータ(図示せず)の作動に応じて、可撓性の膜1022を曲げるおよび曲げ解除することにより形成される。流体は、入口ポート1026を介してポンプチャンバ1042に入り、出口ポート1027を介してポンプチャンバ1042から出る。ポンプチャンバ1042は、第1〜第5溝または窪み部1051〜1055を有するエッチングされた窪んだパターンをさらに含んでいる。図示した例では、第3窪み部1053がポンプチャンバ1042の内径を横切っており、第1および第2窪み部1051および1052が、第3窪み部1053から左に向かって弓状に延びており、第4および第5窪み部1054および1055が、第3窪み部1053から右に向かって弓状に延びている。無論、本教示の範囲を逸脱することなく、より多くの、または、より少ない窪み部が含まれていてもよい。
【0063】
別の実施形態では、ポンプチャンバおよび/またはバルブチャンバはガス透過性膜を組み込んでいてもよい。例えば、図11Aおよび図11Bは、一実施形態に係る、ガス透過性膜を有するポンプチャンバを示す断面図である。特に、図11BはE-E'線に沿った図11Aの断面図である。図11Aおよび図11Bを参照して、本ポンプチャンバ1142は、上述したように、圧電アクチュエータ(図示せず)の作動に応じて、可撓性の膜1122を曲げるおよび曲げ解除することにより形成される。流体は、入口ポート1126を介してポンプチャンバ1142に入り、出口ポート1127を介してポンプチャンバ1142から出る。図示したように、積載された膜プレート1120、孔プレート1130および接続プレート1140が片側または両側にパターン形成されて、ポンプチャンバ1142、入口ポート1126および出口ポート1127を形成している。くわえて、ガス透過性膜1125が、膜プレート1120と孔プレート1130との間に形成されて、流体を保持しながら、取り込まれた気泡(および他のガス)がポンプチャンバ1142を出ることを可能にしている。ガス透過性膜1125は、Nafion(登録商標)、シリコンゴム、アガロースまたは多孔性のTeflon(登録商標)などのさまざまな膜材料で形成されていてもよいが、本教示の範囲を逸脱することなく、他の材料を組み込んでもよい。使用される材料の少なくとも一部は、ポンピングされている流体およびポンプチャンバ1142の内部圧力に依存する。
【0064】
HPLC機器などの特定の実施態様では、流体移送装置は連続的なフローを有していなければならない。例えば図3、図4A、図4Bおよび図7を参照してそれぞれ説明した流体移送装置300、400および700は、連続的なフローを提供しない場合がある。これは、対応するポンプチャンバ342、442が再充填されているときに、外的な流体フローが停止するためである。それに対し、図12Aおよび図12Bは、一実施形態に係る、連続的なフローを有する多弁式一体型流体移送装置を示す断面図である。特に、図12Bは、F-F’線に沿った図12Aの断面図を示している。
【0065】
図12Aを参照して、一体型流体移送装置1200は、入口バルブ装置1201、第1ポンプ装置1202、出口バルブ装置1203および第2ポンプ装置1204を含んでおり、これらは一体型の二次元のマイクロ流体装置1210を共有している。すなわち、図示した実施形態では、入口バルブチャンバ1241、第1ポンプチャンバ1242、出口バルブチャンバ1243および第2ポンプチャンバ1244が、単一のマイクロ流体装置1210中の別個の領域として製造されている。一体型流体移送装置1200は図12Aおよび図12Bに示されているように、例えばバイナリポンプと呼ばれる場合もある。
【0066】
図4Aおよび図4Bを参照して上述したように、マイクロ流体装置1210は、膜プレート1220、孔プレート1230および接続プレート1240と呼ばれる3つの別個の層またはプレートを含んでおり、互いに整列および接続されたときに一体型のマイクロ流体装置1210のさまざまな特徴を生み出すために、これらはそれぞれ、例えば電気化学エッチングを使用して、片側または両側にパターン形成されている。これらの特徴には、装置入口ポート1261、入口バルブチャンバ1241、第1ポンプチャンバ1242、出口バルブチャンバ1243、第2ポンプチャンバ1244および装置出口ポート1262、さらには、入口および出口ポート1224〜1229および1276、1277と、装置入口ポート1261、入口バルブチャンバ1241、第1ポンプチャンバ1242、出口バルブチャンバ443、第2ポンプチャンバ1244および装置出口ポート1262の間で流体連通を可能にする流体導管1205〜1209とが含まれる。
【0067】
入口バルブ装置1201、第1ポンプ装置1202、出口バルブ装置1203および第2ポンプ装置1204はそれぞれ、図4A(ならびに、対応する高剛性アクチュエータおよび/またはボス)を参照しながら上述した第1圧電アクチュエータ411などの、その長軸に沿った軸方向の変位を有する対応する外付けの圧電アクチュエータをさらに含んでいる。しかし、明瞭さのため、および、説明を簡潔にするために、図12Aには圧電アクチュエータを示していない。圧電アクチュエータの構造および機能性は上述したものと実質的に同じである。
【0068】
入口バルブチャンバ1241および出口バルブチャンバ1243は、対応する入口バルブ1246および出口バルブ1248を含んでおり、これらは、対応する圧電アクチュエータ(図示せず)の作動により、膜プレート1220の第1および第3可撓領域1221および1223を曲げるおよび曲げ解除することにより機能する。同様に、第1ポンプチャンバ1242および第2ポンプチャンバ1244は、対応する圧電アクチュエータ(図示せず)の作動により、膜プレート1220の第2および第4可撓領域1222および1224を曲げるおよび曲げ解除することにより機能する。図12Bに示すように、第1〜第4可撓領域1221〜1224は、例えば円形であってもよい。突出部1247および1249は同様に円形であってもよく、それぞれが第1および第3可撓領域1221および1223内で中央合わせされている。第1〜第4可撓領域1221〜1224は、上述したように、寸法および/または形状が同一であっても、または異なっていてもよい。その他の点で、入口バルブ1246および出口バルブ1248の構造および作動は、入口バルブ446および出口バルブ448のものと実質的に同一であり、第1ポンプチャンバ1242および第2ポンプチャンバ1244の構造および作動は、図4Aおよび図4Bを参照して上述したように、ポンプチャンバ442のものと実質的に同一である。ゆえに、ここでは説明を繰り返さない。
【0069】
図3に示す流体移送装置300を参照して上述したものと実質的に同一に、入口バルブ装置1201および出口バルブ装置1203の作動は、制御器(図示せず)により、第1ポンプ装置1202および第2ポンプ装置1204の作動と協調されていて、流体移送装置1200を介した、装置入口ポート1261から装置出口ポート1262への流体の移動を可能にする。
流体の連続的なフローを提供する一体型流体移送装置1200の例示的な作動について以下に説明する。図示した実施形態では、マイクロ流体装置1210が、対応する外付けの圧電アクチュエータ(図示せず)に挿入または取り付けされている。装置入口ポート1261および装置出口ポート1262への流体的な接続が設けられたあと、入口バルブチャンバ1241、第1ポンプチャンバ1242、出口バルブチャンバ1243および第2ポンプチャンバ1244に対応する調整可能なネジまたは他の外付けの高剛性アクチュエータ(図示せず)が、上述したように、それらの個々のひずみゲージがそれらの個々の設定点に達するまで伸張される。入口バルブチャンバ1241、第1ポンプチャンバ1242、出口バルブチャンバ1243および第2ポンプチャンバ1244を介して低圧の流体を流すことにより、一体型流体移送装置1200に流体が注入される。初めに、出口バルブ装置1203に対応する圧電アクチュエータが、100Vを印加することにより伸張されて、出口バルブ1248を閉じる。
【0070】
第1動作において、入口バルブ装置1201に対応する圧電アクチュエータが、0Vを印加することにより収縮されて、入口バルブ1246を開き、次いで、第1ポンプ装置1202に対応する圧電アクチュエータが同様に収縮されて、第1ポンプチャンバ1242を流体で満たす。次いで、入口バルブ装置1201に対応する圧電アクチュエータは、100Vを印加することにより膨張されて、入口バルブ1246を閉じ、第1ポンプ装置1202に対応するチャンバ圧電アクチュエータがわずかに伸張されて、第1ポンプチャンバ1242内の圧力を第2ポンプチャンバ1244の圧力とほぼ同じにする。この状態が、次の段落で説明する第2動作の完了まで維持される。第2動作は、第1動作と実質的に同時に行われることになる。
【0071】
第2動作では、第2ポンプ装置1204に対応する圧電アクチュエータが、100V未満の連続的に変化する電圧を印加することにより伸張されて、第2ポンプチャンバ1244を圧縮する。圧電アクチュエータの伸張は、例えばひずみゲージを使用して監視され、印加された電圧は、流体の連続的なフローを提供するために制御される。圧電が最大の伸張に達すると、出口バルブ装置1203に対応する圧電アクチュエータが、0Vを印加することにより収縮されて、出口バルブ1248を開く。
【0072】
第3動作では、第1ポンプ装置1202に対応する圧電アクチュエータが、100V未満の連続的に変化する電圧を印加することにより伸張されて、第1ポンプチャンバ1242を圧縮する。圧電アクチュエータの伸張は、例えばひずみゲージを使用して監視され、印加された電圧は、所望のフローよりも大きな、流体の連続的なフローを提供するために制御される。第1ポンプ装置1202の圧電アクチュエータが最大の伸張に達すると、例えば、100Vを印加し出口バルブ装置1203に対応する圧電アクチュエータを伸張させて出口バルブ1248を閉じることから再び始め、次いで第1〜第4動作を行い、第4動作が第3動作と実質的に同時に行われることにより、処理が繰り返される。
【0073】
第4動作では、第2ポンプ装置1204に対応する圧電アクチュエータが、100V未満の連続的に変化する電圧を印加することにより収縮されて、第2ポンプチャンバ1244が膨張することが可能になる。印加された電圧は、例えば、第1および第2ポンプ装置1202および1204に対応する圧電アクチュエータのひずみゲージを使用して制御され、所望の大きさの流体の連続的なフローをポンピングする。第1ポンプチャンバ1242は、所望のフローよりも大きなフローを生み出すため、第2ポンプチャンバ1244は、第4動作中、流体で満たされていることになる。このようにして、一体型流体移送装置1200は、連続的なフローを提供する。
【0074】
無論、1つ以上の流体移送装置のさまざまな代替的な構成および/または構造を、本教示の範囲を逸脱することなく組み込むこともできる。例えば、流体移送装置は、1つの入口バルブ装置と、相互接続された複数のポンプ装置と、1つの出口バルブ装置とを含んでいてもよい。この構成により、入口および出口バルブ装置の間にどれだけ多くのポンプ装置を含むかによって、単一のポンプ装置中で、ポンプチャンバの変位量が多様になる。相互接続された複数のポンプ装置には、単に単一のポンプ装置の横方向の寸法を大きくすることよりも利点がある。単に単一のポンプ装置の横方向の寸法を大きくすると、ポンプ装置中の可撓性の膜の剛性を低下させて、高い背圧での望ましくない機械的な変形を受け易くする場合がある。
【0075】
さらに、例えば本明細書中で説明された1つ以上の実施形態に係る構成の複数の流体移送装置は、並列および/または直列の組み合わせで互いに接続されて、追加の益を提供してもよい。例えば、複数の流体移送装置は並列に接続されていてもよく、その場合、対応する装置入口ポートが互いに接続され、対応する装置出口ポートが互いに接続される。次いで、個々の流体移送装置は、同期または非同期で作動されてもよい。同期された作動は、どれだけ多くの流体移送装置を互いに並列に接続するかによって単独の流体移送装置の流量を多様にすることにより、容積流量を増加させる。非同期の(または、ずらした)作動により、例えば、連続的なフローのために脈動を緩和してもよく、かつ/または、恣意的に経時変化する流量を発生させてもよい。
【0076】
同様に、複数の流体移送装置は直列に接続されていてもよく、その場合、1つ以上のポンプ装置により互いに分離された複数の入口および出口バルブ装置が、各出口バルブ装置の出口ポートが次の入口バルブ装置の入口ポートに接続されるよう構成されている。この段階的な構成により、より高い圧力に対してポンピングを行うことができる。一体型流体移送装置の対応するポンプチャンバはそれぞれ、前の流体移送装置のポンプチャンバにより発生する圧力に、個々の最大の達成可能圧力を増分として追加していくことになる。ゆえに、最大の達成可能圧力は、構成する同等の移送装置の最大の達成可能圧力の合計に等しくなる。
【0077】
本明細書中に特定の実施形態を開示したが、多くの変形が可能であり、それらは本発明の概念および範囲内に留まる。そのような変形は、本願の明細書、図面および特許請求の範囲を精査すれば、明瞭になるであろう。ゆえに、本発明は添付の特許請求の範囲内を除いて制限されない。

【特許請求の範囲】
【請求項1】
マイクロ流体装置(130、230)に外付けに連結され、バイアス電圧の印加に応じた長軸に沿った軸方向の変位を有する圧電アクチュエータ(110)であって、当該圧電アクチュエータの前記軸方向の変位が、前記マイクロ流体装置の内部のバルブ(245)および内部のポンプチャンバ(140)の一方を作動させる圧電アクチュエータを備える、流体移送装置(100、200)。
【請求項2】
前記圧電アクチュエータに連結され、前記マイクロ流体装置に対して前記圧電アクチュエータの位置を動的に調整するよう構成された高剛性アクチュエータ(150)をさらに備える、請求項1に記載の装置。
【請求項3】
前記圧電アクチュエータの前記軸方向の変位が約10μm未満である、請求項1に記載の装置。
【請求項4】
ポンプチャンバ(140、342、442)を備えるマイクロ流体装置(130、332、410)と、
前記マイクロ流体装置に連結された第1圧電アクチュエータ(110、312、412)であって、第1バイアス電圧の選択的な印加に応じ第1長軸に沿って伸張および収縮して前記ポンプチャンバを圧縮するよう構成された第1圧電アクチュエータとを備え、前記第1圧電アクチュエータは前記マイクロ流体装置に外付けされている、流体移送装置(100、200、300、400)。
【請求項5】
前記マイクロ流体装置および前記ポンプチャンバの内壁が非反応性のコーティングで被覆されている、請求項4に記載の装置。
【請求項6】
前記第1圧電アクチュエータが、積載された圧電アクチュエータまたは圧電チューブを備えている、請求項4に記載の装置。
【請求項7】
前記第1圧電アクチュエータに連結され、前記マイクロ流体装置に対して前記第1圧電アクチュエータの位置を調整するよう構成された高剛性アクチュエータ(150、352,452)をさらに備え、前記高剛性アクチュエータは前記マイクロ流体装置に外付けされている、請求項4に記載の装置。
【請求項8】
前記高剛性アクチュエータが、前記第1圧電アクチュエータの位置を前記長軸に沿って調整するよう構成された調整可能なネジ駆動を備えている、請求項7に記載の装置。
【請求項9】
前記調整可能なネジ駆動が、前記第1圧電アクチュエータに接触している微細ピッチのネジに連結されたロータリーモータを備えている、請求項8に記載の装置。
【請求項10】
前記第1圧電アクチュエータと前記高剛性アクチュエータとの間に配置されたひずみゲージをさらに備え、前記ひずみゲージは、前記第1圧電アクチュエータの圧縮を検知するよう構成され、かつ、前記検知された圧縮に基づき、前記マイクロ流体装置に対する前記第1圧電アクチュエータの前記位置を調整するため、前記高剛性アクチュエータにフィードバックを提供するよう構成されている、請求項7に記載の装置。
【請求項11】
前記マイクロ流体装置が、ポート(231、232、325、328、425、428)を介して前記ポンプチャンバに流体的に接続されたバルブチャンバ(240、341、343、441、443)を有するバルブ(245、346、348、446、448)をさらに備え、前記バルブの作動により、流体が前記ポートを介して、前記ポンプチャンバに入る、または、前記ポンプチャンバから出ることが可能にされている、請求項4に記載の装置。
【請求項12】
前記流体装置に連結された第2圧電アクチュエータ(110、311、313、411、413)であって、第2バイアス電圧の印加に応じ第2長軸に沿って伸張して前記バルブを閉じ、前記印加された第2バイアス電圧の減少に応じ前記第2長軸に沿って収縮して前記バルブを開くよう構成された第2圧電アクチュエータをさらに備え、
前記第2圧電アクチュエータは前記マイクロ流体装置に外付けされている、請求項11に記載の装置。
【請求項13】
前記ポンプチャンバおよび前記バルブチャンバの少なくとも一方が、前記流体が前記ポンプチャンバおよび前記バルブチャンバの少なくとも一方に入ったときに、滴が大きくなるのを抑制するよう構成された隆起したパターンを備えている、請求項12に記載の装置。
【請求項14】
前記ポンプチャンバおよび前記バルブチャンバの少なくとも一方が、前記流体が前記ポンプチャンバおよび前記バルブチャンバの少なくとも一方に入ったときに、滴が大きくなるのを抑制するよう構成された窪んだパターンを備えている、請求項12に記載の装置。
【請求項15】
前記ポンプチャンバおよび前記バルブチャンバの少なくとも一方が、前記流体中に取り込まれた気泡が前記ポンプチャンバおよび前記バルブチャンバの少なくとも一方から出ることを可能にするよう構成されたガス透過性膜を備えている、請求項12に記載の装置。
【請求項16】
請求項12の前記流体移送装置の別の1つと並列または直列に接続された請求項12の前記流体移送装置の1つを備えている、組み合わせの流体移送装置。
【請求項17】
入口バルブ(446)、入口ポート(426)を介して前記入口バルブに流体連通されたポンプチャンバ(442)、および、出口ポート(427)を介して前記ポンプチャンバに流体連通された出口バルブ(448)を備える二次元のマイクロ流体装置(410)と、
前記マイクロ流体装置に外付けされ、前記入口バルブに機械的に連結された第1圧電アクチュエータ(411)であって、第1バイアス電圧の選択的な印加に応じた第1軸方向変位を有し、前記機械的な連結を介して前記入口バルブを閉鎖および開放する第1圧電アクチュエータと、
前記マイクロ流体装置に外付けされ、前記ポンプチャンバに機械的に連結された第2圧電アクチュエータ(412)であって、第2バイアス電圧の選択的な印加に応じた第2軸方向変位を有し、前記機械的な連結を介して前記ポンプチャンバを圧縮および膨張させる第2圧電アクチュエータと、
前記マイクロ流体装置に外付けされ、前記出口バルブに機械的に連結された第3圧電アクチュエータ(413)であって、第3バイアス電圧の選択的な印加に応じた第3軸方向変位を有し、前記機械的な連結を介して前記出口バルブを閉鎖および開放する第3圧電アクチュエータとを備える流体移送装置(400)であって、
前記入口バルブが開き、前記ポンプチャンバが膨張し、前記出口バルブが閉じられたときに、流体が、前記入口バルブに接続された装置入口ポート(461)から、前記ポンプチャンバへと、前記入口ポートを介して引き入れられ、
前記入口バルブが閉じ、前記ポンプチャンバが圧縮し、前記出口バルブが開いたときに、前記流体が、前記出口バルブに接続された装置出口ポート(462)へと、前記出口ポートを介して、前記ポンプチャンバから排出される、流体移送装置。
【請求項18】
前記二次元のマイクロ流体装置が、
前記入口バルブ、前記ポンプチャンバおよび前記出口バルブを区画する孔プレート(430)と、
前記孔プレートに積載された可撓性の膜プレート(420)であって、前記入口バルブを覆う第1可撓部分、前記ポンプチャンバを覆う第2可撓部分、および、前記出口バルブを覆う第3可撓部分を備えた可撓性の膜プレートとをさらに備え、
前記第1、第2および第3圧電アクチュエータが、前記可撓性の膜プレートの前記第1、第2および第3可撓部分とそれぞれ物理的に接触しており、前記第1、第2および第3軸方向変位に応じて、前記可撓性の膜プレートの前記第1、第2および第3可撓部分を屈曲させる、請求項17に記載の装置。
【請求項19】
前記可撓性の膜プレートと前記孔プレートとの間に配置され、前記可撓性の膜プレートを前記孔プレートに良好に封止することを可能にする封止層をさらに備えている、請求項18に記載の装置。
【請求項20】
前記封止層が、複数のOリングまたは封止膜を備えている、請求項19に記載の装置。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12A】
image rotate

【図12B】
image rotate


【公開番号】特開2013−15134(P2013−15134A)
【公開日】平成25年1月24日(2013.1.24)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−115667(P2012−115667)
【出願日】平成24年5月21日(2012.5.21)
【出願人】(399117121)アジレント・テクノロジーズ・インク (710)
【氏名又は名称原語表記】AGILENT TECHNOLOGIES, INC.
【Fターム(参考)】