説明

マルチリーフコリメータ、粒子線治療装置、および治療計画装置

【課題】半影の影響を受けずに、コントラストの高い照射野が形成できるマルチリーフコリメータおよび粒子線治療装置を得ることを目的とする。
【解決手段】複数のリーフ板5の一端面Eを揃えて厚み方向に並べたリーフ列5と、複数のリーフ板5のそれぞれに対して、一端面Eをビーム軸Xに対して接近または離反方向に駆動させるリーフ板駆動機構5と、を備え、リーフ板5のそれぞれは、方向により異なる2つの極率半径を有する曲面を有し、2つの曲率半径のうち、一方の曲率半径の中心軸である第1の軸はビーム軸X上の第一基準点を通り、他方の極率半径の中心軸である第2の軸はビーム軸X上で前記第一基準点から離れた第二基準点を通る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子ビームを用いた粒子線治療装置において、照射野を形成するために用いられるマルチリーフコリメータ、当該マルチリーフコリメータを用いた粒子線治療装置、および当該粒子線治療装置の動作条件を定める治療計画装置に関する。
【背景技術】
【0002】
粒子線治療は、治療対象となる患部に荷電粒子ビームを照射して、患部組織を殺傷することにより治療を行うものであり、周辺組織にダメージを与えず、患部組織に十分な線量を与えるため、照射線量や照射範囲(以降、照射野と称する)を適切に制御できる粒子線治療装置が求められている。粒子線治療装置のうち、ワブラ電磁石等の走査電磁石を備えた照射ノズルを用いたいわゆるブロード照射型の粒子線治療装置では、照射ノズルで照射野を拡大させ、拡大させた照射野内に透過形状を変化させるマルチリーフコリメータを配置して、患部形状に応じた照射野を形成している。
【0003】
マルチリーフコリメータは、リーフ板を厚み方向に積層したリーフ列を2列対向させるように配置し、各リーフ板が対向するリーフ板に対して接近または離間方向に駆動することにより、所定の透過形状を形成するものである。そのため、各リーフ板の物理的な位置を制御することにより、容易に照射野を形成することができる。しかし、リーフ板が直線駆動の場合、照射野の中心から離れた輪郭部分では、広がり方向に角度のついた荷電粒子ビームがリーフ板の端面の一部にあたり、荷電粒子ビームの線量が連続的に減衰するいわゆる半影帯が生じてしまう。そこで、ビームの広がりを考慮して、円弧や錐体の側面で分割した形状に形成したリーフを円軌道で駆動させる、いわゆる錐体状のマルチリーフコリメータが提案されている(例えば、特許文献1または2参照。)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開昭60−063500号公報(2頁右上、2頁右下〜3頁左上、第2図、第4図)
【特許文献2】特開昭63−225199号公報(3頁右下〜4頁右上、7頁左下〜右下、第1図〜第3図、第12図〜第13図)
【特許文献3】特開平10−255707号公報(段落0009〜0020、図1、図5)
【特許文献4】特開2006−166947号公報(段落0015〜0016、図1)
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上述した錐体状のマルチリーフコリメータは、点光源から広がっていくようなビームを想定したものである。あるいは、体積線源を想定した場合でも、方向によって広がり方が異なることを考慮したものではない。一方、荷電粒子ビームを扱う粒子線治療装置で照射野を拡大するには、特許文献3、4に示すように、加速器から供給された細いビームを走査するための電磁石が必要となる。しかも、ビーム軸に垂直な面内で、例えば、x方向電磁石とy方向電磁石のように、2つの方向に対してそれぞれ電磁石が必要となるので、x方向とy方向では広がり始める起点が異なることになる。したがって、上述したマルチリーフコリメータを粒子線治療装置に適用しても、ビームの広がり方とマルチリーフコリメータの透過形状が一致せず、半影が残ってしまうという問題があった。
【0006】
本発明は、上記のような課題を解決するためになされたもので、半影の影響を受けずに、コントラストの高い照射野が形成できるマルチリーフコリメータおよび粒子線治療装置を得ることを目的とする。
【課題を解決するための手段】
【0007】
本発明のマルチリーフコリメータは、加速された荷電粒子ビームのビーム軌道上に配置され、照射対象に適合するように前記荷電粒子ビームの照射野を制限若しくは成形するためのマルチリーフコリメータであって、複数のリーフ板の一端面を揃えて厚み方向に並べたリーフ列と、前記複数のリーフ板のそれぞれに対して、前記一端面を前記荷電粒子ビームのビーム軸に対して接近または離反方向に駆動させるリーフ板駆動機構と、を備え、前記複数のリーフ板のそれぞれは、方向により異なる2つの極率半径を有する曲面を有し、前記2つの曲率半径のうち、一方の曲率半径の中心軸である第1の軸は前記ビーム軸上の第一基準点を通り、他方の極率半径の中心軸である第2の軸は前記ビーム軸上で前記第一基準点から離れた第二基準点を通ることを特徴とする。
【0008】
また、本発明の粒子線治療装置は、加速器から供給された粒子ビームを走査方向が異なる2つの電磁石で走査し、照射野を拡大するように照射する照射ノズルと、前記照射ノズルから照射された粒子ビーム中に配置された上述するマルチリーフコリメータと、を備え、前記マルチリーフコリメータは、前記第1の軸が前記2つの電磁石のうちの一方の電磁石の走査軸に一致するとともに、前記第2の軸が他方の電磁石の走査軸に一致するように配置されている、ことを特徴とする。
【0009】
また、本発明の治療計画装置は、照射対象の画像データから3次元データを生成する3次元データ生成ユニットと、生成した3次元データに基づいて、照射条件を設定する照射条件設定ユニットと、設定した照射条件を基に、上記粒子線治療装置におけるマルチリーフコリメータのリーフ駆動を制御する制御データを生成する制御データ生成ユニットと、を備え、前記3次元データ生成ユニットは、前記3次元データを少なくとも前記第1の軸を中心とするビームの偏向角度と、前記第2の軸を中心とするビームの偏向角度とを用いて生成する、ことを特徴とする。
【発明の効果】
【0010】
本発明のマルチリーフコリメータ、粒子線治療装置、および治療計画装置によれば、マルチリーフコリメータが透過形状を形成したときに輪郭となるリーフ板の面が、当該面近傍を通過する粒子ビームの広がる方向と一致するので、半影の影響を受けずに、コントラストの高い照射野を形成することができる
【図面の簡単な説明】
【0011】
【図1】本発明の実施の形態1に係るマルチリーフコリメータを備えた粒子線治療装置の照射系の構成を説明するための図である。
【図2】本発明の実施の形態1に係るマルチリーフコリメータを備えた粒子線治療装置の照射系の構成を説明するためのビームの中心に対して垂直な2つの方向から見た側面図である。
【図3】本発明の実施の形態1に係る粒子線治療装置の照射系における荷電粒子ビームのビーム束の状態を説明するための図である。
【図4】本発明の実施の形態1に係るマルチリーフコリメータおよびリーフ板の構成を説明するための全閉状態の図である。
【図5】本発明の実施の形態1に係るマルチリーフコリメータおよびリーフ板の構成を説明するための所定形状の照射野を形成している状態の図である。
【図6】本発明の実施の形態2に係る粒子線治療装置におけるビームの走査軌跡の例を示す図である。
【図7】本発明の実施の形態2に係る粒子線治療装置におけるビームの走査軌跡の他の例を示す図である。
【図8】本発明の実施の形態5に係る粒子線治療装置およびマルチリーフコリメータの構成を説明するための図である。
【図9】医療行為のフローを説明するための図である。
【図10】本発明の実施の形態6に係る治療計画装置の構成を説明するためのブロック図である。
【発明を実施するための形態】
【0012】
実施の形態1.
以下、本発明の実施の形態1にかかるマルチリーフコリメータおよび粒子線治療装置の構成について説明する。図1〜図5は本発明の実施の形態1にかかるマルチリーフコリメータおよび粒子線治療装置の構成について説明するためのもので、図1はマルチリーフコリメータを備えた粒子線治療装置の照射系の構成を示す図、図2は粒子線治療装置およびマルチリーフコリメータの構成を示すための図1における荷電粒子ビームの中心(z方向)に対して垂直な方向から見た図であって、図2(a)はy方向から見た側面図、図2(b)はx方向から見た側面図である。図3は粒子線照射装置の照射系におけるビームの線束の形状を説明するためのもので、図3(a)はビーム線束全体の外観を示す図、図3(b)と図3(c)は図3(a)における荷電粒子ビームの中心(z方向)に対して垂直な方向から見た図であって、図3(b)はy方向から見た側面図、図3(c)はx方向から見た側面図である。また、図4と図5はマルチリーフコリメータおよびマルチルーフコリメータの主構成体であるリーフ板の構成を説明するための様々な方向から見た時の図である。
【0013】
マルチリーフコリメータの構成の詳細な説明をする前提として、はじめに、マルチリーフコリメータを備えた粒子線治療装置の照射系について説明する。図1、図2に示すように、粒子線治療装置10は、図示しない加速器から供給されたいわゆるペンシル状の荷電粒子ビームBを円軌道に走査することにより、照射野を拡大する照射ノズルとして機能するワブラ電磁石1(上流1a、下流1b)と、照射対象の厚さに応じて、ブラッグピークの幅を拡大させるためのリッジフィルタ2と、照射対象の深さ(照射深さ)に応じて、荷電粒子ビームBのエネルギー(飛程)を変えるためのレンジシフタ3と、拡大した照射野を所定範囲に制限し、正常組織への余分な照射を防ぐためのブロックコリメータ4と、複数のリーフ板とリーフ板のそれぞれを駆動するリーフ駆動機構で構成され、照射野を患部形状に合わせるように制限するためのマルチリーフコリメータ5と、荷電粒子ビームBの飛程を、照射対象の深さ形状に合わせるように制限するボーラス6と、を備えている。
【0014】
次に、ワブラ法を用いた照射ノズルにより照射野を拡大させる照射系での動作及び原理について説明する。
図示しない加速器により加速され、輸送系を介して荷電粒子ビームBは、直径数mm以下のいわゆるペンシルビームとして照射系へと導かれる。照射系に導かれたビームは、ワブラ電磁石1によって円軌道を描くように走査される。ワブラ電磁石1は、一般的に図に示すようにx方向用電磁石1aとy方向用電磁石1bとを用意し、2つの電磁石を荷電粒子ビームBの中心軸Xに沿って連なるように配置する。ここで、説明を明瞭にするため、x方向及びy方向を定義する。さまざまな規格において、座標系が定義されているが、本明細書では以下に従う。荷電粒子ビームBの進行方向をz軸の正方向とする。x軸とy軸とは、z軸に直交する軸であり、x軸とy軸もお互いに直交する。そして、xyz座標系は、右手座標系となるようにとる。図1、2の例では、上流ワブラ電磁石1aはx方向、下流ワブラ電磁石1bはy方向にビーム走査する。2つの電磁石1a、1bの走査により、照射野はxy方向(面方向)に広げられることになる。
【0015】
照射野を拡大された荷電粒子ビームBは、リッジフィルタ2を通過する。リッジフィルタは、例えば錐状体や断面が三角形の板を面内に多数並べたように形成され、照射野内を例えば多数の小領域に分割したとすると、小領域毎に異なる厚みを通過するビームが存在するようになっている。図では、理解しやすいように円錐が剣山のように並べられたように記載している。これにより、ブラッグピークの幅SOBP(Spread-Out Bragg Peak)が拡大される。すなわち、リッジフィルタ2により、照射野はz方向にも広げられたことになる。次に、照射野を拡大された荷電粒子ビームBは、レンジシフタ3を通過する。レンジシフタ3は、荷電粒子ビームBのエネルギーを変えるための装置である。レンジシフタ3によって、拡大された照射野を、所望の体内深さに照射することができる。次に、レンジシフタ3を通過したビームは、ブロックコリメータ4を通過する。ブロックコリメータ4は、通過孔PHが設けられた金属ブロック等であり、照射野の平面方向(xy面)の広がりを制限する。予め照射範囲を制限すれば、正常組織への余分な照射を防ぐことができるためである。
【0016】
次に、荷電粒子ビームは、マルチリーフコリメータ5を通過する。マルチリーフコリメータ5は後に詳細に説明するように、複数のリーフ板5の位置により形成された透過形状PSによって、照射野を患部形状に合わせ制限するためのものである。すなわち、照射野は、マルチリーフコリメータ5によってxy方向への制限・成形がなされることになる。なお、マルチリーフコリメータ5には、少なくともリーフ板5(まとまりとしてリーフ群5)とリーフ駆動機構5とを備えている。しかし、リーフ駆動機構5はリーフの駆動軌道を表現できれば、そのもの自体の構成は重要ではない。また、リーフ駆動機構5そのものを図で記載するとリーフ板5の構成を示すのが困難となるので、上記図1、2および以降の図においては、簡略化のため、マルチリーフコリメータ5のうち、リーフ板5あるいはリーフ板5が集合したリーフ群5部分のみを抽出して記載している。
【0017】
最後に、荷電粒子ビームBは、ボーラス6を通過する。ボーラス6は、樹脂等で作られた制限器であり、患部の深さ形状である、例えば、患部のディスタル(Distal)形状を補償するような形態に形成されている。ディスタル形状とは、最深部の凹凸形状のことをいう。ここで、照射野はエネルギーが制限(z方向で成型)され、ディスタル形状と同じ形状を有するようになる。すなわち、照射野は、ボーラス6によってz方向への制限・成形がなされることになる。
【0018】
粒子線治療装置の照射系の役割は、照射する照射野を患部に合わせて成形することである。その方法として本実施の形態1にかかる粒子線治療装置で採用するワブラ法では、ワブラ電磁石1のみで照射野を拡大している。この方法の具体的な例は、例えば、特許文献3に示した「スパイラル・ビーム走査による大面積均一照射法」であり、ワブラ法の中でもスパイラルワブラ法と呼ばれる。スパイラルワブラ法は、簡単に言えば、ビームをらせん状に走査して照射野を拡大するものであり、その照射野内での走査軌道(走査軌跡)を工夫することによって平坦度を確保している。なお、スパイラルワブラ法によるビームの走査軌道は、特許文献3の図1等に見ることができる。
【0019】
一方、ワブラ法でも、一般的にワブラ法と称する場合には、単円ワブラ法を指す場合が多く、その場合、照射野の拡大において散乱体によって平坦度を確保している。したがって、同じワブラ法でも散乱体を用いているものと用いていないものがあり、ビームの方向性も散乱体の有無によって異なってくる。散乱体を用いた場合には、散乱体の全面においてビームの広がりが生じるため、ある点を通過するビームの照射方向に幅が生じる。一方、スパイラルワブラ法のように散乱体を用いず、走査電磁石のみでビームを広げる場合、ある点を通過するビームの照射方向は、主に走査電磁石からの位置によって決まるひとつの方向となる。
【0020】
図3は、本実施の形態1に係る粒子線治療装置10の照射系内での2連の走査電磁石1によるビームの広がり方(ビーム束Fの形状)を示した模式図である。スパイラルワブラ法では、ビームは図3に示したように広がり、点光源的とはならない。簡単のため、図3に示したビームの広がり方を「2連走査的な広がり」と呼ぶことにする。ビームが点光源ではなく、2連走査的な広がりをする場合には、それに適した制限器を設計する必要がある。
【0021】
2連走査的な広がりについて、ここで少し詳しい説明を加える。
図3に示すように、ビームBは上方より下方へ(z方向)と照射されている。ビームBは、もともとはペンシルビームと呼ばれる細い状態で供給される。ビーム軸X上には基準点CPaと基準点CPbとを設定している。基準点CPaは、上流のワブラ電磁石1a(厳密には、走査軸Asa)が配置される場所と考えてよく、同様に、基準点CPbは、下流のワブラ電磁石1b(厳密には、走査軸Asb)が配置される場所と考えてよい。
【0022】
基準点CPaに配置された上流のワブラ電磁石1aは、基準点CPaを基準としてビームを走査する。上流のワブラ電磁石1aのビームの走査方向は、図3(b)の面内(xz面)に走査する方向であり、ビーム軸X上の基準点CPaを通り、ビーム軸Xに垂直な軸Asaが、上流ワブラ電磁石1aの作用軸(走査軸)となる。また、基準点CPbに配置された下流のワブラ電磁石1bは、基準点CPbを基準としてビームを走査する。下流のワブラ電磁石1bのビームの走査方向は、図3(c)の面内(yz面)に走査する方向であり、ビーム軸X上の基準点CPbを通り、ビーム軸Xおよび軸Asaに垂直な軸Asbが、下流ワブラ電磁石1bの作用軸(走査軸)となる。つまり、上流ワブラ電磁石1aの走査方向(x)と、下流ワブラ電磁石1bの走査方向(y)は、ビーム軸Xに垂直であり、下流ワブラ電磁石1bの走査方向(y)と、上流ワブラ電磁石1aの走査方向(x)とは垂直となる。
【0023】
さらに、上記ビーム束Fの形状について図3を用いて幾何学的に説明する。
図3(b)に示すように、基準点CPaを上端点とした鉛直(z方向)な線分を引き、線分上の基準点CPa以外の位置に基準点CPbを設ける。基準点CPaを中心に線分を±α度だけ回転させたときに線分が通過する扇形Fsaを得る。この扇形Fsaが、上流ワブラ電磁石1aのみを用いたときの、ビームの広がりに相当する。つぎに、基準点CPbを通る基準軸Asbにより、扇形Fsaを上部分と下部分とに分ける。扇形Fsaの下部分を、基準軸Asbにより±β度だけ回転させたときに扇型Fsaの下半分が通過する領域を得る。この領域は、図3(c)において、扇型Fsbに見える領域であり、この領域が、ビームの広がり方(ビームが通過し得る領域:ビーム束F)を示したものである。つまり、2連走査的な広がりをもつビーム束Fの形状は、x方向とy方向で極率半径が異なる扇型となっている。
【0024】
本発明の実施の形態にかかるマルチリーフコリメータ5は、上記のように走査方向の異なる2つの走査電磁石1a、1bにより照射野を拡大することで生ずるビームの2連走査的な広がりを持つビーム束Fの形状を考慮して、半影帯の影響を受けずに高コントラストな照射野を正確に形成するために構成したものである。すなわち、本発明の実施の形態1にかかるマルチリーフコリメータ5は、リーフ板5のそれぞれが、当該リーフ板に対して厚み方向に隣接するリーフ板との実質的な対向面Pが、荷電粒子ビームBのビーム軸X上で、基準点CPaに設定された走査電磁石1aの走査軸Asaを含む平面で形成され、各リーフ板5は、ビーム軸X上の基準点CPbに設定されたビーム軸Xおよび走査軸Asaに垂直な走査電磁石1bの走査軸Asb、を中心とする円周軌道に沿って駆動するようにした。
【0025】
以下、図4、5を用いて詳細に説明する。図4はマルチリーフコリメータおよびマルチリーフコリメータ内で駆動するリーフ板の構成を説明するための全閉状態のリーフの状態を示す図であり、図4(a)はマルチリーフコリメータのリーフ群全体の外観透過図、図4(b)は図4(a)のP方向からの上面透過図、図4(c)は図4(a)のF方向からの正面透過図、図4(d)はマルチリーフコリメータの左半分部分のリーフ列の図4(a)のS方向からの側面透過図である。また、図5は所定形状の照射野を形成する状態を示す図であり、図5(a)はマルチリーフコリメータのリーフ群全体の外観図、図5(b)は図5(a)のP方向からの上面透過図、図5(c)は図5(a)のF方向からの正面透過図、図5(d)はマルチリーフコリメータの左半分部分のリーフ列の図5(a)のS方向からの側面透過図である。
【0026】
図4、5に示すように、マルチリーフコリメータ5は、複数のリーフ板5の一端面Eを揃えて厚み方向(x方向)に並べたリーフ列を2列(5c1、5c2:まとめて5)有し、リーフ列5c1と5c2を一端面Eどうしが対向するように配置したリーフ群5と、リーフ板5のそれぞれを、対向するリーフ板に対して接近または離反方向に駆動させる図示しないリーフ板駆動機構と、を備えており、各リーフ板5の形状として、各リーフ板の板材としての主面の実質的な形状、つまり、隣接するリーフ板との対向面Pがx方向に荷電粒子ビームBを拡大する走査電磁石1aの走査軸Asaを含む平面で形成されている。つまり、板材としての主面が、走査電磁石1aの走査軸Asaを含む2つの平面で形成され、リーフ板を照射方向と板厚方向を含む面で切断した切断面が荷電粒子ビームBの照射方向の上流側から下流側へいくほど厚くなっている。
【0027】
そして、各リーフ5の駆動(yz面内方向)を、y方向に荷電粒子ビームBを拡大する下流電磁石1bの走査軸Asbからの距離RSbに対応する円周軌道Oとし、さらに、リーフ板5の4つの端面のうち、一端面Eに隣接する入射側の端面Pの形状と出射側の端面Pの形状とをそれぞれ走査軸Asbを中心とする円弧で形成する、つまり走査軸Asbを中心とするリングの一部のように形成することにより、円周軌道Oに沿ってリーフ板5が駆動しても、荷電粒子ビームBの照射方向に沿った深さ寸法が変化しないようにした。
【0028】
これにより、リーフ板5がどの位置に駆動したとしても、例えば、図5に示すように、透過形状PSのx方向の輪郭を形成するリーフ板5の端面Eは、端面E近傍を通過する荷電粒子ビームBの照射方向と平行となり、半影が生ずることはない。また、透過形状PSのy方向の輪郭を形成するリーフ板5の対向面Pは、対向面P近傍を通過する荷電粒子ビームBの照射方向と平行となり、半影が生ずることはない。つまり、マルチリーフコリメータ5が形成する透過形状PSの輪郭部分で半影帯が生ずる部分はなく、患部形状に適した正確な照射野を形成することができる。
【0029】
つまり、本発明の実施の形態1にかかるマルチリーフコリメータ5の各リーフ板5の厚み方向の形状と駆動軌道Oが、荷電粒子ビームBのビーム束Fの広がりと同じ形状になるようにすればよい。すなわち、2連の走査電磁石1a、1bの走査角をそれぞれ制限したときに、通りうる範囲である。さらに言えば、ビーム源からのビーム伝播距離がある範囲内のときの荷電粒子ビーム位置である。リーフ板5を積層して得られるマルチリーフコリメータ5であるから、形成した透過形状PSも荷電粒子ビームのビーム束Fの広がり形状である。またこれにより、透過形状PSを形成する開口(輪郭)は、開口形状によらず、開口の壁面となるリーフ板5の照射野の中心に向かう端面Eと、隣接するリーフ板との対向面Pが当該面の近傍を通過する荷電粒子ビームの照射方向と一致する。したがって、2連の走査電磁石1a、1bを用いるときに起きる半影問題を解決することができる。なお、平坦度を上げる目的で散乱体を用いて照射する場合は、上述した2連走査的な照射方向の分布に幅が生じる。そのため、本マルチリーフコリメータ5を適用した場合でも、一部の荷電粒子ビームがリーフ板の端面Eや対向面Pに当たることになり、散乱体を用いない場合と較べて、半影帯を抑制する効果は低下することになるが、従来の単なる錐体のマルチリーフコリメータよりは、半影帯を抑制する効果を得ることは可能である。
【0030】
なお、上記実施の形態1にかかるマルチリーフコリメータ5では、厚み方向の形状を上流側電磁石1aの位置、駆動軌道Oを下流側電磁石1bの位置を基準に設定したが、これに限ることはなく、逆に設定してもよい。したがって、上流電磁石1aがx方向、下流電磁石1bがy方向を走査するとしたが、逆でもよい。また、図では、各リーフ板5の厚みを規定する対向面P間の角度が均等になるように描いているが、これに限られることはない。均等でなくとも上記半影帯を抑制する効果を得ることは可能である。そして、対向面に対して「実質的な」と表現したのは、厚み方向に積層する上で実質的に隣接するリーフと区別するための面であるという意味であり、例えば、対向面内に駆動用のレールを形成するための水や窪み等が形成されていても基準点CPaに設定された走査電磁石1aの走査軸Asaを含む平面で形成されたと解することである。また、リーフ列5C1、5C2のそれぞれのリーフ5が1対1で対となっている状態を示しているが、対となる必要もない。また、リーフ列も2列である必要はなく、例えば、一列のみの場合でも、リーフ板の端面Eがビーム軸Xに対して最接近した時に、固定面に密着して、ビームBを塞ぐようになっていればよい。また、さらに多数の列を有してもよい。
【0031】
また、照射野を拡大する方法として走査軌跡が螺旋となるスパイラルワブラ法で説明したが、後の実施の形態で説明するように、その他のスパイラルワブラ法でもよく、さらにはスパイラルワブラ法に限定されることもない。また、照射ノズルとして機能する電磁石もワブラ電磁石1に限ることはなく、走査方向の異なる2つの電磁石により照射野を拡大する照射ノズルであればよい。
【0032】
以上のように、本実施の形態1にかかるマルチリーフコリメータ5によれば、走査電磁石1を用いて照射野を拡大するように照射された荷電粒子ビーム中Bに配置され、照射対象である患部形状に適合するように照射野を成型するためのマルチリーフコリメータ5であって、複数のリーフ板5の一端面Eを揃えて厚み方向に並べたリーフ列5と、リーフ板5のそれぞれに対して、一端面Eを粒子ビームBのビーム軸Xに対して、あるいは、対向するリーフ板に対して接近または離反方向に駆動させるリーフ板駆動機構5と、を備え、リーフ板5のそれぞれは、当該リーフ板に対して厚み方向(x方向)に隣接するリーフ板との対向面Pが、荷電粒子ビームBのビーム軸X上の第1の位置である基準点CPaに設定されたビーム軸Xに垂直な第1の軸である走査軸Asaを含む平面PSaで形成され、リーフ板駆動機構5は、ビーム軸X上の第2の位置である基準点CPbに設定されたビーム軸Xおよび第1の軸Asaに垂直な第2の軸である走査軸Asb、を中心とする円周軌道Oに沿ってリーフ板5を駆動する、ように構成したので、荷電粒子ビームBのビーム束Fの広がり方とマルチリーフコリメータ5の透過形状PSの輪郭を形成する対向面Pや端面Eの方向が一致し、半影の影響を抑制して照射対象の形状に応じた正確な照射野を形成することができる。
【0033】
さらに、リーフ板5の主たる4つの端面のうち、一端面Eとの隣接面である荷電粒子ビームBの入射側の端面Pと出射側の端面Pの形状を第2の軸である走査軸Asbを中心とする円弧状に形成するようにしたので、リーフ板5を容易に円周軌道Oに沿って駆動することができる。また、リーフ板5がどの駆動しても、荷電粒子ビームBの照射方向に沿った深さ寸法が変化せず、荷電粒子ビームを遮蔽するための距離が一定となる。
【0034】
また、本発明の実施の形態1にかかる粒子線治療装置10によれば、加速器から供給された荷電粒子ビームBを走査方向が異なる2つの電磁石1a、1bで走査し、照射野を拡大するように照射する照射ノズルであるワブラ電磁石1と、照射ノズル1から照射された荷電粒子ビームB(のビーム束F)中に配置された上述したマルチリーフコリメータ5と、を備え、マルチリーフコリメータ5は、第1の軸が前記2つの電磁石のうちの一方の電磁石の走査軸(AsaまたはAsb)に一致するとともに、第2の軸が他方の電磁石の走査軸(AsbまたはAsa)に一致するように配置されている、ように構成したので、半影の影響を抑制して照射対象の形状に応じた正確な照射野で荷電粒子線を照射することができる。
【0035】
実施の形態2.
実施の形態1においては、ビームをらせん状に走査するスパイラルワブラ法への適用について述べた。しかし、ビームの照射野内における走査軌道形状(走査軌跡)は本発明の技術的思想を限定するものではなく、他のビーム走査軌跡においても、2連走査的な広がりの場合は効果を発揮する。そこで、本実施の形態2では、代表的な他のビーム走査軌跡を有する照射系に本発明のマルチリーフコリメータを適用した場合について述べる。
【0036】
はじめに、実施の形態1で用いたスパイラルワブラ法によるビーム走査軌跡について説明する。特許文献3に記載されているように、螺旋状の走査軌跡は、以下の3つの等式を含む式(1)によって与えられている。
【0037】
【数1】

ただし、時間t=0の時の半径をRmin、時間t=Tの時の半径をRmax、走査回転数をNとする。また、r(t)は半径方向の座標、θ(t)は角度方向の座標であり、極座標系による表現である。
【0038】
上記の式(1)によって与えられるビーム走査軌跡は、螺旋(スパイラル)形状をなし、円領域内にビームを走査して均一な線量分布を得るのに、有効な形状である。しかし、均一な線量分布を得るため、ビーム走査軌跡をスパイラルに限る必要はない。均一な線量分布を2つの電磁石の走査によって得るためのビーム走査軌跡は、いくつかの典型的なパターンに分類できると考えられる。
【0039】
ワブラ法は、継続的にビームを走査して均一な線量分布を成形するものである。すなわち、ワブラ法におけるビーム走査軌跡は連続的かつ周期的なものが望ましい。そこで、ビーム軌道を極座標系で表し、r(t)とθ(t)を連続周期的に変化させるパターンについて検討した。
【0040】
<典型的なパターンその1>
一つ目のパターンでは、r(t)とθ(t)を以下のように、各々、連続的かつ周期的に変化させる関数として定義する。
r(t)=連続的かつ周期的な関数(周期T
θ(t)=連続的かつ周期的な関数(周期T
なお、このときr(t)とθ(t)の周期は、異なるものを用いてもよい。また、角度θは、360度で1周して0度とみなせることに注意する。つまり、360度と0度は連続している。ラジアンで表現すれば、2πは0とみなせる。
【0041】
上記のようなパターンを実現する例としては、以下の3つの等式を含む式(2)に示すようなビーム走査軌跡があげられる。
r(τ)=r+rsin(ωτ+φ
θ(τ)=ωθτ ・・・(2)
τ=τ(t)
ただし、τ(t)はパラメータ表示した上記式(2)のパラメータであり、時間の関数である。ωはr(t)を決める角速度であり、r(t)の周期は2π/ωとなる。φは初期位相である。ωθはθ(t)を決める角速度であり、θ(t)の周期は2π/ωθとなる。
【0042】
式(2)により作成されたビーム走査軌跡ST1の例を図6に示す。図6は、ビーム軸に垂直な、ある平面における走査軌跡を示したもので、横軸がx、縦軸がyとなり、xとyをそれぞれ規格化したものである。なお、式(2)において、パラメータを、時間tとしなかったのは、描画速度を場所により変更できるようにしたためである。例えば、図6において、座標で(0,0)となるビーム軸中心部の近傍にはビーム走査が集中して密となるため、中心部に近い部分のように軌跡が集中する部分では走査速度を早くする等の工夫をして、均一な線量分布を得る。
【0043】
<典型的なパターンその2>
2つ目のパターンでは、複数の描画パターンを定義する関数を組み合わせてビーム走査軌跡を形成する。例えば、大きな円を描く関数に、小さな円を描く関数を組み合わせる。その一例を以下の3つの等式を含む式(3)に示す。
x(τ)=rcos(ωτ+φ)+rcos(ωτ+φ
y(τ)=rsin(ωτ+φ)+rsin(ωτ+φ) ・・・(3)
τ=τ(t)
ただしx(τ)それぞれビーム走査軌跡のx座標、y座標であり、直交座標系式である。数式(3)により作成されたビーム走査軌跡の例を図7に示す。図7も図6と同様にビーム軸に垂直な、ある平面における走査軌跡を示したもので、横軸がx、縦軸がyとなり、xとyをそれぞれ規格化したものである。
【0044】
玩具で、内部に歯が形成された円形穴内に歯車状の円盤を設置し、円盤内の所定位置に設けられた小孔にペン先を差し込んで、円盤を円形穴に沿って転がせて、幾何学的模様を描く道具があったが、当該道具で作成される幾何学模様もこの部類に属する。なお、この道具で描かれる曲線はハイポトロコイド(内余擺線)と呼ばれ、幾何学的には、半径rの円が半径krの円周に内接しながら滑ることなく転がるとき、動円の中心から距離lrにある定点が描く軌跡として定義される。また、多くの攪拌装置において、攪拌部の駆動パターンに採用されている。なお、パラメータ表示のパラメータを、時間tとしなかったの
は、前の例と同様、描画速度を場所により変更できるようにしたためである。
【0045】
以上のように、ワブラ電磁石で連続的かつ周期的な模様(線描)を描かせる方法において、その模様はスパイラル(らせん)に限らない。しかし、散乱体を用いず、ビーム軌道を工夫することによって大面積の均一照射を実現する発想は「スパイラルワブラ法」に端を発していることから、実施の形態2に示したこれらの方法も広義のスパイラルワブラ法と呼ばれることがある。そして、これら広義のスパイラルワブラ法においても、やはりビームの広がりは点光源的ではなく、2連走査的である。
【0046】
つまり、本実施の形態2における広義のスパイラルワブラ法を用いる照射系を有する粒子線治療装置においても、実施の形態1で示したマルチリーフコリメータを適用する事で、各リーフ板の厚み方向の形状と駆動軌道を、荷電粒子ビームBのビーム束Fの広がりと同じ形状にできる。そのため、形成した透過形状SPも荷電粒子ビームBのビーム束Fの広がり形状となり、透過形状SPを形成する開口部は、開口形状によらずその壁面となるリーフ板の照射野の中心に向かう端面と、隣接するリーフ板との対向面が荷電粒子ビームの照射方向と一致する。したがって、2連の走査電磁石を用いるときに起きる半影問題を解決することができる。
【0047】
実施の形態3.
上記実施の形態1および2においては、ワブラ法による照射の場合への適用について述べた。しかし、上述したように照射方法自体は本質的ではなく、本発明の技術思想を限定するものではない。粒子線治療装置においては、2連のスキャニング電磁石により荷電粒子ビームを走査して、照射対象に対して点描画的にスポット照射をするスポットスキャニング法が提案されている。スポットスキャニングの場合にも、ビームの広がり方は2連走査的である。したがって、スポットスキャニングにおいてマルチリーフコリメータを用いる場合は、上述した半影を抑制してコントラストの高い照射野を形成するという効果を発揮する。
【0048】
実施の形態4.
実施の形態3においては、スポットスキャニング法への本発明の実施の形態に係るマルチリーフコリメータの適用について述べた。スポットスキャニングと同様に、2連のスキャニング電磁石によりビームを走査して、照射対象に対して一筆書き的にラスター照射をするラスタースキャニング法がある。ラスタースキャニングの場合にも、ビームの広がり方は2連走査的である。したがって、ラスタースキャニングにおいてマルチリーフコリメータを用いる場合は、本発明の上述した実施の形態にかかるマルチリーフコリメータ5は効果を発揮する。つまり、スポットスキャニングやラスタースキャニングなど、スキャニング法により照射野を拡大する場合でも、本発明の実施の形態にかかるマルチリーフコリメータ5を用いる場合は、上述した半影を抑制してコントラストの高い照射野を形成するという効果を発揮する。
【0049】
実施の形態5.
粒子線治療装置においては、例えば、特許文献4に記載されているように、偏向電磁石の制御方法を工夫することによって、2つの走査電磁石のうち、一方を省略するものが提案されている。しかし、このような照射系の場合においても、軌道方向(ビーム軸の方向)を変えるための偏向電磁石が、省略された走査電磁石の代わりに荷電粒子ビームを走査するので、ビーム束は2連走査的な広がりをもつことになり、上述した実施の形態におけるマルチリーフコリメータが半影抑制に効果を発揮する。
【0050】
図8は、実施の形態5における粒子線治療装置におけるマルチリーフコリメータを含む照射系部分を示すものである。図中、水平方向(x方向)から供給された荷電粒子ビームBは、偏向電磁石201aにより、ビーム軸を垂直方向に偏向され、走査電磁石201bを経由した後、実施の形態1と同様に、リッジフィルタ2、レンジシフタ3、リングコリメータ4、マルチリーフコリメータ205、ボーラス6を経て、照射対象に向けて照射される。そして、本実施の形態5における粒子線治療装置210では、実施の形態1の粒子線治療装置10における走査電磁石1aの代わりに偏向電磁石201aを設けたことと、マルチリーフコリメータ205のリーフ板の形状および軌道の設定基準が異なること以外は、実施の形態1と同様の構成となる。
【0051】
図において、水平方向から供給された荷電粒子ビームBは、偏向電磁石201aの内部で、ビーム軸Pが弧を描きながらz方向に偏向されていく。このとき、通常の偏向電磁石の場合は、磁場が一定になるように制御するので、荷電粒子ビームBのビーム束が広がることはないが、この偏向電磁石21は磁場を周期的に変化させることにより、荷電粒子ビームBをx方向に走査してビーム束をPE1からPE2にかけてx方向に広げることができる。つまり、偏向電磁石201aが実施の形態1における上流の走査電磁石1aの役割を担っていることになる。以降の部分は、基本的に実施の形態と同様であり、走査電磁石201bがx方向に広がったビーム束をさらにy方向に広げる。
【0052】
このビームの広がり方は、あたかも図8の等価基準点EAsに上流の走査電磁石201aの走査軸が存在し、ビーム軸Eに沿って上方から照射されたビームが(z方向成分を含む)x方向に走査され、EE1からEE2にかけてx方向に広がったものとみなすことができる。なお、偏向電磁石201a内では、ビームの進行に伴いビーム軸が徐々に偏向していくので、入口側のビーム軸と出口側のビーム軸(=ビーム軸E)とが異なっており、走査軸EASは偏向電磁石201a本体から外れた位置に存在することになる。しかし、マルチリーフコリメータ205に入射するビームの軸は、ビーム軸Eであるので、考え方としては、走査軸EASの位置を規定する基準点CPaは、マルチリーフコリメータ205に入射するビームのビーム軸上にあるとみなすことができ、走査軸EASもマルチリーフコリメータ205に入射するビームのビーム軸に垂直であるとみなすことができる。したがって、このような一方の電磁石が偏向電磁石を兼ねる照射系においても、マルチリーフコリメータに入射するビームのビーム軸を基準に、ビームの広がり方から等価走査軸EAsを算出し、等価走査軸EAsと走査軸Asb(基準点CPb)から、実施の形態1と同様にマルチリーフコリメータ205のリーフ板の形状と軌道を決定すればよい。
【0053】
図8からわかるように、一方の走査電磁石を省略し、軌道を曲げる偏向電磁石201aを省略した走査電磁石の代用にした照射系の場合、等価走査軸EAsを規定する(等価)基準点CPaと基準点CPbとの間隔は、走査専用の電磁石(例えば実施の形態1の1a,1b)で走査する通常の照射系に比べて広くなる。したがって、点光源的なビームの広がり方を仮定したマルチリーフコリメータでは、半影が生じる問題がより顕著に現れる。しかし、本発明の実施の形態5にかかるマルチリーフコリメータ205の各リーフ板の形状と軌道は、どのような透過形状を形成しても、透過形状の輪郭を形成する面がビームの広がりと同じ方向となるように設定している。したがって、片方の走査電磁石を省略した照射系の場合に顕著に生じる半影問題を容易に解決することができる。
【0054】
以上のように、本実施の形態5にかかる粒子線治療装置210では、2つの方向x、yの走査のうち、一方の走査(xまたはy)をビーム軸の方向を偏向する偏向電磁石201aで行い、基準点CPa、CPbを設定するビーム軸をマルチリーフコリメータ205に入射するビームのビーム軸Eとし、マルチリーフコリメータ205の構成と配置を行うように構成したので、半影を抑制してコントラストの高い照射野を形成する事ができる。
【0055】
実施の形態6.
上記各実施の形態1〜5においては、マルチリーフコリメータ及びマルチリーフコリメータを用いた照射系の構成やそのビーム軌道について説明した。本実施の形態6においては、本発明の上記各実施の形態にかかるマルチリーフコリメータや粒子線治療装置の動作条件を設定する治療計画装置について説明する。
【0056】
ここで、治療計画装置について説明する前に、治療計画装置が実施する治療計画の前提となる医療行為について説明する。一般に医療行為は、いくつかのステージから構成されていると考えられる。図9は、この医療行為のステージ(フロー)を図式化するとともに、ステージごとに使用する装置を示したものである。図9に基づいて、医療のフローについて説明する。
具体的には、医療行為は大きく予防的診断ステージ(MS1)、診断ステージ(MS2)、治療計画ステージ(MS3)、治療ステージ(MS4)、およびリハビリ・経過観察ステージ(MS5)の各ステージから構成されているといえる。そして、特に、粒子線治療等においては、上記各ステージで使用する装置は、図9の右側のような装置である。例えば、診断ステージ(MS2)で使用する装置は、X線撮像装置、CT(Computed Tomography)、MRI(Magnetic Resonance Imaging)等であり、治療計画ステージ(MS3)で使用する装置が治療計画装置とよばれる装置である。そして、治療ステージ(MS4)で使用される装置が、放射線治療装置や粒子線治療装置である。
【0057】
つぎに、各ステージについて説明する。
予防的診断ステージ(MS1)とは、発病の有無に拠らず、予防的に診断をする段階をいう。例えば、定期健康診断や人間ドックなどが該当し、癌に対しては、レントゲン等の透視画像による方法、PET(Positron Emission Tomography)、PET/CT等の断層撮影による方法、ならびに遺伝子検査(免疫検査)による方法などが知られている。
【0058】
診断ステージ(MS2)とは、発病後に、治療を前提とした診断をする段階をいう。粒子線治療の場合、治療のためには患部の位置・形状の3次元情報が必要である。そのため、患部の3次元データが得られる各種CT,MRI装置が用いられる。
【0059】
治療計画ステージ(MS3)とは、前記診断の結果に基づいて、治療の計画を立てる段階をいう。粒子線治療の場合、当該ステージに、本実施の形態6にかかる治療計画装置によって治療計画を作成する。治療計画装置についての詳細な説明は、後述するとして、残りのステージについての説明を続ける。
【0060】
治療ステージ(MS4)とは、前記治療計画の結果に基づいて、実際の治療を行う段階をいう。粒子線治療の場合、当該ステージには粒子線治療装置が用いられる。本発明の上記各実施の形態にかかるマルチリーフコリメータは、粒子線治療装置の照射系において照射野成形のために用いられる。なお、治療ステージは、1回の照射で終了する場合もあるが、通常はある期間をおいて複数回照射を行う。
【0061】
リハビリ・経過観察ステージ(MS5)とは、文字通り、リハビリを行ったり、再発していないか経過観察を行ったりする段階をいう。癌の場合、当該ステージでの経過観察は、予防的診断ステージと同様に、レントゲン等の透視画像による方法、PET、PET/CT等の断層撮影による方法、ならびに遺伝子検査(免疫検査)による方法などが用いられる。
【0062】
以上のように医療行為の中でも、治療計画は、診断ステージの後、治療ステージの前に行う一連の作業である。粒子線治療装置では、治療計画装置で求めた治療計画に基づいて荷電粒子ビームを照射するので、粒子線治療における治療計画装置は、概ね以下の役割を担うユニットを備えている。
役割A:あらかじめ取得した照射対象の複数の画像情報から、3次元データを生成するユニット。
役割B:与えられた要件のもと、最適な照射条件(治療計画案)を生成するユニット。
役割C:最適化結果(治療計画案)に対して、最終的な線量分布を模擬し、表示するユニット。
すなわち、診断の結果を受けて、治療に必要な照射条件を設定する役割があり、さらに設定した条件を基に、粒子線治療装置等の制御データを生成する役割Dを担うユニットを有する。
【0063】
上記役割を果たすため、治療計画装置には、具体的に以下のような機能を備えている。<役割A>
機能a:診断ステージで得られた断層撮影画像から、3次元データを生成する機能。
機能b:生成した3次元データを、3次元CADのように様々な視点からの表示をする機能。
機能c:生成した3次元データにおいて、患部と正常組織とを区別して記憶する機能。
<役割B>
機能d:治療ステージで用いる粒子線治療装置のパラメータを設定し、照射を模擬する機能。
機能e:当該装置のユーザが設定する要件下で、照射の最適化を行う機能。
<役割C>
機能f:前記3次元データに重ね合わせて、最適化された照射結果を表示する機能。<役割D>
機能g:前記最適化された照射を実現するための、マルチリーフコリメータ及びボーラスの形状を設定する機能。(ブロードビーム照射を想定した場合、多門照射を含む)
機能h:前記最適化された照射を実現するための、ビームの照射軌道を設定する機能。(スキャニング照射を想定した場合)
機能i:前記ビームの照射軌道を実現するための、粒子線治療装置の駆動コードを生成する機能。
<その他>
機能j.当該装置で生成した各種データを保存する機能。
機能k.過去に保存された各種データを読み込んで、過去の情報を再利用できる機能。
【0064】
上記各機能を実現するための、治療計画装置のシステム構成について説明する。近年、治療計画装置のメーカが固有のハードウエアを設計製造することはほとんどなく、市販のUnix(登録商標)ワークステーション又はPCをベースとし、さらに周辺機器においても汎用の機器を用いることが多い。すなわち、治療計画装置のメーカは、専ら治療計画ソフトウエアを開発し、製造販売する。治療計画ソフトウエアでは、例えば、機能a〜機能kの各機能を実現するモジュールが、メインプログラムから呼び出されるサブプログラムとして用意される。治療計画装置のユーザは、機能a〜機能kへのフローを、必要に応じて省略したり要件を変えて再実行したりして、必要なモジュールを呼び出しながら治療計画を立案することができる。
【0065】
つぎに、各機能あるいは各機能を実現するモジュールについて説明を進め、本発明の実施の形態にかかる治療計画装置について説明する。
機能a(モジュールa)は、診断ステージで得られた一連の断層撮影画像から、3次元データを生成する。断層撮影画像を読込むとき、患者ID等患者の情報や、スキャン情報(スライス間隔、スライス厚、FOV、断層撮影条件など)も対応して読込むようにするとよい。ここで3次元データとは、患部を含めた撮影対象を、治療計画装置内で仮想的かつ3次元的に再現するのに必要な情報を言う。一般には、治療計画装置内の仮想空間を定義し、前記仮想空間内に等間隔かつ格子状に点を配置し、断層撮影画像から求めたその点における材質情報を対応させる方法がとられる。本機能が必要な理由は、治療計画装置の最大の目的の1つが、治療を模擬することであり、そのためには、照射対象となる患部およびその周辺組織を再現する必要があるためである。
【0066】
機能b(モジュールb)は、生成した3次元データを、3次元CADのように様々な視点からの表示をする。
【0067】
機能c(モジュールc)は、生成した3次元データにおいて、患部と正常組織とを区別して記憶する。例えば、断層撮影画像がX線CTにより得られたものであるとする。この場合、機能aで用いる「材質情報」は、X線の透過しやすさに相当する。すなわち、この断層撮影画像から仮想空間に再現する3次元モデルは、X線の透過度合いの異なる物質からなる3次元の物体の形状である。この「材質情報」、すなわちX線の透過しやすさは、治療計画装置の仮想空間上では例えば色彩や輝度を変えて表示する。さらにこの「材質情報」から、仮想空間に再現する3次元モデルのこの部分は骨に相当するとか、この部分は腫瘍に相当するということがわかり、患部と正常組織を区別する。患部と正常組織とを区別した結果は、治療計画装置の記憶装置(ハードディスク等)に記憶することができる。
【0068】
機能d(モジュールd)は、治療ステージで用いる粒子線治療装置のパラメータを設定し、照射を模擬する。粒子線治療装置のパラメータとは、粒子線治療装置の幾何学的な情報や、照射野に関する情報を意味する。幾何学的な情報は、アイソセンタ位置と寝台の位置などが含まれる。照射野に関する情報は、上述した「基準点CPaと基準CPbの座標」などが含まれる。また、マルチリーフコリメータ5あるいは205(代表して以降5のみ表示)のリーフ板5の幅(厚み)、リーフ板5の枚数、リーフ板5の移動距離(角度)等も、パラメータに含まれる。
【0069】
機能e(モジュールe)は、当該治療計画装置のユーザが設定する要件下で、照射の最適化を行う。
【0070】
機能f(モジュールf)は、前記3次元データに重ね合わせて、最適化された照射結果を表示する。
【0071】
機能g(モジュールg)は、前記最適化された照射を実現するための、マルチリーフコリメータ5及びボーラス6の形状を設定する。本機能は、ブロードビーム照射を想定した機能であり、多門照射の場合を含む。
【0072】
機能h(モジュールh)は、前記最適化された照射を実現するための、ビームの照射軌道を設定する。本機能は、スポットスキャンやラスタースキャンなどのスキャニングを想定した機能である。
【0073】
機能i(モジュールi)は、前記ビームの照射軌道を実現するための、粒子線治療装置の駆動コードを生成する。このとき、後述するように2連走査的な広がりに対応した座標系を採用すると、上記各実施の形態1〜5で示したマルチリーフコリメータ5に対して、求めた最適な照射計画に応じた開口形状(透過形状SP)を実現するような駆動コードを容易に生成することができる。
【0074】
機能j(モジュールj)は、当該装置で設定および生成した各種データを保存する。
【0075】
機能k(モジュールk)は、過去に保存された各種データを読み込んで、過去の情報を再利用できる。
【0076】
<2連走査的な広がりに対応した座標系>
従来の治療計画装置において、上記機能aおよびそれ以降の機能で使用する3次元データは、一般的に直交座標系(xyz座標系)で表現されている。全体形状が従来の直方体のマルチリーフコリメータの場合、その配置やリーフの駆動方向も直交座標方向(例えば、x方向やy方向)であるため、3次元データの直交座標系表現は都合がよい。患部の形状に合わせて開口部の形状を生成するための形状データが、リーフ駆動データと一致するためである。
【0077】
一方、本発明によるマルチリーフコリメータ5の場合、リーフ板5の駆動が曲線的なため、リーフ駆動のための指令値は、基準点を中心とした角度で与えるのが望ましい。すなわち、患部の形状に合わせて開口部の形状を生成するための形状データを、本発明の場合のリーフ駆動指令値と同じ形式の、基準点を中心とした角度を含むようにしたい。
【0078】
そこで、本発明の実施の形態6にかかる治療計画装置は、特殊な座標系で患部3次元データを表示するようにする。
具体的には、以下の定義(D1)に示す特殊座標系である。
[ψ,ψ,r] ・・・・・(D1)
ただし、ψはビーム軸Xに垂直で基準点CPaを通る基準軸(Asa)を中心とするビームの偏向角度であり、ψはビーム軸Xと基準軸Asaに垂直で基準点CPbを通る基準軸(Asb)を中心とするビームの偏向角度であり、rbは基準点CPb(あるいは基準軸(Asb))から当該照射ポイントまでの距離である。
【0079】
3次元空間内の任意の点は、上記3つの情報によってユニークに表すことができる。ただし、走査電磁石1a、1bの配置に応じて、基準点CPa及び基準点CPbは決めておく必要はある。なお、rの代わりに、基準点CPa(あるいは基準軸(Asa))からの当該照射ポイントまでビームが伝播した距離r等を用いてもよい。
【0080】
ここで、照射基準であるアイソセンタを、xyz座標系の原点とし、基準点CPaと基準点CPbそれぞれのxyz座標が、以下であったと仮定する。
基準点CPa:(0,0,−l
基準点CPb:(0,0,−l
そして、図1〜3で示したように、上流の走査電磁石1aがx方向走査電磁石、下流の走査電磁石1bがy方向走査電磁石だと仮定する。このとき、ある点の座標が定義(D1)に示した特殊座標系で表した[ψ,ψ,r]で与えられたとき、このある点のxyz座標は、それぞれ、以下の式(4)で表わされることになる。
【0081】
【数2】

【0082】
ここで、式(4)中のRot(ψ)とRot(ψ)を(D2)のように定義すれば、ある点のxyz座標は式(5)のように得られる。
【0083】
【数3】

【0084】
逆に、xyz座標系から特殊座標系を求める方法を、以下に示す。
は照射系に固有の与えられた値であるから、式(5)におけるyとzの関係から式(6)のようにψを求めることができる。
【0085】
【数4】

【0086】
また、lも照射系に固有の与えられた値であるから、さらに式(5)におけるyとzの関係から定義(D3)のように定義でき、
Λ:=y+(z+l+(l−l) ・・・(D3)
=(l―l+r)cosψ
式(5)におけるzの関係と定義(D3)より、式(7)によりψが求められる。
【0087】
【数5】

【0088】
最後に、式(8)により、rを求めることができる。
【0089】
【数6】

【0090】
上述した2連走査的なビームの広がりに対応した座標系[ψ,ψ,r]を機能aの段階から用いる、つまり、機能aにおいて、あるいは機能aを実行するための補助機能として、2連走査を想定した特殊な座標系への変換を行う座標変換機能を備えるようにした。
【0091】
例えば、図10は、本発明の実施の形態6にかかる治療計画装置の役割(ユニット)や機能(モジュール)の特徴的な部分をブロック図で表示したものである。図において、治療計画装置20は、照射対象である患部の画像データから3次元データを生成する3次元データ生成ユニット21と、生成した3次元データに基づいて、照射条件を設定する照射条件設定ユニット22と、設定した照射条件を基に、粒子線治療装置の制御データを生成する制御データ生成ユニット23とを備えている。なお、上述したように、これらのユニットやモジュールは、計算機内にソフトウエアによって形成されたものであるので、物理的にこのような部分が形成されていることを示すものではない。
【0092】
そして、3次元データ生成ユニット21は、機能aとして画像データから患部や体形状などの3次元のデータを生成する3次元データ生成モジュール21M1と、生成した3次元データから2連走査を想定した定義(D1)で示す座標系[ψ,ψ,r]のデータに変換する座標変換モジュール21M2と、変換したデータを基に機能bとして表示用データを生成する表示用データ生成モジュール21M3と、変換したデータを基に照射対象である患部と正常組織とを区別する照射対象分離モジュール21M4と、を備え、役割Aとして、画像情報から定義(D1)で示す座標系による3次元データを生成する。
【0093】
そして、照射条件生成ユニット22は、定義(D1)で示す座標系による3次元データを基に、役割Bとして、機能d,eにより、最適な照射条件を設定する。そして、制御データ生成ユニット23は、機能gとして少なくとも、設定した照射条件に基づき、マルチリーフコリメータ5で形成する透過形状PSを設定する透過形状設定モジュール23M1と、機能iとして、設定した透過形状に基づき、マルチリーフコリメータ5の各リーフ5Lの駆動コードを生成する駆動コード生成モジュール23M2と、を備え、役割Dとして、設定した照射条件に基づき、少なくともマルチリーフコリメータ5の制御データを定義(D1)で示す座標系により生成する。
【0094】
これにより、3次元データ生成ユニット21や照射条件設定ユニット22において、照射位置を特定するための定義(D1)で示す座標系の3次元データを、少なくともビーム軸Xに垂直で基準点CPaを通る基準軸(Asa)を中心とするビームの偏向角度と、ビーム軸Xと基準軸Asaに垂直で基準点CPbを通る基準軸(Asb)を中心とするビームの偏向角度を用いて規定することになる。そのため、制御データ生成ユニット23において生成するマルチリーフコリメータ5の駆動コードが、照射条件設定ユニット22で求めた最適な照射計画に応じた開口形状(透過形状SP)を実現するような駆動コードとなる。つまり、本発明の実施の形態6にかかる治療計画装置20では、治療計画の役割を果たすための機能(モジュール)の中に、2連走査を想定した特殊な座標系へ変換する機能が用意され、その特殊な座標系で3次元データを規定するようにした。そのため、患部の形状に合わせて開口部の形状を生成するための形状データも、リーフ駆動指令値も、基準点を中心とした角度を含む同じ形式(一方の角度は、リーフ列5中の当該角度に近い対向面Pを有するリーフ板5の選択となる)で表すことができる。したがって、2連走査的にビームが広がる照射系においてマルチリーフコリメータ5を最適に制御する駆動コードを容易に生成する事ができる。
【0095】
そのため、本発明の実施の形態6にかかる治療計画装置20では、粒子ビームが2連走査的な広がりを生じる照射系に対して、半影帯を抑制する事が可能な上述したマルチリーフコリメータ5、205を用いた粒子線治療装置に対し、患部の形状に合わせて開口部の形状を生成するためにリーフの駆動指令値を、治療計画装置20内で入出力する3次元データをそのまま利用して生成することができる。
【0096】
以上のように、本実施の形態6にかかる治療計画装置20によれば、照射対象である患部の画像データから3次元データを生成する3次元データ生成ユニット21と、生成した3次元データに基づいて、照射条件を設定する照射条件設定ユニット22と、設定した照射条件を基に、粒子線治療装置の制御データのうち、少なくとも上記実施の形態1ないし5にかかるマルチリーフコリメータ5の制御データを生成する制御データ生成ユニット23とを備え、3次元データ生成ユニット21は、前記3次元データを、ビーム軸Xに垂直で基準点CPaを通る基準軸Asaを中心とするビームの偏向角度ψと、ビーム軸Xと基準軸Asaに垂直で基準点CPbを通る基準軸(Asb)を中心とするビームの偏向角度ψと、基準軸AsbまたはAsb,あるいは基準点CPaまたはCPbからの距離rで規定する座標系で生成する、ように構成したので、患部の形状に合わせて開口部の形状を生成するためにリーフの駆動指令値を、治療計画装置20内で入出力する3次元データをそのまま利用して生成することができる。つまり、制御データ生成ユニット23では、前記制御データを2つの偏向角度ψとψで規定できるので、粒子ビームが2連走査的な広がりを生じる照射系に対して、半影帯を抑制してコントラストの高い良好なビームで照射することができる粒子線治療装置に対し、コントラストが高く、精度の高い照射が可能となる。
【符号の説明】
【0097】
1 ワブラ電磁石(1a:x方向(上流)走査電磁石、1b:y方向(下流)走査電磁石)、 2 リッジフィルタ、 3 レンジシフタ、 4 リングコリメータ、
5 マルチリーフコリメータ(5:リーフ板、5:リーフ群、5:リーフ駆動部)、 6 ボーラス、 10 粒子線治療装置。
20 治療計画装置、 21 3次元データ生成ユニット、 22 照射条件設定ユニット、 23 制御データ生成ユニット。
sa 上流走査電磁石の走査軸(第1の軸)(EAs 仮想軸)、 Asb 下流走査電磁石の走査軸(第2の軸)、 CPa 第1の基準点、 CPb 第2の基準点、 E リーフ板の対向する一端面、 F 粒子ビームの線束(広がり)、 OL リーフ板の駆動軌道、 P リーフ板の(Eに隣接する)ビーム入射面側の端面、 P リーフ板の厚み方向の対向面、 PS 透過形状、 P リーフ板の(Eに隣接する)ビーム出射面側の端面、 ST 粒子ビームの走査軌跡、 X 粒子ビームのビーム軸(E マルチリーフコリメータに入射するビームのビーム軸)
百位の数字は実施形態による変形例を示す。

【特許請求の範囲】
【請求項1】
加速された荷電粒子ビームのビーム軌道上に配置され、照射対象に適合するように前記荷電粒子ビームの照射野を制限若しくは成形するためのマルチリーフコリメータであって、
複数のリーフ板の一端面を揃えて厚み方向に並べたリーフ列と、
前記複数のリーフ板のそれぞれに対して、前記一端面を前記荷電粒子ビームのビーム軸に対して接近または離反方向に駆動させるリーフ板駆動機構と、を備え、
前記複数のリーフ板のそれぞれは、方向により異なる2つの極率半径を有する曲面を有し、前記2つの曲率半径のうち、一方の曲率半径の中心軸である第1の軸は前記ビーム軸上の第一基準点を通り、他方の極率半径の中心軸である第2の軸は前記ビーム軸上で前記第一基準点から離れた第二基準点を通ることを特徴とするマルチリーフコリメータ。
【請求項2】
前記方向により異なる2つの極率半径を有する曲面が、当該マルチリーフコリメータの底面部分に該当する端面であることを特徴とする、請求項1に記載のマルチリーフコリメータ
【請求項3】
前記方向により異なる2つの極率半径を有する曲面が、当該マルチリーフコリメータの上面部分に該当する端面であることを特徴とする、請求項1または2に記載のマルチリーフコリメータ。
【請求項4】
加速された荷電粒子ビームのビーム軌道上に配置され、照射対象に適合するように前記荷電粒子ビームの照射野を制限若しくは成形するためのマルチリーフコリメータであって、
複数のリーフ板の一端面を揃えて厚み方向に並べたリーフ列と、
前記複数のリーフ板のそれぞれに対して、前記一端面を前記荷電粒子ビームのビーム軸に対して接近または離反方向に駆動させるリーフ板駆動機構と、を備え、
前記複数のリーフ板のそれぞれは、
第一基準点を含む第1の軸を中心とする異なる半径の2つの円弧と前記第1の軸に垂直な面内で前記第一基準点から延びる2本の直線とで囲まれる断面を、
前記ビーム軸上で前記第一基準点から離れた第二基準点を含み、前記第1の軸と方向が異なる第2の軸の周りに回転することにより生じるリングの一部分からなるように形成されていることを特徴とするマルチリーフコリメータ。
【請求項5】
加速器から供給された粒子ビームを走査方向が異なる2つの電磁石で走査して照射する照射ノズルと、
前記照射ノズルから照射された粒子ビーム中に配置された請求項1ないし4のいずれか1項に記載のマルチリーフコリメータと、を備え、
前記マルチリーフコリメータは、前記第1の軸が前記2つの電磁石のうちの一方の電磁石の走査軸に一致するとともに、前記第2の軸が他方の電磁石の走査軸に一致するように配置されている、
ことを特徴とする粒子線治療装置。
【請求項6】
前記照射ノズルは、スパイラルワブラ法により、照射野を拡大するように前記粒子ビームを照射することを特徴とする請求項5に記載の粒子線治療装置。
【請求項7】
前記照射ノズルは、スキャニング法により、前記粒子ビームを照射することを特徴とする請求項5に記載の粒子線治療装置。
【請求項8】
前記2つの方向の走査のうち、一方の走査をビーム軸の方向を偏向する偏向電磁石で行い、前記第一基準点および前記第二基準点を設定するビーム軸を前記マルチリーフコリメータに入射するビームのビーム軸としたことを特徴とする請求項5に記載の粒子線治療装置。
【請求項9】
照射対象の画像データから3次元データを生成する3次元データ生成ユニットと、
生成した3次元データに基づいて、照射条件を設定する照射条件設定ユニットと、
設定した照射条件を基に、請求項5ないし8のいずれか1項に記載の粒子線治療装置におけるマルチリーフコリメータのリーフ駆動を制御する制御データを生成する制御データ生成ユニットと、を備え、
前記3次元データ生成ユニットは、前記3次元データを少なくとも前記第1の軸を中心とするビームの偏向角度と、前記第2の軸を中心とするビームの偏向角度とを用いて生成する、
ことを特徴とする治療計画装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−40349(P2012−40349A)
【公開日】平成24年3月1日(2012.3.1)
【国際特許分類】
【出願番号】特願2011−21678(P2011−21678)
【出願日】平成23年2月3日(2011.2.3)
【分割の表示】特願2010−545295(P2010−545295)の分割
【原出願日】平成22年8月17日(2010.8.17)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】