説明

モノリス状有機多孔質体、モノリス状有機多孔質イオン交換体、それらの製造方法及びケミカルフィルター

【課題】化学的に安定な疎水性であって、空孔の連続性が高くてその大きさに偏りがなく、流体透過時の圧力損失が低いモノリス状有機多孔質体、更に上記特性に加えて更に、体積当りのイオン交換容量の大きいモノリス状有機多孔質イオン交換体、それらの製造方法及びケミカルフィルターを提供する。
【解決手段】イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量が0.3mg当量/ml以上であり、イオン交換基が該多孔質イオン交換体中に均一に分布しているモノリス状有機多孔質イオン交換体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、吸着剤あるいはクロマトグラフィー用充填剤や脱イオン水製造装置等に用いられるイオン交換体として有用な共連続構造を有するモノリス状有機多孔質体、モノリス状有機多孔質イオン交換体、それらの製造方法及びケミカルフィルターに関するものである。
【背景技術】
【0002】
特開2002−306976号には、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び必要に応じて重合開始剤とを混合し、油中水滴型エマルジョンを得、これを重合させて、連続マクロポア構造のモノリス状有機多孔質体を得る製造方法が開示されている。上記方法で得られる有機多孔質体やそれにイオン交換基を導入した有機多孔質イオン交換体は、吸着剤、クロマトグラフィー用充填剤および脱イオン水製造装置等に用いられるイオン交換体として有用である。
【0003】
しかし、該有機多孔質イオン交換体は、全細孔容積を低下させて水湿潤状態での体積当りのイオン交換容量を大きくすると共通の開口となるメソポアが著しく小さくなり、更に全細孔容積を低下させていくと共通の開口が消失するといったその構造上の制約から、実用的に要求される低い圧力損失を達成しようとすると体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させていくと圧力損失が増加するといった欠点を有していた。
【0004】
また、特開2004−321930号公報には、連続気泡構造のモノリス状有機多孔質イオン交換体を吸着層として用いるケミカルフィルターが開示されている。このケミカルフィルターによれば、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能なものである。
【0005】
一方、有機多孔質体の構造として、三次元的に連続した骨格相と、その骨格相間に三次元的に連続した空孔相とからなり、両相が絡み合った共連続構造が知られている。特開2007-154083号公報には、マイクロメートルサイズの平均直径を有し、三次元網目状に連続した細孔と有機物質に富む骨格相からなる共連続構造をもつ粒子凝集型でない有機高分子ゲル状のアフィニティー担体であって、当該アフィニティー担体が、架橋剤としての、少なくとも二官能性以上のビニルモノマー化合物、メタクリレート化合物及びアクリレート化合物の少なくともいずれか1種と、一官能性親水性モノマーとの共重合体であり、しかも、前記アフィニティー担体における前記架橋剤と前記一官能性親水性モノマーの体積比率が100〜10:0〜90であるアフィニティー担体が開示されている。このアフィニティー担体は、モノリス構造を維持するために、骨格の架橋密度を高くしている。また、このアフィニティー担体は、非特異的吸着を十分に抑制する親水的特性を有している。また、N. Tsujioka et al., Macromolecules2005,38, 9901には、共連続構造を有し、エポキシ樹脂からなるモノリス状有機多孔質体が開示されている。
【特許文献1】特開2007-154083号公報(請求項1)
【特許文献2】特開2004−321930号公報(請求項1)
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、特開2007-154083号公報において、実際に得られているアフィニティー担体はナノメートルサイズの細孔であるため、流体を透過させる際の圧力損失が高く、低圧力損失下で大流量の水を処理する必要のある脱イオン水製造装置に充填し、イオン交換体とすることは困難であった。また、アフィニティー担体は親水性であるため、疎水性物質の吸着剤として用いるためには、表面の疎水処理等の煩雑且つコストアップを伴う操作が必要であるという問題があった。また、エポキシ樹脂へのイオン交換基等の官能基の導入は容易ではないという問題もあった。
【0007】
このため、化学的に安定な疎水性であって、空孔の連続性が高くてその大きさに偏りがなく、連続した空孔が大きくて水や気体等の流体を透過させた際の圧力損失が低いモノリス状有機多孔質体の開発が望まれていた。また、上記特性に加えて更に、体積当りのイオン交換容量が大きいモノリス状有機多孔質イオン交換体の開発が望まれていた。また、従来にも増してガス状汚染物質の吸着除去能力の高いケミカルフィルターの開発が望まれていた。
【0008】
従って、本発明の目的は、上記従来の技術の問題点を解決したものであって、化学的に安定な疎水性であって、空孔の連続性が高くてその大きさに偏りがなく、流体透過時の圧力損失が低いモノリス状有機多孔質体、更に上記特性に加えて更に、体積当りのイオン交換容量の大きいモノリス状有機多孔質イオン交換体およびそれらの製造方法を提供することにある。また、本発明の他の目的は、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能なケミカルフィルターを提供することにある。
【課題を解決するための手段】
【0009】
かかる実情において、本発明者らは鋭意検討を行った結果、特開2002−306976号公報記載の方法で得られた大きな細孔容積を有するモノリス状有機多孔質体(中間体)の存在下に、芳香族ビニルモノマーと架橋剤を、特定有機溶媒中で静置重合すれば、三次元的に連続した芳香族ビニルポリマー骨格と、その骨格相間に三次元的に連続した空孔とからなり、両相が絡み合った共連続構造の疎水性モノリスが得られること、この共連続構造のモノリスは、空孔の連続性が高くてその大きさに偏りがなく、流体透過時の圧力損失が低いこと、更にこの共連続構造の骨格が太いためイオン交換基を導入すれば、体積当りのイオン交換容量の大きなモノリス状有機多孔質イオン交換体が得られること、該モノリス状有機多孔質イオン交換体は、イオン交換が迅速かつ均一でイオン交換帯長さが圧倒的に短く、更に、体積当りの吸着容量やイオン交換容量が大きい、連続空孔が大きいため圧力損失が格段に小さい、機械的強度が高く、ハンドリング性に優れ、更に気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能である等、従来のモノリス状有機多孔質イオン交換体が達成できなかった、優れた特性を兼備していることなどを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明は、全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであるモノリス状有機多孔質体を提供するものである。
【0011】
また、本発明は、全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであって、下記工程;イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行うIII工程、を行うことで得られることを特徴とするモノリス状有機多孔質体を提供するものである。
【0012】
また、本発明は、イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量が0.3mg当量/ml以上であり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とするモノリス状有機多孔質イオン交換体を提供するものである。
【0013】
また、本発明は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つI工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、を行うことを特徴とするモノリス状有機多孔質体の製造方法を提供するものである。
【0014】
また、本発明は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、該III工程で得られた共連続構造体にイオン交換基を導入するIV工程、を行うことを特徴とするモノリス状有機多孔質イオン交換体の製造方法を提供するものである。
【0015】
また、本発明は、前記モノリス状有機多孔質体を吸着層として用いることを特徴とするケミカルフィルターを提供するものである。
【0016】
また、本発明は、前記モノリス状有機多孔質イオン交換体を吸着層として用いることを特徴とするケミカルフィルターを提供するものである。
【発明の効果】
【0017】
本発明の共連続構造のモノリス状有機多孔質体は、三次元的に連続した空孔の連続性が高くてその大きさに偏りがなく、また空孔が大きいため、被処理水を低圧、大流量で長期間通水することが可能であり、更に三次元的に連続した骨格が骨太であるため、吸着容量にも優れている。したがって、従来用いられてきた合成吸着剤を代替可能であるばかりでなく、その優れた吸着特性を生かして、合成吸着剤では対応できなかった微量成分の吸着除去等新しい用途分野への応用が可能となる。
【0018】
また、本発明のモノリス状有機多孔質イオン交換体は、水湿潤状態での体積当りのイオン交換容量が大きく、かつ三次元的に連続した空孔が大きいため、被処理水を低圧、大流量で長期間通水することが可能であり、2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して好適に用いることができる。また、空孔の連続性が高くてその大きさに偏りがないためイオンの吸着挙動が極めて均一であり、イオン交換帯長さが極めて短く、理論段数も高い。また、超純水中の超微量イオンの吸着特性にも優れているため、クロマトグラフィー用充填剤や超純水製造装置に充填するイオン交換体として好適に用いることができる。
【0019】
また、本発明の製造方法によれば、前記モノリス状有機多孔質イオン交換体又は前記モノリス状有機多孔質イオン交換体を簡易に且つ再現性良く製造することができる。
【0020】
また、本発明のケミカルフィルターは、吸着層として用いる細孔容積や比表面積が格段に大きく、その表面や内部にイオン交換基が高密度に導入されているため、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、また、ガス状汚染物質が超微量であっても除去可能である。
【発明を実施するための最良の形態】
【0021】
本明細書中、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「モノリスイオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」とも言う。
【0022】
(モノリスの説明)
本発明の共連続構造を有するモノリスの基本構造は、太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔が配置された構造である。すなわち、共連続構造は図1の模式図に示すように、連続する骨格相1と連続する空孔相2とが絡み合ってそれぞれが共に3次元的に連続する構造10である。この連続した空孔2は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動が達成できる。また、骨格が太いため機械的強度が高い。
【0023】
三次元的に連続した空孔の直径が8μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、80μmを超えると、流体とモノリスとの接触が不十分となり、その結果、吸着特性が低下してしまうため好ましくない。上記三次元的に連続した空孔の大きさは、水銀圧入法により細孔分布曲線を測定し、細孔分布曲線の極大値として得ることができる。
【0024】
本発明のモノリスにおいて、共連続構造体の骨格の太さは0.8〜40μm、好ましくは1〜30μmである。骨格の太さが0.8μm未満であると、体積当りの吸着容量が低下したり、機械的強度が低下するため好ましくなく、一方、40μmを超えると、吸着特性の均一性が失われるため好ましくない。モノリスの骨格の太さは、SEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定して算出すればよい。
【0025】
また、本発明のモノリスは、0.5〜5ml/gの全細孔容積を有する。全細孔容積が0.5ml/g未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、流体の処理量が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りの吸着容量が低下してしまうため好ましくない。本発明のモノリスは、棒状骨格の太さ、空孔の径及び全細孔容積が上記範囲にあり、これを吸着剤として用いた場合、流体との接触面積が大きく、かつ流体の円滑な流通が可能となるため、優れた性能が発揮できる。
【0026】
なお、モノリスに水を透過させた際の圧力損失は、多孔質体を1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.005〜0.5MPa/m・LVの範囲、特に0.01〜0.1MPa/m・LVである。
【0027】
本発明のモノリスにおいて、共連続構造体の骨格を構成する材料は、全構成単位中、0.3〜5モル%、好ましくは0.5〜3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。該芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸・アルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい。
【0028】
本発明のモノリスは、その厚みが1mm以上であり、膜状の多孔質体とは区別される。厚みが1mm未満であると、多孔質体一枚当りの吸着容量が極端に低下してしまうため好ましくない。該モノリスの厚みは、好適には3mm〜1000mmである。また、本発明のモノリスは、構造の均一性が高いため機械的強度が高い。
【0029】
本発明のモノリスを吸着剤として使用する場合、例えば、円筒型カラムや角型カラムに、該モノリスを当該カラムに挿入できる形状に切り出したものを吸着剤として充填し、これにベンゼン、トルエン、フェノール、パラフィン等の疎水性物質を含有する被処理水を通水させれば、該吸着剤に前記疎水性物質が効率よく吸着される。
【0030】
(モノリスイオン交換体の説明)
次ぎに、本発明のモノリスイオン交換体について説明する。モノリスイオン交換体において、モノリスと同一構成要素については説明を省略し、異なる点について主に説明する。モノリスイオン交換体は、イオン交換基が導入された太さが1〜60μm、好ましくは3〜58μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μm、好ましくは15〜90μm、特に20〜80μmの三次元的に連続した空孔とからなる共連続構造体である。モノリスイオン交換体の骨格の太さ及び空孔の直径は、モノリスにイオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの骨格の太さ及び空孔の直径よりも大となる。この連続した空孔は、従来の連続気泡型モノリス状有機多孔質イオン交換体や粒子凝集型モノリス状有機多孔質イオン交換体に比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動が達成できる。三次元的に連続した空孔の直径がが10μm未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、流体と有機多孔質イオン交換体との接触が不十分となり、その結果、イオン交換特性が不均一となったり長微量イオンの捕捉能力が低下したりするため好ましくない。
【0031】
また、骨格の太さが1μm未満であると、体積当りのイオン交換容量が低下する、機械的強度が低下する等の欠点が生じるため好ましくなく、一方、骨格の太さが大き過ぎると、イオン交換特性の均一性が失われ、イオン交換帯長さが長くなってしまうため好ましくない。上記連続構造体の空孔の直径は、イオン交換基導入前のモノリスの空孔の直径に、イオン交換基導入前後のモノリスの膨潤率を乗じて算出する方法及びSEM画像を公知の方法で解析する方法が挙げられる。また、骨格の太さは、イオン交換基導入前のモノリスのSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、それにイオン交換基導入前後のモノリスの膨潤率を乗じて算出する方法及びSEM画像を公知の方法で解析する方法が挙げられる。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。
【0032】
モノリスイオン交換体は、3次元的に連続した棒状骨格の太さが10μm未満であると、体積当りのイオン交換容量が低下してしまうため好ましくなく、100μmを超えると、イオン交換特性の均一性が失われるため好ましくない。モノリスイオン交換体の壁部の定義及び測定方法などは、モノリスと同様である。
【0033】
また、モノリスイオン交換体の全細孔容積は、モノリスの全細孔容積と同様である。すなわち、モノリスにイオン交換基を導入することで膨潤し開口径が大きくなっても、骨格部が太るため全細孔容積はほとんど変化しない。全細孔容積が0.5ml/g未満であると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りのイオン交換容量が低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、流体との接触が極めて均一で接触面積も大きく、かつ低圧力損失下で流体の透過が可能となるため、イオン交換体として優れた性能を発揮することができる。
【0034】
なお、モノリスイオン交換体に水を透過させた際の圧力損失は、モノリスに水を透過させた際の圧力損失と同様である。
【0035】
本発明のモノリスイオン交換体は、水湿潤状態での体積当りのイオン交換容量が0.3mg当量/ml以上、好ましくは0.4〜1.8mg当量/mlのイオン交換容量を有する。特開2002−306976号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質イオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、本発明のモノリスイオン交換体は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当りのイオン交換容量を飛躍的に大きくすることができる。体積当りのイオン交換容量が0.3mg当量/ml未満であると、破過までに処理できるイオンを含んだ水の量、即ち脱イオン水の製造能力が低下してしまうため好ましくない。なお、本発明のモノリスイオン交換体の乾燥状態における重量当りのイオン交換容量は特に限定されないが、イオン交換基が多孔質体の骨格表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gである。なお、イオン交換基が骨格表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。
【0036】
本発明のモノリスに導入するイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、スルホベタイン等の両性イオン交換基が挙げられる。
【0037】
本発明のモノリスイオン交換体において、導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで骨格表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMA等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、モノリスの骨格表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。
【0038】
本発明のモノリスは、上記I工程〜III工程を行なうことにより得られる。本発明のモノリスの製造方法において、I工程は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス中間体を得る工程である。このモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。
【0039】
(モノリス中間体の製造方法)
イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーの中で、好適なものとしては、芳香族ビニルモノマーであり、例えばスチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜5モル%、好ましくは0.3〜3モル%とすることが、後の工程でイオン交換基量を多く導入するに際して必要な機械的強度が得られる点で好ましい。
【0040】
界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は1種単独又は2種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。
【0041】
また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等が挙げられる。
【0042】
イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。
【0043】
I工程で得られるモノリス中間体は、架橋構造を有する有機ポリマー材料、好適には芳香族ビニルポリマーである。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜5モル%、好ましくは0.3〜3モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、5モル%を超えると、モノリスの構造が共連続構造を逸脱し易くなるため好ましくない。特に、全細孔容積が16〜20ml/gと本発明の中では小さい場合には、共連続構造を形成させるため、架橋構造単位は3モル未満とすることが好ましい。
【0044】
モノリス中間体のポリマー材料の種類としては、特に制限はなく、前述のモノリスのポリマー材料と同じものが挙げられる。これにより、モノリス中間体の骨格に同様のポリマーを形成して、棒状骨格を太らせ均一な連続骨格構造のモノリスを得ることができる。
【0045】
モノリス中間体の全細孔容積は、16ml/gを超え、30ml/g以下、好適には6〜25ml/gである。すなわち、このモノリス中間体は、基本的には連続マクロポア構造ではあるが、マクロポアとマクロポアの重なり部分である開口(メソポア)が格段に大きいため、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に限りなく近い構造を有している。これを重合系に共存させると、モノリス中間体の構造を鋳型として共連続構造の多孔質体が形成される。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が共連続構造から連続マクロポア構造に変化してしまうため好ましくなく、一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの機械的強度が低下したり、体積当たりのイオン交換容量が低下してしまうため好ましくない。モノリス中間体の全細孔容積を本発明の特定の範囲とするには、モノマーと水の比を、概ね1:20〜1:40とすればよい。
【0046】
また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が5〜100μmである。開口の平均直径が5μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、流体とモノリスやモノリスイオン交換体との接触が不十分となり、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。
【0047】
(モノリスの製造方法)
II工程は、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
【0048】
II工程で用いられる芳香族ビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性の芳香族ビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等が挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられる芳香族ビニルモノマーは、スチレン、ビニルベンジルクロライド等である。
【0049】
これら芳香族ビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で5〜50倍、好ましくは5〜40倍である。芳香族ビニルモノマー添加量が多孔質体に対して5倍未満であると、棒状骨格を太くできず体積当りの吸着容量やイオン交換基導入後の体積当りのイオン交換容量が小さくなってしまうため好ましくない。一方、芳香族ビニルモノマー添加量が50倍を超えると、連続空孔の径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。
【0050】
II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量(全油溶性モノマー)に対して0.3〜5モル%、特に0.3〜3モル%である。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくなく、一方、多過ぎると、モノリスの脆化が進行して柔軟性が失われる、イオン交換基の導入量が減少してしまうといった問題点が生じるため好ましくない。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、イオン交換基導入反応時にクラックが生じやすくなる。
【0051】
II工程で用いられる有機溶媒は、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、芳香族ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、芳香族ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、芳香族ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記芳香族ビニルモノマーの濃度が30〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱して芳香族ビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が本発明の範囲から逸脱してしまうため好ましくない。一方、芳香族ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。
【0052】
重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、芳香族ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。
【0053】
III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の連続マクロポア構造を共連続構造に変化させ、骨太骨格のモノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に特定の連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の共連続構造のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に全細孔容積が大きな多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行し、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に変化して共連続構造を有するモノリス状有機多孔質体が形成されると考えられる。
【0054】
反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後の共連続構造のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。
【0055】
III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、芳香族ビニルモノマーの添加量が重量で5〜50倍、好ましくは5〜40倍となるように配合するのが好適である。これにより、適度な大きさの空孔が三次元的に連続し、且つ骨太の骨格が3次元的に連続する共連続構造のモノリスを得ることができる。反応容器中、混合物中の芳香族ビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。
【0056】
重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択できる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して共連続構造のモノリスを得る。
【0057】
(モノリスイオン交換体の製造方法)
次に、本発明のモノリスイオン交換体の製造方法について説明する。該モノリスイオン交換体の製造方法としては、特に制限はないが、上記の方法によりモノリスを製造した後、イオン交換基を導入する方法が、得られるモノリスイオン交換体の多孔構造を厳密にコントロールできる点で好ましい。
【0058】
上記モノリスにイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;モノリスに均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部に導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。また、ベタインを導入する方法としては、上記の方法によりモノリスに三級アミンを導入した後、モノヨード酢酸を反応させ導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、ベタイン、スルホベタイン等の両性イオン交換基が挙げられる。
【0059】
本発明のモノリスイオン交換体は、共連続構造のモノリスにイオン交換基が導入されるため、例えばモノリスの1.4〜1.9倍に大きく膨潤する。また、空孔径が膨潤で大きくなっても全細孔容積は変化しない。従って、本発明のモノリスイオン交換体は、3次元的に連続する空孔の大きさが格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、骨格が太いため、水湿潤状態での体積当りのイオン交換容量を大きくでき、被処理水を低圧、大流量で長期間通水することが可能であり、2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して好適に用いることができる。
【0060】
本発明のケミカルフィルターは、上記モノリス、該モノリスに貫通孔を設けたもの、モノリスイオン交換体又は該モノリスイオン交換体に貫通孔を設けたもの、さらには、すでに公知のイオン交換樹脂やイオン交換繊維を用いた吸着層と上記モノリスを組み合わせたものを吸着層として備えるものであれば、フィルターの構成に特に制限はないが、通常、吸着層と該吸着層を支持する支持枠体(ケーシング)とで構成される。該支持枠体は吸着層を支持すると共に、既存設備(設置場所)との接合を司る機能を有する。支持部材の被処理気体流通部分は、脱ガスのないステンレス、アルミニウム、プラスチック等の素材からなる。吸着層の形状としては、特に制限されず、所定の厚みを有するブロック形状、薄板を複数枚重ね合わせた積層形状、定形状又は不定形状の粒状物を多数充填した充填構造などが挙げられる。また、吸着層からガス状有機系汚染物質が極微量発生する恐れのある場合、あるいは被処理気体中の有機性ガス状汚染物質の濃度が高い場合には、吸着層の下流側に物理吸着層を付設することが、下流側の物理吸着層で上流側の吸着層で除去できなかった残部のガス状有機系汚染物質を確実に除去できる点で好適である。
【0061】
本発明のケミカルフィルターの比表面積は1〜20m/g、好ましくは2〜18m/gである。比表面積が小さ過ぎると、処理能力が低下するため好ましくなく、大き過ぎると、モノリスあるいはモノリスイオン交換体の強度が著しく低下するため、好ましくない。比表面積を上記範囲とするには、芳香族ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、モノリス製造の際、芳香族ビニルモノマーの添加量をモノリス中間体に対して重量で5〜50倍とし、該芳香族ビニルモノマー濃度が30〜80重量%となるように有機溶媒で希釈して重合すればよい。比表面積は水銀圧入法で測定することができる。
【0062】
該物理吸着層としては、脱臭用途に使用できる吸着剤が使用できる。具体的には、活性炭、活性炭素繊維及びゼオライトなどが挙げられる。該吸着剤は、比表面積が200m2/g以上の多孔質体が好ましく、比表面積が500m2/g以上の多孔質体がさらに好ましい。また、該物理吸着層から物理吸着剤などが飛散する恐れのある場合には、該物理吸着層の下流側に通気性を有するカバー材を配置することが好ましい。カバー材としては、有機高分子材料からなる不織布及び多孔質膜、並びにアルミニウム及びステンレス製のメッシュ等が挙げられる。これらの中、有機高分子材料からなる不織布や多孔質膜は低圧力損失で気体を透過でき、且つ微粒子捕集能力が高いため、特に好適である。
【0063】
貫通孔は所定の厚みを有するブロック形状のモノリス又はモノリスイオン交換体において、通気方向に延びるように複数個形成するのがよい。貫通孔を設けることにより、通気差圧を更に低下させることができる。モノリス又はモノリスイオン交換体に貫通孔を設けたものを吸着層として使用する場合、見かけのモノリスに占める貫通孔の空隙率は20〜50%、好ましくは25〜40%である。貫通孔の空隙率が低すぎると、通気差圧の低下傾向が小さくなり、貫通孔の空隙率が高すぎると、ガス状汚染物質の除去効率が低下する。
【0064】
本発明のケミカルフィルターは、半導体産業や医療用等に用いられるクリーンルームやクリーンベンチ等の高度清浄空間を形成するため、クリーンルーム内の空気や雰囲気中に含まれる有機系又は無機系のガス状汚染物質及びその他の汚染物質をイオン交換又は吸着により除去する。ガス状汚染物質及びその他の汚染物質としては、二酸化硫黄、塩酸、フッ酸、硝酸等の酸性ガス、アンモニア等の塩基性ガス、塩化アンモニウム等の塩類、フタル酸エステル系に代表される各種可塑剤、フェノール系及びリン系の酸化防止剤、ベンゾトリアゾール系などの紫外線吸収剤、リン系及びハロゲン系の難燃剤等が挙げられる。酸性ガス、塩基性ガス及び塩類はイオン交換により除去でき、各種可塑剤、酸化防止剤、紫外線吸収剤及び難燃剤は強い極性を有するため、吸着により除去することができる。
【0065】
本発明のケミカルフィルターの使用条件としては、公知の条件で行なうことができる。使用雰囲気の湿度としては、相対湿度で30〜80%程度である。気体透過速度としては、特に制限されないが、例えば0.1〜10m/sの範囲である。従来の粒状イオン交換樹脂を吸着層として使用する場合、気体透過速度は0.3〜0.5m/s程度であるが、本発明のケミカルフィルターによれば、気体透過速度が5〜10m/sのように速くても、共連続構造でありイオン交換容量が大きく且つ効率良くイオン交換が行なわれるため、ガス状汚染物質を吸着除去できる。また、被処理空気中の汚染物質濃度において、従来のケミカルフィルターによれば、適用範囲はアンモニアの場合、通常0.1〜10μg/m、塩化水素の場合、通常5〜50ng/m、二酸化硫黄の場合、通常0.1〜10μg/m、フタル酸エステルの場合、通常0.1〜5μg/mであるが、本発明のケミカルフィルターによれば、上記範囲に加えて、アンモニア100ng/m以下、塩化水素5ng/m以下、二酸化硫黄100ng/m以下、フタル酸エステル100ng/m以下の極微量濃度であっても十分除去できる。なお、吸着層として用いるモノリスイオン交換体は、使用に際しては、従来のイオン交換樹脂の場合と同様、得られたモノリスイオン交換体を公知の再生方法により処理して用いる。すなわち、モノリスカチオン交換体は、酸処理により酸型として用い、モノリスアニオン交換体は、アルカリ処理によりOH型として用いる。また、ケミカルフィルター処理気体が使用雰囲気の湿度になるよう、予めケミカルフィルターをその使用空間における平衡水分率となる水分保有量にしておくことが、慣らし運転を省略できる点で好ましい。本発明のケミカルフィルターをブロック状で用い、気体透過速度が5〜10m/sの場合、ブロック状の吸着層の通気方向の長さは概ね50〜200mmである。
【0066】
本発明のケミカルフィルターは、吸着層として用いるモノリス又はモノリスイオン交換体の細孔容積や比表面積が格段に大きく、その表面や内部にイオン交換基が高密度に導入されているため、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、また、ガス状汚染物質が超微量であっても除去可能である。すなわち、従来の粒状のイオン交換樹脂は、粒子内部のイオン交換が遅く、イオン交換容量の全てが有効に使用されない。例えば粒径500μmの粒状イオン交換樹脂の場合、効率よく吸着が行なわれる範囲が表面から100μmと仮定すると、表面層の体積分率は約50%であり、効率よく吸着が行なわれる範囲のイオン交換容量は約半分となる。一方、本発明に係るモノリスイオン交換体は壁の厚みが2〜10μmであるため、全てのイオン交換基が効率よく使用される。
【0067】
本発明のケミカルフィルターの吸着層に用いるモノリスイオン交換体はイオン交換体長さについても、従来の粒状イオン交換樹脂に比べて約1/4と非常に小さく、同じ体積の吸着層を用いても寿命が長くなる。
【0068】
本発明のケミカルフィルターは、送風機ユニットと組み合わせて又は送風機ユニットに組み込まれて使用することができる。送風機ユニットとしては、特に制限はないが、通常、軸流ファンまたはブロアを送風源とする送風機と、その出力を調節するコントローラーと、該送風機と該コントローラーを収める第1ケーシングと、該ケーシングに連結される微粒子除去用のHEPAまたはULPAフィルターと、HEPAまたはULPAフィルターを収める第2ケーシングからなる。第1ケーシング及び第2ケーシングの被処理気体流通部分は、脱ガスのないステンレス、アルミニウム、プラスチック等の素材からなる。微粒子除去用フィルターのろ材についても特に制限はなく、一般的なガラス繊維やPTFEを用いることができる。クリーンルーム等で用いる場合には、ボロンや有機物を放出しないガラス繊維やPTFEがなお好ましい。
【0069】
本発明のケミカルフィルターは微粒子除去用のHEPAまたはULPAフィルターの上流側に付設される。本発明のケミカルフィルターと送風機ユニットを組み合わせる形態としては、互いのケーシング同士を接続して一体化して使用する方法が挙げられる。本発明のケミカルフィルターを送風機ユニットに組み込む形態としては、吸着層を送風機ユニットに組み込む形態である。ケミカルフィルターを送風機ユニットに組み込む形態において、送風機とケミカルフィルターの位置は、どちらが上流側にきてもよい。本発明のケミカルフィルターを送風機ユニットとを組み合わせて使用すれば、ガス状汚染物質と微粒子を共に除去できる点で好ましい。
【0070】
本発明においては、モノリス又はモノリスイオン交換体等をケミカルフィルターの吸着層として用いるため、大きな空孔と均一に導入されたイオン交換基により、静圧の小さな小型の送風機においても効率よく被処理気体中の不純物を除去できる。また、体積当たりのイオン交換容量、比表面積が非常に大きく均一にイオン交換基が導入されているため、除去率の向上と長寿命化が図れる。
【0071】
実施例
次に、実施例を挙げて本発明を具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
【実施例1】
【0072】
(I工程;モノリス中間体の製造)
スチレン5.4g、ジビニルベンゼン0.17g、ソルビタンモノオレエート(以下SMOと略す)1.4gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEM画像(図2)により観察したところ、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は70μm、全細孔容積は21.0ml/gであった。
【0073】
(共連続構造モノリスの製造)
次いで、スチレン76.0g、ジビニルベンゼン4.0g、1-デカノール120g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を直径70mm、厚さ約40mmの円盤状に切断して4.1gを分取した。分取したモノリス中間体を内径75mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約60mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
【0074】
このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.2モル%含有したモノリス(乾燥体)の内部構造をSEMにより観察したところ、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の太さは10μmであった。また、水銀圧入法により測定した当該モノリスの三次元的に連続した空孔の大きさは17μm、全細孔容積は2.9ml/gであった。その結果を表1及び2にまとめて示す。表2中、骨格の太さは骨格の直径で表した。
【0075】
(共連続構造モノリス状カチオン交換体の製造)
上記の方法で製造したモノリスを、直径75mm、厚み約15mmの円盤状に切断した。モノリスの重量は18gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸99gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して共連続構造を有するモノリスカチオン交換体を得た。
【0076】
得られたカチオン交換体を一部切り出し、乾燥させた後、その内部構造をSEMにより観察したところ、当該モノリスカチオン体は共連続構造を維持していることを確認した。そのSEM画像を図3に示す。また、該カチオン交換体の反応前後の膨潤率は1.4倍であり、体積当りのイオン交換容量は水湿潤状態で0.74mg当量/mlであった。水湿潤状態でのモノリスの連続空孔の大きさを、モノリスの値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ24μmであり、骨格の直径は14μm、全細孔容積は2.9ml/gであった。
【0077】
また、水を透過させた際の圧力損失の指標である差圧係数は、0.052MPa/m・LVであり、実用上支障のない低い圧力損失であった。更に、該モノリスカチオン交換体のナトリウムイオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは16mmであり、市販の強酸性カチオン交換樹脂であるアンバーライトIR120B(ロームアンドハース社製)の値(320mm)に比べて圧倒的に短いばかりでなく、従来の連続気泡構造を有するモノリス状多孔質カチオン交換体の値に比べても短かった。その結果を表2にまとめて示す。
【0078】
次に、モノリスカチオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。その結果を図4及び図5に示す。図4及び図5共に、左右の写真はそれぞれ対応している。図4は硫黄原子のカチオン交換体の表面における分布状態を示したものであり、図5は硫黄原子のカチオン交換体の断面(厚み)方向における分布状態を示したものである。図4左側の写真中、左右傾斜して延びるものが骨格部であり、図5左側の写真中、2つの円形状は骨格の断面である。図4及び図5より、スルホン酸基はカチオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることがわかる。
【0079】
実施例2及び3
(共連続構造を有するモノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の種類と使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度および使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法で共連続構造を有するモノリスを製造した。その結果を表1及び表2に示す。
【0080】
(共連続構造を有するモノリスカチオン交換体の製造)
上記の方法で製造したモノリスを、それぞれ実施例1と同様の方法でクロロ硫酸と反応させ、共連続構造を有するモノリスカチオン交換体を製造した。その結果を表2に示す。また、得られた共連続構造を有するモノリスカチオン交換体の内部構造を、SEM画像により観察した結果をそれぞれ図6及び図7に示す。表2から実施例2および3で得られたモノリスカチオン交換体は差圧係数が小さい、体積当りの交換容量が大きい、イオン交換帯長さが短いといった優れた特性を示した。また、実施例2のモノリスカチオン交換体については、機械的特性の評価も行なった。
【0081】
(モノリスカチオン交換体の機械的特性評価)
実施例2で得られたモノリスカチオン交換体を、水湿潤状態で4mm×5mm×10mmの短冊状に切り出し、引張強度試験の試験片とした。この試験片を引張試験機に取り付け、ヘッドスピードを0.5mm/分に設定し、水中、25℃にて試験を行った。その結果、引張強度、引張弾性率はそれぞれ23kPa、15kPaであり、従来のモノリスカチオン交換体に比べて格段に大きな値を示した。また、引張破断伸びは50%であり、従来のモノリスカチオン交換体よりも大きな値であった。
【0082】
実施例4
(共連続構造を有するモノリスの製造)
スチレンの使用量、架橋剤の使用量、有機溶媒の使用量、スチレン及びジビニルベンゼン含浸重合時に共存させるモノリス中間体の多孔構造、架橋密度及び使用量を表1に示す配合量に変更した以外は、実施例1と同様の方法で共連続構造を有するモノリスを製造した。その結果を表1及び表2に示す。
【0083】
(共連続気泡構造を有するモノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリス状有機多孔質体にTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
【0084】
得られたアニオン交換体の反応前後の膨潤率は1.6倍であり、体積当りのイオン交換容量は水湿潤状態で0.44mg当量/mlであった。水湿潤状態でのモノリスイオン交換体の連続空孔の直径を、モノリスの値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ29μmであり、骨格の太さは13μm、全細孔容積は、2.0ml/gであった。
【0085】
また、水を透過させた際の圧力損失の指標である差圧係数は0.020MPa/m・LVであり、実用上支障のない低い圧力損失であった。更に、該モノリスアニオン交換体のフッ化物イオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは22mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて圧倒的に短いばかりでなく、従来の連続気泡構造を有するモノリス状多孔質アニオン交換体の値に比べても短かった。その結果を表2にまとめて示す。また、得られた共連続構造を有するモノリスアニオン交換体の内部構造を、SEM画像により観察した結果を図8に示す。
【0086】
次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩素原子の分布状態を観察した。その結果、塩素原子はアニオン交換体の表面のみならず、内部にも均一に分布しており、四級アンモニウム基がアニオン交換体中に均一に導入されていることが確認できた。
【0087】
比較例1
(連続マクロポア構造を有するモノリス状有機多孔質体の製造)
特開2002−306976号記載の製造方法に準拠して連続マクロポア構造を有するモノリス状有機多孔質体を製造した。すなわち、スチレン19.2g、ジビニルベンゼン1.0g、SMO1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス状有機多孔質体を製造した。
【0088】
このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.3モル%含有した有機多孔質体の内部構造を、SEMにより観察した結果を図9に示す。図9から明らかなように、当該有機多孔質体は連続マクロポア構造を有している。また、SEM画像から測定した壁部の平均厚みは5μm、水銀圧入法により測定した当該有機多孔質体のマクロポとマクロポアの重なり部分(開口)の平均直径は29μm、全細孔容積は8.6ml/gであった。その結果を表1及び2にまとめて示す。表1及び2中、メソポア直径は開口の平均直径を意味する。
【0089】
(連続マクロポア構造を有するモノリスカチオン交換体の製造)
比較例1で製造した有機多孔質体を、直径70mm、厚み約15mmの円盤状に切断した。有機多孔質体の重量は6gであった。これにジクロロメタン1000mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸30gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して連続マクロポア構造を有するモノリス状多孔質カチオン交換体を得た。得られたカチオン交換体の反応前後の膨潤率は1.6倍であり、体積当りのイオン交換容量は、水湿潤状態で0.22mg当量/mlと実施例に比べて小さな値を示した。水湿潤状態での有機多孔質イオン交換体のメソポアの平均直径を、有機多孔質体の値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ46μmであり、骨格を構成する壁面の平均厚み8μm、全細孔容積は、8.6ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は0.013MPa/m・LVであった。結果を表3にまとめて示すが、差圧係数は実施例と同様に小さな値を示したが、体積当りのイオン交換容量は実施例よりかなり低く、イオン交換帯長さは実施例の約3倍と長かった。また、比較例1で得られたモノリスカチオン交換体については、機械的特性の評価も行なった。
【0090】
(従来のモノリスカチオン交換体の機械的特性評価)
比較例1で得られたモノリスカチオン交換体について、実施例2の評価方法と同様の方法で引張試験を行った。その結果、引張強度、引張弾性率はそれぞれ28kPa、12kPaであり、実施例2のモノリスカチオン交換体に比べて低い値であった。また、引張破断伸びも17%であり、本発明のモノリスカチオン交換体よりも小さかった。
【0091】
比較例2
(連続気泡構造を有するモノリス状有機多孔質体の製造)
スチレンの使用量、ジビニルベンゼンの使用量、SMOの使用量を表1に示す配合量に変更した以外は、比較例1と同様の方法で、従来技術により連続マクロポア構造を有するモノリス状有機多孔質体を製造した。その結果を表1及び2に示す。
【0092】
(連続気泡構造を有するモノリスアニオン交換体の製造)
上記の方法で製造した有機多孔質体を、実施例4と同様の方法でクロロメチル基を導入し、トリメチルアミンと反応させることで、従来技術により連続気泡構造を有するモノリスアニオン交換体を製造した。その結果を表2に示すが、差圧係数は実施例と同様に小さな値を示したが、体積当りのイオン交換容量は実施例より低く、イオン交換帯長さは実施例の約4倍と長かった。
【0093】
比較例3
II工程で用いる有機溶媒の種類をポリスチレンの良溶媒であるジオキサンに変更したことを除いて、実施例1と同様の方法で共連続構造を有するモノリスの製造を試みた。しかし、単離した生成物は透明であり、多孔構造の崩壊・消失が示唆された。確認のためSEM観察を行ったが、緻密構造しか観察されず、連続気泡構造は消失していた。
【0094】
実施例5
(共連続構造モノリスの製造)
実施例1と同様の方法で共連続構造モノリスを製造した。
【0095】
(共連続構造モノリスカチオン交換体の製造)
外径75mm、厚み約15mmの円盤に代えて、外径75mm、厚み50mmの円盤としたこと、ジクロロメタン1,500mlに代えて、5,000mlとしたこと、クロロ硫酸99gに代えて、330gとしたこと以外は、実施例1と同様の方法で共連続構造モノリスカチオン交換体を製造した。得られたモノリスカチオン交換体の反応前後の膨潤率、体積当りのイオン交換容量、水湿潤状態でのモノリスの連続空孔の大きさは実施例1と同じ値であった。
【0096】
(共連続構造モノリスカチオン交換体を用いた塩基性ガスの吸着)
実施例5で得られた共連続構造モノリスカチオン交換体を3N塩酸中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリスカチオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、アンモニア濃度5,000ng/mの空気を面風速0.5m/sで供給したときの通気差圧を測定し、透過気体を超純水インピンジャー法でサンプリングし、イオンクロマトグラフ法でアンモニウムイオンの定量を行った。その結果、空気中のアンモニア濃度は50ng/m未満であり、完全にアンモニアを除去できた。
【0097】
比較例4
製造例1(有機多孔質陽イオン交換体の製造)
スチレン38g、ジビニルベンゼン2.0g、ソルビタンモノオレート2.1gおよびアゾビスイソブチロニトリル0.1gを混合し、均一に溶解させた。次に当該スチレン/ジビニルベンゼン/ソルビタンモノオレート/アゾビスイソブチロニトリル混合物を360gの純水に添加し、遊星式攪拌装置である真空攪拌脱泡ミキサー(イーエムイー社製)を用いて13.3kPaの減圧下、底面直径と充填物の高さの比が1:1、公転回転数1000回転/分、自転回転数330回転/分で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、系を窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで18時間ソックスレー抽出し、未反応モノマー、水およびソルビタンモノオレエートを除去した後、85℃で一昼夜減圧乾燥した。このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3モル%含有した有機多孔質体の内部構造をSEMにより観察した結果、当該有機多孔質体は連続気泡構造を有していた。
【0098】
次いで上記有機多孔質体を切断して18gを分取し、ジクロロエタン2400mlを加え60℃で30分加熱した後、室温まで冷却し、クロロ硫酸90gを徐々に加え、室温で24時間反応させた。その後、酢酸を加え、多量の水中に反応物を投入し、水洗して有機多孔質陽イオン交換体を得た。この有機多孔質陽イオン交換体のイオン交換容量は、乾燥多孔質体換算で4.8mg当量/gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基がμmオーダーで有機多孔質体に均一に導入されていることを確認した。また、SEM観察により、有機多孔質体の連続気泡構造はイオン交換基導入後も保持されていることを確認した。また、この有機多孔質陽イオン交換体のメソポアの平均径は、30μm、全細孔容積は10.2ml/gであった。
【0099】
(有機多孔質陽イオン交換体を用いた塩基性ガスの吸着)
製造例1で製造した有機多孔質陽イオン交換体を3N塩酸中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリスカチオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに実施例5と同様の方法でアンモニア除去試験を行った結果、透過空気中のアンモニア濃度は120ng/mとなり、完全にアンモニアを除去することはできなかった。
【0100】
実施例6
モノリスカチオン交換体を3N塩酸中に浸漬する前に、内径2mmのSUS316製パイプにより、円柱状モノリスの見かけの円に対して、直径2mmの孔による空隙率が30%となるよう、軸方向に延びる貫通孔をあけた以外は、実施例5と同様の方法で貫通孔を有するモノリスカチオン交換体を得、更に実施例5と同様の方法で塩基性ガスの吸着を行った。その結果、面風速0.5m/sのときの通気差圧は80Paと非常に低圧損であり、空気中のアンモニア濃度は450ng/mであった。
【0101】
比較例5
上記モノリス状有機多孔質カチオン交換体に代えて、比較例4の連続気泡型モノリス状有機多孔質カチオン交換体を使用したこと以外は、実施例5と同様の方法で貫通孔をあけると共に、塩基性ガスの吸着を行った。その結果、通気差圧は85Paであり、空気中のアンモニア濃度は850ng/mであった。
【0102】
実施例7
(共連続構造モノリス状アニオン交換体の製造)
モノリスアニオン交換体の製造において厚さ15mmの円盤に代えて50mmとしたこと、ジメトキシメタン使用量を1400mlから4700mlとしたこと、四塩化スズの使用量を20mlから67mlとしたこと、クロロ硫酸の使用量を560mlから1870mlとしたこと、THF及びトリメチルアミン30%水溶液の使用量をそれぞれ1000mlから3400ml、600mlから2000mlとしたこと以外は、実施例4に準拠してモノリス状アニオン交換体を製造した。
【0103】
(共連続構造モノリス状アニオン交換体を用いた酸性ガスの吸着)
上記方法で得られたモノリス状アニオン交換体を1N水酸化ナトリウム水溶液中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリス状有機多孔質アニオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、二酸化硫黄濃度5,000ng/mの空気を面風速0.5m/sで供給したときの通気差圧を測定し、透過気体を超純水インピンジャー法でサンプリングし、イオンクロマトグラフ法で硫酸イオンの定量を行った。その結果、空気中の二酸化硫黄濃度は50ng/m未満であり、完全に二酸化硫黄を除去できた。
【0104】
比較例6
スチレンに代えてクロロメチルスチレンを用いたこと及びソルビタンモノオレートの量を4.5gに変更したこと以外は、比較例4と同様の方法で連続気泡型のモノリス状有機多孔質体を製造した。この有機多孔質体を切断して15.0gを分取し、テトラヒドロフラン1500gを加え60℃で30分加熱した後、室温まで冷却し、トリメチルアミン(30%)水溶液195gを徐々に加え、50℃で3時間反応させた後、室温で一昼夜放置した。反応終了後、有機多孔質体を取り出し、アセトンで洗浄後水洗し、乾燥して有機多孔質陰イオン交換体を得た。この有機多孔質陰イオン交換体のイオン交換容量は、乾燥多孔質体換算で3.7mg当量/gであり、SIMSにより、トリメチルアンモニウム基が有機多孔質体にμmオーダーで均一に導入されていることを確認した。また、SEM観察により、有機多孔質体の連続気泡構造はイオン交換基導入後も保持されていることを確認した。また、この有機多孔質陰イオン交換体のメソポアの平均径は、25μm、全細孔容積は9.8ml/gであった。
【0105】
得られたアニオン交換体を実施例7と同様の方法で二酸化硫黄の除去試験を行った。その結果、空気中の二酸化硫黄の濃度は200ng/mであり、完全に除去することはできなかった。
【0106】
実施例8
(共連続構造モノリスを用いた有機性ガスの吸着)
実施例5に準拠して製造した共連続構造モノリス状有機多孔質体を純水で十分洗浄し、乾燥させた。得られた共連続構造モノリス状有機多孔質体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、トルエン濃度1,000ng/mの空気を面風速0.5m/sで供給したときの透過気体を固体吸着剤(TENAX−GR)を用いて捕集し、ガスクロマトグラフ質量分析法でトルエンの定量を行った。その結果、空気中のトルエン濃度は110ng/mとなり、約89%の除去率であった。
【0107】
比較例7
比較例4に準じて連続気泡型モノリス状有機多孔質体を製造し、実施例8と同様に直径50mm、厚み50mmの円盤状ケミカルフィルターを作製した。
【0108】
このフィルターを実施例8と同様の条件でトルエン除去試験を行った結果、透過空気中のアンモニア濃度は200ng/mとなり、除去率は約80%であり、実施例8よりも低い除去率となった。
【0109】
実施例9
(モノリス状有機多孔質カチオン交換体を用いた高風速下での塩基性ガスの吸着)
アンモニア濃度5,000ng/mの空気に代えて、アンモニア濃度2,000ng/mの空気としたこと、面風速0.5m/sに代えて、5.0m/sとしたこと以外は、実施例5と同様の方法でアンモニアの除去試験を行った。その結果、空気透過速度が速いにもかかわらず、透過空気中のアンモニア濃度は50ng/m未満であり、アンモニアを除去することができた。
【0110】
実施例10
(モノリス状有機多孔質カチオン交換体を用いた極微量濃度塩基性ガスの吸着)
アンモニア濃度2,000ng/mの空気に代えて、アンモニア濃度100ng/mの空気とした以外は、実施例9と同様の方法でアンモニア除去の性能評価を行なった。その結果、透過気体中のアンモニア濃度は50ng/m未満であり、空気透過速度が5.0m/sと速くても、極微量のアンモニアを完全に除去することができた。
【0111】
実施例11
(モノリス状有機多孔質カチオン交換体を用いた高濃度塩基性ガスの吸着)
アンモニア濃度5,000ng/mの空気に代えて、アンモニア濃度100μg/mの空気としたこと以外は、実施例5と同様の方法でアンモニア除去の寿命試験を行った。その結果、90%以上の浄化効率を維持できる期間は27日間であった。
【0112】
比較例8
比較例4と同様のケミカルフィルターを用いて、実施例11と同様のアンモニア除去の寿命試験を行った。その結果、90%以上の除去率を維持できる期間は10日間であった。
【0113】
【表1】

【0114】
【表2】

【産業上の利用可能性】
【0115】
本発明のモノリス及びモノリスイオン交換体は疎水性で化学的に安定である。また、3次元的に連続する骨格が太く機械的強度が高く、特に体積当りのイオン交換容量が大きい。また、共連続構造中、3次元的に連続した空孔が大きくて水や気体等の流体を透過させた際の圧力損失が低く、更にイオン交換帯長さが格段に短いといった特長を有しているため、ケミカルフィルターや吸着剤;2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して用いられるイオン交換体;各種のクロマトグラフィー用充填剤;固体酸/塩基触媒として有用であり、広範な用途分野に応用することができる。
【図面の簡単な説明】
【0116】
【図1】本発明のモノリスの共連続構造を模式的に示した図である。
【図2】実施例1で得られたモノリス中間体のSEM画像である。
【図3】実施例1で得られた共連続構造を有するモノリスカチオン交換体のSEM画像である。
【図4】実施例1で得られた共連続構造を有するモノリスカチオン交換体の表面における硫黄原子の分布状態を示したEPMA画像である。
【図5】実施例1で得られた共連続構造を有するモノリスカチオン交換体の断面(厚み)方向における硫黄原子の分布状態を示したEPMA画像である。
【図6】実施例2で得られた共連続構造を有するモノリスカチオン交換体のSEM画像である。
【図7】実施例3で得られた共連続構造を有するモノリスカチオン交換体のSEM画像である。
【図8】実施例4で得られた共連続構造を有するモノリスアニオン交換体のSEM画像である。
【図9】比較例1で得られたモノリスのSEM写真である。
【符号の説明】
【0117】
1 骨格相
2 空孔相
10 モノリス

【特許請求の範囲】
【請求項1】
全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであることを特徴とするモノリス状有機多孔質体。
【請求項2】
全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが0.8〜40μmの三次元的に連続した骨格と、その骨格間に直径が8〜80μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであって、下記工程;
イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行うIII工程、を行うことで得られることを特徴とするモノリス状有機多孔質体。
【請求項3】
イオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる太さが1〜60μmの三次元的に連続した骨格と、その骨格間に直径が10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量が0.3mg当量/ml以上であり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とするモノリス状有機多孔質イオン交換体。
【請求項4】
請求項2のモノリス状有機多孔質体にイオン交換基を導入したものであって、水湿潤状態での体積当りのイオン交換容量が0.3mg当量/ml以上であり、イオン交換基が該多孔質イオン交換体中に均一に分布していることを特徴とするモノリス状有機多孔質イオン交換体。
【請求項5】
イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つI工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、を行うことを特徴とするモノリス状有機多孔質体の製造方法。
【請求項6】
I工程で得られるモノリス状の有機多孔質中間体は、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径5〜100μmの開口となる連続マクロポア構造体であることを特徴とする請求項5記載のモノリス状有機多孔質体の製造方法。
【請求項7】
イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、
芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、
II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、
該III工程で得られた共連続構造体にイオン交換基を導入するIV工程、
を行うことを特徴とするモノリス状有機多孔質イオン交換体の製造方法。
【請求項8】
請求項1又は2記載のモノリス状有機多孔質体を吸着層として用いることを特徴とするケミカルフィルター。
【請求項9】
請求項3又は4記載のモノリス状有機多孔質イオン交換体を吸着層として用いることを特徴とするケミカルフィルター。
【請求項10】
請求項1又は2記載のモノリス状有機多孔質体に貫通孔を設けたものを吸着層として用いることを特徴とするケミカルフィルター。
【請求項11】
請求項3又は4記載のモノリス状有機多孔質イオン交換体に貫通孔を設けたものを吸着層として用いることを特徴とするケミカルフィルター。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2009−67982(P2009−67982A)
【公開日】平成21年4月2日(2009.4.2)
【国際特許分類】
【出願番号】特願2008−81834(P2008−81834)
【出願日】平成20年3月26日(2008.3.26)
【出願人】(000004400)オルガノ株式会社 (606)
【Fターム(参考)】