説明

モールドの製造方法

【課題】離型剤をモールド本体の表面に十分に定着させることができるモールドの製造方法を提供する。
【解決手段】(イ)表面に微細凹凸構造が形成されたモールド本体16を作製する工程と、(ロ)モールド本体16の微細凹凸構造が形成された側の表面に、表面の官能基(A)と反応し得る官能基(B)を有する離型剤で処理する工程と、(ハ)工程(ロ)の後、該モールド本体16を加熱加湿処理する工程とを有するモールドの製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表面に微細凹凸構造を有するモールドの製造方法に関する。
【背景技術】
【0002】
近年、可視光の波長以下の周期の微細凹凸構造を表面に有する物品は、反射防止効果、ロータス効果等を発現することが知られている。
特に、モスアイ構造と呼ばれる凹凸構造は、空気の屈折率から物品の材料の屈折率へと連続的に屈折率が増大していくことで有効な反射防止の手段となることが知られている。
【0003】
物品の表面に微細凹凸構造を形成する方法としては、該微細凹凸構造の反転構造が表面に形成されたモールドを用い、該モールドの微細凹凸構造を物品の表面に転写する方法が注目されている。
該モールドは、通常、微細凹凸構造が形成された側の表面が離型剤によって処理されている(特許文献1)。
【0004】
しかし、離型剤がモールドの表面に十分に定着していないと、転写回数の増加に伴ってモールド表面の剥離層が劣化するために、良好な離型性を維持することが困難となり、離型性がしだいに低下するという問題がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007−326367号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、離型剤をモールドの表面に十分に定着させることができるモールドの処理方法を提供する。
【課題を解決するための手段】
【0007】
本発明は、表面に微細凹凸構造が形成されたモールドの表面を、該表面に存在する官能基(A)と反応し得る官能基(B)を有する離型剤で処理し、次いで前記モールドを加熱加湿すること、を特徴とするモールドの処理方法である。
【発明の効果】
【0008】
本発明のモールドの製造方法によれば、離型剤をモールドの表面に十分に定着させることができる。よって、モールド表面に充分な剥離層が形成され、転写可能回数が増加する。
【図面の簡単な説明】
【0009】
【図1】表面に陽極酸化アルミナを有するモールドの製造工程を示す断面図である。
【図2】微細凹凸構造を表面に有する物品の製造装置の一例を示す構成図である。
【図3】微細凹凸構造を表面に有する物品の一例を示す断面図である。
【発明を実施するための形態】
【0010】
本明細書において、(メタ)アクリレートは、アクリレートまたはメタクリレートを意味する。また、活性エネルギー線は、可視光線、紫外線、電子線、プラズマ、熱線(赤外線等)等を意味する。
【0011】
<モールドの製造方法>
本発明は、微細凹凸構造が形成されたモールドの、微細凹凸構造が形成された側の表面を、該表面に存在する官能基(A)と反応し得る官能基(B)を有する離型剤で処理し、次いで前記モールドを加熱加湿することを含む、モールドの製造方法である。
【0012】
(微細凹凸構造が形成されたモールド)
まず、基材の表面に微細凹凸構造を形成してモールドを作製する。基材の材料としては、金属(表面に酸化皮膜が形成されたものを含む。)、石英、ガラス、樹脂、セラミックス等が挙げられる。基材の形状としては、ロール状、円管状、平板状、シート状等が挙げられる。
【0013】
モールドの作製方法としては、例えば、下記(1)又は(2)の方法が挙げられる。大面積化が可能であり、かつ作製が簡便である点から、方法(1)が特に好ましい。
(1)アルミニウム基材の表面に、複数の細孔(凹部)を有する陽極酸化アルミナを形成する方法。
(2)基材の表面にリソグラフィ法によって微細凹凸構造を形成する方法。
【0014】
方法(1)としては、下記の工程(a)〜(e)を有する方法が好ましい。
(a)アルミニウム基材を電解液中、定電圧下で陽極酸化してアルミニウム基材の表面に酸化皮膜を形成する工程。
(b)酸化皮膜を除去し、アルミニウム基材の表面に陽極酸化の細孔発生点を形成する工程。
(c)アルミニウム基材を電解液中、再度陽極酸化し、細孔発生点に細孔を有する酸化皮膜を形成する工程。
(d)細孔の径を拡大させる工程。
(e)前記(c)工程と(d)工程を繰り返し行い、複数の細孔を有する陽極酸化アルミナがアルミニウムの表面に形成されたモールドを得る工程。
【0015】
<工程(a):>
図1に示すように、アルミニウム基材10を陽極酸化すると、細孔12を有する酸化皮膜14が形成される。アルミニウム基材の形状としては、ロール状、円管状、平板状、シート状等が挙げられる。また、アルミニウム基材は、表面状態を平滑化にするために、機械研磨、羽布研磨、化学的研磨、電解研磨処理(エッチング処理)などで研磨されることが好ましい。また、アルミニウム基材は、所定の形状に加工する際に用いた油が付着していることがあるため、陽極酸化の前にあらかじめ脱脂処理されることが好ましい。
【0016】
アルミニウムの純度は、99%以上が好ましく、99.5%以上がより好ましく、99.8%以上が特に好ましい。アルミニウムの純度が低いと、陽極酸化した時に、不純物の偏析により可視光を散乱する大きさの凹凸構造が形成されたり、陽極酸化で得られる細孔の規則性が低下したりすることがある。電解液としては、シュウ酸、硫酸、リン酸等が挙げられる。
【0017】
シュウ酸を電解液として用いる場合:
シュウ酸の濃度は、0.7M以下が好ましい。シュウ酸の濃度が0.7Mを超えると、電流値が高くなりすぎて酸化皮膜の表面が粗くなることがある。化成電圧が30〜60Vの時、周期が100nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向にある。電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。電解液の温度が60℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
【0018】
硫酸を電解液として用いる場合:
硫酸の濃度は0.7M以下が好ましい。硫酸の濃度が0.7Mを超えると、電流値が高くなりすぎて定電圧を維持できなくなることがある。化成電圧が25〜30Vの時、周期が63nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向がある。電解液の温度は、30℃以下が好ましく、20℃以下がより好ましい。電解液の温度が30℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
【0019】
<工程(b):>
図1に示すように、酸化皮膜14を一旦除去し、これを陽極酸化の細孔発生点16にすることで細孔の規則性を向上することができる。
【0020】
酸化皮膜を除去する方法としては、アルミニウムを溶解せず、酸化皮膜を選択的に溶解する溶液に溶解させて除去する方法が挙げられる。このような溶液としては、例えば、クロム酸/リン酸混合液等が挙げられる。
【0021】
<工程(c):>
図1に示すように、酸化皮膜を除去したアルミニウム基材10を再度、陽極酸化すると、円柱状の細孔12を有する酸化皮膜14が形成される。陽極酸化は、工程(a)と同様な条件で行えばよい。陽極酸化の時間を長くするほど深い細孔を得ることができる。
【0022】
<工程(d):>
図1に示すように、細孔12の径を拡大させる処理(以下、細孔径拡大処理と記す。)を行う。細孔径拡大処理は、酸化皮膜を溶解する溶液に浸漬して陽極酸化で得られた細孔の径を拡大させる処理である。このような溶液としては、例えば、5質量%程度のリン酸水溶液等が挙げられる。細孔径拡大処理の時間を長くするほど、細孔径は大きくなる。
【0023】
<工程(e):>
図1に示すように、工程(c)の陽極酸化と、工程(d)の細孔径拡大処理を繰り返すと、直径が開口部から深さ方向に連続的に減少する形状の細孔12を有する酸化皮膜14が形成され、アルミニウム基材10の表面に陽極酸化アルミナ(アルミニウムの多孔質の酸化皮膜(アルマイト))を有するモールド18が得られる。
【0024】
繰り返し回数は、合計で3回以上が好ましく、5回以上がより好ましい。繰り返し回数が2回以下では、非連続的に細孔の直径が減少するため、このような細孔を有する陽極酸化アルミナを用いて形成されたモスアイ構造の反射率低減効果は不十分である。
【0025】
細孔12の形状としては、略円錐形状、角錐形状、円柱形状等が挙げられ、円錐形状、角錐形状等のように、深さ方向と直交する方向の細孔断面積が最表面から深さ方向に連続的に減少する形状が好ましい。細孔12間の平均間隔は、可視光の波長以下、すなわち400nm以下である。細孔12間の平均間隔は、20nm以上が好ましい。細孔12間の平均間隔は、電子顕微鏡観察によって隣接する細孔12間の間隔(細孔12の中心から隣接する細孔12の中心までの距離)を50点測定し、これらの値を平均したものである。
【0026】
細孔12の深さは、平均間隔が100nmの場合は、80〜500nmが好ましく、120〜400nmがより好ましく、150〜300nmが特に好ましい。細孔12の深さは、電子顕微鏡観察によって倍率30000倍で観察したときにおける、細孔12の最底部と、細孔12間に存在する凸部の最頂部との間の距離を測定した値である。細孔12のアスペクト比(細孔の深さ/細孔間の平均間隔)は、0.8〜5.0が好ましく、1.2〜4.0がより好ましく、1.5〜3.0が特に好ましい。
【0027】
(離型剤処理)
次に、微細凹凸構造が形成されたモールドの、微細凹凸構造が形成された側の表面を、該表面に存在する官能基(A)と反応し得る官能基(B)を有する離型剤で処理する。官能基(A)とは、後述の離型剤が有している反応性の官能基(B)と反応して、化学結合を形成し得る基を意味する。官能基(A)としては、水酸基、アミノ基、カルボキシル基、メルカプト基、エポキシ基、エステル基、等が挙げられ、後述の離型剤の代表的な反応性の官能基(B)が、加水分解性シリル基である点から、水酸基が特に好ましい。
【0028】
官能基(A)は、基材の材料として挙げた、金属(表面に酸化皮膜が形成されたものを含む。)、石英、ガラス、樹脂、セラミックス等がもともと有しているものでも良く、適当な処理を行って、基材表面に導入したものでも良い。官能基(A)の導入方法としては、下記の方法(1)又は(2)が挙げられる。
【0029】
(1)モールドの微細凹凸構造が形成された側の表面をプラズマ処理することによって、該表面に官能基(A)を導入する方法。
(2)モールドの微細凹凸構造が形成された側の表面を、官能基(A)またはその前駆体を有する化合物(シランカップリング剤等)で処理することによって、該表面に官能基(A)を導入する方法。
【0030】
官能基(B)とは、官能基(A)と反応して化学結合を形成し得る基または該基に容易に変換し得る基を意味する。官能基(A)が水酸基の場合、官能基(B)としては、加水分解性シリル基、シラノール基、チタン原子若しくはアルミニウム原子を含む加水分解性基、等が挙げられ、水酸基との反応性がよい点から、加水分解性シリル基またはシラノール基が好ましい。加水分解性シリル基とは、加水分解によってシラノール基(Si−OH)を生成する基であり、Si−OR(Rはアルキル基である。)、Si−X(Xはハロゲン原子である。)等が挙げられる。
【0031】
そのような官能基(B)を有する離型剤としては、官能基(B)を有するシリコーン樹脂、官能基(B)を有するフッ素樹脂、官能基(B)を有するフッ素化合物等が挙げられ、加水分解性シリル基を有するフッ素化合物が特に好ましい。加水分解性シリル基を有するフッ素化合物の市販品としては、フルオロアルキルシラン、KBM−7803(信越化学工業社製)、「オプツール」シリーズ(ダイキン工業社製)、ノベックEGC−1720(住友3M社製)などが挙げられる。
【0032】
離型剤による処理方法としては、下記の方法(3)又は(4)が挙げられ、モールドの微細凹凸構造が形成された側の表面をムラなく離型剤で処理できる点から、方法(3)が特に好ましい。
(3)離型剤の希釈溶液にモールドを浸漬する方法。
(4)離型剤またはその希釈溶液を、モールドの微細凹凸構造が形成された側の表面に塗布する方法。
【0033】
方法(3)としては、具体的には下記の工程(f)〜(j)により処理することが好ましい。
(f)モールドを水洗する工程。
(g)工程(f)の後、モールドにエアーを吹き付け、モールドの表面に付着した水滴を除去する工程。
(h)加水分解性シリル基を有するフッ素化合物を、フッ素系溶媒で希釈した希釈溶液に、表面に官能基(A)を有するモールドを浸漬する工程。
(i)浸漬したモールドをゆっくりと溶液から引き上げる工程。
(j)必要に応じて、工程(i)よりも後段にてモールドを乾燥させる工程。
【0034】
<工程(f):>
モールドには、微細凹凸構造を形成する際に用いた薬剤(細孔径拡大処理に用いたリン酸水溶液、リソグラフィ法に用いた剥離液等)、不純物(埃等)等が付着しているため、水洗によってこれを除去する。
【0035】
<工程(g):>
モールドの表面に水滴が付着していると、工程(h)の希釈溶液が劣化するため、モールドにエアーを吹き付け、目に見える水滴はほぼ除去する。
【0036】
<工程(h):>
希釈用のフッ素系溶媒としては、ハイドロフルオロポリエーテル、パーフルオロヘキサン、パーフルオロメチルシクロヘキサン、パーフルオロ−1,3−ジメチルシクロヘキサン、ジクロロペンタフルオロプロパン等が挙げられる。加水分解性シリル基を有するフッ素化合物の濃度は、希釈溶液(100質量%)中、0.01〜0.5質量%が好ましい。浸漬時間は、1〜30分が好ましい。浸漬温度は、0〜50℃が好ましい。
【0037】
<工程(i):>
浸漬したモールドを溶液から引き上げる工程では、電動引き上げ機などを使用して、一定速度で引き上げ、引き上げ時の揺動を抑えることが好ましい。これにより塗布ムラを少なく出来る。引き上げ速度は、1〜10mm/secが好ましい。
【0038】
<工程(j):>
工程(i)よりも後段にてモールドを風乾させてもよく、乾燥機等で強制的に加熱乾燥させてもよい。乾燥温度は、50〜150℃が好ましい。乾燥時間は、5〜300分が好ましい。
【0039】
(加熱加湿処理)
次に、前記離型剤処理の後、モールドを加熱加湿する。本工程としては、下記の工程(k)〜(l)の方法が好ましい。
(k)モールドを加熱加湿する工程。
(l)必要に応じて、工程(k)よりも後段にてモールドを乾燥させる工程。
【0040】
<工程(k):>
モールドを加熱加湿下に放置することによって、フッ素化合物(離型剤)の加水分解性シリル基が加水分解されてシラノール基が生成し、該シラノール基とモールドの表面の水酸基との反応が十分に進行し、フッ素化合物の定着性が向上する。加湿方法としては、飽和塩水溶液を用いた飽和塩法、水を加熱して加湿する方法、加熱した水蒸気をモールドに直接吹付ける方法、などが考えられる。この工程は恒温恒湿器中で行えばよい。加熱温度は、40〜150℃が好ましい。加湿条件は、相対湿度60%以上が好ましい。放置時間は、10分〜7日が好ましい。
【0041】
<工程(l):>
工程(k)よりも後段にてモールドを風乾させてもよく、乾燥機等で強制的に加熱乾燥
させてもよい。乾燥温度は、50〜150℃が好ましい。乾燥時間は、5〜300分が好ましい。
【0042】
モールドの表面が離型剤で処理されたことは、モールドの表面の水接触角を測定することによって確認できる。離型剤で処理されたモールドの表面の水接触角は、60゜以上が好ましく、90゜以上がより好ましい。水接触角が60゜以上であれば、モールドの表面が離型剤で十分に処理され、離型性が良好となる。
【0043】
以上説明した本発明のモールドの製造方法にあっては、モールドの微細凹凸構造が形成された側の表面の官能基(A)と反応し得る官能基(B)を有する離型剤で処理した後、モールドを加熱加湿することで、離型剤をモールドの表面に十分に定着させることができる。よって、モールドの微細凹凸構造を物品の表面に繰り返し転写した場合であっても、離型性が低下しにくくなるため、微細凹凸構造を表面に有する物品を生産性よく製造できるようになる。
【0044】
<微細凹凸構造を表面に有する物品>
微細凹凸構造を表面に有する物品は、例えば、図2に示す製造装置を用いて、下記のようにして製造される。表面に微細凹凸構造(図示略)を有するロール状モールド20と、ロール状モールド20の表面に沿って移動する帯状のフィルム(基材ともいう)42との間に、タンク22から活性エネルギー線硬化性樹脂組成物を供給する。
【0045】
ロール状モールド20と、空気圧シリンダ24によってニップ圧が調整されたニップロール26との間で、フィルム42および活性エネルギー線硬化性樹脂組成物をニップし、活性エネルギー線硬化性樹脂組成物を、フィルム42とロール状モールド20との間に均一に行き渡らせると同時に、ロール状モールド20の微細凹凸構造の凹部内に充填する。
【0046】
ロール状モールド20の下方に設置された活性エネルギー線照射装置28から、フィルム42を通して活性エネルギー線硬化性樹脂組成物に活性エネルギー線を照射し、活性エネルギー線硬化性樹脂組成物を硬化させることによって、ロール状モールド20の表面の微細凹凸構造が転写された硬化樹脂層44を形成する。剥離ロール30により、表面に硬化樹脂層44が形成されたフィルム42をロール状モールド20から剥離することによって、図3に示すような物品40を得る。
【0047】
活性エネルギー線照射装置28としては、高圧水銀ランプ、メタルハライドランプ等が好ましく、この場合の光照射エネルギー量は、100〜10000mJ/cmが好ましい。
【0048】
フィルム42は、光透過性フィルムである。フィルムの材料としては、アクリル系樹脂、ポリカーボネート、スチレン系樹脂、ポリエステル、セルロース系樹脂(トリアセチルセルロース等)、ポリオレフィン、脂環式ポリオレフィン等が挙げられる。
【0049】
硬化樹脂層44は、後述の活性エネルギー線硬化性樹脂組成物の硬化物からなる膜であり、表面に微細凹凸構造を有する。陽極酸化アルミナのモールドを用いた場合の物品40の表面の微細凹凸構造は、陽極酸化アルミナの表面の微細凹凸構造を転写して形成されたものであり、活性エネルギー線硬化性樹脂組成物の硬化物からなる複数の凸部46を有する。
【0050】
微細凹凸構造としては、略円錐形状、角錐形状等の突起(凸部)が複数並んだ、いわゆるモスアイ構造が好ましい。突起間の間隔が可視光の波長以下であるモスアイ構造は、空気の屈折率から材料の屈折率へと連続的に屈折率が増大していくことで有効な反射防止の手段となることが知られている。
【0051】
凸部間の平均間隔は、可視光の波長以下、すなわち400nm以下が好ましい。陽極酸化アルミナのモールドを用いて凸部を形成した場合、凸部間の平均間隔は100nm程度となることから、200nm以下がより好ましく、150nm以下が特に好ましい。
【0052】
凸部間の平均間隔は、凸部の形成のしやすさの点から、20nm以上が好ましい。
凸部間の平均間隔は、電子顕微鏡観察によって隣接する凸部間の間隔(凸部の中心から隣接する凸部の中心までの距離)を50点測定し、これらの値を平均したものである。
【0053】
凸部の高さは、平均間隔が100nmの場合は、80〜500nmが好ましく、120〜400nmがより好ましく、150〜300nmが特に好ましい。凸部の高さが80nm以上であれば、反射率が十分低くなり、かつ反射率の波長依存性が少ない。凸部の高さが500nm以下であれば、凸部の耐擦傷性が良好となる。凸部の高さは、電子顕微鏡によって倍率30000倍で観察したときにおける、凸部の最頂部と、凸部間に存在する凹部の最低部との間の距離を測定した値である。
【0054】
凸部のアスペクト比(凸部の高さ/凸部間の平均間隔)は、0.8〜5.0が好ましく、1.2〜4.0がより好ましく、1.5〜3.0が特に好ましい。凸部のアスペクト比が1.0以上であれば、反射率が十分に低くなる。凸部のアスペクト比が5.0以下であれば、凸部の耐擦傷性が良好となる。
【0055】
凸部の形状は、高さ方向と直交する方向の凸部断面積が最表面から深さ方向に連続的に増加する形状、すなわち、凸部の高さ方向の断面形状が、三角形、台形、釣鐘型等の形状が好ましい。
【0056】
硬化樹脂層44の屈折率とフィルム42の屈折率との差は、0.2以下が好ましく、0.1以下がより好ましく、0.05以下が特に好ましい。屈折率差が0.2以下であれば、硬化樹脂層44とフィルム42との界面における反射が抑えられる。
【0057】
表面に微細凹凸構造を有する場合、その表面が疎水性の材料から形成されていればロータス効果により超撥水性が得られ、その表面が親水性の材料から形成されていれば超親水性が得られることが知られている。
【0058】
硬化樹脂層44の材料が疎水性の場合の微細凹凸構造の表面の水接触角は、90゜以上が好ましく、110゜以上がより好ましく、120゜以上が特に好ましい。水接触角が90゜以上であれば、水汚れが付着しにくくなるため、十分な防汚性が発揮される。また、水が付着しにくいため、着氷防止を期待できる。
【0059】
硬化樹脂層44の材料が親水性の場合の微細凹凸構造の表面の水接触角は、25゜以下が好ましく、23゜以下がより好ましく、21゜以下が特に好ましい。水接触角が25゜以下であれば、表面に付着した汚れが水で洗い流され、また油汚れが付着しにくくなるため、十分な防汚性が発揮される。該水接触角は、硬化樹脂層44の吸水による微細凹凸構造の変形、それに伴う反射率の上昇を抑える点から、3゜以上が好ましい。
【0060】
(活性エネルギー線硬化性樹脂組成物)
活性エネルギー線硬化性樹脂組成物は、重合性化合物および重合開始剤を含む。重合性化合物としては、分子中にラジカル重合性結合および/またはカチオン重合性結合を有するモノマー、オリゴマー、反応性ポリマー等が挙げられる。活性エネルギー線硬化性樹脂組成物は、非反応性のポリマー、活性エネルギー線ゾルゲル反応性組成物を含んでいてもよい。
【0061】
ラジカル重合性結合を有するモノマーとしては、単官能モノマー、多官能モノマーが挙げられる。単官能モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、s−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、アルキル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アリル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート等の(メタ)アクリレート誘導体;(メタ)アクリル酸、(メタ)アクリロニトリル;スチレン、α−メチルスチレン等のスチレン誘導体;(メタ)アクリルアミド、N−ジメチル(メタ)アクリルアミド、N−ジエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体等が挙げられる。これらは、1種を単独で用いてもよく、2種類以上を併用してもよい。
【0062】
多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、イソシアヌール酸エチレンオキサイド変性ジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,5−ペンタンジオールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、2,2−ビス(4−(メタ)アクリロキシポリエトキシフェニル)プロパン、2,2−ビス(4−(メタ)アクリロキシエトキシフェニル)プロパン、2,2−ビス(4−(3−(メタ)アクリロキシ−2−ヒドロキシプロポキシ)フェニル)プロパン、1,2−ビス(3−(メタ)アクリロキシ−2−ヒドロキシプロポキシ)エタン、1,4−ビス(3−(メタ)アクリロキシ−2−ヒドロキシプロポキシ)ブタン、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAのエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキサイド付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジビニルベンゼン、メチレンビスアクリルアミド等の二官能性モノマー;ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシド変性トリアクリレート、トリメチロールプロパンエチレンオキシド変性トリアクリレート、イソシアヌール酸エチレンオキサイド変性トリ(メタ)アクリレート等の三官能モノマー;コハク酸/トリメチロールエタン/アクリル酸の縮合反応混合物、ジペンタエリストールヘキサ(メタ)アクリレート、ジペンタエリストールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等の四官能以上のモノマー;二官能以上のウレタンアクリレート、二官能以上のポリエステルアクリレート等が挙げられる。これらは、1種を単独で用いてもよく、2種類以上を併用してもよい。
【0063】
カチオン重合性結合を有するモノマーとしては、エポキシ基、オキセタニル基、オキサゾリル基、ビニルオキシ基等を有するモノマーが挙げられ、エポキシ基を有するモノマーが特に好ましい。
【0064】
オリゴマーまたは反応性ポリマーとしては、不飽和ジカルボン酸と多価アルコールとの縮合物等の不飽和ポリエステル類;ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、カチオン重合型エポキシ化合物、側鎖にラジカル重合性結合を有する上述のモノマーの単独または共重合ポリマー等が挙げられる。
【0065】
非反応性のポリマーとしては、アクリル系樹脂、スチレン系樹脂、ポリウレタン、セルロース系樹脂、ポリビニルブチラール、ポリエステル、熱可塑性エラストマー等が挙げられる。活性エネルギー線ゾルゲル反応性組成物としては、アルコキシシラン化合物、アルキルシリケート化合物等が挙げられる。
【0066】
アルコキシシラン化合物としては、下記式(1)の化合物が挙げられる。
11Si(OR12 ・・・(1)。
ただし、R11、R12は、それぞれ炭素数1〜10のアルキル基を表し、x、yは、x+y=4の関係を満たす整数を表す。
【0067】
アルコキシシラン化合物としては、テトラメトキシシラン、テトラ−i−プロポキシシラン、テトラ−n−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−sec−ブトキシシラン、テトラ−t−ブトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、トリメチルプロポキシシラン、トリメチルブトキシシラン等が挙げられる。
【0068】
アルキルシリケート化合物としては、下記式(2)の化合物が挙げられる。
21O[Si(OR23)(OR24)O]22 ・・・(2)。
ただし、R21〜R24は、それぞれ炭素数1〜5のアルキル基を表し、zは、3〜20の整数を表す。
【0069】
アルキルシリケート化合物としては、メチルシリケート、エチルシリケート、イソプロピルシリケート、n−プロピルシリケート、n−ブチルシリケート、n−ペンチルシリケート、アセチルシリケート等が挙げられる。
【0070】
光硬化反応を利用する場合、光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジル、ベンゾフェノン、p−メトキシベンゾフェノン、2,2−ジエトキシアセトフェノン、α,α−ジメトキシ−α−フェニルアセトフェノン、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、4,4'−ビス(ジメチルアミノ)ベンゾフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン等のカルボニル化合物;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等の硫黄化合物;2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、ベンゾイルジエトキシフォスフィンオキサイド等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
【0071】
電子線硬化反応を利用する場合、重合開始剤としては、例えば、ベンゾフェノン、4,4−ビス(ジエチルアミノ)ベンゾフェノン、2,4,6−トリメチルベンゾフェノン、メチルオルソベンゾイルベンゾエート、4−フェニルベンゾフェノン、t−ブチルアントラキノン、2−エチルアントラキノン、2,4−ジエチルチオキサントン、イソプロピルチオキサントン、2,4−ジクロロチオキサントン等のチオキサントン;ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシル−フェニルケトン、2−メチル−2−モルホリノ(4−チオメチルフェニル)プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン等のアセトフェノン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル;2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド等のアシルホスフィンオキサイド;メチルベンゾイルホルメート、1,7−ビスアクリジニルヘプタン、9−フェニルアクリジン等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
【0072】
熱硬化反応を利用する場合、熱重合開始剤としては、例えば、メチルエチルケトンパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ブチルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、ラウロイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル等のアゾ系化合物;前記有機過酸化物にN,N−ジメチルアニリン、N,N−ジメチル−p−トルイジン等のアミンを組み合わせたレドックス重合開始剤等が挙げられる。
【0073】
重合開始剤の量は、重合性化合物100質量部に対して、0.1〜10質量部が好ましい。重合開始剤の量が0.1質量部未満では、重合が進行しにくい。重合開始剤の量が10質量部を超えると、硬化膜が着色したり、機械強度が低下したりすることがある。
【0074】
活性エネルギー線硬化性樹脂組成物は、必要に応じて、帯電防止剤、離型剤、防汚性を向上させるためのフッ素化合物等の添加剤;微粒子、少量の溶媒を含んでいてもよい。
【0075】
(疎水性材料)
硬化樹脂層44の微細凹凸構造の表面の水接触角を90°以上にするためには、疎水性の材料を形成し得る活性エネルギー線硬化性樹脂組成物として、フッ素含有化合物またはシリコーン系化合物を含む組成物を用いることが好ましい。
【0076】
フッ素含有化合物:
フッ素含有化合物としては、下記式(3)で表されるフルオロアルキル基を有する化合物が好ましい。
−(CF−X ・・・(3)。
ただし、Xは、フッ素原子または水素原子を表し、nは、1以上の整数を表し、1〜20が好ましく、3〜10がより好ましく、4〜8が特に好ましい。
【0077】
フッ素含有化合物としては、フッ素含有モノマー、フッ素含有シランカップリング剤、フッ素含有界面活性剤、フッ素含有ポリマー等が挙げられる。
【0078】
フッ素含有モノマーとしては、フルオロアルキル基置換ビニルモノマー、フルオロアルキル基置換開環重合性モノマー等が挙げられる。フルオロアルキル基置換ビニルモノマーとしては、フルオロアルキル基置換(メタ)アクリレート、フルオロアルキル基置換(メタ)アクリルアミド、フルオロアルキル基置換ビニルエーテル、フルオロアルキル基置換スチレン等が挙げられる。
【0079】
フルオロアルキル基置換開環重合性モノマーとしては、フルオロアルキル基置換エポキシ化合物、フルオロアルキル基置換オキセタン化合物、フルオロアルキル基置換オキサゾリン化合物等が挙げられる。
【0080】
フッ素含有モノマーとしては、フルオロアルキル基置換(メタ)アクリレートが好ましく、下記式(4)の化合物が特に好ましい。
CH=C(R41)C(O)O−(CH−(CF−X ・・・(4)。
ただし、R41は、水素原子またはメチル基を表し、Xは、水素原子またはフッ素原子を表し、mは、1〜6の整数を表し、1〜3が好ましく、1または2がより好ましく、nは、1〜20の整数を表し、3〜10が好ましく、4〜8がより好ましい。
【0081】
フッ素含有シランカップリング剤としては、フルオロアルキル基置換シランカップリング剤が好ましく、下記式(5)の化合物が特に好ましい。
(R51SiY ・・・(5)。
は、エーテル結合またはエステル結合を1個以上含んでいてもよい炭素数1〜20のフッ素置換アルキル基を表す。Rとしては、3,3,3−トリフルオロプロピル基、トリデカフルオロ−1,1,2,2−テトラヒドロオクチル基、3−トリフルオロメトキシプロピル基、3−トリフルオロアセトキシプロピル基等が挙げられる。R51は、炭素数1〜10のアルキル基を表す。R51としては、メチル基、エチル基、シクロヘキシル基等が挙げられる。Yは、水酸基または加水分解性基を表す。加水分解性基としては、アルコキシ基、ハロゲン原子、R52C(O)O(ただし、R52は、水素原子または炭素数1〜10のアルキル基を表す。)等が挙げられる。アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、i−プロピルオキシ基、ブトキシ基、i−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基等が挙げられる。ハロゲン原子としては、Cl、Br、I等が挙げられる。R52C(O)Oとしては、CHC(O)O、CC(O)O等が挙げられる。
【0082】
a、b、cは、a+b+c=4であり、かつa≧1、c≧1を満たす整数を表し、a=1、b=0、c=3が好ましい。
【0083】
フッ素含有シランカップリング剤としては、3,3,3−トリフルオロプロピルトリメトキシシラン、3,3,3−トリフルオロプロピルトリアセトキシシラン、ジメチル−3,3,3−トリフルオロプロピルメトキシシラン、トリデカフルオロ−1,1,2,2−テトラヒドロオクチルトリエトキシシラン等が挙げられる。
【0084】
フッ素含有界面活性剤としては、フルオロアルキル基含有アニオン系界面活性剤、フルオロアルキル基含有カチオン系界面活性剤等が挙げられる。
【0085】
フルオロアルキル基含有アニオン系界面活性剤としては、炭素数2〜10のフルオロアルキルカルボン酸またはその金属塩、パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3−[オメガ−フルオロアルキル(C〜C11)オキシ]−1−アルキル(C〜C)スルホン酸ナトリウム、3−[オメガ−フルオロアルカノイル(C〜C)−N−エチルアミノ]−1−プロパンスルホン酸ナトリウム、フルオロアルキル(C11〜C20)カルボン酸またはその金属塩、パーフルオロアルキルカルボン酸(C〜C13)またはその金属塩、パーフルオロアルキル(C〜C12)スルホン酸またはその金属塩、パーフルオロオクタンスルホン酸ジエタノールアミド、N−プロピル−N−(2−ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキル(C〜C10)スルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル(C〜C10)−N−エチルスルホニルグリシン塩、モノパーフルオロアルキル(C〜C16)エチルリン酸エステル等が挙げられる。
【0086】
フルオロアルキル基含有カチオン系界面活性剤としては、フルオロアルキル基含有脂肪族一級、二級または三級アミン酸、パーフルオロアルキル(C〜C10)スルホンアミドプロピルトリメチルアンモニウム塩等の脂肪族4級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩等が挙げられる。
【0087】
フッ素含有ポリマーとしては、フルオロアルキル基含有モノマーの重合体、フルオロアルキル基含有モノマーとポリ(オキシアルキレン)基含有モノマーとの共重合体、フルオロアルキル基含有モノマーと架橋反応性基含有モノマーとの共重合体等が挙げられる。フッ素含有ポリマーは、共重合可能な他のモノマーとの共重合体であってもよい。
【0088】
フッ素含有ポリマーとしては、フルオロアルキル基含有モノマーとポリ(オキシアルキレン)基含有モノマーとの共重合体が好ましい。
ポリ(オキシアルキレン)基としては、下記式(6)で表される基が好ましい。
−(OR61− ・・・(6)。
ただし、R61は、炭素数2〜4のアルキレン基を表し、pは、2以上の整数を表す。R61としては、−CHCH−、−CHCHCH−、−CH(CH)CH−、−CH(CH)CH(CH)−等が挙げられる。
【0089】
ポリ(オキシアルキレン)基は、同一のオキシアルキレン単位(OR61)からなるものであってもよく、2種以上のオキシアルキレン単位(OR61)からなるものであってもよい。2種以上のオキシアルキレン単位(OR61)の配列は、ブロックであってもよく、ランダムであってもよい。
【0090】
シリコーン系化合物:
シリコーン系化合物としては、(メタ)アクリル酸変性シリコーン、シリコーン樹脂、シリコーン系シランカップリング剤等が挙げられる。(メタ)アクリル酸変性シリコーンとしては、シリコーン(ジ)(メタ)アクリレート等が挙げられる。
【0091】
(親水性材料)
硬化樹脂層44の微細凹凸構造の表面の水接触角を25°以下にするためには、親水性の材料を形成し得る活性エネルギー線硬化性樹脂組成物として、少なくとも親水性モノマーを含む組成物を用いることが好ましい。また、耐擦傷性や耐水性付与の観点からは、架橋可能な多官能モノマーを含むものがより好ましい。なお、親水性モノマーと架橋可能な多官能モノマーは、同一(すなわち、親水性多官能モノマー)であってもよい。さらに、活性エネルギー線硬化性樹脂組成物は、その他のモノマーを含んでいてもよい。
【0092】
親水性の材料を形成し得る活性エネルギー線硬化性樹脂組成物としては、下記の重合性化合物を含む組成物を用いることがより好ましい。
4官能以上の多官能(メタ)アクリレートの10〜50質量%、
2官能以上の親水性(メタ)アクリレートの30〜80質量%、
単官能モノマーの0〜20質量%の合計100質量%からなる重合性化合物。
【0093】
4官能以上の多官能(メタ)アクリレートとしては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、コハク酸/トリメチロールエタン/アクリル酸のモル比1:2:4の縮合反応混合物、ウレタンアクリレート類(ダイセル・サイテック社製:EBECRYL220、EBECRYL1290、EBECRYL1290K、EBECRYL5129、EBECRYL8210、EBECRYL8301、KRM8200)、ポリエーテルアクリレート類(ダイセル・サイテック社製:EBECRYL81)、変性エポキシアクリレート類(ダイセル・サイテック社製:EBECRYL3416)、ポリエステルアクリレート類(ダイセル・サイテック社製:EBECRYL450、EBECRYL657、EBECRYL800、EBECRYL810、EBECRYL811、EBECRYL812、EBECRYL1830、EBECRYL845、EBECRYL846、EBECRYL1870)等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。4官能以上の多官能(メタ)アクリレートとしては、5官能以上の多官能(メタ)アクリレートがより好ましい。
【0094】
4官能以上の多官能(メタ)アクリレートの割合は、10〜50質量%が好ましく、耐水性、耐薬品性の点から、20〜50質量%がより好ましく、30〜50質量%が特に好ましい。4官能以上の多官能(メタ)アクリレートの割合が10質量%以上であれば、弾性率が高くなって耐擦傷性が向上する。4官能以上の多官能(メタ)アクリレートの割合が50質量%以下であれば、表面に小さな亀裂が入りにくく、外観不良となりにくい。
【0095】
2官能以上の親水性(メタ)アクリレートとしては、アロニックスM−240、アロニックスM260(東亞合成社製)、NKエステルAT−20E、NKエステルATM−35E(新中村化学社製)等の長鎖ポリエチレングリコールを有する多官能アクリレート、ポリエチレングリコールジメタクリレート等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。ポリエチレングリコールジメタクリレートにおいて、一分子内に存在するポリエチレングリコール鎖の平均繰り返し単位の合計は、6〜40が好ましく、9〜30がより好ましく、12〜20が特に好ましい。ポリエチレングリコール鎖の平均繰り返し単位が6以上であれば、親水性が十分となり、防汚性が向上する。ポリエチレングリコール鎖の平均繰り返し単位が40以下であれば、4官能以上の多官能(メタ)アクリレートとの相溶性が良好となり、活性エネルギー線硬化性樹脂組成物が分離しにくい。
【0096】
2官能以上の親水性(メタ)アクリレートの割合は、30〜80質量%が好ましく、40〜70質量%がより好ましい。2官能以上の親水性(メタ)アクリレートの割合が30質量%以上であれば、親水性が十分となり、防汚性が向上する。2官能以上の親水性(メタ)アクリレートの割合が80質量%以下であれば、弾性率が高くなって耐擦傷性が向上する。
【0097】
単官能モノマーとしては、親水性単官能モノマーが好ましい。
親水性単官能モノマーとしては、M−20G、M−90G、M−230G(新中村化学社製)等のエステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート等のエステル基に水酸基を有する単官能(メタ)アクリレート、単官能アクリルアミド類、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェート、メタクリロイルオキシエチルトリメチルアンモニウムメチルサルフェート等のカチオン性モノマー類等が挙げられる。また、単官能モノマーとして、アクリロイルモルホリン、ビニルピロリドン等の粘度調整剤、物品本体への密着性を向上させるアクリロイルイソシアネート類等の密着性向上剤等を用いてもよい。
【0098】
単官能モノマーの割合は、0〜20質量%が好ましく、5〜15質量%がより好ましい。単官能モノマーを用いることにより、物品本体と硬化樹脂との密着性が向上する。単官能モノマーの割合が20質量%以下であれば、4官能以上の多官能(メタ)アクリレートまたは2官能以上の親水性(メタ)アクリレートが不足することなく、防汚性または耐擦傷性が十分に発現する。
【0099】
単官能モノマーは、1種または2種以上を(共)重合した低重合度の重合体として活性エネルギー線硬化性樹脂組成物に0〜35質量部配合してもよい。低重合度の重合体としては、M−230G(新中村化学社製)等のエステル基にポリエチレングリコール鎖を有する単官能(メタ)アクリレート類と、メタクリルアミドプロピルトリメチルアンモニウムメチルサルフェートとの40/60共重合オリゴマー(MRCユニテック社製、MGポリマー)等が挙げられる。
【0100】
(内部離型剤)
離型性をさらに向上する目的で、活性エネルギー線硬化性樹脂組成物には、内部離型剤を任意に配合することができる。内部離型剤としては従来公知の内部離型剤、例えば、フッ素含有化合物、シリコーン系化合物、リン酸エステル系化合物、長鎖アルキル基を有する化合物、ポリエチレンワックス、アミドワックス、テフロン(登録商標)パウダー等の固形ワックス等を含む内部離型剤が何れも使用可能である。また、これらの内部離型剤をモールドに付着させておくこともできる。
【0101】
これらの内部離型剤の具体例としては、以下の通りである。
<大日本インキ化学工業社製:>
メガファックR−08、F−470、XRB−4、F−444、F−477、F−482、F−483、F−480SF、F−493、MCF−350SF
<ダイキン工業社製:>
オプツールDAC
<ソルベイソレクシス社製:>
フルオロリンク5105X、MD500、MD700、D10H、E10H、L10H
<ユニマテック社製:>
ケミノックスFA−4、FA−6、FA−8、FAAC−4、FAAC−6、FAAC−8、FAMAC−4、FAMAC−6、FAMAC−8、PFHE、PFOE
<信越化学工業社製:>
X−22−1602、X−22−4039、X−22−4015、KF−99、KF−9901、X−22−160AS、KF−1601、KF−1602、KF−1603、X−22−4952、X−22−4272、X−22−6266、X−22−170BX、X−22−170DX、X−22−176DX、X−22−176F、KF−351A、KF−352A、KF−410、KF−412、FL−100−100cs、KF−41
4、X−22−1877、サーフィノール465
<東レ・ダウコーニング社製:>
SH550、SH710、BY16−846、BY16−201、SR2411
<城北化学社製:>
JP−302、JP−308E、JP−312L、JP−502、JP−504、JP−506H、JP−508、JC−224
<アクセル社製:>
モールドウイズINT−AM121、INT−1285N、INT−1856
<日光ケミカル社製:>
DDP−10、TLP−4、TDP−10
<花王社製:>
エマルゲンLS−106、LS−110、LS−114、MS−110
<日本油脂社製:>
ノニオンK−220、K−230、LT−221、ディスパノールTOC
内部離型剤の使用量は、樹脂組成物の本質的な効果に影響しない範囲、例えば、組成物全量中に好ましくは0.01〜10質量部が適当である。
【0102】
(用途)
物品40の用途としては、反射防止物品、防曇性物品、防汚性物品、撥水性物品、より具体的にはディスプレー用反射防止、自動車メーターカバー、自動車ミラー、自動車窓、有機または無機エレクトロルミネッセンスの光取り出し効率向上部材、太陽電池部材等が挙げられる。
なお、微細凹凸構造を表面に有する物品は、図示例の物品40に限定はされない。例えば、微細凹凸構造は、硬化樹脂層44を設けることなくフィルム42の表面に直接形成されていてもよい。ただし、ロール状モールド20を用いて効率よく微細凹凸構造を形成できる点から、硬化樹脂層44の表面に微細凹凸構造が形成されていることが好ましい。
【実施例】
【0103】
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
【0104】
(陽極酸化アルミナの細孔)
陽極酸化アルミナの一部を削り、断面にプラチナを1分間蒸着し、電界放出形走査電子顕微鏡(日本電子社製、JSM−7400F)を用いて、加速電圧3.00kVの条件にて、断面を観察し、細孔の間隔、細孔の深さを測定した。各測定は、それぞれ50点について行い、平均値を求めた。
【0105】
(水接触角)
接触角測定装置(Kruss社製、DSA10−Mk2)を用い、モールドの微細凹凸構造が形成された側の表面に、8μLの水を滴下した後、滴下の10秒後から1秒間隔で水接触角を10点測定し、平均値を求めた。さらに、水を滴下する位置を変えて同様の操作を3回行い、計4回の平均値をさらに平均した。
【0106】
(フィルム転写実験)
モールドの微細凹凸構造が形成された側に硬化液Aを流し込み、基材フィルムであるアクリルフィルムを被せた後、UV照射機(高圧水銀ランプ:積算光量400mJ/cm)によって硬化を行った。次いで基材フィルムごと硬化樹脂をモールドから離型することによりアクリルフィルム上に微細凹凸構造を転写した。この操作を繰り返し行い、目視ではっきりと認識できる離型不良が発生するまでの回数を転写可能回数とした。この場合の離型不良とはモールドへの樹脂付着などの原因により、モールドの微細凹凸面に樹脂残りが発生し、モールドと硬化樹脂とが剥離困難になった状態である。
(硬化液A)
TAS:コハク酸/トリメチロールエタン/アクリル酸のモル比1:2:4の縮合反応混合物;45質量部
C6DA:1,6−ヘキサンジオールジアクリレート(大阪有機化学(株)製);45質量部X−22−1602:ラジカル重合性シリコーンオイル(信越化学工業社製);10質量部
Ir184:1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティーケミカルズ(株)製「イルガキュア184」);3質量部
【0107】
〔実施例1〕
<モールドの作製>
50mm×50mm×厚さ0.3mmのアルミニウム板(純度99.99%)を、過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨しものを使用した。
工程(a):
該アルミニウム板について、0.3Mシュウ酸水溶液中で、直流40V、温度16℃の条件で6時間陽極酸化を行った
工程(b):
酸化皮膜が形成されたアルミニウム板を、6質量%リン酸/1.8質量%クロム酸混合水溶液に3時間浸漬して、酸化皮膜を除去した。
工程(c):
該アルミニウム板について、0.3Mシュウ酸水溶液中、直流40V、温度16℃の条件で30秒間陽極酸化を行った。
工程(d):
酸化皮膜が形成されたアルミニウム板を、32℃の5質量%リン酸水溶液に8分間浸漬して、細孔径拡大処理を行った。
工程(e):
前記工程(c)および工程(d)を合計で5回繰り返し、平均周期:100nm、深さ:240nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたモールドaを得た。
【0108】
<離型剤処理>
工程(f):
シャワーを用いてモールドaの表面のリン酸水溶液を軽く洗い流した後、モールドaを流水中に10分間浸漬した。
工程(g):
モールドaにエアーガンからエアーを吹き付け、モールドaの表面に付着した水滴を除去した。
工程(h):
モールドaを、オプツールDSX(ダイキン化成品販売社製)を希釈剤HD−ZV(ハーベス社製)で0.1質量%に希釈した溶液に室温で10分間浸漬した。
工程(i):
モールドaを希釈溶液から3mm/secでゆっくりと引き上げた。
工程(j):
モールドaを15分間風乾して、離型剤で処理されたモールドを得た。
【0109】
<加温加湿処理>
工程(k):
離型剤処理したモールドaを恒温恒湿器(楠本化成社製)を用いて、温度85℃、相対湿度85%に1時間放置し、加熱加湿処理されたモールドを得た。
工程(l):
モールドaを一晩風乾した。転写実験の結果と水接触角を表1に示す。
【0110】
〔実施例2〕
工程(j)の加熱加湿処理を24時間とした以外は、実施例1と同様にしてモールドを得た。転写実験の結果と水接触角を表1に示す。
[実施例3〜8]
工程(j)の加熱加湿処理を、表1に示した温度35℃から85℃、湿度60%から95%、6時間とした以外は、実施例1と同様にしてモールドを得た。転写実験の結果と水接触角を表1に示す。
【0111】
〔比較例1〕
工程(j)を行わなかった以外は、実施例1と同様にしてモールドを得た。転写実験の結果と水接触角を表1に示す。
【0112】
表1の結果から実施例1から8の加熱加湿処理を行ったモールドは、転写可能回数が比較例1に比較して約1.5倍向上した。また、転写前、転写100、240、340、400回後のモールドの微細凹凸構造が形成された側の表面の水接触角も比較例1に比べて高い値が維持されており、離型層が劣化しにくく、良好な離型性が維持されている。
【0113】
【表1】

【産業上の利用可能性】
【0114】
本発明の製造方法で得られたモールドは、反射防止物品、撥水性物品をインプリント法で製造する際のモールドとして有用である。
【符号の説明】
【0115】
10 アルミニウム基材
12 細孔
14 酸化皮膜
16 細孔発生点
18 モールド
20 ロール状モールド

【特許請求の範囲】
【請求項1】
下記の工程(イ)〜(ハ)を有する、モールドの製造方法。
(イ)表面に微細凹凸構造が形成されたモールド本体を作製する工程。
(ロ)工程(イ)の後、前記モールド本体の前記微細凹凸構造が形成された側の表面を、表面に存在する官能基(A)と反応し得る官能基(B)を有する離型剤で処理する工程。
(ハ)工程(ロ)の後、前記モールド本体を加熱加湿する工程。

【請求項2】
前記微細凹凸の平均周期が400nm以下である、請求項1に記載のモールドの製造方法。
【請求項3】
前記工程(イ)が、下記の工程である、請求項1に記載のモールドの製造方法。
アルミニウム基材の表面に、複数の細孔を有する陽極酸化アルミナを形成してモールド本体を作製する工程。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−25683(P2011−25683A)
【公開日】平成23年2月10日(2011.2.10)
【国際特許分類】
【出願番号】特願2010−141660(P2010−141660)
【出願日】平成22年6月22日(2010.6.22)
【出願人】(000006035)三菱レイヨン株式会社 (2,875)
【Fターム(参考)】