説明

ラマン分光装置およびラマン分光測定法

【課題】ラマン散乱光とレイリー光を同一の1系統の検出光学系により検出し、更に装置関数成分を取り除き正確な膜成分深さ方向分布を得る事ができるラマン分光装置及び測定法を提供する事。
【解決手段】レーザ光源と、試料からのレイリー光と散乱光を受光する分離光学素子及び油浸レンズである対物レンズを有した顕微光学系と、前記分離光学素子を経由した光における特定波長の光を透過するフィルター光学素子と、前記フィルター光学素子を透過した光を分光する分光手段と、分光された光の強度を検出する光検出手段を備え、前記フィルター光学素子は、前記試料からのレイリー光の一部を測定可能に前記光検出手段に導く及び前記試料からのレイリー光を遮断して散乱光を前記光検出手段に導くの何れかに選択可能に設けられ、受光した散乱光の深さ方向成分プロファイルから装置関数成分を取り除くディコンボリューション処理可能な演算手段を有する事を特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ラマン分光測定装置、及びラマン分光測定法に関し、特に、多層構成の透過性の膜試料界面からのレイリー光を受光すると共に、試料に光を当てた時に生じるラマン散乱光を検出するラマン分光測定装置及び測定法に関する。
【背景技術】
【0002】
近年、画像形成装置の高速化、小型化及びカラー化が急速に進行する中、電子写真感光体開発の潮流はデバイスへの高機能付加へと向かっており、高感度・高耐久の観点からサブミクロンサイズでの電子写真感光体の膜の構造解析の必要性が生じている。
【0003】
これまでの一般的な物質の深さ方向分析を行う方法としては、従来から、X線マイクロアナリシス(EPMA:electron probe micro-analyzer)、X線光電子分光(XPS:x-ray photoelectron spectroscopy)、2次イオン質量分析(SIMS:secondary ion mass spectroscopy)、ラザフォード後方散乱(RBS:Rutherford backscattering spectrometry)、フーリエ変換赤外分光(FT−IR:Fourier transform Infrared spectroscopy)、ラマン分光等が用いられて来た。
ここで、電子写真感光体における厚さ5〜40μm膜の表面から深さ方向への分析となると、試料調整を必要としない状況下で応用出来る方法は限られ、共焦点レーザ蛍光法、共焦点レーザラマン分光等の測定法が挙げられる。これらの中でも材料に対する適用範囲の広さから、特に走査型プローブ顕微鏡技術の一種である共焦点レーザラマン分光法及び装置が用いられてきた。
【0004】
ところで光学顕微鏡観察では、試料に均一に照射した光をレンズで集光して観察を行っている。通常の光学顕微鏡光学系を組み合わせたラマン分光測定装置で厚みの有る光透過性の膜試料の深さ方向に分析を行う場合には焦点面のラマン散乱光に非焦点からのラマン散乱光が重なってしまう。その結果、抽出された情報は焦点位置近傍と非焦点の情報を同時に含むような滲みが生じ、これが原因でラマン分光測定装置の空間分解能が低下していた。
このような問題を解決するために、共焦点顕微光学系を用いた共焦点レーザラマン分光測定装置が開発され、深さ方向計測の有力な測定手法として注目されている。
【0005】
共焦点顕微光学系では焦点部からのレイリー光、或いはラマン散乱光(レーザなどの単色光を物体に照射すると、その入射光と異なる波長の散乱光が観測される。ここで入射光と等しい波長の散乱光をレイリー散乱光(弾性散乱光)と呼び、一方、入射光と波長の異なる散乱光(非弾性散乱光)をラマン散乱光と呼ぶ。以下、本明細書内では、レイリー散乱光を単にレイリー光と呼ぶこととする。)を、対物レンズ焦点面と光学的に共役となる様に配置したレンズ及びピンホールに透過させることにより試料焦点部からの光のみを検出する為、深さ方向の空間分解能が得られる。この状態で試料位置を膜の深さ方向に移動することによって深さ方向プロファイルが得られるようになる。
【0006】
入射光に対して観測されるラマン散乱光は、物質に特有のものであり、この散乱光のスペクトルを調べると、その物質や成分を特定することが出来る。また共焦点光学系は、膜の深さ方向の成分プロファイルをミクロン単位で測定することが可能である。この二つの機能を用いて、膜構造解析を行うことが近年行われている。
但し、一般の乾燥系の対物レンズでは膜中で対物レンズ−媒質(空気)−膜の屈折率差に伴う収差の影響によりビーム径が拡がり、表面に対して膜中で励起光エネルギーや空間分解能が低下するという問題も存在していた。
【0007】
この問題を解決する方法として、ビーム径の拡がりを抑え、膜中の励起エネルギーと空間分解能の低下を抑える、所謂、インデックス(屈折率)マッチングという技術が存在している。これにより、前述の諸問題の大半は解決できる。但し、積層膜の膜厚が例えば5μm以下と薄い場合や膜成分が急峻な濃度変化を持つ場合、観察波形には装置関数と呼ばれる成分が別途重畳しているので空間分解能が低下しており、特に薄膜積層試料の膜の深さ方向の膜界面における膜成分の染み出し(マイグレーション)を高い精度で評価することは一般的にできなかったという問題がある。
【0008】
共焦点顕微光学系を用いない一般的な顕微ラマン装置では、数十μmの空間分解能を有し、大気常圧下で非破壊/非接触の測定が可能である。
一方、共焦点レーザラマン分光測定装置は、高い空間分解能を(Min:0.5〜2μm)を有し、微小部の化学構造、結晶性、配向などに関する分析が可能である点が大きな特徴である。しかしながら、共焦点レーザラマン分光測定装置は一般にスリット関数或いはPSF(Point Spread Function:点像拡がり関数)と呼ばれる装置関数が重畳していると、膜界面における膜成分のにじみ成分が場合によっては7〜10μmほどの拡がりを見せてしまう。
線形な系では観察波形は、真の波形と系の特性を表す装置関数とのコンボリューション(たたみ込み)積分で与えられる。
【0009】
PSFは、光学系の点光源に対する応答を表す関数であり、より一般的にはインパルス応答と呼ばれる。例えば、分光器光学系では鋭いスペクトルが、また作像光学系では点光源が入力インパルスであり、それに対するスペクトルの拡がりや点像のボケがインパルス応答となる。スリット関数やPSFは共通的な用語として一般に装置関数と呼ばれる。
空間位置の関数で表される波形を扱う場合、深さ方向の空間分解能以外の拡がりも同じく装置関数の要素になり、見掛け上、観察波形の前後に幅を持つ形状となる。
【0010】
市販の顕微ラマン分光装置では、屈折率差に伴う空間分解能の低下を抑制するインデックス(屈折率)マッチング技術と、膜界面情報を取得するレイリー光受光技術、装置関数の影響によるボケを取り除くディコンボリューション技術を用いて、試料の膜の深さ方向の膜界面における膜成分のマイグレーションを評価できる装置はこれまでのところ上市されていない。ディコンボリューションとは、観察されたスペクトルや信号が真のスペクトルや信号と装置関数のコンボリューション(たたみ込み積分)で与えられている時、装置関数によるスペクトルなどのボケを取り除く手法である。
計測機器からの出力波形と入力波形(歪を受けない真の波形)との間は、装置関数が介在したコンボリューション(たたみ込み)積分という線形の積分演算によって結ばれている。従って装置関数が既知であれば、観察波形から真の波形が求められるということになる。
【0011】
即ち積層膜中の(任意の)膜成分の他層へのマイグレーションを、微小スポットを形成する顕微ラマン分光装置や共焦点レーザラマン分光装置で測定する場合の諸問題、特に膜中での収差発生に伴う空間分解能の低下と装置関数の重畳による空間分解能低下の問題を解決し、レイリー光により膜界面情報を付与した状態で非破壊で迅速な膜界面における膜成分のマイグレーションを評価するという思想は従来無かった。
【0012】
従来の一般的な共焦点レーザラマン分光測定装置の構成では、例えば、図1に示すように、レーザ光源20より発せられたレーザ光束を集光レンズ21により集光させ、この集光レンズによる焦点上に第1のピンホール22を位置させ、このピンホールを透過した拡散する光束を、ダイクロイックミラーとなる分離光学素子23を介して第2の集光レンズ24に導き、この第2の集光レンズにより、光束を試料1上に集光させる配置に構成されている。
その後、試料1上に集光された光束は、試料1からラマン散乱光を含んで反射され、第2の集光レンズ24を経て、集束しつつダイクロイックミラー23に戻る。ダイクロイックミラー23に戻った光は、ダイクロイックミラーの特性により、ラマン散乱光のみが検出手段である検出部26側に導かれる。
更に、この反射光はダイクロイックミラー23を通過して検出部26に導かれる前に一旦集光され、集光位置に第2のピンホール25が設置される。
第1のピンホールと第2のピンホールとは、ダイクロイックミラーに対して共役な位置(ダイクロイックミラーを対称軸とする位置同士)となっている。
下記非特許文献1においては、これらの方法が提案されている。
【0013】
この様に従来の一般的な共焦点レーザラマン分光測定装置の構成では、レンズと媒質(空気)と膜の屈折率差による空間分解能の低下並びに装置関数の重畳の影響による空間分解能の低下と、更に膜界面情報が得られないことで積層膜界面位置の特定と膜界面における膜成分のマイグレーションを高い分解能で評価することはできなかった。
またこの場合は、ダイクロイックミラーによりレイリー光が除去されるため、試料となる光透過性の膜試料における界面情報を有したレイリー光を検出部で検出して利用することも不可能であって、この段階でマイグレーションの判断指標となる膜内部の界面位置情報を取得することが不可能となる。
【0014】
他の公知技術としては、下記特許文献1には、スパッタリングを用いた表面分析法により深さ方向分析結果にディコンボリューション処理を施すディコンボリューション解析装置が開示されているが、これらはスパッタリング(破壊分析)による深さ方向分布から真の深さ分布を導出する為の手段を提示したもので、膜の界面情報も取得できず、急峻な傾きを持つ膜成分のマイグレーションを評価できるものではない。(特許文献1参照)
【0015】
また、下記特許文献2には、膜界面情報となるレイリー光と深さ方向膜成分プロファイルを取得する思想が開示されているが、当該特許文献2では深さ方向成分プロファイルに重複した装置関数を取り除くことは出来ないため、当該特許文献2の図8に示すように装置関数によるボケ成分(裾の拡がり)が残るため膜成分のマイグレーションを判断することは困難となる。
【発明の概要】
【発明が解決しようとする課題】
【0016】
上記した従来公知の技術では、ラマン分光測定装置において、基体上に形成された光透過性の膜試料の解析に必須なレイリー光即ち界面情報を精度良く取り出すことが困難であり、またPSF(点像拡がり関数)といったボケ成分となる装置関数の重畳している「深さ方向の膜界面における膜成分のマイグレーション」を評価することが困難であったという問題がある。
【0017】
本発明は、上述した実情を考慮してなされたものであって、試料上に形成された光透過性の膜試料の深さ方向解析に必要な界面情報を付与するために微弱なラマン散乱光を検出器で測定しつつ、正確な界面反射情報を含んだレイリー光を同一の1系統の検出光学系により検出し、ラマン分光による深さ位置毎の分光データプロファイルと関連付け、膜の深さ方向成分に重畳している装置関数成分をディコンボリューション処理で取り除き、膜成分の正確な深さ方向分布を得ることで、「深さ方向の膜界面における膜成分のマイグレーション」を評価可能なラマン分光装置およびラマン分光測定法を提供することを目的とする。
【課題を解決するための手段】
【0018】
上記課題を解決するために本発明に係るラマン分光装置は、レーザ光を照射するレーザ光源と、前記レーザ光が照射された試料からのレイリー光と散乱光とを受光する分離光学素子、及び油浸レンズである対物レンズ、を有した顕微光学系と、前記分離光学素子を経由した光における特定波長の光を透過するフィルター光学素子と、前記フィルター光学素子を透過した光を分光する分光手段と、前記分光手段により分光された光の強度を検出する光検出手段と、を備え、前記フィルター光学素子は、前記試料からのレイリー光の一部を測定可能に前記光検出手段に導く、及び、前記試料からのレイリー光を遮断して散乱光を前記光検出手段に導く、のいずれかに選択可能に設けられ、前記光検出手段が受光した散乱光の深さ方向成分プロファイルから装置関数成分を取り除くディコンボリューション処理可能な演算手段を有することを特徴とする。
また、上記課題を解決するために本発明に係るラマン分光測定法は、レーザ光を照射するレーザ光源と、前記レーザ光が照射された試料からのレイリー光と散乱光とを受光する分離光学素子、及び油浸レンズである対物レンズ、を有した顕微光学系と、前記分離光学素子を経由した光における特定波長の光を透過するフィルター光学素子と、前記フィルター光学素子を透過した光を分光する分光手段と、前記分光手段により分光された光の強度を検出する光検出手段と、前記光検出手段が受光した散乱光から装置関数成分を取り除くディコンボリューション処理可能な演算手段を有するラマン分光測定装置のラマン分光測定法であって、前記フィルター光学素子を調整して試料からのレイリー光の一部を前記光検出手段に導き、当該試料の深さ方向の膜界面におけるレイリー光の反射光強度を検出し、ラマン分光による深さ位置毎の分光データプロファイルと関連付ける工程と、得られたラマン分光による深さ位置毎の分光データファイルから抽出可能な膜の深さ方向成分プロファイルに対してディコンボリューションを行う工程と、レイリー光と膜の深さ方向成分プロファイル分析結果としての膜界面における膜成分のマイグレーションを評価する工程と、を有することを特徴とする。
【発明の効果】
【0019】
本発明によれば、基体上に形成された光透過性の膜試料から高い空間分解能条件下での膜界面位置情報の取得と、推定された真の深さ方向の膜の成分分布プロファイルの取得が可能となり、膜成分の界面における膜成分のマイグレーション評価が可能なラマン分光装置およびラマン分光測定法を提供することが可能となる。
【図面の簡単な説明】
【0020】
【図1】従来の一般的な共焦点レーザラマン分光測定装置の構成概略図である。
【図2】本発明で被検体となる感光体の光透過性膜の構成を示す概略図である。
【図3】(a)本発明に係るレーザラマン分光測定装置の一実施の形態における構成を示す概略図である。(b)本発明に係るレーザラマン分光測定装置の他の実施の形態における構成を示す概略図である。
【図4】励起レーザ光として488nmの波長光を用いた場合のレーザ光源の波長域を反射する特性を有したダイクロイックミラーの特性図の例である。
【図5】ノッチフィルターの光学特性を示すグラフである。
【図6】エッジフィルターの光学特性を示すグラフである。
【図7】レイリー反射強度と深さ方向位置との関係を示し被検体である膜の界面情報(レイリー光洩れ光プロファイル:界面反射強度分布図)を表すグラフである。
【図8】ラマン強度及びレイリー反射強度と深さ方向位置との関係を示し被検体である膜の界面情報と膜成分プロファイル(電荷輸送層5の膜中濃度プロファイル)を表すグラフである。
【図9】PSF(装置関数)取得用試料の深さ方向の位置毎のラマン散乱光の分光データプロファイルを示すグラフである。
【図10】図8にディコンボリューション結果を重ねて表示したグラフである。
【発明を実施するための形態】
【0021】
本発明に係るラマン分光装置は、レーザ光を照射するレーザ光源30と、前記レーザ光が照射された試料1からのレイリー光と散乱光とを受光する分離光学素子33、及び油浸レンズである対物レンズ34、を有した顕微光学系と、前記分離光学素子33を経由した光における特定波長の光を透過するフィルター光学素子37と、前記フィルター光学素子37を透過した光を分光する分光手段と、前記分光手段により分光された光の強度を検出する光検出手段36と、を備え、前記フィルター光学素子37は、前記試料から1のレイリー光の一部を測定可能に前記光検出手段36に導く、及び、前記試料1からのレイリー光を遮断して散乱光を前記光検出手段36に導く、のいずれかに選択可能に設けられ、前記光検出手段36が受光した散乱光の深さ方向成分プロファイルから装置関数成分を取り除くディコンボリューション処理可能な演算手段38を有することを特徴とする。
また、本発明に係るラマン分光測定法は、レーザ光を照射するレーザ光源30と、前記レーザ光が照射された試料1からのレイリー光と散乱光とを受光する分離光学素子33、及び油浸レンズである対物レンズ34、を有した顕微光学系と、前記分離光学素子33を経由した光における特定波長の光を透過するフィルター光学素子37と、前記フィルター光学素子37を透過した光を分光する分光手段と、前記分光手段により分光された光の強度を検出する光検出手段36と、前記光検出手段36が受光した散乱光から装置関数成分を取り除くディコンボリューション処理可能な演算手段38を有するラマン分光測定装置のラマン分光測定法であって、前記フィルター光学素子37を調整して試料からのレイリー光の一部を前記光検出手段36に導き、当該試料1の深さ方向の膜界面におけるレイリー光の反射光強度を検出し、ラマン分光による深さ位置毎の分光データプロファイルと関連付ける工程と、得られたラマン分光による深さ位置毎の分光データファイルから抽出可能な膜の深さ方向成分プロファイルに対してディコンボリューションを行う工程と、レイリー光と膜の深さ方向成分プロファイル分析結果としての膜界面における膜成分のマイグレーションを評価する工程と、を有することを特徴とする。
次に、図面を参照して、本発明のラマン分光測定装置及びラマン分光測定法を実施形態により詳細に説明する。
【0022】
本発明で被検体となる感光体の光透過性膜の構成として、代表的な物を以下に挙げる。
図2は、円筒形状基体となるアルミニウムドラム2上に、中間層3と、その上に電荷発生層4と電荷輸送層5と表面層6を順次形成した感光体ドラムの層構成を示す図であり、電荷発生層4、電荷輸送層5、表面層6により感光層をなしている。また、中間層3、電荷発生層4、電荷輸送層5、表面層6で膜試料1を形成している。
【0023】
図2において、中間層3は、導電性の円筒形状基体(以下、単に基体と称することもある。)に感光層を接着固定するバインダとしての機能をもち、帯電ムラ等の弊害を抑制するために「顔料の微細粒子」が含有されている。
図2において、電荷発生層4は、特定の波長の光照射により「正と負の電荷対」を発生させる層であり、電荷輸送層5と表面層6は電荷発生層4で発生した正と負の電荷のうち、所定極性の電荷を感光層表面(つまり表面層6表面)へ輸送する機能を持つ層である。
また表面層6は、感光体が実機内で物理的な接触・摩耗により感光層が削れ、感光体特性が低下することを防ぐ機能も有している。
【0024】
中間層3、電荷発生層4、電荷輸送層5、表面層6の膜厚は好ましくはそれぞれ、2〜6μm、1μm以下、15〜35μm、3〜10μm程度であり、従って、感光層としての好ましい厚さは18〜46μm程度となる。
中間層3の層厚は、上記のように、一般的に2〜6μmの範囲であるが、バインダとしての十全な機能や、導電性基体に対する光遮蔽効果を良好にならしめるために、中間層3の厚さは3μm以上であることが好ましい。
【0025】
この内、本実施形態のラマン分光測定装置またはラマン分光測定法を、例えば光透過性の膜となる電荷輸送層5と表面層6中の成分プロファイルを見て、電荷輸送層5成分が表面層6中にマイグレーションしているかを解析するニーズがある。
レイリー光(深さ方向の膜界面における反射光強度)として、表面層6の表面と電荷輸送層5の表面及び中間層3の表面(界面)の反射光を受光することが可能である。
【0026】
次に、本発明に係るラマン分光測定装置の構成について説明する。
図3は、本発明に係るラマン分光測定装置の構成例を示す断面概略図である。図3(a)は、アルミドラム上に形成された膜試料1からのレイリー光の一部を散乱光とともに測定可能に検出部36に導き、その後、受光した散乱光の深さ方向成分プロファイルから装置関数成分を取り除くディコンボリューション処理可能な演算手段38を含む構成を示している。また図3(b)は、アルミドラム上に形成された膜試料1からのレイリー光を遮断してラマン散乱光を検出部36に導き、その後、受光した散乱光の深さ方向成分プロファイルから装置関数成分を取り除くディコンボリューション処理可能な演算手段38を含む構成を示している。
【0027】
図3に示すように、本発明のラマン分光測定装置は、レーザ光源(レーザ光源30)と、レーザ光が照射された試料(アルミドラム上に形成された膜試料1)からのレイリー光と散乱光を受光する分離光学素子(ダイクロイックミラー33)及び油浸レンズである対物レンズ(対物レンズ34)と、を有し、油浸レンズと試料との間にエマルジョンオイル(不図示)が充填されてなる顕微光学系と、前記分離光学素子を経由した光における特定波長の光を透過するフィルター光学素子(フィルター光学素子の一部であるレーザ光遮断光学素子37のみ図3(b)に図示)と、前記フィルター光学素子を透過した光を分光する分光手段(不図示)と、前記分光された光の強度を検出する光検出手段(検出部36)と、受光した散乱光の深さ方向成分プロファイルから装置関数成分を取り除くディコンボリューション処理可能な演算手段38を備える。
【0028】
ラマン分光測定装置の顕微鏡ステージには、円筒形状試料把握治具と半径方向駆動部及びZ軸方向駆動部が付帯されても良く、この場合、Z軸方向に光透過性の膜試料の乗った顕微鏡ステージを移動させるか対物レンズを移動させながら対物レンズで入射光および検出光(ラマン散乱光)を集光することで空間分解能を作り出す。顕微鏡ステージには、Z軸方向駆動部としてはピエゾ素子或いはステッピングモータ移動機構が設置され光透過性の膜試料のZ方向(厚み方向)の走査が行われる。
【0029】
共焦点レーザラマン分光測定装置である場合は、顕微鏡ステージ或いは対物レンズを顕微鏡のZ方向に移動することによって、試料上に形成された光透過性の膜試料に対して光軸方向の走査を行うことが可能となる。光学系の空間分解能は、対物レンズのNA(=Numerical Aperture)に大きく依存しており、高空間分解能を達成する為、測定時には油浸レンズが用いられる。
【0030】
図3で、レーザ光源30から出射されるレーザ光は、共焦点レーザラマン分光法で励起に用いるレーザ光であり、検出対象となる膜に吸収や蛍光が無く、ラマン活性が有る波長が選択され、数枚のNDフィルターの組み合わせを用いて一般には減光された状態である。
【0031】
用いるレーザ光強度は、出射口で1〜100mW/cm程度であれば良く、その後、試料となる光透過性の膜試料1上での強度が数nW/μm〜数μW/μmの範囲程度になるように調整すれば良い。
【0032】
一般には、レーザ光強度が高いほど検出されるラマン散乱光強度も強くなりS/N比は向上するが、試料破壊や褪色化、強光への応答などを考慮して決める必要も有る。光透過性の膜試料毎に吸収強度や光耐性などが異なり、レーザ光強度の条件決定は最も重要な項目の一つとなる。
【0033】
また波長が短ければ、波長の4乗に反比例してラマン散乱強度が強くなる。
有機膜を対象とした場合は、レーザ波長は対象膜の光ダメージと、ラマン測定に好ましく無い膜の蛍光発生を考えると480nm以上であることが好ましく、また前述の様にラマン散乱強度を考えると、波長は短い程好ましく、検討の結果では900nm以下で有ると好適な測定が可能となってくることが判明している。
【0034】
また、レーザ光源30の出射口側には、レーザ光源30より発せられたレーザ光束を集光する集光レンズ31と、この集光レンズ31による焦点上に配置される第1のピンホール32と、が設けられている。
【0035】
分離光学素子として用いるダイクロイックミラー33は、誘電体多層膜により、2つ以上の波長域の光に分離するミラーである。ダイクロイックミラーとしては、レーザ光源からレーザ光の波長域を透過して、試料上に形成された光透過性の膜試料からのラマン散乱光の反射光を透過する特性を有した場合、逆にラマン散乱光となるレーザ光源より長波長の波長域を透過して、レーザ光源の波長域光を反射する特性も有する場合がある。
【0036】
図4は、励起レーザ光として488nmの波長光を用いた場合のレーザ光源の波長域を反射する特性を有したダイクロイックミラーの特性図の例である。
【0037】
ラマン分光測定装置においては、波長を分光し得るダイクロイックミラー等を用いて、試料上に形成された光透過性の膜試料に照射された励起光成分(レイリー光)と試料上に形成された光透過性の膜試料から発生したラマン散乱光が一般に分離される。
励起レーザ光の反射光(レイリー光)とラマン散乱光の分離のために用いられるダイクロイックミラーは、特定の波長を境に二値的に変化する透過率特性を有していることが理想的で有るが、実際の透過率特性は比較的急峻に変化していても、その透過率は0と1とはならない。この為、ダイクロイックミラーで分離された光にも、ラマン散乱光だけでなく、レイリー光が含まれる。
このことから、ダイクロイックミラー33を配置した状態でも、検出部36側にレイリー光が漏れることとなるが、検出部36の検出器を飽和させてしまう非常に強いレイリー光が検出器に入射することは防いでおり、検出部36でレイリー光を検出可能な受光を実現している。
【0038】
対物レンズ34は、集光レンズ31に次ぐ第2の集光レンズである。すなわち、励起レーザ光の焦点を対物レンズ34の焦点と一致させ、励起レーザ光が試料上に形成された光透過性の膜試料1上の一点になるように照射されるようになっている。また、対物レンズ34の後焦点に第2のピンホール35を置き、焦点以外のラマン散乱光を効率よくカットしている。
【0039】
なお、高い光学系スループットと小さな集光ビームスポットを両立させるため、対物レンズ34への照射レーザ径は、対物レンズ34の入射径と等しい直径に設定される。
【0040】
また、顕微光学系における空間分解能は、対物レンズ34のNAとコンフォーカルピンホール径に大きく依存しており、本発明では高空間分解能を達成するために、測定時には油浸レンズを対物レンズ34として用いる。また、対物レンズ34と基体上に形成された膜試料1の間にエマルジョンオイルが充填されており、油浸レンズ+エマルジョンオイルの構成となっている。
【0041】
図3に示すような反射型のラマン分光測定装置では、励起と検出を同一の対物レンズ34で行うことになる。
焦点以外の深さからのラマン散乱光は、第2のピンホール35の位置で焦点を結ばないため、効率良く妨害光がカットされる(図3に示すように、非焦点からの反射光の行路を示す破線部分のほとんどの反射光が第2のピンホールにより遮蔽される)。但し、円筒形状基体上に形成された膜試料1の膜中では屈折率差による色収差や球面収差の影響でビーム径が拡がりを見せるため、前述した様にこれらを油浸レンズやエマルジョンオイルを用いて拡がりを押さえることが測定上必要となる。
【0042】
「油浸レンズ+エマルジョンオイル」の構成は、一般にはガラス程度の屈折率を持つ油をレンズと膜の間に満たして、空気とレンズの屈折の影響を排除する工夫がなされている。すなわち、乾燥系のレンズでは、レンズから空気、更に対象膜と二箇所で光が通る媒質が変化し屈折(収差)が生じる。これに対して、油浸対物レンズ(油浸レンズ)と併せて使用するエマルジョンオイルをレンズや膜と近い屈折率となる1.5〜1.6とすると、光の屈折の影響を排除できる様になる。このことは、NAの大きな対物レンズ34を用いた場合、試料上に形成された膜試料1の膜中の空間分解能を高める為に有効な手立てとなる。
【0043】
また、対物レンズ34のNA(開口数)は1.2以上となる様に油浸レンズとエマルジョンオイルの組み合わせとなっていることが好ましい。NA1.2以上でなければ、深さ方向解析時の計算上の空間分解能:1μmを確保できず、特に5μm以下の薄膜の場合は、明瞭な膜構造解析が不可能になる。
【0044】
深さ方向分解能はインデックス(屈折率)マッチング技術を用いることにより、深さ方向では一定の分解能を保つと考えられる。
NAは対物レンズの性能を決める重要な値であり、焦点深度(空間分解能)、明るさに関係する値となる。NAが大きく成る程、空間分解能は向上する。NA(=Numerical Aperture)とも呼び、以下の式で表されるものである。但し、通常、市販対物レンズであれば、単体のNAが記載されている。
【0045】
NA=n・sinθ
【0046】
(ここで、nは膜試料1における対象膜と対物レンズ34の間の媒質(ここではエマルジョンオイル)の屈折率、θは光軸と対物レンズ34の最も外側に入る光線とがなす角を示す。)
【0047】
なお、前記エマルジョンオイルの屈折率に関しては、メーカー測定値を用いることも出来るし、エマルジョンオイルをスピンコーターでSiウェーハ上に超薄膜塗布して、その後に分光エリプソメータで測定したものを用いることも出来る。
【0048】
以上の状態で、レーザ光源30からのレーザ光の焦点位置を基体上に形成された膜試料1の膜の深さ方向に走査することによって、光透過性の膜試料1で、顕微鏡ステージ或いは対物レンズのZ方向の移動によりステップ毎の深さ方向(膜試料の厚み方向)で明瞭なレイリー光プロファイル及びラマン信号プロファイルが得られ、高分解能な深さ方向構造解析が可能となる。
【0049】
但し、ここで試料がDrum形状の場合、試料の曲率半径中心とレーザ光軸が一致していない場合は曲率の影響で、膜の界面情報である正確なレイリー光プロファイルを取得することが困難となる。
【0050】
本発明のラマン分光測定装置における顕微光学系は、物体上の焦点面と共役な関係にあるピンホール(第1のピンホール32,第2のピンホール35)を備えた共焦点顕微光学系であることが好ましい。すなわち、第1のピンホール32が集光レンズ31とダイクロイックミラー33との間に設けられ、第2のピンホール35がダイクロイックミラー33と検出部36との前に設けられて、2つのピンホールはそれぞれ焦点を有する共焦点の位置にある。これにより、共焦点顕微光学系において、合焦点以外からのラマン散乱光はピンホールによってブロックされるため、焦点以外の膜内からの不要光や光透過性の膜試料内部からのラマン散乱光をほぼ完全に取り除くことが可能となり、深さ方向に優れた空間分解能を達成することができる。
【0051】
本実施形態のラマン分光測定装置は、ラマン散乱光とレイリー光を同一の検出光学系で測定することが可能である。
【0052】
本発明において顕微光学系を構成する前記フィルター光学素子は、試料上に形成された膜試料1からのレイリー光の一部を散乱光とともに測定可能に検出部36に導くか、試料上に形成された膜試料1からのレイリー光を遮断して散乱光を検出部36に導くか、のいずれかに選択可能に設けられている。
【0053】
共焦点顕微光学系では、レーザ光を対物レンズ34により、狭い領域に集光して基体上に形成された光透過性の膜試料1に照射するため、通常の分光測定とは比較にならないくらい高強度の励起光になる。この為、ダイクロイックミラー33から洩れたレイリー光成分でも、あるいは更に1または複数のレーザ光遮断光学素子(フィルター光学素子)を経たレイリー光成分でも、ラマン散乱光に匹敵する強度を持つこととなる。
【0054】
本発明では、ダイクロイックミラー33、またはダイクロイックミラー33及び1または複数のレーザ光遮断光学素子により、試料上に形成された膜試料1からのレイリー光成分を検出部36で検出可能な程度に弱め、ついで該レイリー光成分を検出部36で検出して基体上に形成された膜試料1の被検体である膜の深さ方向の界面情報を取得可能にしている。
【0055】
本発明における顕微光学系では、前記フィルター光学素子は、1または複数のレーザ光遮断光学素子から構成され、そのうちの少なくとも1つは、レイリー光と等価なレーザ光を遮断するレーザ光遮断光学素子(第1のレーザ光遮断光学素子)が抜き差し可能に設けられてなることが好ましい。あるいは、前記フィルター光学素子の少なくとも1つは、レイリー光と等価なレーザ光を遮断するレーザ光遮断光学素子(第1のレーザ光遮断光学素子)とレイリー光と等価なレーザ光の波長に対する透過率を上げたレーザ光遮断光学素子(第2のレーザ光遮断光学素子)とが入れ替え可能に設けられてなることが好ましい。
【0056】
また、ここでいう抜き差し可能に設けられてなるレーザ光遮断光学素子、あるいはレイリー光と等価なレーザ光を遮断するレーザ光遮断光学素子とレイリー光と等価なレーザ光の波長に対する透過率を上げたレーザ光遮断光学素子とが入れ替え可能に設けられてなるもののうちの、レイリー光と等価なレーザ光を遮断するレーザ光遮断光学素子(第1のレーザ光遮断光学素子)は、図3(b)に示すレーザ光遮断光学素子37であり、ダイクロイックミラー33と第2のピンホール35の間(すなわち分光手段となる分光器の手前)に配置されるものである。このレーザ光遮断光学素子37としては、例えばノッチフィルターやエッジフィルターが挙げられ、ノッチフィルターおよび/またはエッジフィルターからなるものである。
【0057】
このうち、ノッチフィルターは、レイリー光の除去に用いられるレーザ光遮断光学素子の一つであり、誘電体多層膜を用いたフィルターである。図5に、ノッチフィルターの光学特性を示す。図5に例示したように、ノッチフィルターは特定の波長のみを透過させないようにしたものであり、誘電体多層膜を積層して膜厚を最適化すれば、設計波長を中心にして20nm程度のバンド内の光を除去することができる。
【0058】
しかしながら、ノッチフィルターは、図5からも判る様に、レイリー光を100%除去できる訳ではない。このレイリー光のフィルターとなる波長領域における透過率を増すことによって、検出部36の検出器を飽和させてしまう励起レーザ光波長近傍の非常に強いレイリー散乱光が検出器に入射することを防ぎながら、界面反射情報取得に必要なレイリー光を取得できるようにすることが可能である。これがレイリー光と等価なレーザ光を遮断するレーザ光遮断光学素子とレイリー光と等価なレーザ光の波長に対する透過率を上げたレーザ光遮断光学素子とが入れ替え可能に設けられてなるもののうちの、レイリー光と等価なレーザ光の波長に対する透過率を上げたレーザ光遮断光学素子である。
【0059】
なおノッチフィルターとして、2つの互いにコヒーレントなレーザビームによって出来る干渉パターンを記録して作られるホログラフィック・ノッチフィルターを用いることもできる。
【0060】
一方、エッジフィルターの特性は、例えば図6に示すようなものである。ここでは、レーザ光の波長を488nmとした場合の例を示すが、波長490nmより短波長側を完全に除去できるようになっている。例えば、エッジフィルターとして誘電体多層膜を用いたものでは、最適設計を行えば、波長分別設計位置の前後大体30nm程度の間隔を置いて、これより短波長側の光を除去し、反対にラマン散乱光を含む長波長側の光を透過させることが出来る。本実施形態によれば、エッジフィルターをノッチフィルターの代わりに挿入しても、ノッチフィルターと同様の効果をもたせることが可能となる。
【0061】
本発明では、抜き差し可能なレーザ光遮断光学素子37を取り外すか、或いはレイリー光と等価なレーザ光を遮断するレーザ光遮断光学素子37とレイリー光と等価なレーザ光の波長に対する透過率を上げたレーザ光遮断光学素子とが入れ替え可能に設けられてなるもののうちのレイリー光と等価なレーザ光の波長に対する透過率を上げたレーザ光遮断光学素子に置き換え、基体上に形成された膜試料1からの界面反射光即ちレイリー光を検出部36に測定可能に直接導くことで、後述する図7に示すように、充分な感度のレイリー散乱光を受光することが可能となり、膜の界面情報を抽出できる様になる。
【0062】
またその後、抜き差し可能なレーザ光遮断光学素子37を光路に戻すか、或いはレイリー光と等価なレーザ光の波長に対する透過率を上げたレーザ光遮断光学素子をレイリー光と等価なレーザ光を遮断するレーザ光遮断光学素子37に置き換えることにより(図3(b))、試料上に形成された膜試料1からの光のうち、ラマン散乱光測定時に妨害光となるレイリー光を完全に取り除くことが可能となり、感度の高いラマン分光法による膜構造解析が可能となる。
【0063】
以上のように、本実施形態のラマン分光測定装置によれば、ラマン散乱光とレイリー光を同一の検出光学系で測定することが可能である。なお、レーザ光遮断光学素子の透過率については、例えば分光反射率測定装置により透過率を求めることが出来る。
【0064】
検出部36は、分光手段と光検出手段とから構成される。
このうち、前記分光手段としては、回折格子によりラマン散乱光を分光する分光器が挙げられる。分光器に入る直前光路上に焦点面と共役な点(エリア)がある場合には、その部分のX−Y平面内に2つの直行するスリット(クロススリット)を置くことで、スリットの組に共焦点光学系でいう共焦点ピンホール(第2のピンホール35)の役割を担わせることが可能であり、これにより、Z軸方向の空間分解能が生じる。またこのクロススリットは、ラマンスペクトル取得時の波長分解能にも寄与する。
【0065】
また、光検出手段としては、マルチチャネル検出器(たとえば、CCD:Charge Coupled Device)、シングルチャネル検出器(たとえば、APD:Avalanche Photodiode)が挙げられる。第2のピンホール35を透過した光は、検出部36に構成された分光器に入射し分散された後、この光検出手段で検出されるようになる。
【0066】
ディコンボリューション処理可能な演算手段38は、光検出手段、例えばマルチチャネル検出器で取得された膜界面情報(0cm-1:レイリー光プロファイル)と膜の成分プロファイル(ラマン散乱光)をデータ処理し表示するPC(パーソナルコンピューター)内に設けられており、最大エントロピ法(MEM法)、Richardson-Lucy(R−L)法などのアルゴリズム(ソフトウェア)としてPC内の波形データ処理ユニットとして内包されている。
【0067】
一般に膜中の分子種の成分濃度が急峻に変化する場合に深さ方向成分プロファイルに装置関数が重畳していると、濃度立上がり部で濃度の滲み(ボケ)が生じ成分濃度のプロファイルが実際の成分濃度のプロファイルと異なってしまうことになる。この為、膜成分のマイグレーション判断の為には、深さ方向分布をアバウトな分布から正確な分布に戻してから解析を行わないと間違った結果が得られることになる。
【0068】
これを改善するために前述の演算手段として深さ方向の装置関数を取り除くディコンボリューション処理を行う。
装置関数は一般に未知であるが、分散型分光器の場合にはスリット関数が主な原因となる場合が多く、出力される観察波形を劣化させてしまう。この時、装置関数が求められれば劣化した観察波形から真の信号原(歪を受けない真の波形)が推定できる。
【0069】
即ち、測定された深さ方向分布をI(z)、深さ方向の装置関数をg(z)、真の深さ方向分布をX(z)とすると、これら三者の関数は以下の様な式で表される。
【0070】
I(z)=g(z)*X(z)
(ここで、*はコンボリューション積分を示す。)
【0071】
ディコンボリューションは、この深さ方向装置関数を考慮してI(z)から真の深さ方向分布X(z)を推定する方法である。
【0072】
また、本発明のラマン分光測定装置の顕微光学系(顕微鏡部)には、顕微鏡ステージが付帯されており、顕微鏡ステージには試料の半径方向に移動可能な半径方向駆動部とその上に試料を水平に把持する試料受け部(把持治具)が設置されても良く、Z軸(膜深さ)方向に試料上に形成された光透過性の膜試料1の載った把持治具或いは対物レンズを移動させながら対物レンズ34で入射光および検出光(ラマン散乱光)を集光することで深さ方向プロファイルを作り出す。顕微鏡ステージには、ピエゾ素子或いはステッピングモータ移動機構が設置され光透過性の膜試料1のZ方向(厚み方向、光軸方向)の走査を行えるようになっている。
【0073】
以上の構成の本発明のラマン分光測定装置による基体上に形成された膜試料1における対象膜の電荷輸送層の表面層に対するマイグレーション測定は、次のように行われる。
【0074】
(1)膜の界面情報抽出
ラマン分光測定装置を図3(a)の構成とし、レーザ光源30より出射され、集光レンズ31、第1のピンホール32を経た拡散するレーザ光束を、ダイクロイックミラー33を介して油浸レンズ(対物レンズ34)に導き、この油浸レンズにより、光束をエマルジョンオイルを透過させて基体上に形成された光透過性の膜試料1上に集光させる。次いで、基体上に形成された膜試料1上に集光された光束は、基体上に形成された膜試料1からラマン散乱光を含んだ光として反射され、エマルジョンオイル、油浸対物レンズ(対物レンズ34)を経て、集束しつつダイクロイックミラー33に戻る。ダイクロイックミラー33に戻った光は、ダイクロイックミラーの特性により、レイリー光の一部及びラマン散乱光(以下、まとめて光)が検出部36側に向かうようになる。
【0075】
更に、この光は検出部36に導かれる前に一旦集光され、抜き差し可能なレーザ光遮断光学素子37が取り外された構成か、或いはレイリー光と等価なレーザ光を遮断するレーザ光遮断光学素子37とレイリー光と等価なレーザ光の波長に対する透過率を上げたレーザ光遮断光学素子とが入れ替え可能に設けられてなるもののうちのレイリー光と等価なレーザ光の波長に対する透過率を上げたレーザ光遮断光学素子に置き換えられた構成のフィルター光学素子を、検出部36で測定可能な程度に弱められたレイリー光の一部がラマン散乱光とともに透過し、さらに集光位置に配置された第2のピンホール35を透過して、検出部36に導かれ、次いで検出部36に構成された分光器に入射し分散された後、検出器でレイリー光の強度が検出されるようになる。
【0076】
このような状態で、基体上に形成された光透過性の膜試料1を載せた顕微鏡ステージ或いは対物レンズを必要に応じてZ軸方向にピエゾ駆動或いはステッピングモータ移動機構により走査させて、基体上に形成された膜試料1の対象膜のZ軸方向の所定位置での検出を行う。すなわち、レーザ励起光と同一波長の光強度プロファイルを検出部36の検出器で測定して膜における深さ方向の界面情報を取り出す。
【0077】
これにより、界面反射位置情報となるレイリー光(0cm-1)の光量変化を確認し、その光量がピークとなる位置から光軸方向の膜の界面の位置を特定することができる。例えば、図7に示すような被検体である膜の界面情報を取得することができるが、ここでは、3つの反射強度のピークが見られ、それぞれのピーク位置を対象膜の表面層表面(エマルジョンオイルとの界面)と、表面層/電荷輸送層界面と、その下層との界面(中間層表面)とに特定することができる。
【0078】
但し、このプロファイルも計測機器の動的特性、即ち装置関数の影響によって歪みを受ける。
この際、界面反射であるレイリー光を膜界面から取得できるようにする為には、膜と媒体(例えば油浸レンズを用いる場合はエマルジョンオイル)との屈折率差が重要となり、特に膜表面でのレイリー光を確保する為には、次式(1)より、界面での反射率:Rが0.1%以上必要であることが見出されている。
【0079】
反射率R=((N−N12+κ2)/(N+N12+κ2) ・・・(1)
N:測定対象膜の屈折率
1:媒体の屈折率
κ:測定対象膜の消光係数
【0080】
一般に、屈折率差が大きくなれば界面反射を確保しやすくなるが、その場合は、レンズ−媒体−膜間の屈折率差による収差の影響で、空間分解能とエネルギー密度の低下を誘発することとなる。この為、測定の為には対象となる膜の屈折率から決まる、−0.2〜−0.1の屈折率差を有するエマルジョンオイルを用いることが好適となる。
【0081】
(2)膜の構造解析
次いで、ラマン分光測定装置を図3(b)の構成とし、レーザ光源30より出射され、集光レンズ31、第1のピンホール32を経た拡散するレーザ光束を、ダイクロイックミラー33を介して油浸レンズ(対物レンズ34)に導き、この油浸レンズ(対物レンズ34)により、光束をエマルジョンオイルを透過させて基体上に形成された光透過性の膜試料1上に集光させる。次いで、膜試料1上に集光された光束は、膜試料1からラマン散乱光を含んだ光として反射され、エマルジョンオイル、油浸レンズ(対物レンズ34)を経て、集束しつつダイクロイックミラー33に戻る。ダイクロイックミラー33に戻った光は、ダイクロイックミラーの特性により、レイリー光の一部及びラマン散乱光(以下、まとめて光)が検出部36側に向かうようになる。
【0082】
更に、この光は検出部36に導かれる前に一旦集光され、抜き差し可能なレーザ光遮断光学素子37が光路に戻された構成か、或いはレイリー光と等価なレーザ光を遮断するレーザ光遮断光学素子37とレイリー光と等価なレーザ光の波長に対する透過率を上げたレーザ光遮断光学素子とが入れ替え可能に設けられてなるもののうちのレイリー光と等価なレーザ光を遮断するレーザ光遮断光学素子37に置き換えられた構成のフィルター光学素子を、レイリー光が完全除外され検出対象のラマン散乱光に合った波長帯域の光のみが選択に透過し、さらに集光位置に配置された第2のピンホール35を透過して、検出部36に導かれ、次いで検出部36に構成された分光器に入射し分散された後、検出器で所定の波長帯域のラマン散乱光の強度が検出されるようになる。
【0083】
このような状態で、基体上に形成された光透過性の膜試料1を載せた顕微鏡ステージ或いは対物レンズを必要に応じてZ軸方向にピエゾ駆動或いはステッピングモータ移動機構により走査させて、膜試料1の対象膜のZ軸方向のラマンスペクトルの検出を行う。
【0084】
最後に、検出されたラマンスペクトルと、先だって抽出された膜の界面情報とを用いて、任意の膜成分のラマンバンドのピーク値を深さ方向の位置ごとにプロットして、ラマン分光による深さ方向の位置毎の膜成分の分光データプロファイルを得る。
【0085】
以上の処理により、基体上に形成された光透過性の膜試料から高い空間分解能条件下での膜界面位置情報と膜の成分分布プロファイルの取得が可能となる。
【0086】
(3)ディコンボリューション処理
得られた観察波形、この場合、ラマン分光による深さ位置毎の膜成分の分光データプロファイルから、この測定系の装置関数をディコンボリューション処理して取り除く為に、ここでラマン分光測定装置におけるPSFを先ず取得する。
【0087】
電荷輸送層と同成分の薄膜試料を、希望する分解能以下の厚み(1μm以下)で作製し、それを顕微鏡ステージで把持し、この薄膜試料を載せた顕微鏡ステージ或いは対物レンズを必要に応じてZ軸方向にピエゾ駆動により走査させて、PSF取得用試料の深さ方向の位置毎のラマン散乱光の分光データプロファイルを「油侵レンズ+エマルジョンオイル」の構成で得る。(図9)
これがラマン分光による深さ方向毎の膜の成分プロファイルのPSF(装置関数)となる。
この場合、膜の界面情報となるレイリー光プロファイルにも装置関数は重畳しているが、こちらに関しては反射強度のピーク位置で界面座標を正確に特定出来るため、特にディコンボリューション処理は行わなくても良い。
その後、得られた観察波形となるラマン分光による深さ位置毎の膜の成分プロファイルと装置関数となるPSFによりディコンボリューション処理を行い、ラマン分光による深さ位置毎の膜の真の成分プロファイルを推定する。
【0088】
前述したディコンボリューション解析処理は、一般にフーリエ空間で計算が行われるため、深さ方向分布を構成するデータ点間の距離が等間隔でかつデータ点数が二のべき乗であることが望ましい。
【0089】
(4)マイグレーション評価
得られたラマン分光による深さ位置毎の膜の真の成分プロファイルと膜界面位置情報を対比させ、装置関数が除去された状態の膜成分の立ち上がり位置から膜成分、例えば電荷輸送層の表面層に対するマイグレーションを判断する。
【実施例】
【0090】
以下、本発明の実施例を説明する。
【0091】
(実施例1)
以下の条件で、円筒形状基体上に形成された膜試料1サンプルの電荷発生層の表面層に対するマイグレーション評価を行った。
【0092】
(1)膜試料1:図2において、φ40mmの円筒形状基体となるアルミニウムドラム2上に、中間層3として結着樹脂中に粒子・微細粒子を分散した構成の厚さ3.5μmの膜を塗布し、更に電荷発生層4として特定の波長の光照射により「正と負の電荷対」を発生させる層となるバインダー樹脂と電荷発生物質を主成分とする層を形成した上に、光透過性の膜として任意の種類の成分を分散させて膜厚22μmの電荷輸送層5と膜厚2.5μmの表面層6を形成したもの。
【0093】
(2)ラマン分光測定装置:図3に示す構成
<装置の構成詳細>
・レーザ光源30:レーザ光波長=488nm
・対物レンズ34:油浸対物レンズ(OLYMPUS MPlan Apo 100× NA=1.4(屈折率1.516のエマルジョンオイルを対象膜と対物レンズ34の間に充填することにより)、屈折率1.525)
・エマルジョンオイル:屈折率1.516
・レーザ光遮断光学素子37;図5の特性(488nmの波長をカットする機能)を有するノッチフィルター
【0094】
なお、対象膜の屈折率は、Siウェーハ上に対象膜を超薄膜塗布し、分光エリプソメータ(J.A.Woolam社製、WVASE 32)で複素屈折率(屈折率、消光係数)を測定し求めた。また、エマルジョンオイルの屈折率は、メーカー測定値(製品にデータ添付)をそのまま用いた。また、ノッチフィルターの透過率は、分光透過率測定装置(松下テクノトレーディング F20装置)にて透過率値を測定して確認した。
【0095】
(3)測定手順
まず、円筒形状基体上に電荷輸送層5と表面層6が形成された膜試料を図3(a)に図示していない試料把持治具上に静置する。その後、試料の曲率中心とレーザ光軸を一致させる。
【0096】
次に図3(a)に示すように、前記ノッチフィルターを取り外した構成とし、レーザ励起光の光束を対物レンズ34で集光して円筒形状基体となるφ40mmアルミニウムドラム上に形成された光透過性の膜試料1の1点に照射し、円筒形状基体となるφ40mmアルミニウムドラム上に形成された膜試料1からのレイリー光の一部を検出部36の検出器に導いて深さ方向に走査することにより「レイリー光洩れ光プロファイル(界面反射強度分布図)」を取得した。(図7)
【0097】
次に、図3(b)に示すように、前記ノッチフィルターを取りつけた構成とし、レーザ励起光の光束を対物レンズ34で集光して円筒形状基体となるφ40mmアルミニウムドラム上に形成された光透過性の膜試料1の1点に照射し、円筒形状基体となるφ40mmアルミニウムドラム上に形成された膜試料1からの光からレイリー光を取り除いた所定波長帯域のラマン散乱光を検出部36の検出器に導いて、深さ方向に走査することにより深さ方向のラマンスペクトルを取得し、電荷輸送層5の任意の膜成分の特徴的なラマンバンドのピークを追いかけることによって、電荷輸送層5の「膜中濃度プロファイル」を取得した。
【0098】
次いで、前記「レイリー光洩れ光プロファイル(界面反射強度分布図)」と「深さ位置毎の膜の成分プロファイル」とを合わせて、電荷輸送層5の任意の膜成分のラマンバンドのピーク値を深さ方向の位置ごとにプロットして、深さ方向の位置毎の二のべき乗のデータ数の分光データプロファイルとした。
【0099】
図8に、以上の測定手順で得られた実施例1の測定結果を示す。図8は、円筒形状基体となるφ40mmアルミニウムドラム上に形成された光透過性の膜試料1における膜界面情報(レイリー光プロファイル)を付与した、データ点数二のべき乗の電荷輸送層5のラマン分光による深さ位置毎の分光データプロファイルから抽出可能な膜の深さ方向成分プロファイル(観察波形:膜中濃度プロファイル)であり、電荷輸送層5中に任意の一種類の成分を分散させたものである。
【0100】
この後PC内で、取得したラマン分光による深さ位置毎の分光データプロファイルから抽出可能な膜の深さ方向成分プロファイル(観察波形)に対して、事前に高周波雑音成分を軽減させるスムージング処理を行う。
【0101】
その後、電荷輸送層5と同成分の厚さ1μmの薄膜から深さ方向の位置毎の分光データプロファイルを取得し、PSFを取得した(図9)。
【0102】
更に、ディコンボリューション処理可能な演算手段となるPC内にプログラミングされたディコンボリューションアルゴリズム(R−L法)によってディコンボリューション処理を実施した。表面層6と電荷輸送層5の界面から、電荷輸送層5成分が表面層6側にマイグレーションしている結果を得た。(図10はディコンボリューション結果を示す。)
電荷輸送層5成分プロファイル(図10に示す膜成分プロファイル)からPSFを用いたボケ成分を軽減できるディコンボリューション処理(図10ディコンボリューション結果)を行うことにより、界面で極めて急峻な傾きを持つ電荷輸送層5成分であっても、推定された真の深さ方向の膜の成分分布を解析することができる様になり、界面反射情報(レイリー光プロファイル)から電荷輸送層5成分のマイグレーション判断が可能になるため、電子写真感光体開発の効率を上げることができる。
【0103】
(比較例1)
比較例1として、図3(a)及び(b)の装置構成で「油浸レンズ+エマルジョンオイル」使用条件下で取得した界面反射光「レイリー光洩れ光プロファイル(界面反射強度分布)」とラマン散乱光取得による「深さ位置毎の膜の成分プロファイル」に対して、装置関数を取り除くディコンボリューション処理手段を施さなかった場合の結果を図8に示す。
【0104】
図8に示す様に、ディコンボリューション処理しない場合は、膜成分が急峻に立ち上がる表面層/電荷輸送層界面位置に装置関数(ボケ)が重畳し、膜成分の裾の拡がりが発生する為、電荷輸送層膜成分の表面層/電荷輸送層界面における表面層側への膜成分のマイグレーションを正しく評価することが難しい。
【0105】
なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
【符号の説明】
【0106】
1 膜試料(試料)
2 円筒形状基体(アルミニウムドラム)
3 中間層
4 電荷発生層
5 電荷輸送層
6 表面層
30 レーザ光源
31 集光レンズ
32 第1のピンホール
33 分離光学素子(ダイクロイックミラー)
34 油浸レンズ(対物レンズ)
35 第2のピンホール
36 光検出手段(検出部)
37 フィルター光学素子
38 演算手段
【先行技術文献】
【特許文献】
【0107】
【特許文献1】特許第4410154号公報
【特許文献2】特開2010−117226号公報
【非特許文献】
【0108】
【非特許文献1】池原、西、:「共焦点レーザスキャン顕微鏡の活用」、機能材料、Vol.22、No.10、p20-25 (2002)

【特許請求の範囲】
【請求項1】
レーザ光を照射するレーザ光源と、
前記レーザ光が照射された試料からのレイリー光と散乱光とを受光する分離光学素子、及び油浸レンズである対物レンズ、を有した顕微光学系と、
前記分離光学素子を経由した光における特定波長の光を透過するフィルター光学素子と、
前記フィルター光学素子を透過した光を分光する分光手段と、
前記分光手段により分光された光の強度を検出する光検出手段と、を備え、
前記フィルター光学素子は、前記試料からのレイリー光の一部を測定可能に前記光検出手段に導く、及び、前記試料からのレイリー光を遮断して散乱光を前記光検出手段に導く、のいずれかに選択可能に設けられ、
前記光検出手段が受光した散乱光の深さ方向成分プロファイルから装置関数成分を取り除くディコンボリューション処理可能な演算手段を有することを特徴とするラマン分光測定装置。
【請求項2】
前記顕微光学系は、焦点面と共役な関係にあるピンホールを有する共焦点顕微光学系であることを特徴とする請求項1に記載のラマン分光測定装置。
【請求項3】
前記フィルター光学素子は、レイリー光と等価なレーザ光を遮断する第1のレーザ光遮断光学素子を抜き差し可能に有することを特徴とする請求項1または2に記載のラマン分光測定装置。
【請求項4】
前記フィルター光学素子は、レイリー光と等価なレーザ光を遮断する第1のレーザ光遮断光学素子と、レイリー光と等価なレーザ光の波長に対する透過率を上げた第2のレーザ光遮断光学素子と、を入れ替え可能に有することを特徴とする請求項1または2に記載のラマン分光測定装置。
【請求項5】
前記第1のレーザ光遮断光学素子は、ノッチフィルターおよび/またはエッジフィルターであることを特徴とする請求項3または4に記載のラマン分光測定装置。
【請求項6】
前記分離光学素子は、ダイクロイックミラーであることを特徴とする請求項1〜5のいずれかに記載のラマン分光測定装置。
【請求項7】
前記顕微光学系が有する油浸レンズは、NAが1.2以上となる油浸レンズとエマルジョンオイルとの組み合わせであることを特徴とする請求項1〜6のいずれかに記載のラマン分光測定装置。
【請求項8】
レーザ光を照射するレーザ光源と、
前記レーザ光が照射された試料からのレイリー光と散乱光とを受光する分離光学素子、及び油浸レンズである対物レンズ、を有した顕微光学系と、
前記分離光学素子を経由した光における特定波長の光を透過するフィルター光学素子と、
前記フィルター光学素子を透過した光を分光する分光手段と、
前記分光手段により分光された光の強度を検出する光検出手段と、
前記光検出手段が受光した散乱光から装置関数成分を取り除くディコンボリューション処理可能な演算手段を有するラマン分光測定装置のラマン分光測定法であって、
前記フィルター光学素子を調整して試料からのレイリー光の一部を前記光検出手段に導き、当該試料の深さ方向の膜界面におけるレイリー光の反射光強度を検出し、ラマン分光による深さ位置毎の分光データプロファイルと関連付ける工程と、
得られたラマン分光による深さ位置毎の分光データファイルから抽出可能な膜の深さ方向成分プロファイルに対してディコンボリューションを行う工程と、
レイリー光と膜の深さ方向成分プロファイル分析結果としての膜界面における膜成分のマイグレーションを評価する工程と、を有することを特徴とするラマン分光測定法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2013−36872(P2013−36872A)
【公開日】平成25年2月21日(2013.2.21)
【国際特許分類】
【出願番号】特願2011−173643(P2011−173643)
【出願日】平成23年8月9日(2011.8.9)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】