説明

レジストパターン形成方法、レジストパターン、有機溶剤現像用の架橋性ネガ型化学増幅型レジスト組成物、レジスト膜、及びレジスト塗布マスクブランクス

【課題】高感度、高解像性(例えば、高い解像力、優れたパターン形状、小さいラインエッジラフネス(LER))、及び、良好なドライエッチング耐性を同時に満足したパターンを形成できるレジストパターン形成方法、レジストパターン、有機溶剤現像用の架橋性ネガ型化学増幅型レジスト組成物、レジスト膜、及びレジスト塗布マスクブランクスを提供することにある。
【解決手段】非酸分解性の多環脂環炭化水素構造を有する基で、フェノール性水酸基の水素原子が置換された構造を有する繰り返し単位を含有する高分子化合物(A)、活性光線又は放射線の照射により酸を発生する化合物(B)、及び、酸の作用により前記高分子化合物(A)を架橋する架橋剤(C)を含有する、ネガ型化学増幅型レジスト組成物を用いてレジスト膜を形成する工程(1)、該膜を露光する工程(2)、及び、露光後に有機溶剤を含む現像液を用いて現像する工程(4)をこの順番で有する、レジストパターン形成方法、レジストパターン、有機溶剤現像用の架橋性ネガ型化学増幅型レジスト組成物、レジスト膜、及びレジスト塗布マスクブランクス。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超LSIや高容量マイクロチップの製造などの超マイクロリソグラフィプロセスやその他のフォトファブリケーションプロセスに好適に用いられるネガ型化学増幅型レジスト組成物を用いたレジストパターン形成方法に関するものである。更に詳しくは、電子線、X線、EUV光(波長:13nm付近)を用いる半導体素子の微細加工に好適に用いることができるレジストパターン形成方法、レジストパターン、有機溶剤現像用の架橋性ネガ型化学増幅型レジスト組成物、レジスト膜、及びレジスト塗布マスクブランクスに関する。
【背景技術】
【0002】
従来、ICやLSIなどの半導体デバイスの製造プロセスにおいては、フォトレジスト組成物を用いたリソグラフィーによる微細加工が行われている。近年、集積回路の高集積化に伴い、サブミクロン領域やクオーターミクロン領域の超微細パターン形成が要求されるようになってきている。それに伴い、露光波長もg線からi線に、更にKrFエキシマレーザー光に、というように短波長化の傾向が見られる。更には、現在では、エキシマレーザー光以外にも、電子線やX線、あるいはEUV光を用いたリソグラフィーも開発が進んでいる。
【0003】
これら電子線やX線、あるいはEUV光リソグラフィーは、次世代若しくは次々世代のパターン形成技術として位置付けられ、高感度、高解像性のレジストが望まれている。
特に処理時間の短縮化のため、高感度化は非常に重要な課題であるが、高感度化を追求しようとすると、解像力の低下のみならず、ラインエッジラフネス(LER)の悪化が起こり、これらの特性を同時に満足するレジストの開発が強く望まれている。
ここで、ラインエッジラフネスとは、レジストのパターンと基板界面のエッジがレジストの特性に起因して、ライン方向と垂直な方向に不規則に変動するために、パターンを真上から見たときにエッジが凹凸に見えることを言う。この凹凸がレジストをマスクとするエッチング工程により転写され、歩留りを低下させる。
【0004】
高感度と、高解像性、良好なパターン形状、及び良好なラインエッジラフネスとはトレードオフの関係にあり、これを如何にして同時に満足させるかが非常に重要である。
レジスト組成物には、アルカリ現像液に難溶性若しくは不溶性の樹脂を用い、放射線の露光によって露光部をアルカリ現像液に対し可溶化することでパターンを形成する「ポジ型」と、アルカリ現像液に可溶性の樹脂を用い、放射線の露光によって露光部をアルカリ現像液に対して難溶化若しくは不溶化することでパターンを形成する「ネガ型」とがある。
かかる電子線、X線、あるいはEUV光を用いたリソグラフィープロセスに適したレジストとしては、高感度化の観点から主に酸触媒反応を利用した化学増幅型ポジ型レジスト組成物が検討され、主成分としてアルカリ現像液には不溶又は難溶性で、酸の作用によりアルカリ現像液に可溶となる性質を有するフェノール性樹脂(以下、フェノール性酸分解性樹脂と略す)、及び酸発生剤からなる化学増幅型ポジ型レジスト組成物が有効に使用されている。
【0005】
一方、半導体素子等の製造にあたってはライン、トレンチ、ホール、など種々のパターン形成の要請がある。種々のパターン形成の要請に応えるためにはポジ型だけではなく、ネガ型のレジスト組成物の開発も行われている(例えば、特許文献1、2参照)。
特許文献3は、ポリメチルメタクリレート若しくはメチルメタクリレート共重合体からなるレジスト膜についての、電子線によるパターニングにおいて、酢酸イソアミルによる現像に代えて、CHCOOC2n+1(n≦4)による現像を行うことを開示している。
特許文献4は、電子線の照射により、ポリマー鎖を切断して、低分子化することを利用したパターニングにおいて、現像液として、ベンゼン系溶剤など特定の有機溶剤を使用することを開示している。
特許文献5は、ハロゲン化ポリマー又はアルキルシロキシ置換基を有するポリマーを含有する膜について、露光後、環境問題の点から、臨界流体で現像することを開示している。
特許文献6は、実施例において、ポジ型のレジスト膜について、アルカリ現像液に代えて、酢酸エチルと酢酸イソアミルとの混合溶剤による現像を行っている。
特許文献7は、架橋反応によりネガ化する、ネガ型化学増幅型レジスト組成物を用いて膜を形成する工程、該膜を露光する工程、露光後に有機溶剤を含む現像液を用いて現像する工程をこの順番で有することを特徴とするレジストパターンの形成方法を開示している。
しかしながら、超微細領域での、高感度、高解像力、良好なパターン形状、ラインエッジラフネスの低減、及び高いドライエッチング耐性について、同時に満足できていないのが現状である。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2002−148806号公報
【特許文献2】特開2008−268935号公報
【特許文献3】特開昭62−175739号公報
【特許文献4】特開2006−227174号公報
【特許文献5】特許第3277114号公報
【特許文献6】特開平7−199467号公報
【特許文献7】特開2010−017489号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の目的は、高感度、高解像性(例えば、高い解像力、優れたパターン形状、小さいラインエッジラフネス(LER))、及び、良好なドライエッチング耐性を同時に満足したパターンを形成できるレジストパターン形成方法、レジストパターン、有機溶剤現像用の架橋性ネガ型化学増幅型レジスト組成物、レジスト膜、及びレジスト塗布マスクブランクスを提供することにある。
【課題を解決するための手段】
【0008】
本発明者らは、鋭意検討した結果、特定構造の高分子化合物を含有するネガ型化学増幅型レジスト組成物、及び有機溶剤を含む現像液を用いたレジストパターン形成方法によって上記目的を達成されることを見出した。
即ち、本発明は以下の通りである。
【0009】
〔1〕
下記一般式(1)で表される繰り返し単位を有する高分子化合物(A)、活性光線又は放射線の照射により酸を発生する化合物(B)、及び、酸の作用により前記高分子化合物(A)を架橋する架橋剤(C)を含有する、ネガ型化学増幅型レジスト組成物を用いてレジスト膜を形成する工程(1)、該膜を露光する工程(2)、及び、露光後に有機溶剤を含む現像液を用いて現像する工程(4)をこの順番で有する、レジストパターン形成方法。
【化1】


(式中、Rは水素原子又はメチル基を表し、Xは非酸分解性の多環脂環炭化水素構造を有する基を表す。Arは芳香族環を表す。mは1以上の整数である。)
〔2〕
前記現像液における有機溶剤の濃度が、50質量%以上である、上記〔1〕に記載のレジストパターン形成方法。
〔3〕
前記現像液に含まれる有機溶剤が、エステル系溶剤、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤及び炭化水素系溶剤からなる群より選ばれる1種類以上の溶剤である、上記〔1〕又は〔2〕に記載のレジストパターン形成方法。
〔4〕
前記現像液が、有機溶剤として露光前のレジスト膜に対して良溶媒となる溶剤(S−1)及び露光前のレジスト膜に対して貧溶媒となる溶剤(S−2)を含有し、
溶剤(S−1)の沸点を(bp−1)、溶剤(S−2)の沸点を(bp−2)としたとき、下記式(I)の関係を満足する、上記〔1〕〜〔3〕のいずれか一項に記載のレジストパターン形成方法。
(bp−2) > (bp−1) 式(I)
〔5〕
前記一般式(1)で表される繰り返し単位が下記一般式(2)で表される繰り返し単位であり、前記高分子化合物(A)が、更に、下記一般式(3)で表される繰り返し単位を含む、上記〔1〕〜〔4〕のいずれか一項に記載のレジストパターン形成方法。
【化2】

(式中、Rは水素原子又はメチル基を表し、Yは単結合又は2価の連結基を表し、Xは非酸分解性の多環脂環炭化水素基を表す。)
【化3】

(式中、Rは水素原子又はメチル基を表す。)
〔6〕
前記溶剤(S−1)が、エステル系溶剤、ケトン系溶剤又はエーテル系溶剤である、上記〔4〕又は〔5〕に記載のレジストパターン形成方法。
〔7〕
前記溶剤(S−2)が、炭化水素系溶剤である、上記〔4〕〜〔6〕のいずれか一項に記載のレジストパターン形成方法。
〔8〕
前記膜を露光する工程(2)における露光が、電子線又はEUV光を用いて行われる、上記〔1〕〜〔7〕のいずれか一項に記載のレジストパターン形成方法。
〔9〕
上記〔1〕〜〔8〕のいずれか一項に記載のレジストパターン形成方法により形成される、レジストパターン。
〔10〕
上記〔1〕〜〔8〕のいずれか一項に記載のレジストパターン形成方法に用いられる、有機溶剤現像用の架橋性ネガ型化学増幅型レジスト組成物。
〔11〕
上記〔10〕に記載の架橋性ネガ型化学増幅型レジスト組成物により形成されたレジスト膜。
〔12〕
上記〔11〕に記載のレジスト膜を塗布した、レジスト塗布マスクブランクス。
【発明の効果】
【0010】
本発明により、超微細領域での高感度、高解像力、良好なパターン形状、良好なラインエッジラフネス、及び、良好なドライエッチング耐性を同時に満足したパターンを形成できるレジストパターン形成方法、レジストパターン、有機溶剤現像用の架橋性ネガ型化学増幅型レジスト組成物、レジスト膜、及びレジスト塗布マスクブランクスを提供することができる。
【発明を実施するための形態】
【0011】
以下、本発明のレジストパターン形成方法、レジストパターン、有機溶剤現像用の架橋性ネガ型化学増幅型レジスト組成物、レジスト膜、及びレジスト塗布マスクブランクスについて詳細に説明する。
なお、本明細書に於ける基(原子団)の表記に於いて、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
本発明において「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等を意味する。また、本発明において光とは、活性光線又は放射線を意味する。
また、本明細書中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表され遠紫外線、X線、EUV光などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も露光に含める。
【0012】
[レジストパターン形成方法及びレジストパターン]
まず、本発明のネガ型化学増幅型レジスト組成物の使用形態を説明する。
本発明のレジストパターン形成方法は、架橋反応によりネガ化する、後述のネガ型化学増幅型レジスト組成物を用いてレジスト膜を形成する工程(1)、該膜を露光する工程(2)、及び、露光後に有機溶剤を含む現像液を用いて現像する工程(4)をこの順番で有する。
ここでネガ化とは、架橋反応により樹脂の分子量が増大して、溶剤(現像液)に不溶化することである。
また本発明のレジストパターンは、上記本発明のレジストパターン形成方法により形成される。
また本発明は、後述するように、上記本発明のレジストパターン形成方法に用いられる、有機溶剤現像用の架橋性ネガ型化学増幅型レジスト組成物にも関する。
【0013】
(1)製膜
本発明は、本発明の架橋性ネガ型化学増幅型レジスト組成物により形成されたレジスト膜にも関する。ネガ型化学増幅型レジスト組成物の膜を得るには、後述する各成分を溶剤に溶解し、必要に応じてフィルター濾過した後、支持体(基板)に塗布して用いる。フィルターとしては、ポアサイズ0.1ミクロン以下、より好ましくは0.05ミクロン以下、更に好ましくは0.03ミクロン以下のポリテトラフロロエチレン製、ポリエチレン製、ナイロン製のものが好ましい。塗布膜は60〜150℃で1〜20分間、好ましくは80〜140℃で1〜10分間プリベークして薄膜を形成する。
組成物は、集積回路素子の製造に使用されるような基板(例:シリコン、二酸化シリコン被覆)上にスピナー等の適当な塗布方法により塗布される。その後乾燥し、感光性の膜を形成する。
必要により、市販の無機あるいは有機反射防止膜を使用することができる。更にレジスト下層に反射防止膜を塗布して用いることもできる。
【0014】
また、本発明は、上記のようにして得られるレジスト膜を塗布した、レジスト塗布マスクブランクスにも関する。このようなレジスト塗布マスクブランクスを得るために、フォトマスク作製用のフォトマスクブランクス上にレジストパターンを形成する場合、使用される透明基板としては、石英、フッ化カルシウム等の透明基板を挙げることができる。一般には、該基板上に、遮光膜、反射防止膜、更に位相シフト膜、追加的にはエッチングストッパー膜、エッチングマスク膜といった機能性膜の必要なものを積層する。機能性膜の材料としては、ケイ素、又はクロム、モリブデン、ジルコニウム、タンタル、タングステン、チタン、ニオブ等の遷移金属を含有する膜が積層される。また、最表層に用いられる材料としては、ケイ素又はケイ素に酸素及び/又は窒素を含有する材料を主構成材料とするもの、更にそれらに遷移金属を含有する材料を主構成材料とするケイ素化合物材料や、遷移金属、特にクロム、モリブデン、ジルコニウム、タンタル、タングステン、チタン、ニオブ等より選ばれる1種以上、又は更にそれらに酸素、窒素、炭素より選ばれる元素を1以上含む材料を主構成材料とする遷移金属化合物材料が例示される。
遮光膜は単層でも良いが、複数の材料を塗り重ねた複層構造であることがより好ましい。複層構造の場合、1層当たりの膜の厚みは、特に限定されないが、5nm〜100nmであることが好ましく、10nm〜80nmであることがより好ましい。遮光膜全体の厚みとしては、特に限定されないが、5nm〜200nmであることが好ましく、10nm〜150nmであることがより好ましい。
【0015】
これらの材料のうち、一般にクロムに酸素や窒素を含有する材料を最表層に持つフォトマスクブランク上で化学増幅型レジスト組成物を用いてパターン形成を行った場合、基板付近でくびれ形状が形成される、いわゆるアンダーカット形状となりやすいが、本発明を用いた場合、従来のものに比べてアンダーカット問題を改善することができる。
次いで、このレジスト膜には活性光線又は放射線(電子線等)を照射し、好ましくはベーク(通常80〜150℃、より好ましくは90〜130℃)を行った後、現像する。これにより良好なパターンを得ることができる。そして、このパターンをマスクとして用いて、適宜エッチング処理及びイオン注入などを行い、半導体微細回路及びインプリント用モールド構造体等を作成する。
なお、本発明の組成物を用いてインプリント用モールドを作成する場合のプロセスについては、例えば、特許第4109085号公報、特開2008−162101号公報、及び「ナノインプリントの基礎と技術開発・応用展開―ナノインプリントの基板技術と最新の技術展開―編集:平井義彦(フロンティア出版)」に記載されている。
【0016】
(2)露光
形成した該膜に、所定のマスクを通して活性光線又は放射線を照射する。なお、電子ビームの照射では、マスクを介さない描画(直描)が一般的である。
活性光線又は放射線としては特に限定されないが、例えばKrFエキシマレーザー、ArFエキシマレーザー、EUV光、電子線等であり、EUV光、電子線が好ましい。すなわち、膜を露光する工程(2)における露光が、電子線又はEUV光を用いて行われることが好ましい。
【0017】
(3)ベーク
露光後、現像を行う前にベーク(加熱)を行うことが好ましい。
加熱温度は80〜150℃で行うことが好ましく、90〜150℃で行うことがより好ましく、100〜140℃で行うことが更に好ましい。加熱時間は、1〜20分間が好ましく、1〜10分間がより好ましい。
加熱は通常の露光・現像機に備わっている手段で行うことができ、ホットプレート等を用いて行っても良い。
ベークにより露光部の反応が促進され、感度やパターンプロファイルが改善する。
【0018】
(4)現像
本発明においては、有機溶剤を含む現像液を用いて現像を行う。
【0019】
・現像液
現像液に用いられる有機溶剤は、20℃に於ける蒸気圧が5kPa以下のものが好ましく、3kPa以下のものが更に好ましく、2kPa以下のものが特に好ましい。有機溶剤の蒸気圧を5kPa以下にすることにより、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウェハ面内の温度均一性が向上し、結果としてウェハ面内の寸法均一性が良化する。
現像液として用いる有機溶剤としては、種々の有機溶剤が広く使用されるが、例えば、エステル系溶剤、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤及び炭化水素系溶剤からなる群より選択される1種類以上の溶剤を用いることができる。
特に、本発明のレジストパターン形成方法に用いられる現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤及びエーテル系溶剤からなる群より選択される1種類以上の溶剤を含有する現像液であることが好ましい。
【0020】
エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、酢酸イソアミル、エチル−3−エトキシプロピオネート、プロピレングリコールジアセテート、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等のカルボン酸アルキル系溶剤、プロピレングリコールモノメチルエーテルアセテート(PGMEA;別名、1−メトキシ−2−アセトキシプロパン)、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のアルキレングリコールモノアルキルエーテルカルボキシレート系溶剤等を挙げることができ、酢酸ブチル、酢酸アミル、酢酸イソアミル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートがより好ましい。
ケトン系溶剤としては、例えば、1−オクタノン、2−オクタノン、1−ノナノン、2−ノナノン、アセトン、4−ヘプタノン、1−ヘキサノン、2−ヘキサノン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルアミルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等を挙げることができ、アルキルケトン系溶剤、例えばメチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノンがより好ましい。
アルコール系溶剤としては、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、イソブチルアルコール、n−ヘキシルアルコール等のヘキシルアルコール、n−ヘプチルアルコール等のヘプチルアルコール、n−オクチルアルコール等のオクチルアルコール、n−デカノール等のデカノール等のアルコールや、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル(PGME;別名、1−メトキシ−2−プロパノール)、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル系溶剤、メトキシメチルブタノール、プロピレングリコールジメチルエーテル等のグリコールエーテル系溶剤、フェノール、クレゾールなどのフェノール系溶剤等を挙げることができ、1−ヘキサノール、2−ヘキサノール、1−オクタノール、2エチル−ヘキサノール、プロピレングリコールモノメチルエーテル、クレゾールがより好ましい。
【0021】
アミド系溶剤としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3−ジメチル−2−イミダゾリジノン等が使用できる。
エーテル系溶剤としては、例えば、上記アルキレングリコールモノアルキルエーテル系溶剤及びグリコールエーテル系溶剤の他、ジオキサン、テトラヒドロフラン、テトラヒドロピラン等が挙げられる。
炭化水素系溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、オクタン、デカン、ウンデカン、ドデカン等の脂肪族炭化水素系溶剤が挙げられる。
【0022】
現像液が、アルキレングリコールモノアルキルエーテルカルボキシレート系溶剤、アルキレングリコールモノアルキルエーテル系溶剤、カルボン酸アルキル系溶剤、及びアルキルケトン系溶剤から選ばれる1種類以上の溶剤を含有することが好ましく、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノン、乳酸エチル、及び酢酸ブチルから選ばれる1種類以上の溶剤を含有することがより好ましい。
上記の溶剤は、複数混合してもよいし、上記以外の溶剤や水と混合し使用してもよい。
現像液における有機溶剤(複数混合の場合はその合計)の濃度は、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは90質量%以上である。特に好ましくは、実質的に有機溶剤のみからなる場合である。なお、実質的に有機溶剤のみからなる場合とは、微量の界面活性剤、酸化防止剤、安定剤、消泡剤などを含有する場合を含むものとし、具体的には、現像液中、有機溶剤の濃度が好ましくは99.0質量%以上100質量%以下、より好ましくは99.5質量%以上100質量%以下とする。
現像液中の含水率は、10質量%以下が好ましく、より好ましくは5質量%以下、特に好ましくは3質量%以下、最も好ましくは実質的に水分を含有しないこと(具体的には、現像液中の含水率が好ましくは1質量%以下、より好ましくは0.5質量%以下、理想的には0質量%、すなわち、水分を有さないこと)である。含水率を10質量%以下にすることで、良好な現像特性を得ることができる。
【0023】
現像液中で、2種類以上の有機溶剤を混合して使用する場合、現像液が、有機溶剤として露光前のレジスト膜に対して良溶媒となる溶剤(S−1)及び露光前のレジスト膜に対して貧溶媒となる溶剤(S−2)の2種類を含有し、溶剤(S−1)の沸点を(bp−1)、溶剤(S−2)の沸点を(bp−2)としたとき、下記式(I)の関係を満足するような有機溶剤を選択することが好ましい。
(bp−2) > (bp−1) 式(I)
ここで、良溶媒とは、その溶媒単独での、露光前のレジスト膜を溶解する溶解速度が10nm/秒以上の溶解性を有する溶剤であり、好ましくは20nm/秒以上の溶解性を有する溶剤である。
貧溶媒とは、その溶媒単独での、露光前のレジスト膜を溶解する溶解速度が0.5nm/秒以下の溶解性を有する溶剤であり、好ましくは0.2nm/秒以下の溶解性を有する溶剤であり、特に好ましくは0.1nm/秒以下の溶解性を有する溶剤である。
溶解速度の測定温度は、23℃であり、測定方法としては、例えば、後述の実施例における方法を挙げることができる。
式(I)で表されるように、良溶媒の沸点(bp−1)より貧溶媒の沸点(bp−2)が高くなるような組み合わせの有機溶剤を、混合して現像液として用いることが好ましい。
このような現像液を用いることで、現像後にウェハを乾燥させる際に、貧溶媒より揮発性が高い良溶媒が先に揮発する。レジストパターン内に良溶媒が残留しにくくなることで、レジストパターンの膨潤、パターン倒れなどが改良される。
解像力の観点から、貧溶媒の沸点(bp−2)は、良溶媒の沸点(bp−1)より10℃以上高いことが好ましく、25℃以上高いことがより好ましく、40℃以上高いことが更に好ましい。また貧溶媒の沸点(bp−2)は、良溶媒の沸点(bp−1)+100℃以下であることが好ましく、良溶媒の沸点(bp−1)+80℃以下であることがより好ましい。
【0024】
上記溶剤(S−1)としては、エステル系溶剤、ケトン系溶剤又はエーテル系溶剤が好ましく、エステル系溶剤又はケトン系溶剤がより好ましい。
上記溶剤(S−2)としては、炭化水素系溶剤が好ましい。
これら溶剤の具体例及び好ましい例は前述のものと同様である。
【0025】
・界面活性剤
有機溶剤を含む現像液には、必要に応じて界面活性剤を適当量添加することができる。
界面活性剤としては、後述する、レジスト組成物に用いられる界面活性剤と同様のものを用いることができる。
界面活性剤の使用量は現像液の全量に対して、通常0.001〜5質量%、好ましくは0.005〜2質量%、更に好ましくは0.01〜0.5質量%である。
【0026】
・現像方法
現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)などを適用することができる。
また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
現像時間は未露光部の樹脂、架橋剤などが充分に溶解する時間が好ましく、通常は10秒〜300秒が好ましい。更に好ましくは、20秒〜120秒である。
現像液の温度は0℃〜50℃が好ましく、15℃〜35℃が更に好ましい。
現像液量は現像方法により適宜調整可能である。
【0027】
(5)リンス
本発明のレジストパターン形成方法では、現像工程(4)の後に、有機溶剤を含むリンス液を用いて洗浄する工程(5)を含むことできる。
【0028】
・リンス液
リンス液に用いられる有機溶剤は、20℃に於ける蒸気圧が0.05kPa以上、5kPa以下のものが好ましく、0.1kPa以上、5kPa以下のものが更に好ましく、0.12kPa以上、3kPa以下のものが最も好ましい。リンス液に用いられる有機溶剤の蒸気圧を0.05kPa以上、5kPa以下にすることにより、ウェハ面内の温度均一性が向上し、更にはリンス液の浸透に起因した膨潤が抑制され、ウェハ面内の寸法均一性が良化する。
【0029】
前記リンス液としては、種々の有機溶剤が用いられるが、例えば、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤からなる群より選択される1種類以上の有機溶剤又は水を含有するリンス液を用いることが好ましい。
より好ましくは、現像の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及び炭化水素系溶剤からなる群より選択される1種類以上の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。更により好ましくは、現像の後に、アルコール系溶剤及び炭化水素系溶剤からなる群より選ばれる1種類以上の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。
リンス液として用いられる、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤及び炭化水素系溶剤の具体例は、前述の現像液で説明されたものと同様である。
特に好ましくは、一価のアルコール系溶剤及び炭化水素系溶剤からなる群より選ばれる1種類以上の有機溶剤を含有するリンス液を用いる。
【0030】
ここで、現像後のリンス工程で用いられる1価のアルコール系溶剤としては、直鎖状、分岐状、環状の1価アルコールが挙げられ、具体的には、1−ブタノール、2−ブタノール、3−メチル−1−ブタノール、tert―ブチルアルコール、イソプロピルアルコール、シクロペンタノール、1−ヘキサノール、シクロヘキサノールなどを用いることができ、好ましくは、1−ブタノール、2−ブタノール、3−メチル−1−ブタノール、イソプロピルアルコール、1−ヘキサノールである。
炭化水素系溶剤としては、トルエン、キシレン等の芳香族炭化水素系溶剤、オクタン、デカン、ウンデカン、ドデカン等の脂肪族炭化水素系溶剤が挙げられる。
【0031】
前記各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
【0032】
上記有機溶剤は水と混合しても良いが、リンス液中の含水率は通常30質量%以下であり、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは3質量%以下である。リンス液は、水を含有しないことが最も好ましい。含水率を30質量%以下にすることで、良好な現像特性を得ることができる。
【0033】
リンス液には、界面活性剤を適当量添加して使用することもできる。
界面活性剤としては、後述する、レジスト組成物に用いられる界面活性剤と同様のものを用いることができ、その使用量はリンス液の全量に対して、通常0.001〜5質量%、好ましくは0.005〜2質量%、更に好ましくは0.01〜0.5質量%である。
【0034】
・リンス方法
リンス工程においては、現像を行ったウェハを前記の有機溶剤を含むリンス液を用いて洗浄処理する。
洗浄処理の方法は特に限定されないが、たとえば、一定速度で回転している基板上にリンス液を塗出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)、などを適用することができ、この中でも回転塗布方法で洗浄処理を行い、洗浄後に基板を2000rpm〜4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。基板の回転時間は、回転数に応じて、リンス液の基板上からの除去を達成する範囲で設定可能だが、通常10秒間から3分間である。なお、室温条件で、リンスすることが好ましい。
リンス時間は現像溶剤がウェハ上に残存しないようにすることが好ましく、通常は10秒〜300秒が好ましい。更に好ましくは、20秒〜120秒である。
リンス液の温度は0℃〜50℃が好ましく、15℃〜35℃が更に好ましい。
リンス液量はリンス方法により適宜調整できる。
【0035】
また、現像処理又は、リンス処理の後に、パターン上に付着している現像液又はリンス液を超臨界流体により除去する処理を行うことができる。
更に、現像処理、リンス処理又は超臨界流体による処理の後、パターン中に残存する溶剤を除去するために加熱処理を行うことができる。加熱温度及び時間は、良好なレジストパターンが得られる限り特に限定されるものではなく、通常40℃〜160℃、10秒間から3分間である。加熱処理は複数回行っても良い。
【0036】
[ネガ型化学増幅型レジスト組成物]
以下に、本発明のレジストパターン形成方法に用いる、架橋反応によりネガ化する、ネガ型化学増幅型レジスト組成物について説明する。
架橋反応によりネガ化する、ネガ型化学増幅型レジスト組成物は、後述の一般式(1)で表される繰り返し単位を有する高分子化合物(A)、活性光線又は放射線の照射により酸を発生する化合物(B)、及び、酸の作用により前記高分子化合物(A)を架橋する架橋剤(C)を含有する。
【0037】
〔1〕高分子化合物(A)
本発明に係るネガ型化学増幅型レジスト組成物は、下記一般式(1)で表される繰り返し単位を有する高分子化合物(A)を含有している。下記一般式(1)で表される繰り返し単位は、非酸分解性の多環脂環炭化水素構造を有する基で、フェノール性水酸基の水素原子が置換された構造を有する。
【0038】
【化4】

【0039】
(式中、Rは水素原子又はメチル基を表し、Xは非酸分解性の多環脂環炭化水素構造を有する基を表す。Arは芳香族環を表す。mは1以上の整数である。)
【0040】
本発明では、前記一般式(1)で表される繰り返し単位を有する高分子化合物(A)を使用することで、高分子化合物(A)のガラス転移温度(Tg)が高くなり、非常に硬いレジスト膜を形成することができ、酸の拡散性やドライエッチング耐性を制御することができる。従って、電子線や極紫外線(EUV光)等の活性光線又は放射線の露光部における酸の拡散性が非常に抑制されるため、微細なパターンでの解像力、パターン形状及びLERが優れる。また、高分子化合物(A)が非酸分解性の多環脂環炭化水素構造を有することが、高いドライエッチング耐性に寄与する。更に、詳細は不明だが、多環脂環炭化水素構造は水素ラジカルの供与性が高く、光酸発生剤である後述の活性光線又は放射線の照射により酸を発生する化合物(B)の分解時の水素源となり、光酸発生剤の分解効率が向上し、酸発生効率が高くなっていると推定され、これが優れた感度に寄与するものと考えられる。
本発明に係る高分子化合物(A)が有する、前記一般式(1)で表される繰り返し単位における前述の特定の構造は、ベンゼン環等の芳香族環と、非酸分解性の多環脂環炭化水素構造を有する基とが、フェノール性水酸基に由来する酸素原子を介して連結している。前述のように、該構造は高いドライエッチング耐性に寄与するだけでなく、高分子化合物(A)のガラス転移温度(Tg)を上げることができ、これらの組み合わせの効果により高い解像力が提供される。
【0041】
本発明において、非酸分解性とは、後述の活性光線又は放射線の照射により酸を発生する化合物(B)が発生する酸により、分解反応が起こらない性質を意味する。
本願におけるフェノール性水酸基とは、芳香環基の水素原子を水酸基で置換してなる基である。該芳香環は単環又は多環の芳香環であり、ベンゼン環やナフタレン環等が挙げられる。
【0042】
一般式(1)におけるRは水素原子又はメチル基を表すが、水素原子が特に好ましい。
一般式(1)のArの芳香族環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環、フェナントレン環などの炭素数6〜18の置換基を有していてもよい芳香族炭化水素環、又は、例えば、チオフェン環、フラン環、ピロール環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、トリアジン環、イミダゾール環、ベンゾイミダゾール環、トリアゾール環、チアジアゾール環、チアゾール環等のヘテロ環を含む芳香環ヘテロ環を挙げることができる。中でも、ベンゼン環、ナフタレン環が解像性の観点で好ましく、ベンゼン環が最も好ましい。
Arの芳香族環は、上記−OXで表される基以外にも置換基を有していてもよく、置換基としては例えば、アルキル基(好ましくは炭素数1〜4)、ハロゲン原子(好ましくはフッ素原子、塩素原子)、水酸基、アルコキシ基(好ましくは炭素数1〜4)、カルボキシル基、アルコキシカルボニル基(好ましくは炭素数2〜5)が挙げられ、アルキル基、アルコキシ基、アルコキシカルボニル基が好ましく、アルコキシ基がより好ましい。
【0043】
Xは非酸分解性の多環脂環炭化水素構造を有する基を表す。Xで表される非酸分解性の多環脂環炭化水素構造を有する基とは、多環脂環炭化水素構造を有する一価の基である限り特に限定されないが、総炭素数が5〜40であることが好ましく、7〜30であることがより好ましい。
多環脂環炭化水素構造を有する基における多環脂環炭化水素構造は、単環型の脂環炭化水素基を複数有する構造、若しくは、多環型の脂環炭化水素構造を意味し、有橋式であってもよい。単環型の脂環炭化水素基としては、炭素数3〜8のシクロアルキル基が好ましく、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロブチル基、シクロオクチル基等を挙げることができ、単環型の脂環炭化水素基を複数有する構造はこれらの基を複数有する。単環型の脂環炭化水素基を複数有する構造は、単環型の脂環炭化水素基を2〜4個有することが好ましく、2個有することが特に好ましい。
多環型の脂環炭化水素構造としては、炭素数5以上のビシクロ、トリシクロ、テトラシクロ構造等を挙げることができ、炭素数6〜30の多環シクロ構造が好ましく、例えば、アダマンタン構造、デカリン構造、ノルボルナン構造、セドロール構造、イソボルナン構造、ボルナン構造、ジシクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、シクロデカン構造、シクロドデカン構造、α−ピネン構造、トリシクロデカン構造、テトラシクロドデカン構造、あるいはアンドロスタン構造を挙げることができる。なお、単環若しくは多環のシクロアルキル基中の炭素原子の一部が、酸素原子等のヘテロ原子によって置換されていてもよい。
【0044】
上記の多環脂環炭化水素構造の好ましいものとしては、アダマンタン構造、デカリン構造、ノルボルナン構造、セドロール構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、シクロデカン構造、シクロドデカン構造、トリシクロデカン構造があげられ、アダマンタン構造がドライエッチング耐性の観点で最も好ましい。これらの多環脂環炭化水素構造の化学式を以下に表示する。
【0045】
【化5】

【0046】
更に上記多環脂環炭化水素構造は置換基を有してもよく、置換基としては例えば、アルキル基(好ましくは炭素数1〜4)、ハロゲン原子(好ましくはフッ素原子、塩素原子)、水酸基、アルコキシ基(好ましくは炭素数1〜4)、カルボキシル基、カルボニル基、アルコキシカルボニル基(好ましくは炭素数2〜5)が挙げられる。
【0047】
mは1〜5の整数であることが好ましく、1が最も好ましい。mが1でArがベンゼン環の時、―OXの置換位置はベンゼン環のポリマー主鎖との結合位置に対して、パラ位でもメタ位でもオルト位でもよいが、パラ位が好ましい。
【0048】
本発明において、前記一般式(1)で表される繰り返し単位が、下記一般式(2)で表される繰り返し単位であることが好ましい。
一般式(2)で表される繰り返し単位を有する高分子化合物を使用すると、高分子化合物のTgが高くなり、非常に硬いレジスト膜を形成するため、酸の拡散性やドライエッチング耐性をより確実に制御できる。
【0049】
【化6】

【0050】
(式中、Rは水素原子又はメチル基を表し、Yは単結合又は2価の連結基を表し、Xは非酸分解性の多環脂環炭化水素基を表す。)
【0051】
前記一般式(2)で表される繰り返し単位で、本発明に用いられる好ましい例を以下に記述する。
一般式(2)におけるRは水素原子又はメチル基を表すが、水素原子が特に好ましい。
一般式(2)において、Yは2価の連結基であることが好ましい。Yの2価連結基として好ましい基は、カルボニル基、チオカルボニル基、アルキレン基(好ましくは炭素数1〜10、より好ましくは炭素数1〜5)、スルホニル基、−COCH−、−NH−又はこれらを組合せた2価の連結基(好ましくは総炭素数1〜20、より好ましくは総炭素数1〜10)であり、より好ましくはカルボニル基、スルホニル基、−CONH−、−CSNH−であり、特に好ましくはカルボニル基である。
【0052】
は多環脂環炭化水素基を表し、非酸分解性である。このような多環脂環炭化水素基は、単環型の脂環炭化水素基を複数有する基、若しくは、多環型の脂環炭化水素基であり、有橋式であってもよい。単環型の脂環炭化水素基としては、炭素数3〜8のシクロアルキル基が好ましく、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロブチル基、シクロオクチル基等を挙げることができ、これらの基を複数有する。単環型の脂環炭化水素基を複数有する基は、単環型の脂環炭化水素基を2〜4個有することが好ましく、2個有することが特に好ましい。多環型の脂環炭化水素基としては、炭素数5以上のビシクロ、トリシクロ、テトラシクロ構造等を有する基を挙げることができ、炭素数6〜30の多環シクロ構造を有する基が好ましく、例えば、アダマンチル基、ノルボルニル基、イソボロニル基、カンファニル基、ジシクロペンチル基、α−ピネル基、トリシクロデカニル基、テトシクロドデシル基、あるいはアンドロスタニル基を挙げることができる。なお、単環若しくは多環のシクロアルキル基中の炭素原子の一部が、酸素原子等のヘテロ原子によって置換されていてもよい。
【0053】
上記Xの多環脂環炭化水素基としては、好ましくはアダマンチル基、デカリン基、ノルボルニル基、セドロール基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデカニル基、シクロドデカニル基、トリシクロデカニル基であり、アダマンチル基がドライエッチング耐性の観点で最も好ましい。これらの好ましいXの化学式としては、前述の多環脂環炭化水素構造を有する基における多環脂環炭化水素構造の化学式と同様のものが挙げられる。
更に上記脂環炭化水素基は置換基を有してもよく、置換基としては例えば、アルキル基(好ましくは炭素数1〜4)、ハロゲン原子(好ましくはフッ素原子、塩素原子)、水酸基、アルコキシ基(好ましくは炭素数1〜4)、カルボキシル基、カルボニル基、アルコキシカルボニル基(好ましくは炭素数2〜5)が挙げられる。
一般式(2)における―O―Y―Xの置換位置はベンゼン環のポリマー主鎖との結合位置に対して、パラ位でもメタ位でもオルト位でもよいが、パラ位が好ましい。
【0054】
本発明において、前記一般式(2)で表される繰り返し単位が、下記一般式(2’)で表される繰り返し単位であることが最も好ましい。
【0055】
【化7】

【0056】
(式中、Rは水素原子又はメチル基を表す。)
【0057】
一般式(2’)におけるRは水素原子又はメチル基を表すが、水素原子が特に好ましい。
一般式(2’)におけるアダマンチルエステル基の置換位置はベンゼン環のポリマー主鎖との結合位置に対して、パラ位でもメタ位でもオルト位でもよいが、パラ位が好ましい。
【0058】
一般式(1)、(2)又は(2’)で示される繰り返し単位の具体例としては、以下のものが挙げられる。
【0059】
【化8】

【0060】
【化9】

【0061】
【化10】

【0062】
本発明に用いる高分子化合物(A)は、一般式(1)、(2)又は(2’)で表される繰り返し単位の他に、更に、下記一般式(3)で表される繰り返し単位を有することが好ましい。
【0063】
【化11】

【0064】
(式中、Rは水素原子又はメチル基を表す。)
【0065】
前記一般式(3)で表される繰り返し単位で、本発明に用いられる好ましい化合物を以下に記述する。
一般式(3)におけるRは水素原子又はメチル基を表すが、水素原子が特に好ましい。
一般式(3)で表されるヒドロキシスチレン繰り返し単位に関して、水酸基のベンゼン環に対する結合位置は、ベンゼン環のポリマー主鎖との結合位置に対して、パラ位でもメタ位でもオルト位でもかまわないが、パラ位若しくはメタ位が好ましい。
一般式(3)において水酸基が置換しているベンゼン環は、該水酸基以外に置換基を有していてもよく、そのような置換基の具体例及び好ましい例としては、前述の一般式(1)のArの芳香族環が有していてもよい置換基の具体例及び好ましい例と同様である。一般式(3)において水酸基が置換しているベンゼン環は、該水酸基以外に置換基を有しないことが好ましい。
【0066】
一般式(3)で表される繰り返し単位で好ましいものとしては、以下のものが挙げられる。
【0067】
【化12】

【0068】
本発明で用いられる高分子化合物(A)は、一般式(1)、(2)又は(2’)で表される繰り返し単位、一般式(3)で表される繰り返し単位とともに、下記一般式(4A)〜(4C)で表される繰り返し単位の少なくとも一種を有することもできる。
【0069】
【化13】

【0070】
一般式(4A)〜(4C)において、
は水素原子又はメチル基を表す。Rは水素原子であることが好ましい。
は単結合、−COO−基、−O−基、又は−CON(R16)−基を表し、R16は水素原子又はアルキル基(好ましくは炭素数1〜3のアルキル基、例えば、メチル基、エチル基、プロピル基等)を表す。Xとして好ましくは、単結合、−COO−基、−CON(R16)−基であり、特に好ましくは単結合、−COO−基である。
で示される環構造は、3環以上の多環芳香族炭化水素環構造を表し、好ましくは下記構造式で表されるいずれかを表す。
【0071】
【化14】

【0072】
11〜R15はそれぞれ独立に水素原子、ハロゲン原子(好ましくはフッ素原子、塩素原子)、アルキル基(好ましくは炭素数1〜4)、シクロアルキル基(好ましくは炭素数3〜10)、アリール基(好ましくは炭素数6〜20)、アルケニル基(好ましくは炭素数2〜5)、アラルキル基(好ましくは炭素数7〜21)、アルコキシ基(好ましくは炭素数1〜4)又はアルキルカルボニルオキシ基(好ましくは炭素数2〜5)を表す。なお、R11〜R15は主鎖の炭素原子と連結して、環構造を形成していてもよい。
11〜R15が主鎖の炭素原子と連結して、環構造を形成する場合、形成される環構造は4〜6員環が好ましい。
【0073】
101〜R106はそれぞれ独立に、ヒドロキシ基、ハロゲン原子(Cl、Br、F、I)、置換基を有していてもよい炭素数1〜8の直鎖又は分岐状のアルキル基、置換基を有していてもよい炭素数1〜8の直鎖又は分岐状のアルコキシ基、置換基を有していてもよい炭素数2〜8の直鎖又は分岐状のアルキルカルボニルオキシ基、置換基を有していてもよい炭素数1〜8の直鎖又は分岐状のアルキルスルホニルオキシ基、置換基を有していてもよい炭素数2〜8のアルケニル基、置換基を有していてもよい炭素数6〜15のアリール基、置換基を有していてもよい炭素数7〜16のアラルキル基、カルボキシ基、水酸基を有していてもよい炭素数1〜4のパーフルオロアルキル基を表す。なお、R101〜R106は主鎖の炭素原子と連結して、環構造を形成していてもよい。
c〜hはそれぞれ独立に0〜3の整数を表す。
【0074】
101〜R106として好ましくは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1〜4のアルキル基、置換基を有していてもよい炭素数1〜4のアルコキシ基、置換基を有していてもよい炭素数2〜4のアルキルカルボニルオキシ基であり、特に好ましくは、水素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1〜3のアルキル基(メチル基、エチル基、プロピル基、イソプロピル基)、炭素数1〜3のアルコキシ基(メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基)、炭素数2又は3のアルキルカルボニルオキシ基(アセチル基、プロピオニル基等)である。
101〜R106が主鎖の炭素原子と連結して、環構造を形成する場合、形成される環構造は4〜6員環が好ましい。
c〜hはそれぞれ独立に0又は1を表すことが好ましく、0であることがより好ましい。
【0075】
更に、上記以外の繰り返し単位として、活性光線又は放射線の照射により酸を発生する基(光酸発生基)を有する繰り返し単位を含むことも出来る。
そのような単位として例えば、特開平9-325497号公報〔0028〕に記載された繰り返し単位や、特開2009-93137号公報〔0038〕〜〔0041〕に記載された繰り返し単位があげられる。そして、この場合、この光酸発生基を有する繰り返し単位が本発明の活性光線又は放射線の照射により酸を発生する化合物(B)にあたると考えることができる。
以下に、光酸発生基を有する繰り返し単位に対応するモノマーの具体例(EB又はEUV露光により発生した酸の構造として示す)を示す。
【0076】
【化15】

【0077】
高分子化合物が光酸発生基を有する繰り返し単位を含有する場合、光酸発生基を有する繰り返し単位の含有量は、高分子化合物(A)中の全繰り返し単位に対し、1〜40モル%が好ましく、より好ましくは5〜35モル%、更に好ましくは5〜30モル%である。
【0078】
本発明に用いられる高分子化合物(A)における、非酸分解性の多環脂環炭化水素構造を有する基で、フェノール性水酸基の水素原子が置換された構造を有する繰り返し単位(すなわち、一般式(1)、(2)又は(2’)で表される繰り返し単位)の含有量の範囲は、高分子化合物(A)を構成する全繰り返し単位に対して、一般的に1〜40モル%、好ましくは2〜30モル%である。
高分子化合物(A)が一般式(3)で表される繰り返し単位を含有する場合の、一般式(3)で表される繰り返し単位の含有量の範囲は、高分子化合物(A)を構成する全繰り返し単位に対して、一般的に60〜99モル%、好ましくは70〜98モル%である。
高分子化合物(A)が一般式(4A)〜(4C)のいずれかで表される繰り返し単位を含有する場合の、一般式(4A)〜(4C)のいずれかで表される繰り返し単位の含有量の範囲は、高分子化合物(A)を構成する全繰り返し単位に対して、一般的に1〜20モル%、好ましくは1〜10モル%である。
【0079】
高分子化合物(A)は、公知のラジカル重合法やアニオン重合法やリビングラジカル重合法(イニファーター法等)により合成することができる。例えば、アニオン重合法では、ビニルモノマーを適当な有機溶媒に溶解し、金属化合物(ブチルリチウム等)を開始剤として、通常、冷却条件化で反応させて重合体を得ることができる。
高分子化合物(A)としては、芳香族ケトン又は芳香族アルデヒド、及び1〜3個のフェノール性水酸基を含有する化合物の縮合反応により製造されたポリフェノール化合物(例えば、特開2008−145539)、カリックスアレーン誘導体(例えば特開2004−18421)、Noria誘導体(例えば特開2009−222920)、ポリフェノール誘導体(例えば特開2008−94782)も適用でき、高分子反応で修飾して合成しても良い。
また、高分子化合物(A)は、ラジカル重合法やアニオン重合法で合成したポリマーに高分子反応で修飾して合成することが好ましい。
高分子化合物(A)の重量平均分子量は、好ましくは1000〜200000であり、更に好ましくは2000〜50000であり、最も好ましくは2000〜10000である。
高分子化合物(A)の分散度(分子量分布)(Mw/Mn)は、好ましくは1.7以下であり、感度及び解像性の向上の観点でより好ましくは1.0〜1.35であり、1.0〜1.2が最も好ましい。リビングアニオン重合等のリビング重合を用いることで、得られる高分子化合物の分散度(分子量分布)が均一となり、好ましい。高分子化合物(A)の重量平均分子量及び分散度は、GPC測定によるポリスチレン換算値として定義される。
なお高分子化合物(A)は、上述のような特定の繰り返し単位に対応するモノマーを高分子重合して得られる化合物のみに限定されず、非酸分解性の多環脂環炭化水素構造を有する基で、フェノール性水酸基の水素原子が置換された構造を有する限り、分子レジストのような比較的低分子の化合物も用いることが出来る。
本発明のネガ型化学増幅型レジスト組成物に対する高分子化合物(A)の添加量は組成物の全固形分に対して、好ましくは30〜95質量%、より好ましくは40〜90質量%、特に好ましくは50〜85質量%で用いられる。
【0080】
以下に本発明で使用される高分子化合物(A)の具体例を示す。
【0081】
【化16】

【0082】
【化17】

【0083】
【化18】

【0084】
〔2〕活性光線又は放射線の照射により酸を発生する化合物(B)
本発明のネガ型化学増幅型レジスト組成物は、活性光線又は放射線の照射により酸を発生する化合物(B)(以下、適宜、これらの化合物を「酸発生剤」と略称する)を含有する。
酸発生剤の好ましい形態として、オニウム化合物を挙げることができる。そのようなオニウム化合物としては、例えば、スルホニウム塩、ヨードニウム塩、ホスホニウム塩などを挙げることができる。
また、酸発生剤の別の好ましい形態として、活性光線又は放射線の照射により、スルホン酸、イミド酸又はメチド酸を発生する化合物を挙げることができる。その形態における酸発生剤は、例えば、スルホニウム塩、ヨードニウム塩、ホスホニウム塩、オキシムスルホネート、イミドスルホネートなどを挙げることができる。
【0085】
本発明に用いる酸発生剤としては、低分子化合物に限らず、活性光線又は放射線の照射により酸を発生する基を高分子化合物の主鎖又は側鎖に導入した化合物も用いることができる。更に前述したように、活性光線又は放射線の照射により酸を発生する基が、本発明に用いる高分子化合物(A)の共重合成分となっている繰り返し単位中に存在する場合は、本発明の高分子化合物とは別分子の酸発生剤(B)はなくてもかまわない。
【0086】
酸発生剤は、電子線又はEUV光(極紫外線)の照射により酸を発生する化合物であることが好ましい。
【0087】
本発明において、好ましいオニウム化合物として、下記一般式(5)で表されるスルホニウム化合物、若しくは一般式(6)で表されるヨードニウム化合物を挙げることができる。
【0088】
【化19】

【0089】
一般式(5)及び(6)において、
a1、Ra2、Ra3、Ra4及びRa5は、各々独立に、有機基を表す。
は、有機アニオンを表す。
以下、一般式(5)で表されるスルホニウム化合物及び一般式(6)で表されるヨードニウム化合物を更に詳述する。
【0090】
上記一般式(5)のRa1〜Ra3、並びに、上記一般式(6)のRa4及びRa5は、各々独立に有機基を表すが、好ましくはRa1〜Ra3の少なくとも1つ、並びに、Ra4及びRa5の少なくとも1つがそれぞれアリール基である。アリール基としては、フェニル基、ナフチル基が好ましく、更に好ましくはフェニル基である。
上記一般式(5)及び(6)におけるXの有機アニオンは、例えばスルホン酸アニオン、カルボン酸アニオン、ビス(アルキルスルホニル)アミドアニオン、トリス(アルキルスルホニル)メチドアニオンなどが挙げられ、好ましくは、下記一般式(7)、(8)又は(9)で表される有機アニオンであり、より好ましくは下記一般式(7)で表される有機アニオンである。
【0091】
【化20】

【0092】
上記一般式(7)、(8)及び(9)に於いて、Rc、Rc、Rc及びRcは、それぞれ、有機基を表す。
【0093】
上記Xの有機アニオンが、電子線や極紫外線などの活性光線又は放射線の照射により発生する酸であるスルホン酸、イミド酸、メチド酸などに対応する。
上記Rc1〜Rc4の有機基としては、例えばアルキル基、シクロアルキル基、アリール基、又はこれらの複数が連結された基を挙げることができる。これら有機基のうちより好ましくは1位がフッ素原子又はフロロアルキル基で置換されたアルキル基、フッ素原子又はフロロアルキル基で置換されたシクロアルキル基、フッ素原子又はフロロアルキル基で置換されたフェニル基である。上記Rc2〜Rc4の有機基の複数が互いに連結して環を形成していてもよく、これら複数の有機基が連結された基としては、フッ素原子又はフロロアルキル基で置換されたアルキレン基が好ましい。フッ素原子又はフロロアルキル基を有することにより、光照射によって発生した酸の酸性度が上がり、感度が向上する。ただし、末端基は置換基としてフッ素原子を含有しないことが好ましい。
【0094】
【化21】

【0095】
【化22】

【0096】
【化23】

【0097】
【化24】

【0098】
また、本発明に用いる酸発生剤(好ましくはオニウム化合物)としては、活性光線又は放射線の照射により酸を発生する基(光酸発生基)を高分子化合物の主鎖又は側鎖に導入した高分子型酸発生剤も用いることができる。
【0099】
酸発生剤のネガ型化学増幅型レジスト組成物中の含有量は、ネガ型化学増幅型レジスト組成物の全固形分を基準として、好ましくは0.1〜25質量%であり、より好ましくは0.5〜20質量%であり、更に好ましくは1〜18質量%である。
酸発生剤は、1種単独で又は2種以上を組合せて使用することができる。
【0100】
〔3〕酸の作用により高分子化合物(A)を架橋する架橋剤(C)
本発明のネガ型化学増幅型レジスト組成物は、酸の作用により前記高分子化合物(A)を架橋する架橋剤(C)(以下、適宜、酸架橋剤又は単に架橋剤と称する)を含有する。
【0101】
好ましい架橋剤としては、ヒドロキシメチル化又はアルコキシメチル化系フェノール化合物、アルコキシメチル化メラミン系化合物、アルコキシメチルグリコールウリル系化合物類及びアルコキシメチル化ウレア系化合物が挙げられる。特に好ましい架橋剤としての化合物(C)としては、分子内にベンゼン環を3〜5個含み、更にヒドロキシメチル基又はアルコキシメチル基を合わせて2個以上有し、分子量が1200以下のフェノール誘導体や、少なくとも2個の遊離N−アルコキシメチル基を有するメラミン−ホルムアルデヒド誘導体やアルコキシメチルグリコールウリル誘導体が挙げられる。
アルコキシメチル基としては、メトキシメチル基、エトキシメチル基が好ましい。
【0102】
上記架橋剤のうち、ヒドロキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有さないフェノール化合物とホルムアルデヒドを塩基触媒下で反応させることによって得ることができる。また、アルコキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有するフェノール誘導体とアルコールを酸触媒下で反応させることによって得ることができる。
このようにして合成されたフェノール誘導体のうち、アルコキシメチル基を有するフェノール誘導体が感度、保存安定性の点から特に好ましい。
【0103】
別の好ましい架橋剤の例として、更にアルコキシメチル化メラミン系化合物、アルコキシメチルグリコールウリル系化合物類及びアルコキシメチル化ウレア系化合物のようなN−ヒドロキシメチル基又はN−アルコキシメチル基を有する化合物を挙げることができる。
【0104】
このような化合物としては、ヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、テトラメトキシメチルグリコールウリル、1,3−ビスメトキシメチル−4,5−ビスメトキシエチレンウレア、ビスメトキシメチルウレア等が挙げられ、EP0,133,216A、西独特許第3,634,671号、同第3,711,264号、EP0,212,482A号に開示されている。
これら架橋剤の中で特に好ましいものを以下に挙げる。
【0105】
【化25】

【0106】
式中、L〜Lは、各々独立に、水素原子、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基又は炭素数1〜6のアルキル基を示す。
【0107】
本発明において架橋剤(C)は、ネガ型化学増幅型レジスト組成物の固形分中、好ましくは3〜65質量%、より好ましくは5〜50質量%の添加量で用いられる。架橋剤(C)の添加量を3〜65質量%とすることにより、残膜率及び解像力が低下することを防止するとともに、レジスト液の保存時の安定性を良好に保つことができる。
【0108】
本発明において、架橋剤は単独で用いてもよいし、2種以上組み合わせて用いてもよく、パターン形状の観点から2種以上組み合わせて用いることが好ましい。
例えば、上記のフェノール誘導体に加え、他の架橋剤、例えば上述のN−アルコキシメチル基を有する化合物等を併用する場合、上記のフェノール誘導体と他の架橋剤の比率は、モル比で100/0〜20/80、好ましくは90/10〜40/60、更に好ましくは80/20〜50/50である。
【0109】
〔4〕塩基性化合物
本発明のネガ型化学増幅型レジスト組成物には、前記成分の他に、塩基性化合物を酸補足剤として含有することが好ましい。塩基性化合物を用いることにより、露光から後加熱までの経時による性能変化を小さくすることできる。このような塩基性化合物としては、有機塩基性化合物であることが好ましく、より具体的には、脂肪族アミン類、芳香族アミン類、複素環アミン類、カルボキシル基を有する含窒素化合物、スルホニル基を有する含窒素化合物、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。アミンオキサイド化合物(特開2008−102383に記載)、アンモニウム塩(好ましくはヒドロキシド又はカルボキシレートである。より具体的にはテトラ−(n−ブチル)アンモニウムヒドロキシドに代表されるテトラアルキルアンモニウムヒドロキシドがLERの観点で好ましい。)も適宜用いられる。
更に、酸の作用により塩基性が増大する化合物も、塩基性化合物の1種として用いることができる。
アミン類の具体例としては、トリ−n−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−オクチルアミン、トリ−n−デシルアミン、トリイソデシルアミン、ジシクロヘキシルメチルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、オクタデシルアミン、ジデシルアミン、メチルオクタデシルアミン、ジメチルウンデシルアミン、N,N−ジメチルドデシルアミン、トリドデシルアミン、メチルジオクタデシルアミン、N,N−ジブチルアニリン、N,N−ジヘキシルアニリン、2,6−ジイソプロピルアニリン、2,4,6−トリ(t−ブチル)アニリン、トリエタノールアミン、N,N−ジヒドロキシエチルアニリン、トリス(メトキシエトキシエチル)アミンや、米国特許第6040112号明細書のカラム3、60行目以降に例示の化合物、2−[2−{2―(2,2―ジメトキシ−フェノキシエトキシ)エチル}−ビス−(2−メトキシエチル)]−アミンや、米国特許出願公開第2007/0224539A1号明細書の段落[0066]に例示されている化合物(C1−1)〜(C3−3)などが挙げられる。含窒素複素環構造を有する化合物としては、2−フェニルベンゾイミダゾール、2,4,5−トリフェニルイミダゾール、N−ヒドロキシエチルピペリジン、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、4−ジメチルアミノピリジン、アンチピリン、ヒドロキシアンチピリン、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン、1,8−ジアザビシクロ〔5.4.0〕−ウンデカ−7−エン、テトラ−(n−ブチル)アンモニウムヒドロキシドなどが挙げられる。
また、光分解性塩基性化合物(当初は塩基性窒素原子が塩基として作用して塩基性を示すが、活性光線あるいは放射線の照射により分解されて、塩基性窒素原子と有機酸部位とを有する両性イオン化合物を発生し、これらが分子内で中和することによって、塩基性が減少又は消失する化合物。例えば、特登3577743、特開2001−215689号、特開2001−166476、特開2008−102383に記載のオニウム塩)、光塩基発生剤(例えば、特開2010−243773に記載の化合物)も適宜用いられる。
これら塩基性化合物の中でも解像性向上の観点でアンモニウム塩が好ましい。
本発明で使用される塩基性化合物の含有量は、レジスト組成物の全固形分に対して、0.01〜10質量%が好ましく、0.03〜5質量%がより好ましく、0.05〜3質量%が特に好ましい。
【0110】
〔5〕レジスト溶剤
本発明のネガ型化学増幅型レジスト組成物に使用される溶剤としては、例えば、エチレングリコールモノエチルエーテルアセテート、シクロヘキサノン、2−ヘプタノン、プロピレングリコールモノメチルエーテル(PGME、別名1−メトキシ−2−プロパノール)、プロピレングリコールモノメチルエーテルアセテート(PGMEA、別名1−メトキシ−2−アセトキシプロパン)、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルアセテート、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、β−メトキシイソ酪酸メチル、酪酸エチル、酪酸プロピル、メチルイソブチルケトン、酢酸エチル、酢酸イソアミル、乳酸エチル、トルエン、キシレン、酢酸シクロヘキシル、ジアセトンアルコール、N−メチルピロリドン、N,N−ジメチルホルムアミド、γ−ブチロラクトン、N,N−ジメチルアセトアミド、プロピレンカーボネート、エチレンカーボネートなどが好ましい。これらの溶剤は単独若しくは組合せて用いられる。
ネガ型化学増幅型レジスト組成物の固形分は、上記溶剤に溶解し、固形分濃度として、1〜40質量%で溶解することが好ましい。より好ましくは1〜30質量%、更に好ましくは3〜20質量%である。
【0111】
〔6〕界面活性剤
本発明のネガ型化学増幅型レジスト組成物は、更に、塗布性を向上させるため界面活性剤を含有してもよい。界面活性剤の例としては、特に限定されるものではないが、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステルなどのノニオン系界面活性剤、メガファックF171、F176(大日本インキ化学工業製)やフロラードFC430(住友スリーエム製)やサーフィノールE1004(旭硝子製)、OMNOVA社製のPF656及びPF6320、等のフッ素系界面活性剤、オルガノシロキサンポリマーが挙げられる。
ネガ型化学増幅型レジスト組成物が界面活性剤を含有する場合、界面活性剤の使用量は、ネガ型化学増幅型レジスト組成物の全量(溶剤を除く)に対して、好ましくは0.0001〜2質量%、より好ましくは0.0005〜1質量%である。
【0112】
〔7〕その他添加剤
本発明のネガ型化学増幅型レジスト組成物は、必要に応じて、更に、染料、可塑剤、酸増殖剤(国際公開第95/29968号公報、国際公開第98/24000号公報、特開平8−305262号公報、特開平9−34106号公報、特開平8−248561号公報、特表平8−503082号公報、米国特許第5,445,917号明細書、特表平8−503081号公報、米国特許第5,534,393号明細書、米国特許第5,395,736号明細書、米国特許第5,741,630号明細書、米国特許第5,334,489号明細書、米国特許第5,582,956号明細書、米国特許第5,578,424号明細書、米国特許第5,453,345号明細書、米国特許第5,445,917号明細書、欧州特許第665,960号明細書、欧州特許第757,628号明細書、欧州特許第665,961号明細書、米国特許第5,667,943号明細書、特開平10−1508号公報、特開平10−282642号公報、特開平9−512498号公報、特開2000−62337号公報、特開2005−17730号公報、特開2008−209889号公報等に記載)等を含有してもよい。これらの化合物については、いずれも特開2008−268935号に記載のそれぞれの化合物を挙げることができる。
〔有機カルボン酸〕
本発明のネガ型化学増幅型レジスト組成物は、前記成分の他に、有機カルボン酸を含有することが好ましい。このような有機カルボン酸化合物として、脂肪族カルボン酸、脂環式カルボン酸、不飽和脂肪族カルボン酸、オキシカルボン酸、アルコキシカルボン酸、ケトカルボン酸、安息香酸誘導体、フタル酸、テレフタル酸、イソフタル酸、2−ナフトエ酸、1−ヒドロキシ−2−ナフトエ酸、2−ヒドロキシ−3−ナフトエ酸などを挙げることができるが、電子線露光を真空化で行なう際にはレジスト膜表面より揮発して描画チャンバー内を汚染してしまう恐れがあるので、好ましい化合物としては、芳香族有機カルボン酸、その中でも例えば安息香酸、1−ヒドロキシ−2−ナフトエ酸、2−ヒドロキシ−3−ナフトエ酸が好適である。
有機カルボン酸の配合量としては、高分子化合物(A)100質量部に対し、0.01〜10質量部の範囲内が好ましく、より好ましくは0.01〜5質量部、更により好ましくは0.01〜3質量部である。
【0113】
〔カルボン酸オニウム塩〕
本発明のレジスト組成物は、カルボン酸オニウム塩を含有してもよい。カルボン酸オニウム塩としては、カルボン酸スルホニウム塩、カルボン酸ヨードニウム塩、カルボン酸アンモニウム塩などを挙げることができる。特に、カルボン酸オニウム塩としては、カルボン酸ヨードニウム塩、カルボン酸スルホニウム塩が好ましい。更に、本発明においては、カルボン酸オニウム塩のカルボキシレート残基が芳香族基、炭素−炭素2重結合を含有しないことが好ましい。特に好ましいアニオン部としては、炭素数1〜30の直鎖、分岐、単環若しくは多環環状アルキルカルボン酸アニオンが好ましい。更に好ましくはこれらのアルキル基の一部又は全てがフッ素置換されたカルボン酸のアニオンが好ましい。またアルキル鎖中に酸素原子を含んでいても良い。これにより220nm以下の光に対する透明性が確保され、感度、解像力が向上し、疎密依存性、露光マージンが改良される。
【実施例】
【0114】
以下、本発明を実施例により更に詳細に説明するが、本発明の内容がこれにより限定されるものではない。
【0115】
(I)ネガ型化学増幅型レジストとしての例(電子線)
1.高分子化合物(A)((A)成分)の合成例
<合成例1:高分子化合物(A1)の合成>
日本曹達株式会社製、ポリ(p−ヒドロキシスチレン)(VP2500)20gをテトラヒドロフラン(THF)120mLに溶解し、4.96gの1−アダマンタンカルボニルクロリド、3.37gのトリエチルアミンを加え、50℃で4時間撹拌した。反応液を室温に戻した後、酢酸エチル100mLと蒸留水100mLを加え、反応液を氷水中で撹拌しながら、1NのHCl水溶液を少しずつ反応液に添加し中和した。反応液を分液ロートに移し、酢酸エチル100mLと蒸留水100mLを更に加えて撹拌後、水層を除去した。その後有機層を200mLの蒸留水で5回洗浄後、有機層を濃縮し、ヘキサン2L中に滴下した。粉体をろ過後、分取し、真空乾燥することで高分子化合物(A1)20.6gが得られた。
【0116】
また、高分子化合物(A1)と同様にして、他の高分子化合物を合成した。
得られた高分子化合物につき、H−NMR測定により、高分子化合物の組成比(モル比)を算出した。また、GPC(溶媒:THF)測定により、高分子化合物の重量平均分子量(Mw:ポリスチレン換算)、数平均分子量(Mn:ポリスチレン換算)及び分散度(Mw/Mn、以下「PDI」ともいう)を算出した。重量平均分子量及び分散度について、以下の表中に、高分子化合物の化学式及び組成比とともに示す。
【0117】
【表1】

【0118】
2.実施例
〔実施例1〕
(1)支持体の準備
酸化Cr蒸着した6インチウェハ(通常のフォトマスクに使用する遮蔽膜処理を施した物)を準備した。
(2)レジスト塗布液の準備
(ネガ型化学増幅型レジスト組成物の塗布液組成)
高分子化合物(A1) 0.60g
光酸発生剤(z5) 0.12g
架橋剤CL−1 0.08g
架橋剤CL−5 0.04g
テトラ−(n−ブチル)アンモニウムヒドロキシド(塩基性化合物) 0.002g
2−ヒドロキシ−3−ナフトエ酸(有機カルボン酸) 0.012g
界面活性剤PF6320(OMNOVA(株)製) 0.001g
プロピレングリコールモノメチルエーテルアセテート(溶剤) 4.0g
プロピレングリコールモノメチルエーテル(溶剤) 5.0g
【0119】
【化26】

【0120】
上記組成物溶液を0.04μmの孔径を有するメンブレンフィルターで精密ろ過して、レジスト塗布溶液を得た。
(3)レジスト膜の作成
上記6インチウェハ上に東京エレクトロン製Mark8を用いてレジスト塗布溶液を塗布し、130℃、90秒間ホットプレート上で乾燥して、膜厚100nmのレジスト膜を得た。すなわち、レジスト塗布マスクブランクスを得た。
【0121】
(4)ネガ型レジストパターンの作製(EB露光)
このレジスト膜に、電子線描画装置((株)日立製作所製HL750、加速電圧50KeV)を用いて、パターン照射を行った。照射後に、120℃、90秒間ホットプレート上で加熱し、良溶媒としての酢酸ブチルと、貧溶媒としてのデカンを85/15質量比で混合した溶剤を用いて、30秒間スプレー現像した後、スピンコーターにて30秒間3000回転で回転して十分に乾燥させた。
(5)レジストパタ−ンの評価
得られたパターンを下記の方法で、感度、解像力、パタ−ン形状、ラインエッジラフネス(LER)及びドライエッチング耐性について評価した。
評価結果を表4に示す。
【0122】
〔感度〕
得られたパターンの断面形状を走査型電子顕微鏡((株)日立製作所製S−4300)を用いて観察した。線幅100nm(ライン:スペース=1:1)のレジストパターンを解像するときの露光量(電子線照射量)を感度とした。この値が小さいほど、感度が高い。
【0123】
〔解像力(LS)〕
上記の感度を示す露光量(電子線照射量)における限界解像力(ラインとスペースが分離解像する最小の線幅)をLS解像力(nm)とした。
【0124】
〔パタ−ン形状〕
上記の感度を示す露光量(電子線照射量)における線幅100nmのラインパターン(L/S=1/1)の断面形状を走査型電子顕微鏡((株)日立製作所製S−4300)を用いて観察した。ラインパターンの断面形状において、[ラインパターンのトップ部(表面部)における線幅/ラインパターンの中部(ラインパターンの高さの半分の高さ位置)における線幅]で表される比率が1.5以上のものを「逆テーパー」とし、該比率が1.2以上1.5未満のものを「やや逆テーパー」とし、該比率が1.2未満のものを「矩形」として、評価を行った。
【0125】
〔ラインエッジラフネス(LER)〕
上記の感度を示す照射量(電子線照射量)で、線幅100nmのラインパターン(L/S=1/1)を形成した。そして、その長さ方向50μmに含まれる任意の30点について、走査型電子顕微鏡((株)日立製作所製S−9220)を用いて、エッジがあるべき基準線からの距離を測定した。そして、この距離の標準偏差を求め、3σを算出した。値が小さいほど良好な性能であることを示す。
【0126】
〔ドライエッチング耐性〕
上記の感度を示す照射量(電子線照射量)で全面照射を行うことにより形成したレジスト膜を、HITACHI U−621でAr/C/Oガス(体積比率100/4/2の混合ガス)を用いて30秒間ドライエッチングを行った。その後レジスト残膜率を測定し、ドライエッチング耐性の指標とした。
良好:残膜率95%以上
やや不良:95%未満90%以上
不良:90%未満
【0127】
〔実施例2〕〜〔実施例9〕
下表2に記載の成分、並びに、下表3に記載のベーク条件及び現像条件を用いた以外は、実施例1と同様にしてレジスト溶液の調製、ネガ型パターン形成及びその評価を行った。評価結果を表4に示す。なお、リンス液及びリンス時間の記載があるものについては、現像した後、下表3に記載のリンス液を用いて下表3に記載の時間の間リンスをした後、スピンコーターにて30秒間3000回転で回転して十分に乾燥させた。
なお、現像液として用いた良溶媒又は貧溶媒によるレジスト膜の溶解速度の測定は、以下のようにして行い、表3に示した。
【0128】
〔溶解速度〕
表2に記載のレジスト組成物を表3に記載の条件で作成したレジスト膜を有するウェハに、それぞれ現像液として用いる良溶媒又は貧溶媒を200mL/minの流量で5秒間、1000rpmでウェハを回転させながらスプレー現像した後、3000回転(rpm)で20秒間高速回転させ、更に90℃のホットプレートで60秒間加熱して乾燥させた。その後、膜厚をVM8000−200(大日本スクリーン製造)を用いて測定した。
現像前後の膜厚変化量から溶解速度を算出した。膜厚測定は、23℃、相対湿度50%のクリーンルーム内で行った。
溶解速度=5秒現像前後の膜厚変化量/5秒
【0129】
〔比較例1〕及び〔比較例2〕
レジスト液処方で、下表2に記載の成分、並びに、下表3に記載のベーク条件及び現像条件を用いた以外は、実施例1と同様にしてレジスト溶液の調製、ネガ型パターン形成及びその評価を行った。評価結果を表4に示す。なお、リンス液及びリンス時間の記載があるものについては、現像した後、下表3に記載のリンス液を用いて下表3に記載の時間の間リンスをした後、スピンコーターにて30秒間3000回転で回転して十分に乾燥させた。
【0130】
【表2】

【0131】
【表3】

【0132】
以下、前掲以外の表中の略号は、上記具体例のもの、又は下記のものを表す。
【0133】
<架橋剤>
【0134】
【化27】

【0135】
<塩基性化合物>
D−1:テトラ−(n−ブチル)アンモニウムヒドロキシド
D−2:1、8−ジアザビシクロ[5.4.0]−7−ウンデセン
D−3:2,4,5−トリフェニルイミダゾール
D−4:トリドデシルアミン
【0136】
<その他成分>
F−1:安息香酸
F−2:2−ヒドロキシ−3−ナフトエ酸
【0137】
<レジスト溶剤、現像液、リンス液>
S−1:プロピレングリコールモノメチルエーテルアセテート(PGMEA) 沸点=146℃
S−2:プロピレングリコールモノメチルエーテル(PGME) 沸点=120℃
S−3:酢酸ブチル 沸点=126℃
S−4:酢酸イソアミル 沸点=142℃
S−5:メチルアミルケトン 沸点=152℃
S−6:デカン 沸点=174℃
S−7:ウンデカン 沸点=196℃
S−8:1−ヘキサノール 沸点=157℃
S−9:乳酸エチル 沸点=155℃
S−10:シクロヘプタノン 沸点=185℃
TMAH水溶液:テトラメチルアンモニウムヒドロキシド水溶液
【0138】
<界面活性剤>
W−1: PF6320(OMNOVA(株)製)
W−2: メガファックF176(大日本インキ(株)製)
【0139】
【表4】

【0140】
表4に示す結果から、本発明に係る組成物は、高感度、高解像力、良好なパターン形状、良好なラインエッジラフネス(LER)及び高いドライエッチング耐性の全てを同時に満足できることが分かる。
【0141】
(6)参考例1(EUV露光)
実施例1に記載のレジスト組成物を、0.04μmの孔径を有するメンブレンフィルターで精密ろ過した後、100℃(60秒)の条件でHMDS処理をした6インチシリコンウェハ上に東京エレクトロン製Mark8を用いてレジスト塗布溶液を塗布し、130℃、90秒間ホットプレート上で乾燥して、膜厚100nmのレジスト膜を得た。
ついで、EUV光(波長13nm)を用いて、露光量を0〜10.0mJ/cmの範囲で0.5mJ/cmづつ変えながら面露光を行い、照射後に、120℃、90秒間ホットプレート上で加熱した。
続いて、酢酸ブチル/デカン(85/15質量比)混合溶剤を用いて30秒間スプレー現像した後、スピンコーターにて30秒間3000回転で回転して十分に乾燥させた。
上記で得られたウェハの露光量に対応する膜厚を測定し、以下の方法で、露光感度と残膜率を測定したところ、感度=4mJ/cm、残膜率=95%であった。
〔EUV感度〕
膜厚が、レジスト塗布溶液の塗布後の膜厚の50%となる露光量を感度とした。
〔残膜率〕
得られた感度の3倍の露光量における(現像後膜厚/露光前膜厚)×100を残膜率(%)とした。
【0142】
参考例1より、本発明に係る組成物は、EUV露光においても、実用上十分な露光感度と残膜率を有することが分かる。

【特許請求の範囲】
【請求項1】
下記一般式(1)で表される繰り返し単位を有する高分子化合物(A)、活性光線又は放射線の照射により酸を発生する化合物(B)、及び、酸の作用により前記高分子化合物(A)を架橋する架橋剤(C)を含有する、ネガ型化学増幅型レジスト組成物を用いてレジスト膜を形成する工程(1)、該膜を露光する工程(2)、及び、露光後に有機溶剤を含む現像液を用いて現像する工程(4)をこの順番で有する、レジストパターン形成方法。
【化1】

(式中、Rは水素原子又はメチル基を表し、Xは非酸分解性の多環脂環炭化水素構造を有する基を表す。Arは芳香族環を表す。mは1以上の整数である。)
【請求項2】
前記現像液における有機溶剤の濃度が、50質量%以上である、請求項1に記載のレジストパターン形成方法。
【請求項3】
前記現像液に含まれる有機溶剤が、エステル系溶剤、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤及び炭化水素系溶剤からなる群より選ばれる1種類以上の溶剤である、請求項1又は2に記載のレジストパターン形成方法。
【請求項4】
前記現像液が、有機溶剤として露光前のレジスト膜に対して良溶媒となる溶剤(S−1)及び露光前のレジスト膜に対して貧溶媒となる溶剤(S−2)を含有し、
溶剤(S−1)の沸点を(bp−1)、溶剤(S−2)の沸点を(bp−2)としたとき、下記式(I)の関係を満足する、請求項1〜3のいずれか一項に記載のレジストパターン形成方法。
(bp−2) > (bp−1) 式(I)
【請求項5】
前記一般式(1)で表される繰り返し単位が下記一般式(2)で表される繰り返し単位であり、前記高分子化合物(A)が、更に、下記一般式(3)で表される繰り返し単位を含む、請求項1〜4のいずれか一項に記載のレジストパターン形成方法。
【化2】

(式中、Rは水素原子又はメチル基を表し、Yは単結合又は2価の連結基を表し、Xは非酸分解性の多環脂環炭化水素基を表す。)
【化3】

(式中、Rは水素原子又はメチル基を表す。)
【請求項6】
前記溶剤(S−1)が、エステル系溶剤、ケトン系溶剤又はエーテル系溶剤である、請求項4又は5に記載のレジストパターン形成方法。
【請求項7】
前記溶剤(S−2)が、炭化水素系溶剤である、請求項4〜6のいずれか一項に記載のレジストパターン形成方法。
【請求項8】
前記膜を露光する工程(2)における露光が、電子線又はEUV光を用いて行われる、請求項1〜7のいずれか一項に記載のレジストパターン形成方法。
【請求項9】
請求項1〜8のいずれか一項に記載のレジストパターン形成方法により形成される、レジストパターン。
【請求項10】
請求項1〜8のいずれか一項に記載のレジストパターン形成方法に用いられる、有機溶剤現像用の架橋性ネガ型化学増幅型レジスト組成物。
【請求項11】
請求項10に記載の架橋性ネガ型化学増幅型レジスト組成物により形成されたレジスト膜。
【請求項12】
請求項11に記載のレジスト膜を塗布した、レジスト塗布マスクブランクス。

【公開番号】特開2012−203238(P2012−203238A)
【公開日】平成24年10月22日(2012.10.22)
【国際特許分類】
【出願番号】特願2011−68467(P2011−68467)
【出願日】平成23年3月25日(2011.3.25)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】