説明

ロボット用転がり軸受

【課題】水素脆性による転走面での剥離を効果的に防止できるロボット用転がり軸受を提供する。
【解決手段】産業用ロボットの回転部位を回転自在に支持するロボット用転がり軸受1であって、上記転がり軸受1は、内輪2および外輪3と、この内輪2および外輪3間に介在する複数の転動体4とを備え、この転動体4の周囲にグリース組成物7を封止するためのシール部材6を上記内輪2および外輪3の軸方向両端開口部8a,8bに設けてなり、上記グリース組成物7は、基油に、増ちょう剤とからなるベースグリースに添加剤を配合してなり、上記添加剤は、無機マグネシウムおよび有機マグネシウムから選ばれた少なくとも一つのマグネシウム系添加剤を含有し、該マグネシウム系添加剤の配合割合はベースグリース 100 重量部に対して 0.05〜10 重量部である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はロボット用転がり軸受に関し、特に産業用ロボットの作動部位に用いられる転がり軸受に関する。
【背景技術】
【0002】
自動車の製造ラインには組み立て、溶接、塗装などのさまざまな産業用ロボットが用いられている。生産性の向上を目的としたタクトタイムの短縮のため、ロボットの運動速度が高められる傾向にある。ロボットの作動は連続回転ではなく、断続的な作動であり、この作動速度を速めることは、回転部に用いられる転がり軸受にとっては、単位時間当りの停止−起動−運転−停止動作の切換えの回数が増加し、その都度転がり軸受に加えられる加速度や減速度が大きくなり、それにともない軸受に生じるすべりが大きくなってきている。このように使用条件が過酷になることで、転がり軸受の転走面に白色組織変化をともなった特異的な剥離が生じ、軸受寿命時間が短くなるという問題がある。
この特異的な剥離は、通常の金属疲労により生じる転走面内部からの剥離と異なり、転走面表面の比較的浅いところから生じる破壊現象で、水素が原因の水素脆性と考えられている。
このような早期に発生する白色組織変化をともなった特異な剥離現象を防ぐ方法として、例えばグリース組成物に不動態化剤を添加する方法(特許文献1参照)やビスマスジチオカーバメートを添加する方法(特許文献2参照)が知られている。
しかしながら、近年の産業用ロボットに用いられる転がり軸受の使用条件が過酷になるにつれて、不動態化剤を添加する方法やビスマスジチオカーバメートを添加する方法では充分な対策ができなくなってきている。
【特許文献1】特開平3−210394号公報
【特許文献2】特開2005−42102号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
本発明はこのような問題に対処するためになされたものであり、断続的に加速度や減速度が加えられる産業用ロボットの回転部に用いた場合でも、水素脆性による転がり軸受転走面での剥離を効果的に防止できるロボット用転がり軸受の提供を目的とする。
【課題を解決するための手段】
【0004】
本発明の自動車電装・補機用転がり軸受は、エンジン出力で回転駆動される回転軸を静止部材に回転自在に支持する自動車電装・補機用転がり軸受であって、上記転がり軸受は、内輪および外輪と、この内輪および外輪間に介在する複数の転動体と、この転動体の周囲にグリース組成物を封止するため上記内輪および外輪の軸方向両端開口部に設けられたシール部材とを備えてなり、上記グリース組成物は基油と、増ちょう剤とからなるベースグリースに添加剤を配合してなるグリース組成物であり、上記添加剤は、無機マグネシウム(以下、マグネシウムをMgと記す)および有機Mgから選ばれた少なくとも一つのMg系添加剤を含有し、該Mg系添加剤の配合割合はベースグリース 100 重量部に対して 0.05〜10 重量部であることを特徴とする。
上記無機Mgは、Mg粉末であることを特徴とする。
上記有機Mgは、ステアリン酸Mgであることを特徴とする。
上記増ちょう剤は、ウレア系またはリチウム石けん系増ちょう剤であることを特徴とする。
【0005】
産業用ロボットの回転部位を回転自在に支持するロボット用転がり軸受であって、該軸受に封入されたグリース組成物が、軸受部における摩擦摩耗面または摩耗により露出した鉄系金属新生面において酸化鉄とともにMg化合物を含有する膜を形成できる、無機マグネシウム(以下、マグネシウムをMgと記す)および有機Mgから選ばれた少なくとも一つのMg系添加剤を含有することを特徴とする。
【発明の効果】
【0006】
本発明のロボット用転がり軸受は、該軸受に封入されたグリース組成物が、基油と増ちょう剤とからなるグリースに無機Mgまたは有機Mgから選ばれた少なくとも一つのMg系添加剤を配合してなるので、単位時間当りの停止−起動−運転−停止動作の切換えの回数が多く、その都度転がり軸受に加えられる加速度や減速度が大きくなることを原因とする、ロボットに使用される転がり軸受で見られる水素脆性による特異な剥離の発生を抑制することができ、ロボット用転がり軸受の長寿命化が可能となる。
【発明を実施するための最良の形態】
【0007】
産業用ロボットの回転部位を回転自在に支持するロボット用転がり軸受の一例を図1に示す。図1はグリース組成物が封入されている深溝玉軸受の断面図である。
深溝玉軸受1は、外周面に内輪転走面2aを有する内輪2と内周面に外輪転走面3aを有する外輪3とが同心に配置され、内輪転走面2aと外輪転走面3aとの間に複数個の転動体4が配置される。この複数個の転動体4を保持する保持器5および外輪3等に固定されるシール部材6が内輪2および外輪3の軸方向両端開口部8a、8bにそれぞれ設けられている。少なくとも転動体4の周囲にグリース組成物7が封入される。
【0008】
ロボット用転がり軸受において、水素脆性による転走面での剥離を防止すべく鋭意検討した結果、無機Mgおよび有機Mgから選ばれた少なくとも1つのMg系添加剤を配合したグリース組成物を封入したロボット用転がり軸受は、軸受寿命が延長することがわかった。この軸受転走面を観察したところ、配合されたMg系添加剤が軸受の摩擦摩耗面または摩耗により露出した鉄系金属新生面で分解・反応し、軸受転走面に酸化鉄とともにMg化合物を含有する膜が生成していることを見出した。この生成された膜が、潤滑油の分解により発生した水素の軸受鋼内への侵入を防止し、水素脆性による剥離が抑制されるものと考えられる。本発明はこれらの知見に基づくものである。
【0009】
本発明のロボット用転がり軸受に使用できる無機Mgとしては、Mg粉末、炭酸Mg、塩化Mg、硝酸Mgおよびその水和物、硫酸Mg、フッ化Mg、臭化Mg、ヨウ化Mg、オキシフッ化Mg、オキシ塩化Mg、オキシ臭化Mg、オキシヨウ化Mg、酸化Mgおよびその水和物、水酸化Mg、セレン化Mg、テルル化Mg、リン酸Mg、オキシ過塩素酸Mg、オキシ硫酸Mg、サリチル酸Mg、チタン酸Mg、ジルコン酸Mg、モリブデン酸Mg等が挙げられるが、本発明において、特に好ましいのは、耐熱耐久性に優れ、熱分解しにくいため、極圧性効果の高いMg粉末である。
これら無機Mgは、1 種類、または 2 種類を混合してグリースに添加してもよい。
【0010】
本発明のロボット用転がり軸受に使用できる有機Mgとしては、有機酸Mg塩であることが好ましい。有機酸Mg塩を構成する有機酸としては、芳香族系有機酸、脂肪族系有機酸、または脂環族系有機酸等の塩であればいずれも使用できる。
有機酸の具体例を例示すれば、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、ヘプタン酸、2-エチルヘキシル酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキン酸等の1価飽和脂肪酸、アクリル酸、クロトン酸、ウンデシレン酸、オレイン酸、ガドレイン酸等の1価不飽和脂肪酸、マロン酸、メチルマロン酸、コハク酸、メチルコハク酸、ジメチルマロン酸、エチルマロン酸、グルタル酸、アジピン酸、ジメチルコハク酸、ピメリン酸、テトラメチルコハク酸、スベリン酸、アゼライン酸、セバシン酸、ブラシル酸等の2価飽和脂肪酸、フマル酸、マレイン酸、オレイン酸等の2価不飽和脂肪酸、酒石酸、クエン酸等の脂肪酸誘導体、安息香酸、フタル酸、トリメリット酸、ピロメリット酸等の芳香族有機酸、ナフテン酸等の脂環族有機酸が挙げられる。
これらの中で潤滑性に優れたステアリン酸を用いることが好ましい。これらは単独でも混合物としても使用できる。
【0011】
本発明に使用できる基油は、スピンドル油、冷凍機油、タービン油、マシン油、ダイナモ油等の鉱油、高精製度鉱油、流動パラフィン、フィッシャー・トロプシュ法により合成されたGTL油、ポリブテン、ポリ-α-オレフィン油、アルキルナフタレン、脂環式化合物等の炭化水素系合成油、または、天然油脂、ポリオールエステル油、リン酸エステル油、ポリマーエステル油、芳香族エステル油、炭酸エステル油、ジエステル油等のエステル油、リグリコール油、シリコーン油、ポリフェニルエーテル油、アルキルジフェニルエーテル油、アルキルベンゼン油、フッ素化油等の非炭化水素系合成油等を使用できる。
これらの中で、耐熱性と潤滑性に優れたアルキルジフェニルエーテル油、ポリ-α-オレフィン油、ポリオールエステル油、鉱油を用いることが好ましい。
【0012】
本発明に使用できる増ちょう剤としては、ベントン、シリカゲル、フッ素化合物、リチウム石けん、リチウムコンプレックス石けん、力ルシウム石けん、カルシウムコンプレックス石けん、アルミニウム石けん、アルミニウムコンプレックス石けん等の石けん類、ジウレア化合物、ポリウレア化合物等のウレア系化合物が挙げられる。これらの中でリチウム系石けんおよびウレア系化合物が好ましく、耐熱性、コスト等を考慮するとウレア系化合物が特に望ましい。
【0013】
ウレア系化合物は、イソシアネート化合物とアミン化合物を反応させることにより得られる。反応性のある遊離基を残さないため、イソシアネート化合物のイソシアネート基とアミン化合物のアミノ基とは略当量となるように配合することが好ましい。
基油にウレア系化合物を配合して各種配合剤を配合するためのベースグリースが得られる。ベースグリースは、基油中でイソシアネート化合物とアミン化合物とを反応させて作製する。
【0014】
ジウレア化合物は、例えば、ジイソシアネートとモノアミンとの反応で得られる。ジイソシアネートとしては、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、オクタデカンジイソシアネート、デカンジイソシアネート、ヘキサンジイソシアネー卜等が挙げられ、モノアミンとしては、オクチルアミン、ドデシルアミン、ヘキサデシルアミン、ステアリルアミン、オレイルアミン、アニリン、p−トルイジン、シクロヘキシルアミン等が挙げられる。ポリウレア化合物は、例えば、ジイソシアネートとモノアミン、ジアミンとの反応で得られる。ジイソシアネート、モノアミンとしては、ジウレア化合物の生成に用いられるものと同様のものが挙げられ、ジアミンとしては、エチレンジアミン、プロパンジアミン、ブタンジアミン、ヘキサンジアミン、オクタンジアミン、フェニレンジアミン、トリレンジアミン、キシレンジアミン、ジアミノジフェニルメタン等が挙げられる。
【0015】
ベースグリースにおける増ちょう剤の配合割合は、ベースグリース 100 重量部 の中で増ちょう剤が 1〜40 重量部、好ましくは 3〜25 重量部配合される。増ちょう剤の含有量が 1 重量部未満では、増ちょう効果が少なくなり、グリース化が困難となり、40 重量部をこえると得られたベースグリースが硬くなりすぎ、所期の効果が得られ難くなる。
【0016】
無機Mgおよび有機Mgから選ばれた少なくとも1つのMg系添加剤の配合割合は、上記ベースグリース 100 重量部に対して 0.05〜10 重量部である。すなわち、(1)Mg系添加剤が無機Mgのみである場合、ベースグリース 100 重量部に対して無機Mgを0.05〜10 重量部、(2)Mg系添加剤が有機Mgのみである場合、ベースグリース 100 重量部に対して有機Mgを0.05〜10 重量部、(3)Mg系添加剤が無機Mgと有機Mgとである場合、ベースグリース 100 重量部に対して、無機Mgと有機Mgとを合せて0.05〜10 重量部配合する。
Mg系添加剤の配合割合は、好ましくは 0.01〜5 重量部である。配合量が 0.01 重量部未満であると水素脆性による転走面での剥離を効果的に防止できない。また、配合量が 10 重量部をこえると剥離抑制効果が頭打ちになりコストが高くなるとともに、潤滑不良を引き起こし、表面起点型の疲労剥離が生じ易くなる。
【0017】
また、Mg系添加剤とともに、必要に応じて公知のグリース用添加剤を含有させることができる。この添加剤として、例えば、有機亜鉛化合物、アミン系、フェノール系化合物等の酸化防止剤、ベンゾトリアゾールなどの金属不活性剤、ポリメタクリレート、ポリスチレン等の粘度指数向上剤、二硫化モリブデン、グラファイト等の固体潤滑剤、金属スルホネート、多価アルコールエステルなどの防錆剤、有機モリブデンなどの摩擦低減剤、エステル、アルコールなどの油性剤、リン系化合物などの摩耗防止剤等が挙げられる。これらを単独または 2 種類以上組み合せて添加できる。
【実施例】
【0018】
実施例1〜実施例6
表1に示した基油の半量に、4,4−ジフェニルメタンジイソシアナート(日本ポリウレタン工業社製ミリオネートMT、以下、MDIと記す)を表1に示す割合で溶解し、残りの半量の基油にMDIの 2 倍当量となるモノアミンを溶解した。それぞれの配合割合および種類は表1のとおりである。
MDIを溶解した溶液を撹拌しながらモノアミンを溶解した溶液を加えた後、100〜120℃で 30 分間撹拌を続けて反応させて、ジウレア化合物を基油中に生成させた。
これにMg系添加剤および酸化防止剤を表1に示す配合割合で加えてさらに 100〜120℃で 10 分間撹拌した。その後冷却し、三本ロールで均質化し、グリース組成物を得た。
【0019】
表1において、基油として用いた合成炭化水素油は 40℃における動粘度 47 mm2/secのmm2/sec新日鉄化学社製シンフルード801を、アルキルジフェニルエーテル油は 40℃における動粘度 97 mm2/sec の松村石油社製モレスコハイルーブLB100を、ポリオールエステル油は 40℃における動粘度 33 mm2/sec の花王社製カオルーブ268を、それぞれ用いた。また鉱油は動粘度 30.7 mm2/sec( 40℃)のパラフィン系鉱油を用いた。
酸化防止剤はアルキル化ジフェニルアミンを用いた。
【0020】
得られたグリース組成物の混和ちょう度測定、高温高速試験、急加減速試験を行なった。ちょう度測定は日本工業規格JIS K2220による方法で行ない、高温高速試験、急加減速試験については試験方法および試験条件を以下に示す。また、結果を表1に示す。
【0021】
高温高速試験
ロボット用転がり軸受(6204)に各実施例で得られたグリース組成物をそれぞれ 1.8 g 封入し、軸受外輪外径部温度 180℃、ラジアル荷重 67 N 、アキシャル荷重 67 N の下で、 10000 rpm の回転数で回転させ、焼きつきに至るまでの時間を測定した。
【0022】
急加減速試験
ロボット用転がり軸受(6303)に各実施例で得られたグリース組成物をそれぞれ 2.3 g 封入し、負荷荷重をかけるために、内輸回転の転がり軸受に組み込み、急加減速試験を行なった。急加減速試験条件は、回転軸先端に取り付けたプーリに対する負荷荷重を 3234 N 、回転速度は 0〜18000 rpm で運転条件を設定した。そして、軸受内に異常剥離が発生し、振動検出器の振動が設定値以上になって発電機が停止する時間を計測した。なお、試験にはグリース組成物 100 重量部に対して予め純水 1 重量部を混入させたグリース組成物を用いた。試験は 100 時間で打ち切った。
【0023】
実施例7および実施例8
表1に示した基油にLi−12−ヒドロキシステアレートを投入し、撹拌しながら 200℃にて加熱溶解した。なお、それぞれの配合割合は表1の通りである。その後冷却し、これに、マグネシウム系添加剤および酸化防止剤を表1に示す配合割合で加えて、三本ロールで均質化し、グリース組成物を得た。このグリース組成物について、実施例1と同様に高温高速試験および急加減速試験を行なった。ただし、Li石けんグリースの耐熱性を考え、高温高速試験は 150℃にて行なった。結果を表1に示す。
【0024】
比較例1〜比較例5
実施例1に準じる方法で、表1に示す配合割合で、増ちょう剤、基油を選択してベースグリ一スを調整し、さらに添加剤を配合してグリース組成物を得た。得られたグリース組成物を実施例1と同様の試験を行なって評価した。結果を表1に示す。
【0025】
【表1】

【0026】
表1に示すように、各実施例のロボット用転がり軸受の剥離発生寿命時間は全て 100 時間以上を示した。よって、各実施例のグリース組成物を用いた転がり軸受は転走面で生じる白色組織変化を伴った特異的な剥離を効果的に防止できることがわかる。
【産業上の利用可能性】
【0027】
本発明のロボット用転がり軸受は、転がり軸受に封入するグリース組成物が、転がり軸受の転走面で生じる白色組織変化を伴った特異的な剥離を効果的に防止でき軸受寿命に優れるので、ロボット用転がり軸受として好適に利用できる。
【図面の簡単な説明】
【0028】
【図1】深溝玉軸受の断面図である。
【符号の説明】
【0029】
1 グリース封入軸受(転がり軸受)
2 内輪
3 外輪
4 転動体
5 保持器
6 シール部材
7 グリース組成物
8a、8b 開口部

【特許請求の範囲】
【請求項1】
産業用ロボットの回転部位を回転自在に支持するロボット用転がり軸受であって、
前記転がり軸受は、内輪および外輪と、この内輪および外輪間に介在する複数の転動体とを備え、この転動体の周囲にグリース組成物を封止するためのシール部材を前記内輪および外輪の軸方向両端開口部に設けてなり、前記グリース組成物は、基油と、増ちょう剤とからなるベースグリースに添加剤を配合してなるグリース組成物であり、
前記添加剤は、無機マグネシウムおよび有機マグネシウムから選ばれた少なくとも一つのマグネシウム系添加剤を含有し、該マグネシウム系添加剤の配合割合はベースグリース 100 重量部に対して 0.05〜10 重量部であることを特徴とするロボット用転がり軸受。
【請求項2】
前記無機マグネシウムは、マグネシウム粉末であることを特徴とする請求項1記載のロボット用転がり軸受。
【請求項3】
前記有機マグネシウムは、ステアリン酸マグネシウムであることを特徴とする請求項1または請求項2記載のロボット用転がり軸受。
【請求項4】
前記増ちょう剤は、ウレア系またはリチウム石けん系増ちょう剤であることを特徴とする請求項1、請求項2または請求項3記載のロボット用転がり軸受。
【請求項5】
産業用ロボットの回転部位を回転自在に支持するロボット用転がり軸受であって、
該軸受に封入されたグリース組成物が、軸受部における摩擦摩耗面または摩耗により露出した鉄系金属新生面において酸化鉄とともにマグネシウム化合物を含有する膜を形成できる、無機マグネシウムおよび有機マグネシウムから選ばれた少なくとも一つのマグネシウム系添加剤を含有することを特徴とするロボット用転がり軸受。


【図1】
image rotate


【公開番号】特開2007−64456(P2007−64456A)
【公開日】平成19年3月15日(2007.3.15)
【国際特許分類】
【出願番号】特願2005−254738(P2005−254738)
【出願日】平成17年9月2日(2005.9.2)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】