説明

交錯したY字型多極

2つの独立した多極を交錯した形で組み合わせて合成多極構造を形成する方法及び装置を紹介する。このような構成により、2つの別個のイオン源からのイオンを所定の長手方向に沿って合流できるようになるだけでなく、逆経路では、単一のイオン源からの所定のイオン部分を1又はそれ以上のイオンチャネル経路に沿って導くこともでき、例えば飛行時間(TOF)質量分析器及びイオントラップによる同時収集も可能になる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、質量分析法の分野に関し、より具体的には別個のイオン源からのイオンビームを合流できるようにする、及び/又は単一のイオンビームを収集及び/又は分析のために複数の方向へ導くための質量分析計の多極装置に関する。
【背景技術】
【0002】
質量分析法とは、荷電粒子の質量対電荷比に基づいて試料の化学組成の同定を可能にする分析技術である。一般的には、試料内の被分析物をイオン化し、その後これらを質量によって分離し、これらを電場及び磁場に通すことによりそれぞれの電荷対質量の比を求めて所望の質量スペクトルを得る。
【0003】
具体的には、分離及び検出を可能にするための質量分析計の設計は、ほとんどの場合、試料内の導入分子をイオン化粒子に変換するためのイオン源と、電場及び磁場を印加することにより、このようなイオン化粒子を質量によって分離するための分析器と、個々の存在するイオンの存在度を計算するためのデータを測定して提供するための検出器とを含む。
【0004】
当業者には公知のように、このような分析計システムの設計では、多くの場合、イオン源から生じるイオン化粒子が、円柱レンズ、アインツェル構造、スキマー、及び多極ロッド構成などのイオン操作光学系を使用してイオン経路に沿って導かれる。多極ロッド構成では、ロッド数は、4、6、又は8などのいずれの偶数であってもよく、これらの各々に隣接する電極に、位相が反転した高周波電圧が、多くの場合追加で印加される直流(DC)電圧と電気的に協働して印加される。これにより、このような構造内に長手方向に沿って導入されたイオンが、上述した電圧が引き起こす高周波電場に起因する所定のサイクルの振動によって前進し、所望の量のイオンがその後の段階へ導かれる。
【0005】
このようなイオン操作光学系、及び特に多極ロッド構成は、所望のイオンを所定の経路に沿って導くことができるという利点を有するが、このような設計は、本発明の新規かつ有益な構成によって開示するように2つの異なるイオン源からのイオンビームを合流させたり、又は単一のイオンビームを一方向又は別方向へ向け直したりすることはない。
【0006】
当分野における現在の技術的能力の概念を把握するには、Baykutに付与された、1998年10月20日に特許取得した「イオン源から質量分析計内へのイオンの導入(Introduction of Ions from Ion sources Into Mass Spectrometers)」という名称の米国特許第5,825,026号に記載され特許請求されている、可動的に装着された多極を使用して質量分析計に1又はそれ以上のイオン源を結合するシステムについての以下のような背景情報を参照するとよい。「本発明の基本概念は、1又は複数の湾曲した多極イオンガイドを可動的に配置して、この可動多極を調整することにより、複数の固定イオン源のシステム内で個々のイオン源を次々に使用できるようにすることである。様々なイオン源から発生するものの共通点へ向けて導かれるイオンを、回転可能な多極イオンガイド構成を使用して質量分析計内に導入することができる。これらのイオンを、rfイオントラップ内へ、又は四重極又はセクター型質量分析計内へ、或いはFTICR分析計のイオン移動線へ直接移動させることができる。この目的のために、イオントラップの軸、又はFTICR質量分析計のイオン移動経路の軸の周囲に(六重極又は八重極などの)多極を調整可能に配置する。質量分析計側(注入側)の多極の湾曲した長手軸は、回転可能に配置された多極の回転軸と同一である。回転中、多極の他端が円をなして動き、様々なイオン源を通過する。多極の回転位置により、イオンがいずれのイオン源から質量分析計内へ移動するかが決まる。」
【0007】
さらに、Katoに付与された、2003年7月22日に特許取得した「質量分析のための質量分析法及び装置(Mass Analysis Method and Apparatus for Mass Analysis)」という名称の米国特許第6,596,989 B2号には、複数のイオン源から発生したイオンを偏向手段を利用して質量分析計に導くシステムについての以下のような背景情報が記載され特許請求されている。「質量分析システムは、1つの質量分析計上に複数のイオン源を装着してこれらのイオン源を素早く切り替えることにより、複数の測定を並行して行うことができる。この質量分析装置は、複数のイオン源と、複数のイオン源のうちの少なくとも1つのイオン源からのイオンを偏向させて、電場を生み出すことによりイオンが質量分析計へ向けて進むようにするための偏向手段とを備える。」
【0008】
Tang他に付与された、2005年12月27日に特許取得した「マルチソースイオンファネル(Multi−Source Ion Funnel)」という名称の米国特許第6,979,816 B2号には、イオンを合流させるためのイオンファネルについての以下のような背景情報が記載され特許請求されている。「少なくとも2つの電気スプレーイオン源を提供し、この電気スプレーイオン源により生成されたイオンを毛管注入口の各々の中に導いて通過させるように構成された少なくとも2つの毛管注入口を提供し、各々が受け取り端部と放出端部とを有し、毛管注入口からのイオンを受け取り端部において受け取るように構成された、開口部を有する少なくとも2組の1次要素を提供し、受け取り端部と放出端部とを有する開口部を有し、前記イオンを1次要素の組の放出端部から受け取って2次要素の組の前記放出端部から放出するように構成された2次要素の組を提供することにより、比較的高圧の領域内で発生したイオンを比較的低圧の領域内に導入する方法。この方法は、1次要素の組の少なくとも1つの中に位置する少なくとも1つのジェットディスターバを提供するステップと、ジェットディスターバ内にdc電圧などの電圧を供給することにより、1次要素の組の少なくとも1つを通じてイオンの透過率を調整するステップとをさらに含む。」
【0009】
Kovtounに付与された、2008年9月2日に特許取得した「分岐型高周波多極(Branched Radio Frequency Multipole)」という名称の米国特許第7,420,161 B2号には、イオンを選択的に導くための分岐装置についての以下のような背景情報が記載され特許請求されている。「本発明のシステム及び方法は、例えばイオンガイドとして機能するように構成された分岐型高周波多極を含む。この分岐型高周波多極は、イオンを選択的に導くことができる複数のイオンチャネルを備える。分岐型高周波多極は、適当な電位を印加することにより、複数のイオンチャネルのいずれにイオンを導くかを制御するように構成される。このようにして、機械弁を使用することなくイオンを異なるイオンチャネルに沿って選択的に導くことができる。」
【0010】
Mordehai他に付与された、2008年5月13日に特許取得した「第2のイオンビームを1次イオン経路内に導入するためのレンズ装置(Lens Device For Introducing A Second Ion Beam Into a Primary Ion Path)」という名称の米国特許第7,372,042 B2号には、電気レンズを使用してイオンビームを合流させるシステムについての以下のようなさらなる背景情報が記載され特許請求されている。「本発明は、第2のイオンビームを質量分析計システムの1次イオン経路内に導入するための装置を提供する。一般的には、この装置は、1次イオン通路と、1次イオン通路に合流する2次イオン通路とを有する電気レンズを含む。いくつかの実施形態では、この電気レンズが、1次イオン通路をともに形成する第1の部分と第2の部分とを含む。レンズの第1の部分は、2次イオン通路を含むことができる。イオンを質量分析器に送出するための装置、及び披検電気レンズを含む質量分析計システムも提供する。本発明はまた、披検電気レンズを使用して第2のイオンビームを1次イオン経路内に導入する方法、及び試料分析法も提供する。」
【0011】
最後に、Chernushevich他に付与された、2008年4月15日に特許取得した「複数の装置を並列構成するための、質量分析計のマルチデバイスインターフェイス(Mass Spectrometer Multiple Device Interface For Parallel Configuration of Multiple Devices)」という名称の米国特許第7,358,488 B2号には、1又はそれ以上のイオン源を多極ロッド構成によってインターフェイス接続するシステムについての以下のような背景情報が記載され特許請求されている。「1又はそれ以上のイオン源を1又はそれ以上の下流の装置にインターフェイス接続するための、質量分析計で使用するためのマルチデバイスインターフェイス。このマルチデバイスインターフェイスは、多極ロッドの組に印加される電位に応じて、入力ロッドの組又は出力ロッドの組のいずれかとして構成される3又はそれ以上の多極ロッドの組を備える。入力ロッドの組として構成された多極ロッドの組は、1又はそれ以上のイオン源に接続して、ここから発生するイオンを受け取り、これらのイオンを出力多極ロッドの組として構成された少なくとも1つの多極ロッドの組へ送ることができる。出力多極ロッドの組は下流の装置に接続して、発生したイオンをここへ送ることができる。多極ロッドの組のうちの少なくとも2組が入力ロッドの組として構成され、又は多極ロッドの組のうちの少なくとも2組が出力ロッドの組として構成される。」
【先行技術文献】
【特許文献】
【0012】
【特許文献1】米国特許第5,825,026号明細書
【特許文献2】米国特許第6,596,989 B2号明細書
【特許文献3】米国特許第6,979,816 B2号明細書
【特許文献4】米国特許第7,420,161 B2号明細書
【特許文献5】米国特許第7,372,042 B2号明細書
【特許文献6】米国特許第7,358,488 B2号明細書
【発明の概要】
【発明が解決しようとする課題】
【0013】
従って、上述した発明の用途は有益ではあるが、本明細書で開示するような、2つの別個のイオン源からのイオンビームを合流できるだけでなく、単一のイオンビームを複数の所望の方向に導くためにも使用できる、多極イオン光学系を新規の交錯した構成で利用する質量分析計システムに対する大きな顧客ニーズが存在する。従って、本発明はこのようなニーズを対象とするものである。
【課題を解決するための手段】
【0014】
従って、本発明は、収集及び/又は分析のために2つの別個のイオン源からのイオンを所定の長手方向に沿って合流させるだけでなく、逆経路においては、選択したイオンチャネルに沿って所定のイオンを連続的に導いて、例えばこれを所定の下流装置が収集及び/又は分析もできるようにする交錯イオン誘導装置を提供する。
【0015】
本発明の別の態様として、上述の交錯イオン誘導装置を組み込んで、発生したイオンの合流を可能にする、或いは必要に応じて、所望のイオン源から発生したイオンを、一対の所定の下流装置に連続的に導く質量分析計システムを提供する。
【0016】
本明細書に開示する別の態様によれば、本発明は、交錯したロッドの組を有する質量分析計を動作させる方法を提供し、この方法は、第1及び第2のイオンチャネル経路をそれぞれ形成する第1及び第2のイオン誘導電極セットで構成された交錯したイオン誘導電極セット内にイオンを受け取るステップと、第1及び第2のイオンガイド電極セット内にRF電場を与えて、所望のイオンを第1及び第2のイオンチャネル経路内で径方向に拘束するステップと、受け取ったイオンに作用するDC軸力を誘発するためのDC電圧勾配を与えて、受け取ったイオンを第1のイオンチャネル経路又は第2のイオンチャネル経路のいずれかに沿って連続的に導くことができるようにするステップとを含む。
【0017】
本発明の最後の態様によれば、交錯したイオン誘導ロッドの組を有する質量分析計を動作させる方法が提供され、この方法は、合成多極イオンチャネルを提供するように交錯した、第1及び第2のイオンチャネル経路をさらに形成する第1及び第2のイオン誘導電極セット内にイオンを受け取るステップと、RF電場を与えて、所望の受け取ったイオンを第1及び第2のイオンチャネル経路内で径方向に拘束するステップと、受け取ったイオンに作用するDC軸力を誘発するためのDC電圧勾配を与えて、受け取ったイオンを合成多極イオンチャネルに導けるようにするステップとを含む。
【0018】
従って、本発明は、2つの独立した電極セット(すなわち多極)を交錯した形で組み合わせて合成多極構造を形成する装置を提供する。このような新規の構造では、イオン較正及び/又は(m/e)イオン分析を別個に又は共同して行うために、異なるイオン源から生じるイオンを、非効率的なイオン源の切り替えという犠牲を伴わずに測定することができる。しかも、本発明のY字型多極装置を逆モードで動作させることにより、やはり非効率的な分析の切り替えという犠牲を伴わずに、発生したイオンを1又はそれ以上の下流の分析機器へ連続的に導けるようになる。
【図面の簡単な説明】
【0019】
【図1】直線電極を有する本発明のY字型多極装置の例を示す図である。
【図2】滑らかな外形の電極を有する交錯したY字型多極装置の第2の全体構造を示す図である。
【図3】DCオフセット電極とともに構成された交錯したY字型多極を示す図である。
【図4】図4A−図4Dは、交錯した多極合成イオンチャネル経路の例から、別個の多極イオンチャネル経路に沿ってイオンを連続的に導くために印加するDC勾配電位を示す図である。
【図5】図5A−図5Bは、別個の多極イオンチャネル経路から、本発明の交錯した合成多極イオンチャネル経路にイオンを導くために印加するDC勾配電位を示す図である。
【図6】直線電極を有する交錯したY字型多極を利用して、イオンを合成イオンチャネル内に合流させる一般的な分析計の例を示す図である。
【図7】滑らかな外形の電極を有する交錯したY字型多極を利用して、発生したイオンを交錯した合成イオンチャネル内に合流させる一般的な分析計の例を示す図である。
【図8】本発明の装置を利用して、交錯したイオンチャネルにおいて受け取ったイオンを、別個に構成されたイオンチャネルのいずれかの中へ連続して分離する一般的な分析計の例を示す図である。
【発明を実施するための形態】
【0020】
本明細書における本発明の説明では、別途黙示的又は明示的に了解又は記載されていない限り、単数で表される単語はその複数の同等物を含み、複数で表される単語はその単数の同等物を含む。さらに、本明細書に記載するあらゆる所与の構成要素又は実施形態に関しては、別途黙示的又は明示的に了解又は記載されていない限り、通常、その構成要素に関して列記する考えられる代替物のいずれかを個別に又は互いに組み合わせて使用することができる。さらに、本明細書に示す図は必ずしも縮尺通りではなく、要素の中には、本発明を明確にするためにのみ示すものもある。また、様々な図の間で参照番号を繰り返して対応する又は類似する要素を示すことがある。また、別途黙示的又は明示的に了解又は記載されていない限り、このような候補又は代替物のあらゆるリストは例示にすぎず、限定的なものではない。
【0021】
また、別途示さない限り、本明細書及び特許請求の範囲で使用する成分、組成、反応条件などの量を表す数字は、「約」という用語により修飾されると理解すべきである。従って、逆の指示がない限り、本明細書及び添付の特許請求の範囲に記載する数値パラメータは、本明細書で示す主題が獲得しようとする所望の特性に基づいて変化することができる近似値である。最低でも、また特許請求の範囲と同等の原理の適用を限定する試みとしてではなく、個々の数値パラメータは、報告された有効数字の数に照らして、通常の四捨五入を適用することにより解釈すべきである。本明細書で示す主題の広い範囲を記載する数値範囲及びパラメータは近似値であるが、具体例に記載する数値についてはできるだけ正確に報告している。しかしながら、いずれの数値も、これらのそれぞれの試験測定値において見られる標準偏差から必然的に生じる一定の誤差を本質的に含む。
【0022】
一般的説明
本発明は、少なくとも2つの別個のイオン源からのイオンビームを合流させるように設計された、或いは別の有益な構成として、単一のイオンビーム源を別個の光学経路内へ導いて、例えば質量分析器などの1又はそれ以上の所望の質量対電荷選択モード装置による収集及び/又は操作を可能にするように設計されたY字型多極装置及び方法に関する。
【0023】
繰り返し述べると、質量分析計システムは、ほとんどの場合、所望の単一のイオン源からのイオンを誘導イオン経路に沿って供給し、これを分析器が受け取って質量/電荷(m/z)比を検査する。一般に、イオンを単一のイオン経路に沿って促して(すなわち誘導して)、イオンを様々な装置内に高い効率で捕獲、透過、及び/又は貯溜できるようにするために、多くの場合、4つ、6つ、8つ又はそれ以上の等間隔のロッドを実質的に球面配列で構成することができる。このような構成は、質量分析学会に貴重なツールを提供してきたが、本発明に伴う交錯した構成はさらに、単一のイオン源から導入されたイオンを所望のイオン経路に沿って導くだけでなく、別個の異なるイオン源からのイオンを第1のイオン経路内に順番に或いは同時に導入できるようにもする。このような新規の設計では、以下のみに限定されるわけではないが、解体及び再組み立ての休止期間を含む非効率的なイオン源切り替えという犠牲を伴うことなく、イオン較正及び/又は(m/e)イオン分析を別個に又は共同して行うために必要に応じてイオンを導入できるようになる。本発明の別の有益な態様は、本発明のY字型多極装置を逆方向に動作させて、単一のイオン源からのイオンを、交錯した分割から、例えば別個の所望の分析器の対などの1又はそれ以上の段階へ連続的に導けるようにすることにより提供される。
【0024】
上述した動作モードのいずれかにおいてイオンの方向を誘導できるようにするために、周波数が約500kHzから約2.5MHzまでの、調整可能な位相及び/又は最大約数キロボルトの振幅のRF電圧を、アセンブリ全体にわたって互いに180度位相をずらして交番ロッドに印加する。このような構成も有益であるが、交番ロッドに対して固定されたRF位相関係及び振幅を有するRF電圧を利用することもできる。任意の有益な構成として、(約+1Vから約+30Vまでの電圧勾配などの)(単複の)異なる印加DCオフセット軸方向電圧勾配をRFとともに動的に印加して、イオンを所望の方向に沿って操作することもできる。さらに、当業者が認識及び把握しているようなイオン拡散及び/又はガス流動法によってイオントラフィック制御を支援することもできる。好ましくは、本明細書で説明するY字型多極装置を構成する電極構造の外部に存在できる、又はこれらの電極構造と又は電極構造間に一体化できる、当業で認識及び把握されているような1又はそれ以上のDC軸方向電場電極を使用して、上述の(単複の)異なる印加DCオフセット電圧勾配を実現することができる。DC軸方向電場電極構成の例として、Y字型多極構造の分割した部分にDC電圧を結合すること、個々のロッドに沿って導電金属帯の組を設けて、帯の間を抵抗性被覆で離間させること、抵抗性被覆、抵抗性のある又は被覆された補助電極、指状電極、電極セット構造の曲率に一致するような外形を有する湾曲した肉薄プレート、及び/又は誘発されたDC軸力を通じてイオンを所望のイオン経路に沿って移動させるための、当業者にとって公知のその他の手段を管構造に提供することを挙げることができる。
【0025】
このようなRF及びDC電場の生成を支援するために、コンピュータ、RF及びDC電圧源、RF及びDCコントローラ、デジタルアナログコンバータ(DACS)、及び印加DC電圧を動的に制御するためのプログラムマブルロジックコントローラなどの公知の構成要素及び回路を本発明に組み込んで、Y型多極装置及び/又は本明細書で説明するシステムに組み込まれたその他の構成要素内の所望のイオン経路に沿ってイオンを移動させる。さらに、様々なRF及びDC電圧レベルを供給するために必要な電圧源をコンピュータなどによって動的に制御できるので、電圧の振幅及び範囲を、分析対象の特定の試料又はターゲットイオンの組の必要性を満たすように調整及び変更することができる。
【0026】
また、本明細書に開示するシステム内に、当業者が認識する1又はそれ以上のイオンレンズを導入して、所望のイオンを所定のイオン経路に沿って誘導することもできる。このようなイオンレンズは、所定のイオンが後続する他の部分及び/又は例えば質量分析器などの下流装置によって受け取られるようにイオンをいずれかの長手方向に沿って導くために、以下に限定されるわけではないが、本発明のY字型多極装置と協働するためのレンズ積層体(図示せず)、極間レンズ、円錐スキマー、(分割ゲートレンズなどの)ゲート手段などを含むことができる。
【0027】
従って、本発明の構成及び方法を提供することにより、本明細書に開示する交錯した(すなわち組み合わせた)Y字型多極構造によって、結果として得られる合流又は分離したイオンビームを検査及び/又は操作することができる。具体的には、合流構成で動作するように構成された場合には、別個のイオン源のいずれかからのイオンを単独のイオン較正及び/又は(m/e)イオン分析のためにのみ操作することができるが、有益なことに、第2のビーム経路からのイオンを第1のビーム経路内に導くことにより、ほとんどの場合、別個のイオン源が同時に合流されて、第1のビーム経路に沿って受け取られるようなイオン源から生じるイオンを使用して、例えば共同的なイオン較正及び/又は(m/e)イオン分析が可能になる。さらに有益なことには、本発明の多極装置を逆方向に動作するように構成した場合、本発明では、単一のイオン源から生じたイオンを、以下に限定されるわけではないが、(Q3)又は線形トラップのいずれかによる分析を可能にするために、本発明の交錯した装置の切り替え機能を衝突セルの近くに含むように構成された飛行時間(TOF)質量分析器及び三段四重極(Q3)/線形トラップ混成形などの装置の対に連続的に導くことが可能になる。
【0028】
具体的説明
ここで図面を参照すると、図1には、参照番号10で大まかに示す例示的なY字型多極イオン光学装置の基本図を示している。このような構成例は、文字I及びIIでそれぞれ示すような一対の実質的に直線の電極セット(例えば、四重極)を含み、これらの電極セットは、このような電極セット構造の軸に近いイオンを実質的に含むことができる誘発されたRF径方向電界成分を有することができるとともに交錯され、この交錯した構成により提供される、電極セットI及びIIのロッド面端部に大まかに示す部分IIIにおいて多極構造(例えば、八重極)を提供する。このような構造の有益な側面は、所望のイオンを、単一の交錯した合成イオン光学通路内に、又は逆モードで動作した場合には異なる別個の方向に沿って導く能力である。
【0029】
具体的には、図1のY字型多極10を、電極セットI及びIIを介してイオンを別個のイオン通路に沿って導き、(合成八重極などの)交錯した合成多極構造IIIにより提供される単一のイオン誘導経路11内にイオンビームを合流させるように、或いは逆方向に利用した場合、装置10のそれぞれの構造化した分割電極セットI及びIIを介して(破線の方向矢印で示すような)11′及び11″などの異なるイオン経路方向に沿ってイオンを連続分離できるように構成することができる。このような装置10を質量分析計システム内に組み込むことにより、少なくとも1つの、有益には2つのイオン源を分析器などの下流装置に結合できるようになり、或いは逆モードで動作した場合、単一のイオン源から生じるイオンを(質量分析器などの)1又はそれ以上の所望の下流装置に結合できるようになる。
【0030】
図2は、ここでは参照番号20で大まかに示す別の例示的な交錯したY字型多重イオン光学装置を示している。しかしながら、この構成例では、図1の(イオンガイドなどの)電極セットの組I及びIIが、ここでは実質的に滑らかな曲率半径で構成され(例えば、参照番号15を参照)、さらに誘導RF放射状電界成分を生成して、このような電極セット構造の軸に近いイオンを実質的に含むことができるようになる。前述の図1の説明と同様に、図2のY字型多極20も、(破線平面IIIで大まかに示すような八重極などの)交錯した合成多極構造を介して単一のイオン誘導チャネル経路11内にイオンビームを合流させるように、或いは必要に応じて、多極交錯構造IIIから分割して、それぞれの構造化した分割電極セットI及びIIを介して(破線の方向矢印で示すような)11′及び11″などの異なるイオンチャネル経路方向に沿って所望のイオンを連続的に導くように構成することができる。また、上述した図1に示すY字型多極10と同様に、図2のY字型多極20の装置も、少なくとも1つの、有益には2つのイオン源を分析器などの下流装置に結合できるようになり、或いは逆モードで動作した場合、単一のイオン源から生じるイオンをこのような下流装置の1又はそれ以上に結合できるようになるという利点を有する。
【0031】
一般的に説明すると、本発明のY字型多極装置10、20自体は、多くの場合、同等の電極セットを有する構成された一対の多極装置であり、この構成される電極の各々は、合成多極構造を形成するように交錯された(組み合わされた)最大約20cmの動作長を有するように構成することができる。例えば、本明細書に開示するY字型多極装置10、20は、六重極を形成するように交錯された(すなわちそのように組み合わされた)一対の三重極、八重極を形成するように交錯された(すなわちそのように組み合わされた)一対の四重極、十二重極を形成するように交錯された一対の六重極、又は別の有益な例として、十六重極を形成するように交錯された一対の八重極で形成することができる。或いは、上述の構成も配列上好ましいが、この本発明の合成多極を、例えば十重極を実現するように六重極と交錯された(すなわちある形で組み合わされた)四重極、又は例えば十二重極を実現するように四重極と交錯された八重極などの異なる数の電極で構成することもできる。
【0032】
さらに、本明細書に開示するY字型多極装置10、20を構成する電極の形状は、多くの場合双曲状であることが望ましいが、本発明の範囲及び思想から逸脱することなく、約2.4cmよりも長い、多くの場合約2.4cmから最大約20cmの長さを有する平坦な又は円形断面のロッドを使用して、理論上理想的な双曲RF電界線と同様のRF電界線をロッド間に発生させることもできる。
【0033】
有益なことに、本発明のY字型多極装置10、20の構成に単独で又は同時に結合できるイオンビーム源の例として、以下に限定されるわけではないが、電気スプレーイオン化源(ESI)、ナノ電気スプレーイオン化源(NanoESI)、大気圧イオン化源(API)、電子衝撃(EI)イオン化源、化学イオン化(CI)源、EI/CI結合イオン化源、表面増強レーザ脱離/イオン化(SELDI)、レーザ脱離イオン化(LDI)イオン源、及びマトリックス支援レーザ脱離/イオン化(MALDI)源などの、質量分析法の分野の当業者が認識及び理解している様々なイオン源を挙げることができる。2つのイオン源を同時に結合することに関しては、用途として、APIイオン源からのイオンとMALDIイオン源からのイオンとを合流させて、1つのイオン源から別のイオン源に切り替える時間を無くすことを挙げることができる。別の有益な用途としては、APIイオン源と電子移動解離(ETD)試薬を生成するためのEI/CIイオン源とを結合することが考えられる。
【0034】
本明細書で説明するY字型多極装置には、分析器として構成される多くの装置(m/z、電荷、化学種、イオン可動性、及びこれらの組み合わせのうちの1又はそれ以上に基づいてイオンを分離できるあらゆる装置)を結合することもでき、これらの装置として、線形イオントラップ(LIT)、イオンサイクロトロン共鳴(ICR)、オービトラップ、フーリエ変換質量分析計(FTMS)などの単段式装置を有するシステム、或いは四重極/直交加速飛行時間(oa−TOF)、線形イオントラップ−飛行時間(LIT−TOF)、線形イオントラップ(LIT)−オービトラップ、四重極−イオンサイクロトロン共鳴(ICR)、イオントラップ−イオンサイクロトロン共鳴(IT−ICR)、線形イオントラップ−軸外−飛行時間(LIT−oa−TOF)、又は線形イオントラップ(LIT)−オービトラップ質量分析器などの二段式質量分析器を有するシステムを挙げることができる。
【0035】
図3は、参照番号300で大まかに示すY字型多極構成例のより詳細な図を示している。このような新規の装置を、イオン源からのイオンを、別の所望のイオン経路(すなわち、参照番号11′及び11″を付した方向矢印で示すような)へ向けて連続的に誘導するように、或いは代替例では、別個のイオン源から発生したイオンを、交錯した合成多極電極セットI及びIIを介して(大きな方向矢印で示すような)所望の単一のイオン経路11に沿って誘導する(例えば、多極1及び2が交錯した(破線で示す)領域IIIに合流する)ように構成することができる。また、図3のY字型多極例300内には、単調に増減する印加DCレベルを有することができることを示すために、(指状電極などの)分岐部分例33として示す電気的に結合された(羽根電極などの)DC電極30、31、及び32を示している。なお、図3のロッド電極セットI及びIIと電極30、31、32との相対位置は、図を分かりやすくするためにやや拡大している。しかしながら、このような電極は、図3の電極セットI及びIIから生じるRF極電界との干渉が最小になる位置を占めるように設計される。
【0036】
図3の装置300を、図3に示すように、単一のイオン源(図示せず)からのイオンを別の経路11′及び11″に分離するための、或いは別個のイオン源(図示せず)からのイオンを単一のイオン経路11内に合流させるためのいずれかの方向モードで動作させる場合には、当業者には公知のように、多くの場合、向かい合わせに配置された主RF電極セット(例えばセットI及びII)の各対に電子コントローラ(図示せず)を介して逆のRF電圧を印加してイオンを所望の径方向に収容する。上述の(単複の)RF電圧の印加により、図3の電極30、31、及び一連の分岐部分33とともに示す32は、多極電極セットI、II内に軸方向のDC電場、従って軸方向の力を所定の形で生み出して、イオンを所望の長手方向に沿って促すように構成される。
【0037】
図3に示すような例示の分岐部分33自体は、コンピュータ(図示せず)制御された動的な印加電圧を有するように設計された指状電極であってもよく、又は、例えばいくつかの例では、それぞれの分圧器を電極30、31、及び32の長さに沿って所望の抵抗性自体によって設定するように構成された所定の容量性素子を有する(すなわち、RF電圧結合効果を低減させる)ように構成された(抵抗器などの)抵抗要素であってもよい。しかしながら、強調したい点は、静電圧であることが多いDC電圧勾配がどのように形成されるかに関わらず、結果として生じる電圧が、一連の電圧、多くの場合一連の段階的な単調な電圧を形成して軸方向の電圧勾配を生み出し、これが図3に示すように、イオン経路11′、11″に沿って、或いは順方向で動作する場合には所望のイオン経路11へ向けてイオンを促すという点である。
【0038】
イオンを所望の下流装置及び/又は質量分析計のその他の結合部分内に選択的に分離するための動作方法を示すために、図3のY字型多極の実施形態例を逆モードで動作させること(すなわち、所定のイオンチャネル経路に沿ってイオンを連続的に導くこと)を理解するのに役立つように、図4A〜図4Dに示すプロットの組を参照されたい。
【0039】
詳細には、図4A〜図4Dには、図3に示す本発明の電極30、31、及び32に沿った、印加される相対的DC電圧勾配レベルをグラフで示している。このようなDC電圧勾配は、本発明のその他の開示する態様とともに、交錯した多極構造IIIが受け取った所望のイオンを、多極電極セットII(すなわち多極2)を有するイオン経路11″、又は多極電極セットI(すなわち多極1)を有するイオン経路11′のいずれかに沿って選択的に導けるようにする。
【0040】
具体的には、交錯した多極合流部IIIにおいて受け取ったイオンを電極セットII(すなわち多極2)のイオン経路11″内に導くには、図3のDC電極30、31、及び32に相対的DC電圧勾配を好適に印加して、図4A及び図4Bに例示的に示すDC電圧勾配を誘発する。例えば、上述したイオンの誘導を実現するために、図4Aの上部のプロットは、(位置A、A′、Bで示すような)図3のDC電極30の構造に沿って相対的に減少する印加DC電圧勾配と増加する印加DC電圧勾配とが誘発されることを示しているのに対し、図4Aの下部のプロットは、図3のDC電極31及び32に相対的なDC電圧勾配が同時に印加されること、すなわちDC電極31の位置CではDC電極32の位置Fに対して減少する電圧レベルと、位置Cに対してはDC電極32の位置Fから増加する電圧レベルとがやはり電極32に沿って誘発されることを示している。同時に、図4Bに示すように、上部のプロットは、(位置C、C′、Dに示すような)図3のDC電極31に沿って全体的に減少するDC電圧レベルが印加されることを示しているのに対し、図4Bの下部のプロットは、図3に対応して示す電極32の位置Fにおける電圧レベルに対する位置Gにおける電圧レベルによって示すような全体的に増加するDC電圧レベルが印加されることを示している。従って、図3に示すDC電極30、31、及び32に印加することができる、図4A及び図4Bに示すこのようなDC電圧勾配の例により、多極交錯合流部IIIにおいて受け取ったイオンを電極セットII(すなわち多極2)へ導けるようになる。
【0041】
本発明のY字型多極装置の逆モード動作の例の説明を続けると、交錯した多極合流部IIIにおいて受け取ったイオンを電極セットI(すなわち多極1)のイオン経路11′内へ導くには、この場合も図3のDC電極30、31、32に相対的DC電圧勾配を望むように印加して、図4C及び図4Dに示すDC電圧勾配を誘発させる。具体的には、上述のイオン経路11′内へのイオン誘導を実現するために、図4Cの上部のプロットは、(ここでも位置A、A′、Bで示す)図3のDC電極31に沿って全体的に減少するDC電圧レベルが印加されることを示しているのに対し、図4Cの下部のプロットは、ここでも図3に対応して示す電極32の位置Fにおける電圧レベルに対する位置Gにおける電圧レベルによって示すような全体的に増加するDC電圧レベルが印加されることを示している。
【0042】
しかしながら、この構成例では、(位置C、C′、Dで示すような)図3のDC電極31の構造に沿って、図4Dの上部のプロットに示すような同時に印加される相対的に減少する相対電圧レベルと増加する相対電圧レベルとが誘発され、電極32に沿って、位置Fにおける相対DC電圧に対する位置Gにおける相対DC電圧によって示すような、図4Dの下部のプロットに示すような全体的に減少する電圧レベルが誘発される。従って、図3に示す交錯した多極合流部IIIにおいて受け取った所望のイオンを、電極セットI(すなわち多極1)へ優先的に導くことができる。
【0043】
次に、1又はそれ以上のイオン源により供給されるイオンを所望の下流装置及び/又は質量分析計のその他の結合部分内へ導くための本発明のY字型多極の順方向の動作方法として図5A及び図5Bに示すプロットの組を参照されたい。
【0044】
このような動作モードを示すために、図5A〜図5Bには、電極30の位置例A、B、電極31の位置例D、C、及び電極32に沿った位置E、F、及びGを介して印加される相対的DC電圧勾配レベルをグラフで示している。このようなDC電圧勾配は、本発明のその他の開示する態様とともに、1又はそれ以上のイオン源からの所望のイオンを、多極電極セットII(すなわち多極2)を有するイオン経路11″、又は多極電極セットI(すなわち多極1)を有するイオン経路11′のいずれかに沿って導いて、これを交錯した多極構造IIIが受け取ってさらなるイオン経路操作をできるようにする。
【0045】
図3に示すような上述の電極セットI及びIIを介してイオンを交錯した多極合流部III内に単独で又は同時に導くための動作例としては、図3のDC電極30、31、及び32に所定の相対的DC電圧勾配を同時に印加して、図5A及び図5Bに示す相対的DC電圧勾配を誘発する。
【0046】
具体的には、イオンを電極セットIに沿って(単独で、又は電極セットIIによって導かれるイオンとともに同時に)導いて、図3の交錯した多極合流部IIIによって受け取られるようにするには、図5Aのプロットが両方とも、図3のそれぞれのDC電極30及び32に沿って相対的に増加する印加DC電圧レベルが誘発されることを示すことが有益である。例えば、図5Aの上部のプロットは、図3に対応して示す電極32の位置BにおけるDC電圧レベルよりも位置Aにおける相対的DC電圧レベルの方が低いことによって示すような全体的に増加する印加DC電圧レベルを示しており、図5Aの下部のプロットは、やはり図3に対応して示す電極32の位置Eにおける相対DC電圧レベルよりも位置Fにおける相対的DC電圧レベルの方が低いことを示している。
【0047】
また、イオンを電極セットIIに沿って(単独で、又は電極セットIによって導かれるイオンとともに同時に)導いて、図3の交錯した多極合流部IIIによって受け取られるようにするには、ここでも図5Bのプロットが両方とも、同時に印加された全体的に減少するDC電圧レベルが図3に対応して示すDC電極31に沿って誘発されることを示すことが有益である。具体的には、図5Aに関して上述した電圧勾配とともに同時に印加した場合、図5Bの上部のプロットは、図3に対応して示す電極32の位置CにおけるDC電圧レベルよりも位置Dにおける相対的DC電圧レベルの方が高いことを示す一方で、図5Bの下部のプロットも、やはり図3に対応して示す電極32の位置Fにおける相対的DC電圧レベルよりも位置Gにおける相対的DC電圧レベルの方が高いことを示している。
【0048】
従って、図3に示すDC電極30、31、及び32に印加することができる、図5A及び図5Bに示すこのようなDC電圧勾配の例により、イオンを多極交錯合流部IIIへ導いて、それぞれの下流装置及び/又は後続する質量分析計の段階へ促すことが可能となる。
【0049】
図6には、上述して図1の構成例に示したような直線電極セット部分I及びIIで構成された新規の直線Y字型多極10の実施形態を有する質量分析計システムの構成例を示し、これを参照番号600で大まかに示している。詳細には、図6に示す質量分析計の例600を、この例示的な構成では(破線の囲み内に示す)電気スプレーイオン化源(ESI)12及び(同じく破線の囲み内に示す)マトリックス支援レーザ脱離/イオン化(MALDI)イオン源12′を含む一対の構成されたイオン源の例に結合された直線Y字型多極10とともに示している。例示的なイオン源12及び12′の各々は、本明細書に開示する直線Y字型多極10の装置の外形と実質的に整合するように構成された結合DC電極構造30、31、及び32を有するそれぞれの電極セット部分I及びIIに有益に結合される。この構成では、いずれかのイオン源により生成されたイオンを、このようなシステムに固有の、及び本明細書で開示する制御を使用して検査するために、結合電極セットI又はIIのいずれかを介して交錯領域IIIへ単独で導くことができ、これには当然ながら、Y字型多極10の構造自体に適当なRF及びDC印加電圧を印加することが必然的に含まれる。しかしながら、本発明の有益な使用は、(ESI12及びMALDI12′イオン源などの)イオン源により生成されたイオンを、結合電極セットI及びIIを介して同時に導いて、電極セットI及びIIに印加されるRF電場を使用するとともに、上述して図5A及び図5Bに示したような上述したDC電圧勾配の動作方法例を使用することにより、このような生成されたイオンを交錯合流部IIIにおいて合流させることである。このような有益な構成及び動作方法により、(イオンガイド16などの)イオンガイド及び(単複の)分析器18などの後続する下流装置によって可能になるような、このように生じたイオンの別個のイオン較正及び/又は(m/e)イオン分析、或いは共同のイオン較正及び/又は(m/e)イオン分析が可能になる。
【0050】
図7には、ここでは参照番号700で大まかに示す質量分析計システムの別の構成例を示している。この構成例では、上述したような所望のイオンの方向誘導が、図2及び図3に示すような滑らかな外形の電極セットI及びIIで構成された、従ってやはり図3に大まかに示す滑らかな外形のDC電極セットI及びIIとともに対応して構成された交錯したY字型多極10の実施形態により実現される。
【0051】
具体的には、図7に示す質量分析計の例700を、図6に関して上述した一対の構成されたイオン源の例、すなわち(ここでも破線の囲み内に示す)電気スプレーイオン化源(ESI)12及び(同じく破線の囲み内に示す)マトリックス支援レーザ脱離/イオン化(MALDI)イオン源12′に結合された滑らかな外形の交錯したY字型多極10とともに示している。前回の例と同様に、イオン源の例12及び12′の各々は、それぞれの電極セット部分I及びIIに有益に結合される。やはり前回の例と同様に、個々の電極セット部分I及びIIは、本明細書に開示する結合されたDC電極構造30、31、及び32とともに構成される。このようにして、生成されたイオンを検査のために公知の結合電極セットI又はIIを介して単独で導くことができ、また本発明の交錯したY字型多極10を使用して導くことができる。しかしながら、本発明の有益な使用は、このようなESI12及びMALDI12′などのイオン源によるイオンを、結合した電極セットI及びIIを介して同時に導いて、電極セットI及びIIに印加されるRF電場を使用するとともに、上述して図5A及び図5Bに示したような上述したDC電圧勾配の動作方法例を使用することにより、このような生成されたイオンを交錯合流部IIIにおいて合流させることである。このような有益な構成及び動作方法により、(イオンガイド16などの)イオンガイド及び(単複の)分析器18などの後続する下流装置によって可能になるような、このように生じたイオンの別個のイオン較正及び/又は(m/e)イオン分析、或いは共同のイオン較正及び/又は(m/e)イオン分析が可能になる。
【0052】
図8には、「逆」モード、すなわち生成されたイオンを所望のイオンチャネル経路に沿って連続的に導くモードで動作するように構成された、上述した本発明の滑らかな外形のY字型多極10で構成された、参照番号800で大まかに示す質量分析計システムの別の有益な構成例を示している。図8にはこのような滑らかな外形のY字型多極10の形態を示しているが、本発明の範囲から逸脱することなく、図1に示す直線Y字型多極電極セット構成を図8のシステム800内で同等に利用することができる。いずれのY字型多極装置であっても、上述したような所望のイオンの方向誘導は、(イオンレンズ及び流動ガスなどの)その他の公知のイオン方向誘導法とともに発生RF電場及びDC電圧勾配を使用して、図3の説明に関して上述したように、このようなイオンをいずれかの電極セット部分I、IIに連続的に操作することにより、図2及び図3に示すような電極セットI及びIIによって行われる。
【0053】
この有益な構成では、図8に示す質量分析計の例800を、交錯合流部III内に合流する滑らかな外形の電極セットI及びIIとともに示しているが、ここでは、装置の交錯合流部IIIは単一のイオン源の例、すなわち(ここでも破線の囲み内に示す)電気スプレーイオン化源(ESI)12に結合されるが、電極セット部分I、IIがそれぞれの下流装置44及び46に結合されるように構成される。一般的に説明すると、システム制御を介してESI12イオン源内でイオンを発生させ、図3の説明で上述したDC電極30、31、及び32により誘発されるDC電圧勾配によって支援される印加RF電場を介して電極セット部分I、IIのいずれかに沿って方向操作することができる。本発明の交錯したY字型多極10の方向誘導を利用することにより、線形トラップ44及び3次元トラップ46、又は質量分析計800の(多極26、42などの)その他の機器/小区分などの1又はそれ以上の結合された分析器を有益に利用して、さらなる操作及び/又は検査のためにイオンを連続して受け取ることができる。図8には下流装置の例として線形トラップ44及び3次元トラップ46を示しているが、このような生成されたイオンを、以下に限定されるわけではないが、衝突セルの近くに本装置の切り替え機能を有して構成された飛行時間(TOF)質量分析器及び三段四重極(Q3)/線形トラップハイブリッドに連続的に導いて(Q3)又は線形トラップのいずれかによる分析を可能にするようなその他の有益な構成を利用することもできる。従って、上述したようなあらゆる数の分析機器を図8のシステム800内に統合して、所望の制御及び分析を行うことができる。
【0054】
なお、上述したような大まかに示す質量分析計システム600、700、及び800は、例えば本発明のY字型多極10の構成と動作可能に結合されたDC電極30、31、及び32、トラップ装置/分析器、及び本発明のその他の電極構造、イオントラップなどの所定の電極及び装置に(イオンを径方向に拘束するための、Y字型多極電極への固定電圧振幅及び位相又は制御自在に調整できる振幅及び位相などの)RF及びDC電圧を供給するための電子コントローラ及び1又はそれ以上の電源を含むこともできる。
【0055】
さらに、本発明の実施形態を使用して構成された電子コントローラも、多くの場合、このようなシステムに実装されることが知られているポンプ、試料プレート、照明源、センサ、レンズ35、40、ゲートレンズ36、38、イオンガイド16、42、及び検出器などの様々な他の装置に動作可能に結合されて、このような装置/機器、及び構成されたシステム全体を通じた様々な場所の状態を制御するとともに、分析中の粒子を表す信号を送受信する。やはり当業者には公知のように、このような装置/機器のいずれかをイオン経路に沿って封入して保持し、大気圧と同じであることも多いが大気圧よりも低い圧力などの所定の圧力を与えるためのあらゆる数の真空ステージを実現することもできる。
【0056】
また、このような質量分析器の例に導く際に、イオンを拘束し、誘導し、及び集中させて良好な透過効率を提供する、イオン開口部、スキマーコーン、静電レンズ、及び高周波RF多極イオンガイドから選択した八重極、四重極などの多極などの光学部品の組により、結果として得られるイオンを圧力が次第に減少する一連のチャンバを通じて移送することができ、また多くの場合このようにする。様々なチャンバは、圧力を所望の値に維持するためのポンプ(図示せず)に結合された、当業で公知の対応するポート(図示せず)と連通する。図6〜図8のいずれかに示すシステムのような構成された質量分析計の動作は、ほとんどの場合、汎用又は専用プロセッサ、ファームウェア、ソフトウェア、及び本発明の所定のデータ分析及び制御ルーチンを具体化する命令セットを実行するように構成されたハードウェア回路のうちのいずれか1つ又はこれらの組み合わせとして実現することができる制御及びデータシステム(図示せず)により制御されてデータが取得され処理される。このようなデータ処理は、平均化、走査グループ化、逆畳み込み、ライブラリ検索、データ記憶、及びデータ報告を含むこともできる。
【0057】
例えば、m/z値の組の識別、データの合成、結果のエクスポート/表示などの、本明細書に開示するシステムに固有の動作のいずれかを開始するための命令を、特定の質量分析計に結合された(コンピュータ可読媒体などの)機械可読媒体に記憶された命令の下で実行することもできる。本発明の態様によれば、コンピュータ可読媒体とは、機械/コンピュータが読み取る(すなわち走査/感知する)ことができ、機械/コンピュータのハードウェア及び/又はソフトウェアが解釈できる形で提供された符号化情報を有する、当業者が認識及び理解している媒体を意味する。例えば、本明細書に開示する装置/システムが質量スペクトルの質量スペクトルデータを受け取ると、本発明のコンピュータプログラムに組み込まれた情報を利用して、例えば選択された質量対電荷比の組に対応するデータをこれらの質量スペクトルデータから抽出することができる。また、本発明のコンピュータプログラムに組み込まれた情報を利用して、データを正規化するための、データをシフトするための、又は原ファイルから望ましくないデータを抽出するための方法を、当業者が認識及び理解している形で実施することができる。
【0058】
なお、本発明の思想及び範囲から逸脱することなく、本明細書において様々な実施形態に関して説明した特徴をあらゆる組み合わせで混ぜ合わせて適合させることができる。異なる代表的な実施形態を例示し、これらについて詳細に説明したが、これらの実施形態は例示的なものであり、逸脱することなく様々な代替及び変更が可能である。
【符号の説明】
【0059】
I、II 電極セット
III 交錯した多極構造
10 Y字型多極
12、12′ イオン源
16 イオン誘導器
18 分析器
30、31、32 DC電極
35 レンズ
36 ゲートレンズ

【特許請求の範囲】
【請求項1】
イオンを誘導するための装置であって、
第1のイオンチャネル経路を形成する第1の電極セットと、第2のイオンチャネル経路を形成する第2の電極セットとで構成された、合成多極イオンチャネルを形成する交錯した電極セットと、
前記第1及び前記第2のイオンチャネル経路内で前記イオンを径方向に拘束するための位相及び振幅で構成されたRF電圧を、前記第1及び前記第2の電極セットの電極の少なくともいくつかに印加するためのRF電圧源と、
を備えることを特徴とする装置。
【請求項2】
複数のDC電極と、
前記複数のDC電極に沿ってDC電圧勾配を作り出して、結果として得られる軸力により、1又はそれ以上の注入されたイオンを前記第1のイオンチャネル経路内の長手方向及び/又は前記第2のイオンチャネル経路内の長手方向に導くことができるようにされたDC電圧源と、
をさらに備えることを特徴とする請求項1に記載の装置。
【請求項3】
前記DC電圧源が、前記複数のDC電極の長さに沿って単調に増加又は減少する電圧レベルを動的に印加するように制御される、
ことを特徴とする請求項2に記載の装置。
【請求項4】
前記第1の電極セット及び前記第2の電極セットが、交錯して六重極を形成する三重極の対、交錯して八重極を形成する四重極の対、交錯して十二重極を形成する六重極の対、交錯して十六重極を形成する八重極の対、六重極と交錯して十重極を形成する四重極、及び四重極と交錯して十二重極を形成する八重極から選択された前記合成多極イオンチャネルを実現する構成を有する、
ことを特徴とする請求項1に記載の装置。
【請求項5】
前記第1の電極セット及び前記第2の電極セットが、滑らかな外形の電極を含む、
ことを特徴とする請求項1に記載の装置。
【請求項6】
前記第1の電極セット及び前記第2の電極セットが、直線電極を含む、
ことを特徴とする請求項1に記載の装置。
【請求項7】
前記イオンを誘導するための装置が、前記第1のイオンチャネル経路の第1の入口端部及び前記第2のイオンチャネル経路の第2の入口端部が第1のイオン源及び第2のイオン源にそれぞれ結合されるように構成される、
ことを特徴とする請求項1に記載の装置。
【請求項8】
前記イオンを誘導するための装置が、前記第1のイオンチャネルの第1の出口端部及び前記第2のイオンチャネルの第2の出口端部が第1の分析器及び第2の分析器にそれぞれ結合されるように構成される、
ことを特徴とする請求項1に記載の装置。
【請求項9】
前記イオンを誘導するための装置が、前記合成多極イオンチャネルの交錯した合流端部がイオン源に結合されるように構成される、
ことを特徴とする請求項1に記載の装置。
【請求項10】
前記イオンを誘導するための装置が、前記合成多極イオンチャネルの交錯した合流端部が分析器に結合されるように構成される、
ことを特徴とする請求項1に記載の装置。
【請求項11】
前記第1及び前記第2のイオン源が、電気スプレーイオン化源(ESI)、ナノ電気スプレーイオン化源(NanoESI)、大気圧イオン化源(API)、電子衝撃(EI)イオン化源、化学イオン化(CI)源、EI/CI組み合わせイオン化源、表面増強レーザ脱離/イオン化(SELDI)イオン源、レーザ脱離イオン化(LDI)イオン源、及びマトリックス支援レーザ脱離/イオン化(MALDI)イオン源から選択された少なくとも1つのイオン源を含む、
ことを特徴とする請求項7に記載の装置。
【請求項12】
前記イオン源が、電気スプレーイオン化源(ESI)、ナノ電気スプレーイオン化源(NanoESI)、大気圧イオン化源(API)、電子衝撃(EI)イオン化源、化学イオン化(CI)源、EI/CI組み合わせイオン化源、表面増強レーザ脱離/イオン化(SELDI)イオン源、レーザ脱離イオン化(LDI)イオン源、及びマトリックス支援レーザ脱離/イオン化(MALDI)イオン源から選択された少なくとも1つのイオン源を含む、
ことを特徴とする請求項9に記載の装置。
【請求項13】
前記第1及び前記第2の分析器が、イオンサイクロトロン共鳴(ICR)、オービトラップ、フーリエ変換質量分析計(FTMS)、四重極/直交加速−飛行時間(oa−TOF)、線形イオントラップ−飛行時間(LIT−TOF)、線形イオントラップ(LIT)−オービトラップ、四重極−イオンサイクロトロン共鳴(ICR)、イオントラップ−イオンサイクロトロン共鳴(IT−ICR)、線形イオントラップ−軸外−飛行時間(LIT−oa−TOF)、及び線形イオントラップ(LIT)−オービトラップ質量分析器から選択された少なくとも1つの分析器を含む、
ことを特徴とする請求項8に記載の装置。
【請求項14】
前記分析器が、イオンサイクロトロン共鳴(ICR)、オービトラップ、フーリエ変換質量分析計(FTMS)、四重極/直交加速−飛行時間(oa−TOF)、線形イオントラップ−飛行時間(LIT−TOF)、線形イオントラップ(LIT)−オービトラップ、四重極−イオンサイクロトロン共鳴(ICR)、イオントラップ−イオンサイクロトロン共鳴(IT−ICR)、線形イオントラップ−軸外−飛行時間(LIT−oa−TOF)、及び線形イオントラップ(LIT)−オービトラップ質量分析器から選択された少なくとも1つの分析器を含む、
ことを特徴とする請求項10に記載の装置。
【請求項15】
1又はそれ以上のイオン源と、
1又はそれ以上の分析器と、
第1のイオンチャネル経路を形成する第1の電極セットと、第2のイオンチャネル経路を形成する第2の電極セットとで構成された、合成多極イオンチャネルを形成する交錯した電極セットと、
を備え、前記第1のイオンチャネル経路の第1の端部及び前記第2のイオンチャネル経路の第2の端部が、前記1又はそれ以上のイオン源を備える装置又は前記1又はそれ以上の分析器を備える装置のいずれかに結合するように適合可能であり、前記結果として得られる多極イオンチャネルの合流端部が、前記1又はそれ以上のイオン源又は前記1又はそれ以上の分析器から選択された単一の装置に結合するように適合可能であり、
前記第1の電極セット及び前記第2の電極セットにRF電圧を印加するようにRF電圧源を制御する電子コントローラと、
前記第1の電極セット及び前記第2の電極セットに動作可能に結合された複数のDC電極と、
前記電子コントローラを介して前記複数のDC電極に結合され、前記複数のDC電極の部分に沿ってDC電圧勾配を動的に作り出して、1又はそれ以上の注入されたイオンに作用するための軸力を与えることにより、前記注入されたイオンを、前記第1のイオンチャネル経路内の長手方向及び前記第2のイオンチャネル経路内の長手方向のいずれかに沿ってさらに操作できるようにするDC電圧源と、
をさらに備えることを特徴とする質量分析計システム。
【請求項16】
前記第1の電極セット及び前記第2の電極セットが、滑らかな外形の電極を含む、
ことを特徴とする請求項15に記載の質量分析計システム。
【請求項17】
前記第1の電極セット及び前記第2の電極セットが、直線電極を含む、
ことを特徴とする請求項15に記載の質量分析計システム。
【請求項18】
前記第1の電極セット及び前記第2の電極セットが、交錯して六重極を形成する三重極の対、交錯して八重極を形成する四重極の対、交錯して十二重極を形成する六重極の対、交錯して十六重極を形成する八重極の対、六重極と交錯して十重極を形成する四重極、及び四重極と交錯して十二重極を形成する八重極から選択された前記合成多極イオンチャネルを実現する構成を有する、
ことを特徴とする請求項15に記載の質量分析計システム。
【請求項19】
前記1又はそれ以上のイオン源が、電気スプレーイオン化源(ESI)、ナノ電気スプレーイオン化源(NanoESI)、大気圧イオン化源(API)、電子衝撃(EI)イオン化源、化学イオン化(CI)源、EI/CI組み合わせイオン化源、表面増強レーザ脱離/イオン化(SELDI)イオン源、レーザ脱離イオン化(LDI)イオン源、及びマトリックス支援レーザ脱離/イオン化(MALDI)イオン源から選択された少なくとも1つのイオン源を含む、
ことを特徴とする請求項15に記載の質量分析計システム。
【請求項20】
前記1又はそれ以上の分析器が、イオンサイクロトロン共鳴(ICR)、オービトラップ、フーリエ変換質量分析計(FTMS)、四重極/直交加速−飛行時間(oa−TOF)、線形イオントラップ−飛行時間(LIT−TOF)、線形イオントラップ(LIT)−オービトラップ、四重極−イオンサイクロトロン共鳴(ICR)、イオントラップ−イオンサイクロトロン共鳴(IT−ICR)、線形イオントラップ−軸外−飛行時間(LIT−oa−TOF)、及び線形イオントラップ(LIT)−オービトラップ質量分析器から選択された少なくとも1つの分析器を含む、
ことを特徴とする請求項15に記載の質量分析計システム。
【請求項21】
前記DC電圧源が、前記複数のDC電極の長さに沿って単調に増加又は減少する電圧レベルを動的に印加する、
ことを特徴とする請求項15に記載の質量分析計システム。
【請求項22】
前記RF電圧源が、前記第1及び前記第2の電極セットの電極の少なくともいくつかに印加されるRF電圧の位相及び振幅の少なくとも一方を、前記第1又は前記第2のイオンチャネル内で前記イオンを径方向に拘束するように制御可能に調整するように構成される、
ことを特徴とする請求項15に記載の質量分析計システム。
【請求項23】
交錯したロッドの組を有する質量分析計を動作させる方法であって、
第1のイオンチャネル経路を形成する第1のイオン誘導電極セットと、第2のイオンチャネル経路を形成する第2のイオン誘導電極セットとで構成された、合成多極イオンチャネルを形成する交錯したイオン誘導電極セット内にイオンを受け取るステップと、
前記第1及び第2のイオン誘導電極セット内にRF電場を与えて、前記第1及び前記第2のイオンチャネル経路内で所望の前記受け取ったイオンを径方向に拘束するステップと、
前記受け取ったイオンに作用するDC軸力を誘発するDC電圧勾配を与えて、前記受け取ったイオンを前記第1のイオンチャネル経路又は前記第2のイオンチャネル経路のいずれかに沿って連続的に導けるようにするステップと、
を含むことを特徴とする方法。
【請求項24】
前記第1のイオン誘導電極セット及び前記第2のイオン誘導電極セットを、交錯して六重極を形成する三重極の対、交錯して八重極を形成する四重極の対、交錯して十二重極を形成する六重極の対、交錯して十六重極を形成する八重極の対、六重極と交錯して十重極を形成する四重極、及び四重極と交錯して十二重極を形成する八重極から選択された前記合成多極イオンチャネルを形成するように構成するステップをさらに含む、
ことを特徴とする請求項23に記載の方法。
【請求項25】
前記DC電圧勾配が、前記第1及び前記第2のイオンチャネル経路に沿って単調に増加又は減少するDC電圧レベルとして与えられる、
ことを特徴とする請求項23に記載の方法。
【請求項26】
前記DC電圧勾配が、前記第1及び前記第2のイオンチャネル経路に沿って動的に制御されるDC電圧勾配として与えられる、
ことを特徴とする請求項23に記載の方法。
【請求項27】
前記受け取ったイオンを提供するために、電気スプレーイオン化源(ESI)、ナノ電気スプレーイオン化源(NanoESI)、大気圧イオン化源(API)、電子衝撃(EI)イオン化源、化学イオン化(CI)源、EI/CI組み合わせイオン化源、表面増強レーザ脱離/イオン化(SELDI)イオン源、レーザ脱離イオン化(LDI)イオン源、及びマトリックス支援レーザ脱離/イオン化(MALDI)イオン源から選択された少なくとも1つのイオン源を前記交錯したイオン誘導電極セットの端部に結合するステップをさらに含む、
ことを特徴とする請求項23に記載の方法。
【請求項28】
イオンサイクロトロン共鳴(ICR)、オービトラップ、フーリエ変換質量分析計(FTMS)、四重極/直交加速−飛行時間(oa−TOF)、線形イオントラップ−飛行時間(LIT−TOF)、線形イオントラップ(LIT)−オービトラップ、四重極−イオンサイクロトロン共鳴(ICR)、イオントラップ−イオンサイクロトロン共鳴(IT−ICR)、線形イオントラップ−軸外−飛行時間(LIT−oa−TOF)、及び線形イオントラップ(LIT)−オービトラップ質量分析器から選択された少なくとも1つのイオン源分析器を、前記第1及び前記第2のイオンチャネル経路のいずれかの端部に結合するステップをさらに含む、
ことを特徴とする請求項27に記載の方法。
【請求項29】
交錯したイオン誘導ロッドの組を有する質量分析計を動作させる方法であって、
第1及び第2のイオンチャネル経路を形成し、端部が交錯して合成多極イオンチャネルを実現する第1及び第2のイオン誘導電極セット内にイオンを受け取るステップと、
所望の前記受け取ったイオンを、前記第1及び前記第2のイオンチャネル経路内で径方向に拘束するためのRF電場を与えるステップと、
を含むことを特徴とする方法。
【請求項30】
前記受け取ったイオンに作用するDC軸力を誘発するためのDC電圧勾配を与えて、前記受け取ったイオンを、前記合成多極イオンチャネルの前記端部に導くことができるようにするステップをさらに含む、
ことを特徴とする請求項29に記載の方法。
【請求項31】
前記DC電圧勾配が、前記第1及び前記第2のイオンチャネル経路に沿って単調に増加又は減少する前記DC電圧レベルを含む、
ことを特徴とする請求項30に記載の方法。
【請求項32】
前記DC電圧勾配が、前記第1及び第2のイオンチャネル経路に沿って動的に制御される前記DC電圧勾配を含む、
ことを特徴とする請求項30に記載の方法。
【請求項33】
前記第1のイオン誘導電極セット及び前記第2のイオン誘導電極セットを、交錯して六重極を形成する三重極の対、交錯して八重極を形成する四重極の対、交錯して十二重極を形成する六重極の対、交錯して十六重極を形成する八重極の対、六重極と交錯して十重極を形成する四重極、及び四重極と交錯して十二重極を形成する八重極から選択された前記合成多極イオンチャネルを形成するように構成するステップをさらに含む、
ことを特徴とする請求項29に記載の方法。
【請求項34】
イオンサイクロトロン共鳴(ICR)、オービトラップ、フーリエ変換質量分析計(FTMS)、四重極/直交加速−飛行時間(oa−TOF)、線形イオントラップ−飛行時間(LIT−TOF)、線形イオントラップ(LIT)−オービトラップ、四重極−イオンサイクロトロン共鳴(ICR)、イオントラップ−イオンサイクロトロン共鳴(IT−ICR)、線形イオントラップ−軸外−飛行時間(LIT−oa−TOF)、及び線形イオントラップ(LIT)−オービトラップ質量分析器から選択された少なくとも1つの分析器を前記合成多極イオンチャネルの端部に結合するステップをさらに含む、
ことを特徴とする請求項29に記載の方法。
【請求項35】
電気スプレーイオン化源(ESI)、ナノ電気スプレーイオン化源(NanoESI)、大気圧イオン化源(API)、電子衝撃(EI)イオン化源、化学イオン化(CI)源、EI/CI組み合わせイオン化源、表面増強レーザ脱離/イオン化(SELDI)イオン源、レーザ脱離イオン化(LDI)イオン源、及びマトリックス支援レーザ脱離/イオン化(MALDI)イオン源から選択された少なくとも1つのイオン源を前記第1及び前記第2のイオンチャネル経路のいずれかの端部に結合するステップをさらに含む、
ことを特徴とする請求項34に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公表番号】特表2012−515417(P2012−515417A)
【公表日】平成24年7月5日(2012.7.5)
【国際特許分類】
【出願番号】特願2011−545412(P2011−545412)
【出願日】平成22年1月6日(2010.1.6)
【国際出願番号】PCT/US2010/020278
【国際公開番号】WO2010/080850
【国際公開日】平成22年7月15日(2010.7.15)
【出願人】(501192059)サーモ フィニガン リミテッド ライアビリティ カンパニー (42)
【Fターム(参考)】