説明

伸縮性不織布

【課題】従来の伸縮性不織布と比較して伸縮特性が一層高い伸縮性不織布を提供すること。
【解決手段】本発明の伸縮性不織布10は、弾性繊維層1の少なくとも一面に、実質的に非弾性の非弾性繊維層2,3が配されてなる。弾性繊維層1に含まれる弾性繊維の構成樹脂はスチレン系エラストマーを含むものである。該構成樹脂は、その溶融粘度が230℃において70〜500Pa・sで且つ溶融張力が0.7〜2.0gである。スチレン系エラストマーは、そのガラス転移点温度Tgが−40〜−15℃であることが好ましく、示差走査熱量分析(DSC)による変曲点温度が200〜250℃であることが好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は伸縮性不織布に関する。
【背景技術】
【0002】
エラストマー樹脂からなる弾性繊維を含む伸縮性不織布が種々知られている。例えば特許文献1には、少なくとも約10重量%のA−B−Aブロック共重合体及びポリオレフィンを含む押出成形可能なエラストメリック組成物からなるミクロファイバを含むエラストメトリック不織布が記載されている。しかし、このミクロファイバは、その構成樹脂としてポリオレフィンを含んでいるので、それに起因して伸縮特性が十分なものとはならない。
【0003】
特許文献2には、エラストマーメルトブローン繊維層及びエラストマーフィラメント層を有する異方性弾性繊維ウエブと、該ウエブに結合したギャザー可能な層とを有する複合弾性材料が記載されている。エラストマーフィラメントを構成する材料は、40〜80重量%のエラストマーポリマーと、5〜40重量%の樹脂粘着剤である。このように、エラストマーフィラメントは、エラストマー樹脂以外の樹脂を含んでいるので、それに起因して伸縮特性が十分なものとはならない。
【0004】
特許文献3には、スチレン含有量が10〜40重量%であり、数平均分子量が70000〜150000のスチレン系エラストマーを60〜98重量%含む繊維又はフィルムからなる弾性シートを有する伸縮性複合シートが記載されている。この繊維又はフィルムには、スチレン系エラストマーに加えて、エラストマー以外の材料、例えばオレフィン系レジンやオイル成分が含まれている。これらの材料が含まれていることに起因して、この伸縮性複合シートは、その伸縮特性が十分なものとはならない。
【0005】
【特許文献1】特開昭62−84143号公報
【特許文献2】特開平5−272043号公報
【特許文献3】特開2002−361766号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
従って本発明の目的は、前述した従来技術が有する種々の欠点を解消し得る伸縮性不織布を提供することにある。
【課題を解決するための手段】
【0007】
本発明は、弾性繊維層の少なくとも一面に、実質的に非弾性の非弾性繊維層が配され、該弾性繊維層に含まれる弾性繊維の構成樹脂はスチレン系エラストマーを含むものであり、該構成樹脂は、その溶融粘度が230℃において70〜500Pa・sで且つ溶融張力が0.7〜2.0gである伸縮性不織布を提供することにより前記目的を達成したものである。
【発明の効果】
【0008】
本発明の伸縮性不織布は、従来の伸縮性不織布と比較して伸縮特性が一層高いものとなる。特に、構成繊維の繊維径を細くすることや、連続繊維を成形することが容易なので、それによって伸縮特性を一層高めることができる。更に、他の樹脂成分やオイル成分を含有することなく、エラストマー樹脂のみから弾性繊維を形成することが容易なので、それによって伸縮特性を一層高めることができ、また弾性繊維層と非弾性繊維層との融着を確実に行うことができる。
【発明を実施するための最良の形態】
【0009】
以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1には本発明の伸縮性不織布の一実施形態における断面構造の模式図が示されている。本実施形態の伸縮性不織布10は、弾性繊維層1の両面に、同一の又は異なる、実質的に非弾性の非弾性繊維層2,3が積層されて構成されている。
【0010】
弾性繊維層1は、弾性を有する繊維の集合体である。尤も、弾性繊維層1の伸縮弾性を損なわない限りにおいて、非弾性繊維が少量含まれていてもよい。弾性繊維層1に含まれる弾性繊維の構成樹脂として、本実施形態においては特定のスチレン系エラストマーを含むものを用いる。このスチレン系エラストマーは、その溶融粘度及び溶融張力によって特徴付けられる。
【0011】
本実施形態で用いられるスチレン系エラストマーは、その溶融粘度が230℃において70〜500Pa・sである。また本実施形態で用いられるスチレン系エラストマーは、その溶融張力が0.7〜2.0gである。この範囲の溶融粘度は、従来用いられているスチレン系エラストマーの溶融粘度と比較して低いレベルにあり、またこの範囲の溶融張力は、従来用いられているスチレン系エラストマーの溶融粘度と比較して高いレベルにある。つまり、本実施形態で用いられるスチレン系エラストマーは、低溶融粘度及び高溶融張力を有することによって特徴付けられる。このような特徴を有するスチレン系エラストマーを構成樹脂として含む弾性繊維を用いることで、本実施形態の伸縮性不織布は、その伸縮特性が従来のものに比較して一層高くなる。
【0012】
特に、スチレン系エラストマーが低溶融粘度及び高溶融張力を有することによって、弾性繊維を溶融紡糸するときの糸切れが起こりにくくなり、細径の連続繊維を容易に製造することができる。また、糸切れによるショットがないため、肌ざわりの良いものが得られる。弾性繊維を細径にできることは、不織布の地合いにムラが生じづらくなり、更に伸縮特性の向上に大きく寄与する。弾性繊維を連続繊維(フィラメント)にできることも、伸縮特性の向上に大きく寄与する。連続繊維とは実質的に連続であり10cm以上の長さのものを意味する。これらの観点から、スチレン系エラストマーの溶融粘度を70〜300Pa・s、特に100〜200Pa・sとすると、伸縮特性が一層向上する。スチレン系エラストマーの溶融張力を1.0 〜2.0g、特に1.2〜2.0gとすることも同様の効果がある。
【0013】
スチレン系エラストマーの溶融粘度及び溶融張力は、キャピログラフ(東洋精機製)を用いて測定される。測定条件は次の通りである。バレルのシリンダー直径は10mm、ピストン直径は9.55mmである。ダイのノズル孔の直径は1.0mmである。バレルを230℃に保ち、気泡が入らないように少量ずつ樹脂ペレットをシリンダー内に入れながら棒で押して充填する。樹脂を充填後、樹脂温度が安定するまで保持(約5分間)する。溶融粘度は、ピストン速度5mm/分における粘度の安定点で測定する。溶融張力は、同温度にてピストン速度15mm/分、ドロー速度15m/分におけるテンションを測定して求められる。各測定はN=3の平均とした。
【0014】
スチレン系エラストマーは、そのガラス転移点温度Tgが−40〜−15℃、特に−30〜−20℃であることが、伸縮特性の一層の向上の点、及び弾性繊維がべたつき感を呈することを抑える点から好ましい。
【0015】
またスチレン系エラストマーは、その示差走査熱量分析(DSC)による変曲点温度が200〜250℃、特に230〜250℃であることが、物理架橋点(スチレン系エラストマーの場合はスチレンブロックどうし)の結合力が比較的低い温度で弱くなるので、温度を上げた際に粘度の低下が大きくなる点で好ましい。
【0016】
スチレン系エラストマーのガラス転移点温度及びDSCによる変曲点温度は、何れもDSCによる測定で求められる。測定条件は、3〜5mgの試料を窒素雰囲気中で、−60℃から昇温速度10℃/分にて加熱して測定して求めることができる。
【0017】
以上の諸物性を満たす限りスチレン系エラストマーの種類に特に制限はない。例えばモノマー成分として(1)スチレン、エチレン及びブチレンを含むもの(例えば主鎖骨格がSEBS)、(2)スチレン、エチレン及びプロピレンを含むもの(例えば主鎖骨格がSEPS)、(3)スチレン及びブチレンを含むもの(例えば主鎖骨格がSBS)、(4)スチレン及びイソプレンを含むもの(例えば主鎖骨格がSIS)などが挙げられる。これらのうち、(1)スチレン、エチレン及びブチレンを含むもの、(2)スチレン、エチレン及びプロピレンを含むもの、又は(1)及び(2)の双方を用いると、前記の諸物性を容易に満たすスチレン系エラストマーが得られるので好ましい。
【0018】
弾性繊維層1に含まれる弾性繊維は、樹脂成分として、前記のスチレン系エラストマーのみから構成されていてもよく、或いは前記のスチレン系エラストマー及び他の樹脂を含んで構成されていてもよい。弾性繊維が前記のスチレン系エラストマー及び他の樹脂を含む場合、弾性繊維におけるスチレン系エラストマーの含有量は20〜80重量%、特に40〜60重量%であることが好ましい。
【0019】
弾性繊維が前記のスチレン系エラストマー及び他の樹脂を含む場合、当該他の樹脂としては、例えば従来スチレン系エラストマーと併用されていた樹脂であるポリエチレン、ポリプロピレン、プロピレンとエチレン等の共重合体などからなるポリオレフィン系樹脂、ポリエチレンテレフタレートなどからなるポリエステル系樹脂、ポリアミド樹脂等の溶融紡糸可能な樹脂を用いることができる。
【0020】
前記のスチレン系エラストマーは、先に述べた溶融粘度及び溶融張力を有しているので、それ単独で溶融紡糸しても紡糸性が非常に良好である。これに対して従来のスチレン系エラストマーは、それ単独での紡糸性が低いので、他の樹脂を併用して紡糸性を高めていた。しかしその分、スチレン系エラストマーが本来的に有する伸縮特性が損なわれていた。従って、単独で溶融紡糸可能な前記のスチレン系エラストマーは、それが本来的に有する伸縮性が損なわれない観点から極めて有利である。つまり、弾性繊維層1に含まれる弾性繊維は、樹脂成分として、前記のスチレン系エラストマーのみから構成されていることが特に好ましい。
【0021】
また従来のスチレン系エラストマーを含む弾性繊維には、粘度を下げることを目的としてパラフィンオイルなどのオイル成分が含まれていた。オイル成分は繊維の表面にブリードアウトする場合があり、それに起因して他の樹脂との融着性が低下することがある。これに対して前記のスチレン系エラストマーにオイル成分を添加する必要はない。オイル成分が含まれていない弾性繊維は、伸縮時の永久歪が小さくなるばかりでなく、弾性繊維どうしの融着性、及び非弾性繊維との融着性が高くなる。その結果、図1に示す弾性繊維層1と、非弾性繊維層2,3との接合が良好になり、層間剥離が起こりづらくなる。また伸縮性不織布10の表面の毛羽立ちも抑えられる。更に、オイル成分が含まれていないことで、弾性繊維の溶融紡糸時に、揮発成分の発生が少なくなり、環境負荷が小さくなる。これらの観点から、本実施形態における弾性繊維はオイル成分を実質的に含んでいないことが好ましい。実質的に含んでいないとは、オイル成分を全く含まないことを意味せず、弾性繊維の製造時に不可避的に混入するオイル成分は許容する趣旨である。
【0022】
弾性繊維の繊維形態としては、(イ)前記のスチレン系エラストマー単独、又は該エラストマーと、他の樹脂とのブレンドからなる単独繊維、(ロ)前記のスチレン系エラストマーと、他の樹脂とを構成樹脂とする芯鞘型又はサイド・バイ・サイド型の複合繊維などが挙げられる。特に、前述した種々の観点から、前記のスチレン系エラストマー単独からなる単独繊維を用いることが好ましい。
【0023】
弾性繊維を構成する樹脂の溶融時の粘度指標として、当該技術分野において一般的な指標であるメルトインデックス(ASTM D1238、190℃、2.16kg)を採用することもできる。メルトインデックスが好ましくは4〜50g/10min、より好ましくは6〜20g/10minであると、通常成形温度よりも低い温度(例えば成形温度よりも50〜100℃低め)に設定される押出機の温度範囲において、成形時の押出機樹脂圧を低く抑えることができる。しかしメルトインデックスは、ある特定の温度での粘度指標に過ぎず、樹脂は温度を上げていくにつれてその粘度が低下していき、低下具合は樹脂によって異なる。そのため、メルトインデックスは成形性の良さを示す一つの目安となるが、必ずしもすべての場合にあてはまるとは限らない。
【0024】
弾性繊維は、連続繊維及び短繊維の何れの形態であってもよい。好ましくは連続繊維の形態である。弾性繊維が連続繊維であると、ノズルリップからの熱風によって連続して伸長されるので、繊維径が細くなるばかりでなく、繊維径のバラツキが少なくなるという利点があるからである。また、冷風にて延伸する場合も同様の傾向となる。これによって、不織布を透かして見たときの地合いが良好となり、また、不織布の伸縮特性のバラツキが小さくなる。繊維径の細いものが得られるということは、熱風及び冷風の容量を小さくでき、製造コストの点でもメリットがある。
【0025】
弾性繊維層1は、伸ばすことができ且つ伸ばした力から解放したときに収縮する性質を有するものである。弾性繊維層1は、少なくとも面と平行な一方向において、100%伸長後に収縮させたときの残留歪みが20%以下、特に10%以下であることが好ましい。この値は、少なくとも、MD方向及びCD方向の何れか一方において満足することが好ましく、両方向において満足することがより好ましい。
【0026】
弾性繊維層1は、弾性を有する繊維の集合体である。弾性を有する繊維の成形方法には、例えば溶融した樹脂をノズル孔より押出し、この押出された溶融状態の樹脂を熱風により伸長させることによって繊維を細くするメルトブローン方法と半溶融状態の樹脂を冷風や機械的ドロー比によって延伸するスパンボンド法がある。また、メルトブローン法の特殊な方法として、メルトブローン法にスパンボンド法を組み合わせたスピニングブローン法がある。
【0027】
また、弾性繊維層1は、弾性を有する繊維からなるウエブや不織布の形態であり得る。例えば、スピニングブローン法、スパンボンド法、メルトブローン法等によって形成されたウエブや不織布であり得る。特に好ましくは、スピニングブローン法で得られたウエブである。
【0028】
スピニングブローン法においては、溶融ポリマーの吐出ノズルの先端近辺に、一対の熱風吐出部を、前記ノズルを中心に対向配置し、その下流に一対の冷風吐出部を、前記ノズルを中心に対向配置した紡糸ダイを用いる。スピニングブローン法によれば、溶融繊維の熱風による伸長と、冷風による冷延伸とが連続的に行われるので、伸縮性繊維の成形を容易に行えるという利点がある。また、繊維が緻密になりすぎず、短繊維に類した太さの伸縮性繊維を成形できるので、通気性の高い不織布が得られるという利点もある。更にスピニングブローン法によれば、連続フィラメントのウエブを得ることができる。連続フィラメントのウエブは、短繊維のウエブに比較して高伸張時の破断が起こりにくく、弾性を発現させやすいことから、本実施形態において極めて有利である。
【0029】
スピニングブローン法に用いられる紡糸ダイとしては、例えば特開平3−174008号公報の図2に示されるものや、特許第3335949号公報の図1ないし図3に示されるものを用いることができる。
【0030】
非弾性繊維層2,3は、伸長性を有するが、実質的に非弾性のものである。ここでいう、伸長性は、構成繊維自体が伸長する場合と、構成繊維自体は伸長しなくても、繊維どうしの交点において熱融着していた両繊維どうしが離れたり、繊維どうしの熱融着等により複数本の繊維で形成された立体構造が構造的に変化したり、構成繊維がちぎれたりして、繊維層全体として伸長する場合の何れであっても良い。
【0031】
非弾性繊維層2,3を構成する繊維としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル(PETやPBT)、ポリアミド等からなる繊維等が挙げられる。非弾性繊維層2,3を構成する繊維は、短繊維でも長繊維でも良く、親水性でも撥水性でも良い。また、芯鞘型又はサイド・バイ・サイドの複合繊維、分割繊維、異形断面繊維、捲縮繊維、熱収縮繊維等を用いることもできる。これらの繊維は一種を単独で又は二種以上を組み合わせて用いることができる。非弾性繊維層2,3は、連続フィラメント又は短繊維のウエブ又は不織布であり得る。特に、短繊維のウエブであることが、厚みのある嵩高な非弾性繊維層2,3を形成し得る点から好ましい。2つの非弾性繊維層2,3は、構成繊維の材料、坪量、厚み等に関して同じであっても良く、或いは異なっていてもよい。芯鞘型の複合繊維の場合、芯がPET、PP、鞘が低融点PET、PP、PEが好ましい。特にこれらの複合繊維を用いると、スチレン系エラストマーを含む弾性繊維層の構成繊維との熱融着が強くなり、層剥離が起こりにくい点で好ましい。
【0032】
2つの非弾性繊維層2,3のうち少なくとも一方は、その厚みが弾性繊維層1の厚みの1.2〜20倍、特に1.5〜5倍になっていることが好ましい。一方、坪量に関しては、2つの非弾性繊維層2,3のうち少なくとも一方は、その坪量よりも弾性繊維層の坪量の方が高くなっていることが好ましい。換言すれば、非弾性繊維層は、弾性繊維層よりも厚く且つ坪量が小さいことが好ましい。厚みと坪量とがこのような関係になっていることで、非弾性繊維層は、弾性繊維層に比較して厚みのある嵩高なものとなる。その結果、伸縮性不織布10は柔らかで風合いの良好なものとなる。
【0033】
非弾性繊維層2,3の厚みそのものに関しては、0.05〜5mm、特に0.1〜0.5mmであることが好ましい。一方、弾性繊維層1の厚みそのものに関しては、非弾性繊維層2,3の厚みよりも小さいことが好ましく、具体的には0.01〜2mm、特に0.1〜0.2mmであることが好ましい。厚みの測定は伸縮性不織布断面をマイクロスコープにより50〜200倍の倍率で観察し、各視野において平均厚みをそれぞれ求め、3視野の厚みの平均値として求めることができる。
【0034】
非弾性繊維層2,3の坪量そのものに関しては、弾性繊維層の表面を均一に覆う観点及び残留歪みの観点から、それぞれ1〜60g/m2、特に5〜15g/m2であることが好ましい。一方、弾性繊維層1の坪量そのものに関しては、伸縮特性及び残留歪みの観点から、非弾性繊維層2,3の坪量よりも大きいことが好ましい。具体的には5〜80g/m2、特に10〜40g/m2であることが好ましい。
【0035】
構成繊維の繊維径に関し、弾性繊維層1の構成繊維の繊維径は、少なくとも一方の非弾性繊維層2,3の構成繊維の繊維径の1.2〜5倍、特に1.2〜2.5倍であることが好ましい。これに加えて弾性繊維層1の構成繊維は、通気性及び伸縮特性の観点から、その繊維径が5μm以上、特に10μm以上が好ましく、100μm以下、特に40μm以下であることが好ましい。一方、非弾性繊維層2,3の構成繊維は、その繊維径が1〜30μm、特に10〜20μmであることが好ましい。つまり、非弾性繊維層2,3の構成繊維としては、弾性繊維層1の構成繊維よりも細めのものを用いることが好ましい。これによって、表層に位置する非弾性繊維層2,3の構成繊維の融着点が増加する。融着点の増加は、伸縮性不織布10の毛羽立ち発生の防止に有効である。さらに、細めの繊維を用いることで肌ざわりの伸縮性不織布10が得られる。
【0036】
図1に示すように、弾性繊維層1と、非弾性繊維層2,3とは、弾性繊維層1の構成繊維が繊維形態を保った状態で、繊維交点の熱融着によって全面で接合されている。つまり、部分接合されている従来の伸縮性不織布とは、接合状態が異なっている。弾性繊維層1と、非弾性繊維層2,3とが全面接合されている本実施形態の伸縮性不織布10においては、弾性繊維層1と、非弾性繊維層2,3との界面及びその近傍において、弾性繊維層1の構成繊維と、非弾性繊維層2,3の構成繊維との交点が熱融着しており、実質的に全面で均一に接合されている。全面で接合されていることによって、弾性繊維層1と、非弾性繊維層2,3との間に浮きが生じること、つまり、両層が離間して空間が形成されることが防止される。両層間に浮きが生じると、弾性繊維層と非弾性繊維層との一体感がなくなり伸縮性不織布10の風合いが低下する傾向にある。本発明によれば、あたかも一層の不織布ごとき一体感のある多層構造の伸縮性不織布が提供される。
【0037】
「弾性繊維層1の構成繊維が繊維形態を保った状態」とは、弾性繊維層1の構成繊維のほとんどが、熱や圧力等を付与された場合であっても、フィルム状、又はフィルム−繊維構造に変形していない状態をいう。弾性繊維層1の構成繊維が繊維形態を保った状態にあることで、本実施形態の伸縮性不織布10には十分な通気性が付与されるという利点がある。
【0038】
弾性繊維層1は、その層内において、構成繊維の交点が熱融着している。同様に、非弾性繊維層2,3も、その層内において、構成繊維の交点が熱融着している。
【0039】
2つの非弾性繊維層2,3のうちの少なくとも一方においては、その構成繊維の一部が弾性繊維層1に入り込んだ状態、及び/又は、弾性繊維層の構成繊維の一部が少なくとも一方の非弾性繊維層2,3に入り込んだ状態になっている。このような状態になっていることで、弾性繊維層1と、非弾性繊維層2,3との一体化が促進され、両層間に浮きが生じることが一層効果的に防止される。結果としてそれぞれの層の表面に追従した形で層と層が組み合わさっている状態となる。非弾性繊維層の構成繊維は、その一部が弾性繊維層1に入り込み、そこにとどまっているか、或いは弾性繊維層1を突き抜けて、他方の非弾性繊維層にまで到達している。それぞれの各層において表面繊維間を結ぶ面をマクロ的に想定したとき、この面から層の内側に形成される繊維空間に、他の層の構成繊維の一部が前記層の断面厚み方向へ入り込んでいる。非弾性繊維層の構成繊維が弾性繊維層1に入り込み、そこにとどまっている場合、該構成繊維は、更に弾性繊維層1の構成繊維と交絡していることが好ましい。同様に、非弾性繊維層の構成繊維が弾性繊維層1を突き抜けて、他方の非弾性繊維層にまで到達している場合には、該構成繊維は、他方の非弾性繊維層の構成繊維と交絡していることが好ましい。これは伸縮性不織布の厚み方向断面をSEMやマイクロスコープなどで観察した際に、層間において実質的に空間が形成されていないことで確認される。また、ここで言う「交絡」とは、繊維どうしが十分に絡み合っている状態を意味し、繊維層を単に重ね合わせただけの状態は交絡に含まれない。交絡しているか否かは、例えば、繊維層を単に重ね合わせた状態から、繊維層を剥離するときに要する力と、繊維層を重ね合わせ、それに熱融着を伴わないエアスルー法を適用した後に、繊維層を剥離する力とを比較して、両者間に実質的に差異が認められる場合には、交絡していると判断できる。
【0040】
非弾性繊維層の構成繊維を、弾性繊維層に入り込ませる、及び/又は、弾性繊維層の構成繊維を非弾性繊維層に入り込ませるには、非弾性繊維層の構成繊維と非弾性繊維層の構成繊維を熱融着させる処理前において非弾性繊維または弾性繊維の少なくともどちらかがウエブ状態(熱融着していない状態)であることが好ましい。構成繊維を他の層に入り込ませる観点から、ウエブ状態である繊維層は、短繊維の方が長繊維に比べ自由度が高いことから好ましい。
【0041】
また、非弾性繊維層の構成繊維を、弾性繊維層1に入り込ませる、及び/又は、弾性繊維層の構成繊維を非弾性繊維層に入り込ませるには、エアスルー法を用いることが好ましい。エアスルー法を用いることで、相対する繊維層に構成繊維を入り込ませ、また、相対する繊維層から構成繊維を入り込ませることが容易となる。またエアスルー法を用いることで、非弾性繊維層の嵩高さを維持しつつ、非弾性繊維層の構成繊維を、弾性繊維層1に入り込ませることが容易となる。非弾性繊維層の構成繊維を、弾性繊維層1を突き抜けさせて他方の非弾性繊維層にまで到達させる場合にも、同様にエアスルー法を用いることが好ましい。特に、ウエブ状態の非弾性繊維層を、弾性繊維層と積層して、エアスルー法を用いることが好ましい。この場合、弾性繊維層はその構成繊維同士が熱融着をしていてもよい。さらに、後述する製造方法において説明するように、特定の条件下でエアスルー法を行うことで、また、熱風の通りをよくするため伸縮性不織布の通気性、特に弾性繊維層の通気度を高いものとすることで、繊維をより均一に入り込ませることができる。エアスルー法以外の方法、例えばスチームを吹きかける方法も使用することができる。また、スパンレース法、ニードルパンチ法などを用いることも可能であるが、その場合には非弾性繊維層の嵩高さが損なわれたり、表面に弾性繊維層の構成繊維が表面にでてきてしまい、得られる伸縮性不織布の風合いが低下する傾向にある。
【0042】
特に、非弾性繊維層の構成繊維が、弾性繊維層1の構成繊維と交絡している場合には、エアスルー法のみによって交絡していることが好ましい。
【0043】
エアスルー法によって繊維を交絡させるためには、気体の吹きつけ圧、吹きつけ速度、繊維層の坪量や厚み、繊維層の搬送速度等を適切に調整すればよい。通常のエアスルー不織布を製造するための条件を採用しただけでは、非弾性繊維層の構成繊維と弾性繊維層1の構成繊維とを交絡させることはできない。後述する製造方法において説明するように、特定の条件下でエアスルー法を行うことによって、本発明において目的とする伸縮性不織布が得られる。
【0044】
エアスルー法では一般に、所定温度に加熱された気体を、繊維層の厚み方向に貫通させている。その場合には、繊維の交絡及び繊維交点の融着が同時に起こる。しかし本実施形態においては、エアスルー法によって各層内の構成繊維間で繊維交点を融着させることは必須ではない。換言すれば、エアスルー法は、非弾性繊維層の構成繊維を、弾性繊維層1に入り込ませるために、或いは、該構成繊維を弾性繊維層1の構成繊維と交絡させ、そして、非弾性繊維層の構成繊維と弾性繊維層の構成繊維とを熱融着させるために必要な操作である。また、繊維が入り込む方向は、加熱された気体の通過方向と非弾性繊維層と弾性繊維層との位置関係によって変わる。非弾性繊維層は、エアスルー法によって、その構成繊維内で繊維交点が融着されたエアスルー不織布となることが好ましい。
【0045】
以上の説明から明らかなように、本実施形態の伸縮性不織布の好ましい形態においては、実質的に非弾性の非弾性エアスルー不織布の厚み方向内部に、構成繊維が繊維形態を保った状態の弾性繊維層1が含まれており、該エアスルー不織布の構成繊維の一部が弾性繊維層1に入り込んだ状態、及び/又は、弾性繊維層の構成繊維の一部が非弾性繊維層に入り込んだ状態になっている。更に好ましい形態においては、エアスルー不織布の構成繊維の一部が弾性繊維層1の構成繊維とエアスルー法によってのみ交絡している。弾性繊維層1がエアスルー不織布の内部に含まれていることによって、弾性繊維層1の構成繊維は、実質的に伸縮性不織布の表面には存在しないことになる。このことは、弾性繊維に特有のべたつき感が生じない点から好ましいものである。
【0046】
本実施形態の伸縮性不織布10には、図1に示すように、非弾性繊維層2,3に、微小な凹部が形成されている。これによって、伸縮性不織布10は、その断面が、微視的には波形形状になっている。この波形形状は、後述する製造方法において説明するように、伸縮性不織布の10の延伸加工によって生じるものである。この波形形状は、伸縮性不織布10に伸縮性を付与した結果生じるものであり、不織布10の風合いそのものに大きな影響を及ぼすものではない。
【0047】
図1には示していないが、本実施形態の伸縮性不織布10にはエンボス加工が施されていてもよい。エンボス加工は、弾性繊維層1と非弾性繊維層2,3との接合強度を一層高める目的で行われる。従って、エアスルー法によって弾性繊維層1と非弾性繊維層2,3とを十分に接合できれば、エンボス加工を行う必要はない。なお、エンボス加工は、構成繊維どうしを接合させるが、エアスルー法と異なり、エンボス加工によっては構成繊維どうしは交絡しない。
【0048】
本実施形態の伸縮性不織布10は、その面内方向の少なくとも一方向に伸縮性を有する。面内のすべての方向に伸縮性を有していてもよい。その場合には、方向によって伸縮性の程度が異なることは妨げられない。最も伸縮する方向に関し、伸縮性の程度は、100%伸長時の荷重が20〜500gf/cm、特に40〜150gf/cmであることが好ましい。本実施形態の伸縮性不織布10の伸縮性に関し特に重要な性質は残留歪みである。後述する実施例から明らかなように、本実施形態の伸縮性不織布10によれば、残留歪みの値を小さくすることができる。具体的には、100%伸長状態から収縮させたときの残留歪みが好ましくは15%以下、更に好ましくは10%以下という小さな値になる。
【0049】
本実施形態の伸縮性不織布10は、その良好な風合いや、毛羽立ち防止性、伸縮性、通気性の点から、外科用衣類や清掃シート等の各種の用途に用いることができる。特に生理用ナプキンや使い捨ておむつなどの吸収性物品の構成材料として好ましく用いられる。例えば、使い捨ておむつの外面を構成するシート、胴回り部やウエスト部、脚周り部等に弾性伸縮性を付与するためのシート等として用いることができる。また、ナプキンの伸縮性ウイングを形成するシート等として用いることができる。また、それ以外の部位であっても、伸縮性を付与したい部位等に用いることができる。伸縮性不織布の坪量や厚みは、その具体的な用途に応じて適切に調整できる。例えば吸収性物品の構成材料として用いる場合には、坪量20〜160g/m2程度、厚み0.1〜5mm程度とすることが望ましい。また、本発明の伸縮性不織布は、弾性繊維層の構成繊維が繊維形態を保っていることに起因して、柔軟であり、また通気性が高くなっている。柔軟性の尺度である曲げ剛性に関し、本発明の伸縮性不織布は、曲げ剛性値が10g/30mm以下と低いものとなっていることが好ましい。通気性に関しては、通気度が16m/kPa・s以上となっていることが好ましい。また、伸度は100%以上であることが望ましい。
【0050】
曲げ剛性は、JIS L−1096に準拠して測定され、ハンドルオメーターによる押し込み量8mm、スリット幅10mmの条件において、それぞれ流れ方向とそれに対して直角方向に曲げた際の平均値として得られる。通気度は、カトーテック製AUTOMATIC AIR−PERMEABILITY TESTER KES-F8-AP1により通気抵抗を測定し、その逆数として求められる。
【0051】
次に、本実施形態の伸縮性不織布10の好ましい製造方法を、図2を参照しながら説明する。図2には、本実施形態の伸縮性不織布10の製造方法に用いられる好ましい製造装置が模式的に示されている。図2に示す装置は、製造工程の上流側から下流側に向けて、ウエブ形成部100、熱風処理部200及び延伸部300をこの順で備えている。
【0052】
ウエブ形成部100には、第1ウエブ形成装置21、第2ウエブ形成装置22及び第3ウエブの形成装置23が備えられている。第1ウエブの形成装置21及び第3ウエブの形成装置23としては、カード機が用いられている。カード機としては、当該技術分野において通常用いられているものと同様のものを特に制限なく用いることができる。一方、第2ウエブ形成装置22としては、スピニングブローン紡糸装置が用いられている。スピニングブローン紡糸装置においては、溶融ポリマーの吐出ノズルの先端近辺に、一対の熱風吐出部が、前記ノズルを中心に対向配置されており、その下流に一対の冷風吐出部が、前記ノズルを中心に対向配置された紡糸ダイが備えられている。スピニングブローン法に用いられる紡糸ダイとしては、例えば特開平3−174008号公報の図2に示されるものや、特許第3335949号公報の図1ないし図3に示されるものを用いることができる。
【0053】
熱風処理部200は熱風炉24を備えている。熱風炉24内では、所定温度に加熱された加熱ガス、特に加熱空気が吹き出すようになっている。互いに重ね合わされた3層のウエブが熱風炉内に導入されると、該ウエブの上方から下方に向けて、若しくはその逆方向に、又は両方向に加熱ガスが強制的に貫通する。
【0054】
延伸部300は、弱接合装置25及び延伸装置30を備えている。弱接合装置25は、一対のエンボスロール26,27を備えている。弱接合装置25は、熱風処理部200によって形成された繊維シートにおける各層のウエブの接合を確実にするためのものである。弱接合装置25の下流には、これに隣接して延伸装置30が配置されている。延伸装置30は、大径部31,32と小径部(図示せず)とが軸線方向に交互に形成されてなり、互いに噛み合いが可能になっている一対の凹凸ロール33,34を備えている。両凹凸ロール33,34間に繊維シートが噛み込まれることで該繊維シートがロールの軸線方向(即ちシートの幅方向)へ延伸される。
【0055】
以上の構成を有する装置を用いた伸縮性不織布の製造方法について説明すると、先ず、弾性繊維からなるウエブの各面に、同一の又は異なる非弾性繊維からなる一対のウエブを配する。なお「弾性繊維からなるウエブ」とは、弾性繊維のみからなるウエブだけでなく、該ウエブから形成される弾性繊維層(図1符号1で示される層)の伸縮弾性を損なわない範囲において、弾性繊維に加えて少量の非弾性繊維が含まれているウエブも包含する。
【0056】
図2に示すように、ウエブ形成部100においては、非弾性の短繊維を原料として用い、第1ウエブ形成装置21であるカード機によって非弾性繊維ウエブ3'を製造する。一方向に連続搬送される非弾性繊維ウエブ2'上には、第2ウエブ形成装置22であるスピニングブローン紡糸装置によって製造された弾性繊維の連続フィラメントからなる弾性繊維ウエブ1'が積層される。弾性繊維ウエブ1'上には、第3ウエブ形成装置23であるカード機によって製造された非弾性繊維ウエブ2'が積層される。
【0057】
弾性繊維ウエブ1'の形成にスピニングブローン法を用いると、溶融繊維の熱風による伸長と、冷風による冷延伸とが連続的に行われるので、伸縮性繊維の成形を容易に行えるという利点がある。また、繊維が緻密になりすぎず、短繊維に類した太さの伸縮性繊維を成形できるので、通気性の高い不織布が得られるという利点もある。更にスピニングブローン法によれば、連続フィラメントのウエブを得ることができる。連続フィラメントのウエブは、短繊維のウエブに比較して高伸張時の破断が起こりにくく、弾性を発現させやすいことから、本実施形態において極めて有利である。
【0058】
3つのウエブの積層体は、エアスルー方式の熱風炉24に送られ、そこで熱風処理が施される。熱風処理によって、繊維どうしの交点が熱融着し、弾性繊維ウエブ1'はその全面において非弾性繊維ウエブ2',3'と接合する。熱風処理に際しては、各層のウエブが一体化していないことが好ましい。これによって各ウエブが有する嵩高で厚みのある状態が熱風処理後も維持されて、風合いの良好な伸縮性不織布が得られる。
【0059】
熱風処理によって、繊維どうしの交点を熱融着させ、各層のウエブを全面接合することに加えて、主として熱風の吹き付け面側に位置する非弾性繊維ウエブ2'の構成繊維の一部を、弾性繊維ウエブ1'に入り込ませることが好ましい。また、熱風処理の条件を制御することによって、非弾性繊維ウエブ2'の構成繊維の一部を、弾性繊維ウエブ1'に入り込ませ、更に、該ウエブ1'の構成繊維と交絡させることが好ましい。或いは、非弾性繊維ウエブ2'の構成繊維の一部を、弾性繊維ウエブ1'を突き抜けさせて、非弾性繊維ウエブ3'にまで到達させ、該ウエブ3'の構成繊維と交絡させることが好ましい。
【0060】
非弾性繊維ウエブ2'の構成繊維の一部を、弾性繊維ウエブ1'に入り込ませる、及び/又は、弾性繊維ウエブ1'の構成繊維の一部を非弾性繊維ウエブ2'に入り込ませるための条件は、熱風風量0.4〜3m/秒、温度80〜160℃、搬送速度5〜200m/分であることが好ましい。特に好ましくは熱風風量1〜2m/秒である。上記条件は繊維を軟化させて均一に入り込ませる点と繊維を融着させる点においても好ましい。更に、繊維を交絡させるためには、熱風風量を3〜5m/秒とし、吹きつけ圧を0.1〜0.3kg/cm2とすることで可能となる。弾性繊維ウエブ1'の通気度が8m/kPa・s以上、更に好ましくは24m/kPa・s以上であると、熱風の通りがよくなり、繊維をより均一に入り込ませることができるので好ましい。また、繊維の融着が良好で最大強度が高くなる。更に毛羽立ちも防止される。
【0061】
熱風処理においては、非弾性繊維ウエブ2'の構成繊維の一部が、弾性繊維ウエブ1'に入り込むのと同時に、非弾性繊維ウエブ2'の構成繊維及び/又は非弾性繊維ウエブ3'の構成繊維と、弾性繊維ウエブ1'の構成繊維とが、それらの交点で熱融着することが好ましい。この場合、熱風処理を、該熱風処理後の弾性繊維が繊維形態を維持するような条件下に行うことが好ましい。即ち、熱風処理によって弾性繊維ウエブ1'の構成繊維がフィルム状、或いはフィルム−繊維構造にならないようにすることが好ましい。そして、熱風処理においては、非弾性繊維ウエブ2'の構成繊維どうしが交点において熱融着し、同様に弾性繊維ウエブ1'の構成繊維どうし、及び非弾性繊維ウエブ3'の構成繊維どうしが交点において熱融着する。
【0062】
エアスルー方式の熱風処理によって、3つのウエブが一体化された繊維シート10Bが得られる。繊維シート10Bは、一定幅を有して一方向に延びる長尺帯状のものである。繊維シート10Bは、次いで延伸部300へ搬送される。延伸部300においては、繊維シート10Bは先ず弱接合装置25に搬送される。弱接合装置25は、周面にエンボス用凸部が規則的に配置された金属製のエンボスロール26及びそれに対向配置された金属製又は樹脂製のアンビルロール27を備えたエンボス装置からなる。弱接合装置25によって繊維シート10Bには熱エンボス加工が施される。これによって、エンボス加工が施された繊維シート10Aが得られる。なお弱接合装置25による熱エンボス加工に先立って熱風処理部200により行われる熱融着によって、各層のウエブは互いに接合して一体化しているので、弱接合装置25による熱エンボス加工は、本発明において必須のものではない。各層のウエブの接合一体化を確実にしたい場合は、弱接合装置25による熱エンボス加工は有効である。また、弱接合装置25によれば、各層のウエブの接合一体化に加えて、繊維シート10Aの毛羽立ちが抑えられるという利点がある。
【0063】
弱接合装置25による熱エンボス加工は、熱風処理部200によって行われる熱融着に対して補助的に行われるものであるから、その加工条件は比較的穏やかでよい。逆に、熱エンボス加工の条件を過酷にすると、繊維シート10Aの嵩高さが損なわれ、また繊維のフィルム化が起こり、最終的に得られる伸縮性不織布の風合いや通気性にマイナスに作用する。このような観点から熱エンボス加工の線圧及びエンボスロールの加熱温度を設定する。
【0064】
熱エンボス加工によって得られた繊維シート10Aは、図3に示すように、個々独立した散点状の接合部4を多数有する。接合部4は規則的な配置パターンで形成されている。接合部4は、例えば、繊維シート10Aの流れ方向(MD)及びその直交方向(CD)の両方向に不連続に形成されていることが好ましい。
【0065】
弱接合装置25において熱エンボス加工が施された繊維シート10Aは、引き続き延伸装置30へ送られる。図2ないし図4に示すように、繊維シート10Aは、大径部31,32と小径部(図示せず)が軸長方向に交互に形成された一対の凹凸ロール33,34を備えた延伸装置30によって、搬送方向(MD)と直交する方向(CD)へ延伸される。
【0066】
延伸装置30は、一方又は双方の凹凸ロール33,34の枢支部を公知の昇降機構により上下に変位させ、両者の間隔が調節可能に構成されている。図1並びに図4(b)及び(d)に示されるように、各凹凸ロール33,34は、一方の凹凸ロール33の大径部31が、他方の凹凸ロール34の大径部32間に遊挿され、他方の凹凸ロール34の大径部32が一方の凹凸ロール33の大径部31間に遊挿されるように組み合わされる。この状態の両ロール33,34間に、繊維シート10Aを噛み込ませて、繊維シート10Aを延伸させる。
【0067】
この延伸工程においては、図3及び図4に示すように、繊維シート10Aの幅方向における、接合部4の位置と、凹凸ロール33,34の大径部31,32の位置とを一致させることが好ましい。具体的には、図3に示すように、繊維シート10Aには、MDに沿って接合部4が一直線状に複数個並んで形成されている接合部列が、複数列形成されており(図3では10列図示)、図3において、最も左側に位置する接合部列R1を始めとして、そこから一つ置きの接合部列R1のそれぞれに含まれる接合部4については、一方の凹凸ロール33の大径部31の位置が一致し、左から2つ目の接合部列R2を始めとして、そこから一つ置きの接合部列R2のそれぞれに含まれる接合部については、他方の凹凸ロール34の大径部32の位置が一致するようにしてある。図3中、符号31,32で示す範囲は、繊維シート10Aが、両凹凸ロール33,34間に噛み込まれている状態の一時点において、各ロールの大径部31,32の周面と重なる範囲を示したものである。
【0068】
繊維シート10Aが、凹凸ロール33,34間に噛み込まれた状態で両ロール33,34間を通過する際には、図4(b)及び(d)に示すように、接合部4と、何れかの凹凸ロールの大径部31,32とが重なる一方、大径部31,32と重ならない大径部同士間の領域、即ち上述した接合部列R間の領域が幅方向へ積極的に引き伸ばされる。従って、接合部4の破壊や各層のウエブ間の剥離が生じるのを防止しつつ、繊維シート10Aの接合部以外の部分を効率的に延伸させることができる。また、この延伸により、非弾性繊維ウエブ2,3が十分に伸長され、それによって非弾性繊維ウエブ2,3が、弾性繊維ウエブ1の自由な伸縮を阻害する程度が大きく低下する。その結果、本製造方法によれば、高伸縮性であり、また、破れや毛羽立ちの少ない外観の良好な伸縮性不織布を効率的に製造することができる。
【0069】
凹凸ロール33,34の大径部31,32の周面は、繊維シート10Aに損傷を与えないようにするために、先鋭でないことが好ましい。例えば図4(b)及び(d)に示すように、所定幅の平坦面となっていることが好ましい。大径部31,32の先端面の幅W〔図4(b)参照〕は、0.3〜1mmであることが好ましく、接合部4のCD方向の寸法の0.7〜2倍、特に0.9〜1.3倍であることが好ましい。これにより、非弾性繊維の繊維形態が破壊されにくくなり、高強度の伸縮性不織布が得られる。
【0070】
大径部間のピッチP〔図4(b)参照〕は、0.7〜2.5mmであることが好ましい。このピッチPは、接合部4のCD方向の寸法の1.2〜5倍、特に2〜3倍であることが好ましい。これによって布様の外観を呈し、肌ざわりの良い伸縮性不織布が得られる。また、接合部4のCD方向のピッチ(CD方向に隣合う接合部列R1同士の間隔、またはCD方向に隣合う接合部列R2同士の間隔)は、大径部間のピッチPに対し、位置関係を一致させるため基本的には2倍であるが、繊維シート10AのCD方向の伸びやネックインのため1.6倍〜2.4倍の範囲内であれば位置を一致させることが可能である。
【0071】
延伸装置30から送り出された繊維シート10Aは、その幅方向への延伸状態が解放される。即ち伸長が緩和される。その結果、繊維シート10Aはその幅方向へ収縮する。これによって目的とする伸縮性不織布10が得られる。
【0072】
本発明は、前記実施形態に制限されない。例えば前記実施形態の伸縮性不織布10は、弾性繊維層1の両面に、同一の又は異なる、実質的に非弾性の非弾性繊維層2,3が積層された形態のものであったが、これに代えて、弾性繊維層の一面に非弾性繊維層が積層された2層構造の形態であってもよい。2層構造の伸縮性不織布を、吸収性物品の構成材料として用いる場合、特に使用者の肌に触れる箇所に使用する場合には、非弾性繊維層を着用者の肌側に向くように使用することが、肌触りやべたつき防止等の観点から好ましい。
【0073】
また図4に示す方法においては、一方の凹凸ロールの大径部と他方の凹凸ロールの小径部とによって繊維シート10Aが挟まれていない状態で延伸が行われたが、両者間の間隔を狭くして、両者間に繊維シート10Aを挟んだ状態で延伸を行うこともできる。つまり、繊維シートを介して底つきした状態で延伸することもできる。また、延伸工程は、特開平6−133998号公報に記載の方法を用いることもできる。
【0074】
また前記の製造方法においては、繊維シート10AをCD方向に延伸させたが、これに代えてMD方向に延伸させることもできる。
【実施例】
【0075】
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されるものではない。
【0076】
〔実施例1〕
図1に示す伸縮性不織布を、図2示す装置を用いて製造した。先ず直径17μm、繊維長51mmの短繊維(芯:ポリエチレンテレフタレート、鞘:ポリエチレン)をカード機に供給し、カードウエブからなる非弾性繊維ウエブ3’を形成した。ウエブ3’の坪量は10g/m2であった。この非弾性繊維ウエブ3’上に、弾性繊維ウエブ1’を積層した。
【0077】
弾性繊維ウエブ1’は次の方法で形成した。230℃における溶融粘度180Pa・s、溶融張力1.3gであるSEBSからなる弾性樹脂を用いた。押出機を用い、溶融した樹脂をダイス温度290℃で紡糸ノズルから押し出し、スピニングブローン法によってネット上に連続繊維からなる弾性繊維ウエブを1’成形した。弾性繊維の直径は28μmであった。弾性繊維ウエブは地合いの点で良好なものが得られた。ウエブ1’の坪量は20g/m2であった。
【0078】
弾性繊維ウエブ1’上に、前述と同様の短繊維からなる非弾性繊維ウエブ2’を積層した。ウエブ2’の坪量は10g/m2であった。
【0079】
これら3層のウエブの積層体を熱処理機に導入し、エアスルー方式で熱風を吹き付け熱処理を行った。熱処理の条件は、ネット上温度140℃、熱風風量2m/秒、吹き付け圧0.1kg/cm2、吹き付け時間15秒間であった。この熱処理によって3層のウエブが一体化された繊維シート10Bが得られた。
【0080】
次いで繊維シート10Bに熱エンボス加工を施した。熱エンボス加工は、エンボス凸ロールとフラット金属ロールとを備えたエンボス装置を用いて行った。エンボス凸ロールとして、CD方向のピッチが2.0mmである多数の凸部を有するドット状凸ロールを用いた。各ロールの温度は110℃に設定した。この熱エンボス加工によって接合部が規則的なパターンで形成された繊維シート10Aを得た。
【0081】
繊維シート10Aに対して延伸加工を施した。延伸加工は、大径部と小径部が軸長方向に交互に形成された一対の凹凸ロールを備えた延伸装置を用いて行った。大径部間のピッチPは1.0mmであった。延伸処理によって繊維シート10AをCD方向に延伸させた。これによりCD方向に伸縮する坪量60g/m2の不織布が得られた。なお、以上の各工程の搬送速度はいずれも10m/分であった。得られた伸縮性不織布の特性を以下の表1に示す。
【0082】
〔比較例1〕
弾性樹脂として溶融粘度1000Pa・s、溶融張力0.2gであるSEBSからなる弾性樹脂を用いた。押出機を用い、溶融した樹脂をダイス温度290℃で紡糸ノズルから押し出し、スピニングブローン法によってネット上に弾性繊維ウエブを成形したところ、繊維が太く地合いの点で均一なものが得られなかった。そのためダイス温度を320℃に上げて再び成形したところ、弾性繊維の直径は32μmとなった。ウエブ1’の坪量は20g/m2であった。このとき、成形温度が高いため、樹脂分解による臭いが発生した。
【0083】
〔評価〕
実施例及び比較例で得られた伸縮性不織布の特性を以下の表1に示す。表中の各項目の測定方法は次の通りである。
【0084】
<最大強度、最大伸度、100%伸長時強度及び残留歪み>
伸縮性不織布の伸縮方向へ50mm、それと直交する方向へ25mmの大きさで矩形の試験片を切り出した。オリエンテック製テンシロンRTC1210Aに試験片を装着した。チャック間距離は25mmであった。試験片を不織布の伸縮方向へ300mm/分の速度で伸長させ、そのときの荷重を測定した。そのときの最大点の荷重と、そのときの伸度を最大強度及び最大伸度とした。また、100%伸長サイクル試験を行い、100%伸長時強度を100%伸長時の荷重から求めた。更に、100%伸長後、同速にて原点に戻して行ったときの戻らない長さ割合を測定し、その値を残留歪とした。
【0085】
【表1】

表1に示す結果から明らかなように、実施例の不織布は比較例の不織布に比べて伸縮特性が良好である。
【図面の簡単な説明】
【0086】
【図1】図1は、本発明の伸縮性不織布の一実施形態の断面構造を示す模式図である。
【図2】図2は、図1に示す伸縮性不織布の製造に用いられる好ましい装置を示す模式図である。
【図3】図3は、延伸加工を施す繊維シートの一例を示す平面図である。
【図4】図4(a)は、図3に示す繊維シートのCD方向のa−a線に沿う断面図、図4(b)は、凹凸ロール間で変形した状態(延伸させている状態)の図4(a)に対応する断面図、図4(c)は、図3に示す繊維シートのCD方向のc−c線に沿う断面図、図4(d)は、凹凸ロール間で変形した状態(延伸させている状態)の図4(c)に相当する断面図である。
【符号の説明】
【0087】
1 弾性繊維層
2 非弾性繊維層
3 非弾性繊維層
4 接合部
10A 繊維シート
10 伸縮性不織布

【特許請求の範囲】
【請求項1】
弾性繊維層の少なくとも一面に、実質的に非弾性の非弾性繊維層が配され、該弾性繊維層に含まれる弾性繊維の構成樹脂はスチレン系エラストマーを含むものであり、該構成樹脂は、その溶融粘度が230℃において70〜500Pa・sで且つ溶融張力が0.7〜2.0gである伸縮性不織布。
【請求項2】
前記スチレン系エラストマーは、そのガラス転移点温度Tgが−40〜−15℃であり、示差走査熱量分析(DSC)による変曲点温度が200〜250℃である請求項1記載の伸縮性不織布。
【請求項3】
前記スチレン系エラストマーが、そのモノマー成分としてスチレン、エチレン及びブチレンを含むものであるか、若しくはスチレン、エチレン及びプロピレンを含むものであるか、又はその両者であり、請求項1又は2記載の伸縮性不織布。
【請求項4】
前記構成樹脂が、スチレン系エラストマーのみからなる請求項1ないし3の何れかに記載の伸縮性不織布。
【請求項5】
前記弾性繊維が連続繊維からなる請求項1ないし4の何れかに記載の伸縮性不織布。
【請求項6】
弾性繊維層と非弾性繊維層とが、弾性繊維層の構成繊維が繊維形態を保った状態で、繊維交点の熱融着によって全面接合されており、
非弾性繊維層の構成繊維の一部が弾性繊維層に入り込んだ状態、及び/又は、弾性繊維層の構成繊維の一部が非弾性繊維層に入り込んだ状態になっている請求項1ないし5の何れかに記載の伸縮性不織布。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate