説明

光分析装置

【課題】 測定セル内の検体についての分析を高い精度で正確に測定することのできる光分析装置を提供すること。
【解決手段】 検体を収容する測定セルを備えたマイクロチップを保持するチップ保持部を有する遠心ロータと、遠心ロータを回転駆動させる回転駆動機構と、遠心ロータが内部に収容された測定室と、マイクロチップの測定セルに光を照射する光源と、測定セルを透過した光を受光する受光部とを備えてなり、光源からの光が、測定室および遠心ロータの各々に形成された光導入用開口部を介して測定セルに入射され、測定セルを透過した光のうち、互いに波長の異なる測定用光および参照用光の各々の光吸収量をそれぞれ測定して測定セル内の検体を分析する光分析装置において、光源と測定室の光導入用開口部との間に、測定セルに対する光入射面内における測定用光と参照用光についての光の照度を均一化する照度均一化手段が配置されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、吸光光度分析法によって生化学分析用の検体中に含まれる検出対象成分の濃度を測定するための光分析装置(生化学分析装置)に関する。
【背景技術】
【0002】
近年、マイクロマシン技術を応用して、化学分析等を従来の装置に比して微細化して行うことのできる、『μ−TAS(μ−Total Analysis System)』や『Lab on a chip』と称されるマイクロチップを利用した分析方法が注目されている。
このようなマイクロチップを使用した分析システム(以下、「マイクロチップ分析システム」という。)は、マイクロマシン作製技術によって小さな基盤上に形成された微細な流路内において、試薬の混合、反応、分離、抽出及び検出を含む分析のすべての工程を行うことを目指したものであり、例えば医療分野における血液の分析、超微量の蛋白質や核酸等の生体分子の分析等に用いられている。
特に、マイクロチップ分析システムを用いて例えば人の血液の分析を行う場合には、(1)分析検査に必要とされる血液(検体)の量が微少量でよいので、患者への負担を軽減することができること、(2)血液と混合されて用いられる試薬の量も少なくて済むので、分析コストを低減することができること、(3)装置自体を小型のものとして構成することができるので、分析を容易に行うことができること、などの利点が得られることから、開発が進められている。
【0003】
一般的には、このようなマイクロチップ分析システムにおいては、検体中における検出対象成分の濃度を測定するための方法として、例えば吸光光度分析法が用いられている。 例えば、特許文献1には、複数の測定セルを備えたマイクロチップを用いて例えば血液(血清や血漿でもよい。)などの生化学分析用の検体を分析検査するための光分析装置が記載されており、この光分析装置においては、図14に示すように、測定室21内において測定室21と同軸上に配置された遠心ロータ25が回転駆動されて遠心ロータ25におけるチップ保持部26に保持されたマイクロチップ60に遠心力が作用されることにより、例えば試薬との混合、反応処理を含む処理が行われて検査液が調製されると共に調製された検査液が各測定セルに液送されて充填され、遠心ロータ25が停止された状態において、レンズ42および光学フィルタ43を介して照射される光源ランプ41よりの光を反射ミラー45によって反射して、測定室21を構成する外匣22における光導入用開口部22A、遠心ロータ25における光導入用開口部25Aおよびチップ保持部26における光導入用開口部27Aを介して、一の測定セル63に導入し、当該測定セル63内の検査液を透過した、検査液に応じて設定された特定の波長の光(測定用光)の光量およびこの測定用光の波長と異なる波長の光(参照用光)の光量を受光器(図示せず)によって同時に検出する測光処理が行われる。図14における52は、マイクロチップ60の測定セル63を通過した光を受光器に導光する光ファイバである。
【0004】
一の測定セルについての測光処理が終了すると、遠心ロータ25が回転駆動され、その移動量がエンコーダからの信号に基づいて制御されることにより隣接する測定セルに対して光源ランプ41からの光が導入されるよう位置制御されて遠心ロータ25の回転が停止され、この状態で、測光処理が行われる。そして、このような測光処理がすべての測定セルについて順次に行われた後、再び、例えば最初に測光処理が行われた測定セル63から順に2回目の測光処理が行われる。そして、このような処理を所定回数繰り返し実施されることにより、一の測定セルについて複数個のデータ(測光処理毎の測定用光の光量および参照用光の光量)が取得される。
そして、各測定セルについて得られた、測光処理時毎の測定用光の光量変動を、参照用光の光量変動に基づいて補償して吸光度を算出し、その結果に基づいて、検査液に含まれる検出対象成分の濃度が算出される。
【0005】
測定用光についての吸光度の算出方法について具体的に説明すると、例えば、光源ランプ41より放射される光の光量の、例えば電源周波数の重畳、アーク揺れによる微小なちらつき、長周期のゆらぎ等の外乱による変動は、図15に示すように、ほぼ全波長域にわたって、変動幅が同程度の互いに類似した傾向を示すことから(図15においては、便宜上、異なる2つの波長光についての光量の経時的変化を示してある。)、検査液による吸収のある波長の測定用光の光量から、検査液による吸収のない波長の参照用光の光量を減算することにより、光源ランプ41に起因する外乱の影響を補償することができる。
例えば、図16は、検査液による吸収のある波長(測定用光λ1)および検査液による吸収のない波長(参照用光λ2)の各々についての光量の経時的変化を示すものであるが、測定用光の光量から参照用光の光量を減算することにより、上記のような光源ランプ41による外乱を補償することができ、図17に示すように、検査液によって測定用光が吸収されるその程度(光量の経時的変化)を捉えることができる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2007−322208号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、測定用光の光量変動を参照用光の光量変動に基づいて補償(2波長補正)しても、高い精度で測定を行うことができないことがあることが判明した。すなわち、光源ランプ41から放射される光は、光源ランプ41を構成するバルブやレンズ42による色収差によって、短波長側の光は集光気味に、長波長側の光は拡散気味に光が進行する。このため、図18に示すように、測定室21の光導入用開口22Aの開口面内においては、測定用光についての照度ピーク位置と参照用光についての照度ピーク位置は互いに異なる位置に存在しており、測定用光および参照用光を測定セル63に対して均一な照度で入射させることができず、十分に高い精度で測定を行うことができない。
特に、測光動作が遠心ロータ25を停止させた状態で行われる場合には、遠心ロータ25の停止位置は、測光処理時毎に、例えば数十μmのオーダ(測定室21の光導入用開口部22Aの開口径が例えば3mm、測定セル63の内径が例えば1mm)程度のバラツキが生ずることがある。上述したように、測光処理は、一の測定セル63について、所定回数繰り返し実施されるが、図18に示すように、前回の測光処理時における測定室21の光導入用開口部22Aに対する測定セル63の停止位置(破線)と、次の測光処理時における測定室21の光導入用開口部22Aに対する測定セル63の停止位置(実線)にバラツキがあると、測定セル63に対する光入射面内における光源ランプ41からの測定用光および参照用光についての照度ピーク位置は互いに異なる位置に存在することから、例えば前回の測光処理時における停止位置(測定位置)では、測定セル63に対する光入射面内においては、短波長側の波長の測定用光λ1の照度が長波長側の波長の参照用光λ2の照度より大きく、次の測光処理時における停止位置(測定位置)では、測定セル63に対する光入射面内においては、長波長側の波長の参照用光λ2の照度が短波長側の波長の測定用光λ1の照度より大きくなるなどの現象が生じ、従って、測定用光λ1および参照用光λ2を測定セル63に対して均一な照度で入射させることができず、十分に高い精度で測定を行うことができない。なお、図18における一点鎖線で示す領域L1,L2はそれぞれ一定以上の照度を有する測定用光λ1の有効照射領域、参照用光λ2の有効照射領域である。
【0008】
また、光源をLED光源により構成する場合には、例えば、赤色発光LEDチップ、青色発光LEDチップおよび緑色発光LEDチップが、それぞれ複数個ずつ、基板上に配置されてパッケージ化されたものが用いられるが、このようなLED光源を用いた場合であっても、集光レンズによる色収差や各LEDチップの配列状態に起因して、測定室21の光導入用開口22Aの開口面内においては、波長毎に異なる位置に照度ピーク位置が存在しており、上記の問題が生ずる。
【0009】
本発明は、以上のような事情に基づいてなされたものであって、その目的は、測定セル内の検体についての分析を高い精度で正確に測定することのできる光分析装置を提供することにある。
【課題を解決するための手段】
【0010】
本発明の光分析装置は、検体を収容する測定セルを備えたマイクロチップを保持するチップ保持部を有する遠心ロータと、当該遠心ロータを回転駆動させる回転駆動機構と、前記遠心ロータが内部に収容された測定室と、前記マイクロチップにおける測定セルに光を照射する光源と、当該測定セルを透過した光を受光する受光部とを備えてなり、前記光源からの光が、前記測定室に形成された光導入用開口部および前記遠心ロータに形成された光導入用開口部を介して前記測定セルに入射され、当該測定セルを透過した光のうち、互いに波長の異なる測定用光および参照用光の各々の光吸収量をそれぞれ測定して測定セル内の検体を分析する光分析装置において、
前記光源と前記測定室の光導入用開口部との間に、前記測定セルに対する光入射面内における測定用光と参照用光についての光の照度を均一化する照度均一化手段が配置されていることを特徴とする。
【0011】
本発明の光分析装置においては、前記照度均一化手段が、複数の光ファイバが不規則に束ねられてなるライトガイドよりなり、当該ライトガイドは、その一端面が前記光源と対向すると共に他端面が前記測定室の光導入用開口部と対向して配置された構成とすることができる。
【0012】
また、本発明の光分析装置においては、前記照度均一化手段がインテグレータレンズよりなる構成、あるいは、拡散板よりなる構成とすることができる。
【発明の効果】
【0013】
本発明の光分析装置によれば、光源より照射される測定用光および参照用光が測定セルに対して均一な照度で入射されるので、測定セルの停止位置にバラツキ、光源および光源から測定セルに光を入射させるための光学系の色収差による影響を抑制することができ、高い精度で高い信頼性をもって所期の測定(分析)を行うことができる。
【図面の簡単な説明】
【0014】
【図1】本発明の光分析装置の一例における構成の外観を示す斜視図である。
【図2】図1に示す光分析装置の内部構造を概略的に示す平面図である。
【図3】図1に示す光分析装置における測定部の構成の概略を示す断面図である。
【図4】測定部の要部構成を概略的に示す拡大断面図である。
【図5】本発明の光分析装置において用いられるマイクロチップの一例における構成の概略を示す(A)平面図、(B)断面図である。
【図6】ランダムファイバの作用を説明するための観念図である。
【図7】本発明の光分析装置の他の例における測定部の要部構成を概略的に示す拡大断面図である。
【図8】インテグレータレンズの作用を説明するための観念図である。
【図9】本発明の光分析装置のさらに他の例における測定部の要部構成を概略的に示す拡大断面図である。
【図10】実験例1における測定用光の光量および参照用光の光量の経時的変化を示すグラフである。
【図11】実験例1における、測定用光の光量変動が参照用光の光量変動により補償された、測定用光の光量の経時的変化を示すグラフである。
【図12】比較実験例1における測定用光の光量および参照用光の光量の経時的変化を示すグラフである。
【図13】比較実験例1における、測定用光の光量変動が参照用光の光量変動により補償された、測定用光の光量の経時的変化を示すグラフである。
【図14】従来の光分析装置の一例における要部構成を概略的に示す説明用断面図である。
【図15】光源ランプからの光の光量の経時的変化を示すグラフである。
【図16】実際の光分析装置において取得される測定用光の光量および参照用光の光量の経時的変化を示すグラフである。
【図17】測定用光の光量変動が参照用光の光量変動により補償された、測定用光の光量の経時的変化を示すグラフである。
【図18】測光動作が遠心ロータを停止させた状態で行われる場合における、測定セルの停止位置(測定位置)と、測定用光の照度ピーク位置および参照用光の照度ピーク位置との関係を示す説明図である。
【発明を実施するための形態】
【0015】
<第1実施形態>
図1は、本発明の光分析装置の一例における構成の外観を示す斜視図、図2は、図1に示す光分析装置の内部構造を概略的に示す平面図、図3は、図1に示す光分析装置における測定部の構成の概略を示す断面図、図4は、測定部の要部構成を概略的に示す拡大断面図である。
この光分析装置10は、マイクロチップ60を用いて例えば血液(血清や血漿でもよい。)などの生化学分析用の検体を分析検査するためのものであって、全体が例えば箱型形状のケーシング11を備えてなり、このケーシング11の内部における、中央位置に配置された測定部20と、測定部20の右方後方側の位置に配置された光源部40と、測定部20の左方側の位置に配置された受光部50と、測定部20の後方側の位置に配置された、信号処理回路などの機能素子が実装されたCPU基板15Aを備えた制御部15と、測定部20の下方前方側の位置に配置された電源部14と、電源部14と幅方向に並んだ位置に配置されたプリンタ16Aを備えた出力部16とを有する。
ケーシング11は、測定部20に対向する上壁部分およびこれに連続する前壁部分からなる、幅方向に沿って延びる軸回りに回動されることによりチップ挿入部12を開放する蓋体11Aを有し、ケーシング11の上面における蓋体11Aと幅方向に並んだ位置には、パネル状表示部13Aを備えた操作パネル13が設けられている。
図1および図2において、17は電源入力端子、18は電源スイッチ、19はデータ出力端子である。
【0016】
測定部20は、図3に示すように、例えば中空円柱状の外匣22内に、マイクロチップ60を保持するためのチップ保持部26を有する例えば有底円筒状の遠心ロータ25が同軸上に配置されてなる測定室21と、駆動軸24Aが遠心ロータ25の下面中央位置を貫通して鉛直方向(上下方向)に延びる姿勢で配置された駆動用モータ24とを備えてなり、駆動用モータ24が駆動されることにより遠心ロータ25が回転駆動される。図2において、23はモータドライバである。
遠心ロータ25の底壁には、外径が遠心ロータ25の半径より小さい方向切替用ギア27が遠心ロータ25の回転軸中心Cと平行な軸回りに回転可能に軸支されて設けられており、この方向切替用ギア27の上面に適宜のホルダ部材(図示せず)が設けられ、これにより、チップ保持部26が構成されている。チップ保持部26は、遠心ロータ25の外周縁側に位置された状態とされている。
また、測定部20は、チップ保持部26を複数有する構成とすることができ、この実施例においては、遠心ロータ25の回転バランスを適正な状態に維持するために、回転軸中心Cを挟んだ反対側の位置(回転軸中心Cに対して点対称の位置)に、同一の構成の方向切替用ギア27よりなるチップ保持部26が形成されている。
【0017】
外匣22の下壁、遠心ロータ25およびチップ保持部26を構成する方向切替用ギア27の各々には、マイクロチップ60がチップ保持部26に保持された状態において、マイクロチップ60の測定セル63が位置される径方向位置に、光源部40からの光をマイクロチップ60の測定セル63に導入させるための光導入用開口部22A,25A,27Aが形成されており、外匣22の上壁にはマイクロチップ60の測定セル63を通過した光を受光部50に導光する例えば光ファイバ52が装着される開口部22Bが形成されている。
また、外匣22の上面および下面の一部の領域には、測光処理時において測定室21内の温度を一定温度例えば37℃に維持するための面状のヒータ35が設けられており、例えばサーミスタ36による検出温度に基づいて出力制御される。
さらに、外匣22の上壁には、チップ挿入用開口部28およびマイクロチップ60に設けられた例えばバーコードにより表示されるマイクロチップ60に固有の情報を、測定室21の上方位置に設けられたバーコードリーダ37によって読み取るためのバーコード読取用窓29が形成されている。
【0018】
測定部20は、チップ保持部26に保持されたマイクロチップ60の姿勢を調整するための、遠心ロータ25を回転駆動させる駆動機構と独立した回転駆動機構を構成するチップ方向切替機構30を備えており、このチップ方向切替機構30は、例えば玉軸受け32などを介して駆動用モータ24の駆動軸24Aに対して回転自在に設けられた、チップ保持部26を構成する方向切替用ギア27と噛合する原動ギア33と、この原動ギア33を回転駆動させるための駆動源であるチップ方向切替用モータ31とからなる。また、遠心ロータ25を回転駆動させるための駆動用モータ24にはエンコーダ38が連結されており、エンコーダ38からの信号に基づいて遠心ロータ25の停止位置が制御される。
【0019】
光源部40は、例えば、紫外域から赤外域にわたる波長域の光を放射する例えば光源ランプ41と、光源ランプ41から放射される光を平行光化して照射するためのレンズ42と、光学フィルタ43とにより構成されている。また、44は、ランプ点灯時において当該光源ランプ41を冷却するための空冷ファンである。
光源としては、例えば白色光を放射するLED光源が用いられていてもよい。
【0020】
受光部50は、例えば凹面回折格子多波長光度計よりなる、複数の波長を同時に測定可能な受光器51を備えてなり、測定セル63内を透過した光が一端が外匣22の上壁に形成された開口部22Bに装着された例えば光ファイバ52によって受光器51に導光される。
【0021】
上記の光分析装置10において用いられるマイクロチップ60は、例えば図5に示すように、全体が扁平な形態を有し、例えば測定セル63,分離セル(不図示),混合セル(不図示),秤量手段(不図示)を含む流路が形成されたチップ本体61の両面の各々に透明基板62A,62Bが設けられてなる。
このマイクロチップ60には、複数例えば7つの測定セル63が、遠心ロータ25のチップ保持部26に保持された状態において、遠心ロータ25の回転軸中心Cと同一円周上の位置に離間して形成されており、各々、吸光度測定に必要となる十分な大きさの透過光路長が確保されるよう、断面径(内径)に比して厚み方向の寸法(長さ)が極めて大きい細長い形態を有する。
測定セル63の具体的な構成例を示すと、例えば内径が1mm、長さが10mm、容量(検査される検査液の量)が10μl(マイクロリットル)程度である。
図5において、65は、マイクロチップ60の上面に貼付された例えばバーコードであって、それ自体によって例えば測定項目や測定方法などのマイクロチップ60に固有の情報が表示されている。
【0022】
而して、この光分析装置10においては、光源部40と測定室21の光導入用開口部22Aとの間に、測定セル63に対する光入射面内における測定用光および参照用光についての光の照度を均一化する照度均一化手段が配置されている。
この例における照度均一化手段は、例えば、複数の光ファイバが不規則に束ねられてなるライトガイド(以下、「ランダムファイバ」という。)70よりなり、各々の光ファイバの一端面により構成される一端面(光入射部)70Aおよび各々の光ファイバの他端面により構成される他端面(光出射部)70Bにおける光ファイバの配列状態がランダムになっているものである。
ランダムファイバ70は、その一端面が光源部40の光出射部と対向すると共に他端面が測定室21における光導入用開口部22Aと対向して配置されている。
【0023】
ランダムファイバ70を構成する光ファイバの数は、例えば100本以上であることが好ましい。
また、各々の光ファイバの素線径は、例えば0.05〜0.5mmの範囲内であるものであることが好ましく、互いに同一の大きさの素線径を有するものであっても、互いに異なる大きさの素線径を有するものであってもよい。
ランダムファイバ70のバンドル径は例えば1.0〜5.0mmであり、全長は例えば100mm以上である。
【0024】
以下、上記の光分析装置の動作について説明する。
先ず、被検者から採血された血液などの検体および試薬が注入されたマイクロチップ60がチップ保持部26に装着された状態において、光分析装置10が作動されると、マイクロチップ60のバーコード65それ自体によって表示されている測定条件等のマイクロチップ60に固有の情報がバーコードリーダ37によって読み取られ、この情報に基づいて光分析装置10の動作条件が設定されて遠心ロータ25が回転駆動されることにより、マイクロチップ60に作用される遠心力が利用されて、検体から測定対象液を分離する分離処理、測定対象液を各測定セル63に分配する分配処理、一定量の測定対象液を分取する秤量処理、測定対象液と試薬とを混合、反応させて検査液を調製する混合反応処理、および調製された検査液を各測定セル63に液送、充填する処理が、マイクロチップ60の方向(姿勢)を調整するチップ方向切替動作が各処理間に行われながら順次に行われる。以上において、試薬としては、従来の光分析装置において用いられているものを用いることができ、目的とする検査項目(検出対象成分)に応じて選択される。
【0025】
以上のような一連の前処理動作が行われた後、調整された検査液が充填された各測定セル63について測光動作が行われる。すなわち、例えば、マイクロチップ60における一の測定セル63に対して光源部40からの光が導入されるよう位置合わせされて遠心ロータ25の回転が停止された状態において、レンズ42および光学フィルタ43を介して照射された光源ランプ41からの光が、ランダムファイバ70を介して、測定室21の下方側から測定セル63に対して垂直方向に導入される。そして、測定セル63内の検査液を透過した光のうち、検査液に応じて設定された、検査液による吸収のある特定の波長の測定用光の光量および検査液による吸収のない、測定用光と互いに異なる波長の参照用光の光量が光ファイバ52を介して接続された受光器51によって同時に検出される。
【0026】
測光動作は、例えば、一の測定セルについての所定時間の間の測光処理を一処理単位としてすべての測定セルについて順次に測光処理を行う動作が複数回繰り返し行われることにより、実施される。すなわち、一の測定セルについての吸光度の測定が終了すると、遠心ロータ25が回転駆動され、その移動量がエンコーダ38からの信号に基づいて制御されることにより測光動作が行われるべき隣接する測定セルに対して光源部40からの光が導入されるよう位置制御されて、遠心ロータ25の回転が停止され、この状態で、測光処理が行われる。そして、このような測光処理がすべての測定セルについて順次に行われた後、再び、例えば最初に測光処理が行われた測定セルから順に2回目の測光処理が行われる。このような処理を所定回数繰り返し実施されることにより、一の測定セルについて複数個のデータ(測光処理毎の測定用光の光量および参照用光の光量)が取得される。
【0027】
そして、各測定セル63について、測光処理時毎に、測定用光の光量より参照用光の光量を減算し、測定用光の光量変動が参照用光の光量変動により補償された測定用光の光量を算出する処理が行われ、測定用光の光量の経時的変化に基づいて吸光度が算出され、その結果に基づいて、測定セル63内の検査液に含まれる検出対象成分の濃度が算出される。このようなデータ処理が、すべての測定セル63内の検査液について行われ、その結果がパネル状表示部13Aに表示されるとともにプリンタ16Aにより出力される。
【0028】
測光動作において用いられる測定用光としては、例えば340,405,450,480,505,546,570,600,660,700,750,800nm(±10nm)の12種の波長のうちのいずれかひとつの波長の光が検出対象成分に応じて選択され、参照用光としては、測定用光として選択された波長以外の波長の光のうちから選択される。
【0029】
而して、上記の光分析装置10によれば、ランダムファイバ70よりなる照度均一化手段を備えていることにより、図6に示すように、光源ランプ41より放射された光(波長光λA,波長光λB)がレンズ42および光学フィルタ43を介してランダムファイバ70の一端面(光入射部)70Aに入射され、ランダムファイバ70を透過してその他端面(光出射部)70Bより出射される光は、いずれの波長光λA,λBについても、光照射面において均一な照度分布を有するものとなって、受光器51によって検出されるべき測定用光および参照用光がマイクロチップ60における測定セル63に対して均一な照度で入射されるので、光源ランプ41を構成するバルブおよびレンズ42等の光学系の色収差に起因する光量変動、また、測光動作が遠心ロータ25を停止させた状態で行われる場合における測定セル63の、測定室21の光導入用開口部22Aに対する停止位置のバラツキに起因する光量変動を抑制することができ、高い精度で高い信頼性をもって所期の分析を行うことができる。
【0030】
以上、本発明の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではない。
【0031】
<第2実施形態>
図7は、本発明の光分析装置の他の例における測定部の要部構成を概略的に示す説明用断面図である。
この光分析装置は、上記第1実施形態に係る光分析装置において、測定セルに対する光入射面内における測定用光および参照用光の照度を均一化する照度均一化手段がランダムファイバではなく、インテグレータレンズ71により構成されていることの他は、上記第1実施形態に係る光分析装置と同一の構成を有する。図7において、符号46は集光レンズ、45は、インテグレータレンズ71から出射された光を反射して、測定室21の下方側から、マイクロチップ60の測定セル63内を垂直方向に通過するよう導入させる反射ミラーであり、第1実施形態に係る光分析装置と同一の構成部材については、便宜上、同一の符号が付してある。
【0032】
インテグレータレンズ71は、例えば、各々両側に凸面を有するロッドレンズ71Aの複数が束ねられた構成とされており、インテグレータレンズ71の一端面711から入射された光が各々のロッドレンズ71A内を透過して他端面712から出射される。
インテグレータレンズ71の構成例を示すと、外径がφ3〜10mm、長さが10〜50mm、各々のロッドレンズ71Aの外径が1〜5mm、ロッドレンズ71Aの数は、1本以上である。
また、インテグレータレンズ71は、例えば、石英ガラスよりなる円柱状のロッドレンズ、または、内面を鏡面とした中空円筒状のロッドレンズよりなるロッド型インテグレータにより構成されていてもよい。
【0033】
このような構成の光分析装置においても、上記第1実施形態に係るものと同様の効果、すなわち、インテグレータレンズ71よりなる照度均一化手段を備えていることにより、図8に示すように、光源ランプ41より放射された光(波長光λA,波長光λB)がレンズ42および光学フィルタ43を介してインテグレータレンズ71の一端面(光入射部)711に入射され、インテグレータレンズ71を透過してその他端面(光出射部)712より出射される光は、いずれの波長光(λA,λB)についても、光照射面において均一な照度分布を有するものとなって、受光器51によって検出されるべき測定用光および参照用光がマイクロチップ60における測定セル63に対して均一な照度で入射されるので、光源ランプ41を構成するバルブおよびレンズ42等の光学系の色収差に起因する光量変動、また、測光動作が遠心ロータを停止させた状態で行われる場合における測定セル63の、測定室21の光導入用開口部22Aに対する停止位置のバラツキに起因する光量変動を抑制することができ、高い精度で高い信頼性をもって所期の分析を行うことができる。
【0034】
<第3実施形態>
図9は、本発明の光分析装置のさらに他の例における測定部の要部構成を概略的に示す説明用断面図である。
この光分析装置は、上記第1実施形態に係る光分析装置において、測定セルに対する光入射面内における測定用光および参照用光の照度を均一化する照度均一化手段が、ランダムファイバではなく、拡散板72により構成されていることの他は、上記第1実施形態に係る光分析装置と同一の構成を有する。図9において、符号45は、光源ランプ41からの光を反射して、測定室21の下方側から、マイクロチップ60の測定セル63内を垂直方向に通過するよう導入させる反射ミラーであり、第1実施形態に係る光分析装置と同一の構成部材については、便宜上、同一の符号が付してある。
【0035】
拡散板72は、例えば、レンズ42および光学フィルタ43を介して入射される光源ランプ41よりの光を円形または楕円形に整形して一定の出力で放射する円板状のホログラフィック拡散板により構成されている。
拡散板72の拡散角度は、拡散のタイプが円形であるものである場合には、例えば0.5〜20°程度であることが好ましい。
拡散板72の外径は、例えば1〜10mmであり、厚みは、例えば1mmである。
【0036】
このような構成の光分析装置においても、上記第1実施形態に係るものと同様の効果、すなわち、拡散板72よりなる照度均一化手段を備えていることにより、光源ランプ41より放射された光がレンズ42および光学フィルタ43を介して拡散板72の下端面(光入射面)に入射され、拡散板72を透過してその上端面(光出射面)より出射される光は、いずれの波長光についても、光照射面において均一な照度分布を有するものとなって、受光器51によって検出されるべき測定用光および参照用光がマイクロチップ60における測定セル63に対して均一な照度で入射されるので、光源ランプ41を構成するバルブおよびレンズ42等の光学系の色収差に起因する光量変動、また、測光動作が遠心ロータ25を停止させた状態で行われる場合における測定セル63の、測定室21の光導入用開口部22Aに対する停止位置のバラツキに起因する光量変動を抑制することができ、高い精度で高い信頼性をもって所期の分析を行うことができる。
【0037】
以下、本発明の効果を確認するために行った実験例について説明する。
<実験例1>
図1乃至図4に示す構成に従って、本発明に係る光分析装置(10)を作製した。
測定室における光導入用開口部(22A)の開口径がφ3mm、遠心ロータ(25)における光導入用開口部(25A)の開口径がφ3mm、方向切替用ギア(27)における光導入用開口部(27A)の開口径がφ3mmであり、光源ランプ(41)は出力電力が50Wのキセノンランプである。
照度均一化手段としてのランダムファイバ(70)は、バンドル径が3mm、全長が200mmであり、ランダムファイバ(70)を構成する光ファイバの数が約200本、各々の光ファイバの素線径がφ0.2mmであり、ランダムファイバ(70)の他端面(光出射面)とマイクロチップの下端面との離間距離が約7mmである。
マイクロチップ(60)は、測定セル(63)の数が7つ、各々の測定セル(63)の内径がφ1mm、長さが10mm、容量が約10μリットルであるものである。
【0038】
検体としてコントロール血清(ストロール)、試薬として尿酸キット『N−アッセイ UA−L ニットーボー』(ニット−ボーメディカル(株))を用い、これらを所定量ずつマイクロチップ(60)に注入して光分析装置に装着し、マイクロチップ(60)の方向調整動作を行いながら遠心ロータ(25)を回転駆動させて、上述の分離処理、分配処理、秤量処理、混合反応処理および調製された検査液の液送、充填処理を順次に行った後、検査液が充填された各測定セルについて上述の測光動作を行い、一の測定セル(63)について、測定用光の光量および参照用光の光量を測定した。結果を図10に示す。
測光動作の処理条件は、例えば一の測定セルについての一処理単位に要する時間が1sec、一の測定セルについての測光処理の回数が15回であり、測定用光を波長600nmの光、参照用光を波長800nmの光に設定した。
なお、測定原理は次の通りである。すなわち、検体中の尿酸は、下記反応式1に示すような酵素反応により、アラントイン、二酸化炭素、過酸化水素に分解され、これにより生成された過酸化水素は、パーオキシダーゼ(POD)の存在下で、TOOS〔N−エチル−N−(2―ヒドロキシ−3−スルホプロピル)−m−トルイジンナトリウム〕と4−アミノアンチピリンを酸化縮合させ、これにより生成された縮合体である赤紫色キノン色素〔検知対象成分〕を分光学的に測定することにより、検体中のUA(尿酸,検査項目)の濃度を算出することができる。
【0039】
【化1】

【0040】
図10に示すように、測定用光については、検体と試薬との反応が進行することに伴って、光量が経時的に略直線的に増加する(単純増加の右上がりになる)傾向、すなわち、検査液によって測定用光が吸収されることによる光量の経時的変化を示しており、この結果より、測光処理時毎の測定セルの停止位置のバラツキや、光源ランプを構成するバルブ等による色収差による影響を受けないこと、あるいは、抑制されることが確認された。また、参照用光については、検体と試薬との反応が進行した場合であっても、検体による吸収のないものであることから、光量の経時的変化は見られず、検出される光量は実質的に一定であることが確認された。
この理由は、ランダムファイバの作用によって、測定セルに対する光入射面内における測定用光(波長600nm)の照度、および、参照用光(波長800nm)の照度が均一化されているためであると考えられる。
従って、この実験例(検体,試薬)においては、測光処理時毎に、測定用光の光量より参照用光の光量を減算することにより、測定用光の光量変動が参照用光の光量変動により補償された測定用光の光量を算出し(図11)、1回目の測光処理時における測定用光の光量と、15回目の測光処理時における測定用光の光量との差(光量の経時的変化)に基づいて吸光度を算出し、これにより得られた吸光度に基づいて、検体中のUA(尿酸)の濃度を、高い精度で正確に得ることができるものと想定される。
【0041】
<比較実験例1>
図14に示す構成に従って、照度均一化手段を有さず、光源ランプ(41)からレンズ(42)および光学フィルタ(43)を介して照射される光を反射ミラー(45)により反射させてマイクロチップ(60)における測定セル(63)に入射させる構成としたことの他は、実験例1において作製したものと同一の構成を有する比較用の光分析装置を作製し、上記実験例1と同様の測光動作を行い、一の測定セルについて、測定用光の光量化および参照用光の光量を測定した。結果を図12に示す。
【0042】
図12に示すように、測定用光については、検体と試薬との反応が進行することに伴って、15回目の測光処理時における光量が1回目の測光処理時における光量より大きく、全体として、光量が経時的に増加する傾向を示すものの、測定値のバラツキが大きいことが確認された。また、参照用光については、検体と試薬との反応が進行した場合であっても、検体による吸収のないものであるにもかかわらず、測光処理時毎に光量の変動が生じていることが確認された。この結果より、測光処理時毎の測定セルの停止位置のバラツキや、光源ランプを構成するバルブ等による色収差による影響を大きく受けているものと考えられる。なお、図13は、測光処理時毎に、測定用光の光量より参照用光の光量を減算した値(2波長補正後の測定用光の光量)をプロットしたものであるが、例えば11回目における測光処理時と12回目の測光処理時とで、ほぼ同一の値となること、および、例えば14回目の測光処理時と15回目の測光処理時とで光量が減少する傾向(右下がり、逆傾向)となることなどの現象が生じており、検体中のUA(尿酸,検査項目)の濃度を、高い精度で正確に得ることができないものと想定される。
【符号の説明】
【0043】
10 光分析装置
11 ケーシング
11A 蓋体
12 チップ挿入部
13 操作パネル
13A パネル状表示部
14 電源部
15 制御部
15A CPU基板
16 出力部
16A プリンタ
17 電源入力端子
18 電源スイッチ
19 データ出力端子
20 測定部
21 測定室
22 外匣
22A 光導入用開口部
22B 開口部
23 モータドライバ
24 駆動用モータ
24A 駆動用モータの駆動軸
25 遠心ロータ
25A 光導入用開口部
26 チップ保持部
27 方向切替用ギア
27A 光導入用開口部
28 チップ挿入用開口部
29 バーコード読取用窓
30 チップ方向切替機構
31 チップ方向切替用モータ
32 玉軸受け
33 原動ギア
35 ヒータ
36 サーミスタ
37 バーコードリーダ
38 エンコーダ
40 光源部
41 光源ランプ
42 レンズ
43 光学フィルタ
44 空冷ファン
45 反射ミラー
46 集光レンズ
50 受光部
51 受光器
52 光ファイバ
60 マイクロチップ
61 チップ本体
62A,62B 透明基板
63 測定セル
65 バーコード
70 ランダムファイバ
70A 一端面(光入射部)
70B 他端面(光出射部)
71 インテグレータレンズ
71A ロッドレンズ
711 一端面(光入射部)
712 他端面(光出射部)
72 拡散板
C 遠心ロータの回転軸中心

【特許請求の範囲】
【請求項1】
検体を収容する測定セルを備えたマイクロチップを保持するチップ保持部を有する遠心ロータと、当該遠心ロータを回転駆動させる回転駆動機構と、前記遠心ロータが内部に収容された測定室と、前記マイクロチップにおける測定セルに光を照射する光源と、当該測定セルを透過した光を受光する受光部とを備えてなり、前記光源からの光が、前記測定室に形成された光導入用開口部および前記遠心ロータに形成された光導入用開口部を介して前記測定セルに入射され、当該測定セルを透過した光のうち、互いに波長の異なる測定用光および参照用光の各々の光吸収量をそれぞれ測定して測定セル内の検体を分析する光分析装置において、
前記光源と前記測定室の光導入用開口部との間に、前記測定セルに対する光入射面内における測定用光および参照用光の照度を均一化する照度均一化手段が配置されていることを特徴とする光分析装置。
【請求項2】
前記照度均一化手段は、複数の光ファイバが不規則に束ねられてなるライトガイドよりなり、当該ライトガイドは、その一端面が前記光源と対向すると共に他端面が前記測定室の光導入用開口部と対向していることを特徴とする請求項1に記載の光分析装置。
【請求項3】
前記照度均一化手段は、インテグレータレンズよりなることを特徴とする請求項1に記載の光分析装置。
【請求項4】
前記照度均一化手段は、拡散板よりなることを特徴とする請求項1に記載の光分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2011−232205(P2011−232205A)
【公開日】平成23年11月17日(2011.11.17)
【国際特許分類】
【出願番号】特願2010−103373(P2010−103373)
【出願日】平成22年4月28日(2010.4.28)
【出願人】(000116024)ローム株式会社 (3,539)
【Fターム(参考)】