説明

光変調装置及びその制御方法

【課題】分散ペナルティを小さく抑えること。
【解決手段】本発明は、2つの出力光導波路38a、38bに第2MMI34を介して接続する2つの光導波路32a、32bを有するマッハツェンダ型光変調器10と、2つの光導波路を伝搬する光を変調させる変調信号を2つの光導波路夫々に設けられた変調用電極42に差動信号として出力する駆動回路14と、2つの光導波路夫々に設けられた位相調整用電極40に出力する第1の位相制御信号を制御して、2つの光導波路を伝搬する光の位相を調整する位相調整回路12と、2つの光導波路夫々に設けられた位相シフト用電極54に出力する第2の位相制御信号を切替えて、2つの光導波路を伝搬する光の位相を変化させる位相シフト制御回路50と、差動信号の極性を反転させる信号極性反転回路52と、を備える光変調装置である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光変調装置及びその制御方法に関し、特に、マッハツェンダ型光変調器を有する光変調装置及びその制御方法に関する。
【背景技術】
【0002】
光に信号を乗せて光ファイバで伝送する光通信システムにおいて、光源から出射されたレーザ光を強度変調して光信号を生成する光変調器が利用されている。光変調器として例えばマッハツェンダ型光変調器が広く用いられている。
【0003】
マッハツェンダ型光変調器は、入力された光を分岐する分岐部と、分岐された光を伝搬させる2つの光導波路と、光導波路を伝搬した光を再び合波させる合波部と、の導波路構成を有し、光を合波させる時の干渉条件によって光のオン・オフを行う光変調器である。
【0004】
また、マッハツェンダ型光変調器において、ゼロチャープ動作をさせるために、2つの光導波路に変調信号として差動信号を出力する技術が知られている(例えば、非特許文献1)。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】G.L.Li and P.K.L.Yu, “Optical Intensity Modulators for Digital and Analog Applications” J. of Lightwave Technology, Vol.21, pp 2010-2030, 2003
【発明の概要】
【発明が解決しようとする課題】
【0006】
非特許文献1のように、2つの光導波路に変調信号として差動信号を出力する場合であっても、変調器の材料として半導体を用いると、2つの光導波路に印加する変調用の電圧に対して位相変化が線形とならない。この非線形性によりファイバ分散による波形歪が正分散側と負分散側とで非対称となる場合がある。この場合、正分散側と負分散側とで分散ペナルティの大きさが異なり、いずれかの分散ペナルティが大きくなる場合がある。
【0007】
本発明は、上記課題に鑑みなされたものであり、分散ペナルティを小さく抑えることが可能な光変調装置及びその制御方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、2つの出力光導波路に合分波部を介して接続する2つの光導波路を有するマッハツェンダ型光変調器と、前記2つの光導波路を伝搬する光を変調させる変調信号を、前記2つの光導波路夫々に設けられた変調用電極に差動信号として出力する駆動回路と、前記2つの光導波路夫々に設けられた位相調整用電極に出力する第1の位相制御信号を制御して、前記2つの光導波路を伝搬する光の位相を調整する位相調整回路と、前記2つの光導波路夫々に設けられた位相シフト用電極に出力する第2の位相制御信号を切替えて、前記2つの光導波路を伝搬する光の位相を変化させる位相シフト制御回路と、前記差動信号の極性を反転させる信号極性反転回路と、を備えることを特徴とする光変調装置である。本発明によれば、接続される光ファイバの分散が正分散、負分散であるに関らず、変調光信号として利用する出力光信号の論理と変調信号の論理との不一致を招くことなく、分散ペナルティを小さく抑えることが可能となる。
【0009】
上記構成において、前記位相シフト制御回路による前記第2の位相制御信号の切替えと、前記信号極性反転回路による前記差動信号の極性の反転と、は連動してなされる構成とすることができる。この構成によれば、変調光信号として利用する出力光信号の論理と変調信号の論理とを一致させることができる。
【0010】
上記構成において、前記2つの出力光導波路の一方から出力された変調光信号として利用する出力光信号の光ファイバ伝送後のエラーレートに基づいて、前記位相シフト制御回路は前記第2の位相制御信号を切替え、前記信号極性反転回路は前記差動信号の極性を反転させる構成とすることができる。この構成によれば、変調光信号として利用する出力光信号の論理が変調信号の論理に対して反転状態となることが抑制できる。
【0011】
上記構成において、前記エラーレートが小さくなるように、前記位相シフト制御回路は前記第2の位相制御信号を切替え、前記信号極性反転回路は前記差動信号の極性を反転させる構成とすることができる。
【0012】
上記構成において、前記位相シフト制御回路は、前記2つの光導波路を伝搬する光に−π/2又は+π/2の位相差を付加させるように、前記2つの光導波路を伝搬する光の位相を変化させる構成とすることができる。
【0013】
上記構成において、前記位相シフト制御回路は、一方の前記位相シフト用電極に前記第2の位相制御信号を出力する場合には、他方の前記位相シフト用電極には前記第2の位相制御信号を出力しない構成とすることができる。
【0014】
本発明は、マッハツェンダ型光変調器の2つの出力光導波路の一方から出力された変調光信号として利用する出力光信号の光ファイバ伝送後のエラーレートに基づいて、前記2つの出力光導波路に合分波部を介して接続する2つの光導波路夫々に設けられた位相シフト用電極に出力する位相制御信号を切替えて、前記2つの光導波路を伝搬する光の位相を変化させ、前記2つの光導波路を伝搬する光を変調させる変調信号を、前記2つの光導波路夫々に設けられた変調用電極に差動信号として出力する際に、前記位相シフト制御回路による前記位相制御信号の切替えと連動して、前記変調用電極に出力する前記差動信号の極性を反転させる、ことを特徴とする光変調装置の制御方法である。本発明によれば、接続される光ファイバの分散が正分散、負分散であるに関らず、変調光信号として利用する出力光信号の論理と変調信号の論理との不一致を招くことなく、分散ペナルティを小さく抑えることができる。
【発明の効果】
【0015】
本発明によれば、接続される光ファイバの分散が正分散、負分散であるに関らず、変調光信号として利用する出力光信号の論理と変調信号の論理との不一致を招くことなく、分散ペナルティを小さく抑えることが可能となる。
【図面の簡単な説明】
【0016】
【図1】図1は、比較例1に係る光変調装置の上面模式図の例である。
【図2】図2(a)は、図1のA−A間の断面模式図の例であり、図2(b)は、図1のB−B間の断面模式図の例である。
【図3】図3は、比較例1に係る光変調装置のチャープ波形の測定結果である。
【図4】図4(a)は、比較例1に係る光変調装置に正分散の光ファイバを接続させた場合のファイバ伝送波形の測定結果であり、図4(b)は、負分散の光ファイバを接続させた場合のファイバ伝送波形の測定結果である。
【図5】図5は、比較例1に係る光変調装置のチャープ波形のシミュレーション結果である。
【図6】図6(a)は、比較例1に係る光変調装置に正分散の光ファイバを接続させた場合のファイバ伝送波形のシミュレーション結果であり、図6(b)は、負分散の光ファイバを接続させた場合のファイバ伝送波形のシミュレーション結果である。
【図7】図7は、実施例1に係る光変調装置の上面模式図の例である。
【図8】図8は、実施例1に係る光変調装置の制御を説明するフローチャートである。
【図9】図9は、第1光導波路に−π/2の位相シフタが現れた場合の、出力光信号の論理と変調信号の論理との関係について説明する模式図である。
【図10】図10は、第2光導波路に−π/2の位相シフタが現れ、且つ差動信号の極性が反転された場合の、出力光信号の論理と変調信号の論理との関係について説明する模式図である。
【図11】図11(a)は、第1光導波路に位相シフタが現れ且つ差動信号の極性が反転されていない場合のチャープ波形のシミュレーション結果であり、図11(b)は、第2光導波路に位相シフタが現れ且つ差動信号の極性が反転されている場合のチャープ波形のシミュレーション結果である。
【図12】図12(a)は、差動信号の極性を反転させない場合において、光ファイバが正分散を有する場合のファイバ伝送波形のシミュレーション結果であり、図12(b)は、光ファイバが負分散を有する場合のファイバ伝送波形のシミュレーション結果である。
【図13】図13(a)は、差動信号の極性を反転させた場合において、光ファイバが正分散を有する場合のファイバ伝送波形のシミュレーション結果であり、図13(b)は、光ファイバが負分散を有する場合のファイバ伝送波形のシミュレーション結果である。
【発明を実施するための形態】
【0017】
まず、比較例1に係る光変調装置について説明する。図1は、比較例1に係る光変調装置の上面模式図の例である。図1のように、比較例1に係る光変調装置は、マッハツェンダ型光変調器10と、位相調整回路12と、駆動回路14と、を主として備える。
【0018】
マッハツェンダ型光変調器10は、半導体基板上のメサ状の光導波路の経路を組み合わせて構成される光変調器である。図2(a)は、図1のA−A間の断面模式図の例であり、図2(b)は、図1のB−B間の断面模式図の例である。
【0019】
図2(a)のように、光導波路は、半導体基板16上に形成されている。光導波路は、半導体基板16上において、下クラッド層18a、コア20、上クラッド層18bがこの順にメサ状に積層された構造を有している。半導体基板16の上面、光導波路の上面及び側面には、パッシベーション膜22及び絶縁膜24が順に積層されている。
【0020】
半導体基板16は、例えばInP等の半導体からなる。下クラッド層18a及び上クラッド層18bは、例えばInP等の半導体からなる。コア20は、下クラッド層18a及び上クラッド層18bよりもバンドギャップエネルギが小さい半導体からなり、例えばInGaAsP等からなる。これにより、コア20を通過する光が下クラッド層18a及び上クラッド層18bによって閉じ込められる。パッシベーション膜22は、例えばInP等の半導体からなる。絶縁膜24は、例えばSiN等の絶縁体からなる。
【0021】
図1のように、マッハツェンダ型光変調器10には、第1入力端26aに接続された第1入力光導波路28aが設けられ、第2入力端26bに接続された第2入力光導波路28bが設けられている。第1入力光導波路28a及び第2入力光導波路28bは、第1MMI(Multi Mode Interference)30で合流し、第1光導波路32a及び第2光導波路32bに分岐する。マッハツェンダ型光変調器10の長手方向を対称軸とした場合に、第1光導波路32aは第1入力端26aと同じ側に配置され、第2光導波路32bは第2入力端26bと同じ側に配置されている。
【0022】
第1光導波路32a及び第2光導波路32bは第2MMI34で合流し、第1出力端36aに接続された第1出力光導波路38aと、第2出力端36bに接続された第2出力光導波路38bと、に分岐する。2×2型MMIでは、バー側(まっすぐ進む側)とクロス側(斜めに進む側)とでπ/2の位相差が発生する。例えば、第1MMI30では、第1入力端26aから入力された光が第1光導波路32a、第2光導波路32bに分岐されるとき、第1光導波路32aに分岐された光は第2光導波路32bに分岐された光に対して+π/2の位相差が付加される。マッハツェンダ型光変調器10の長手方向を対称軸とした場合に、第1出力端36aは第2光導波路32bと同じ側に配置され、第2出力端36bは第1光導波路32aと同じ側に配置されている。第1光導波路32aの光路長と第2光導波路32bの光路長との間には、あらかじめ差が設けられている。例えば第1光導波路32aを伝搬する光と第2光導波路32bを伝搬する光とに−π/2の位相差を付加させる光路長差が設けられている。つまり、例えば第1光導波路32aに、第1光導波路32aを伝搬する光が第2光導波路32bを伝搬する光に対して−π/2の位相差を付加させる位相シフタが設けられている。
【0023】
第1光導波路32a及び第2光導波路32bの夫々には、位相調整用電極40及び変調用電極42が設けられている。位相調整用電極40及び変調用電極42は、互いに離間している。位相調整用電極40及び変調用電極42の位置関係は特に限定されるものではないが、本実施例においては、位相調整用電極40は変調用電極42よりも光入力端側に配置されている。第1出力光導波路38a及び第2出力光導波路38bの夫々には、第1出力光導波路38aを伝搬する光及び第2出力光導波路38bを伝搬する光の光強度を検出する光強度検出電極44が設けられている。
【0024】
図2(b)のように、変調用電極42は、上クラッド層18b上において、コンタクト層46を介して配置されている。コンタクト層46は、例えばInGaAs等の半導体からなる。なお、上クラッド層18bとコンタクト層46との間には、パッシベーション膜22及び絶縁膜24は設けられていない。また、位相調整用電極40及び光強度検出電極44も同様に上クラッド層18b上にコンタクト層46を介して配置されている。位相調整用電極40、変調用電極42、及び光強度検出電極44は、例えばAu等の金属からなる。
【0025】
図1に戻り、各変調用電極42の一端には、第1光導波路32a及び第2光導波路32b夫々を伝搬する光を変調させる変調用の電圧が駆動回路14により印加される。変調用の電圧にはDC(直流)バイアス電圧がかけられている。各変調用電極42の他端には、終端抵抗48が接続されている。各変調用電極42に変調用の電圧が印加されると、第1光導波路32a及び第2光導波路32bにおいてコア20の屈折率が変化し、第1光導波路32a及び第2光導波路32bを通過する光の位相が変化する。
【0026】
駆動回路14は、第1光導波路32aに設けられた変調用電極42と、第2光導波路32bに設けられた変調用電極42と、に変調信号として差動信号を出力する。つまり、第1光導波路32aの変調用電極42にH(ハイ)にドライブさせる電圧を印加すると、第2光導波路32bの変調用電極42にはL(ロー)にドライブさせる電圧を印加する。反対に、第1光導波路32aの変調用電極42にL(ロー)にドライブさせる電圧を印加すると、第2光導波路32bの変調用電極42にはH(ハイ)にドライブさせる電圧を印加する。このように、第1光導波路32aの変調用電極42に印加する電圧と第2光導波路32bの変調用電極42に印加する電圧とに電位差があることで、第1光導波路32aを伝搬する光と第2光導波路32bを伝搬する光とにその電位差に応じた位相差が付加される。
【0027】
例えば、第1光導波路32aの変調用電極42にH(ハイ)にドライブさせる電圧を印加し、第2光導波路32bの変調用電極42にL(ロー)にドライブさせる電圧を印加した場合に、第1光導波路32aを伝搬する光と第2光導波路32bを伝搬する光とに+π/2の位相差が付加される。また、例えば、第1光導波路32aの変調用電極42にL(ロー)にドライブさせる電圧を印加し、第2光導波路32bの変調用電極42にH(ハイ)にドライブさせる電圧を印加した場合に、第1光導波路32aを伝搬する光と第2光導波路32bを伝搬する光とに−π/2の位相差が付加される。
【0028】
上述したように、第1光導波路32aには、第1光導波路32aを伝搬する光が第2光導波路32bを伝搬する光に対して−π/2の位相差を付加させる位相シフタがあらかじめ設けられている。したがって、第1光導波路32aの変調用電極42にH(ハイ)にドライブされる電圧が印加され、第2光導波路32bの変調用電極42にL(ロー)にドライブさせる電圧が印加されると、第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差は+π/2になる。反対に、第1光導波路32aの変調用電極42にL(ロー)にドライブさせる電圧が印加され、第2光導波路32bの変調用電極42にH(ハイ)にドライブさせる電圧が印加されると、第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差は−π/2になる。このように、各変調用電極42に差動信号として変調用の電圧が印加されると、第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差は、+π/2と−π/2とを交互に繰り返すことになる。
【0029】
第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差が+π/2である場合は、第2MMI34の出力で位相が同相となり、第1入力端26aから入力された光は第1出力端36aから出力され、第2出力端36bからは出力されない。反対に、第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差が−π/2である場合は、第2MMI34の出力で位相が逆相となり、第1入力端26aから入力された光は第2出力端36bから出力され、第1出力端36aからは出力されない。このように、第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差に応じて、第1入力端26aから入力された光が出力される出力端が第1出力端36aと第2出力端36bとの間で切り替る。これにより、第1出力端36a又は第2出力端36bからの出力光信号を変調光信号として利用することができる。以下の説明においては、第1出力端36aの出力光信号を変調光信号として利用することとする。
【0030】
マッハツェンダ型光変調器10の光導波路を製造する際には、導波路の幅や長さ等に製造ばらつきが少なからず発生し、第1光導波路32aの光路長と第2光導波路32bの光路長とが設定値から外れてしまうことがある。これにより、第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差が設定値から外れてしまうことがある。このような位相差のずれを補正するための位相調整を行う回路が位相調整回路12である。
【0031】
位相調整回路12は、各位相調整用電極40に位相制御信号となるDC電圧を印加して、第1光導波路32a及び第2光導波路32bにおいてコア20の屈折率を変化させ、第1光導波路32a及び第2光導波路32bを伝搬する光の位相を変化させることで位相調整を行う。具体的には、位相調整回路12は、各光強度検出電極44で検出される光強度に基づいて、各位相調整用電極40に印加するDC電圧をフィードバック制御する。第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差が+π/2と−π/2とを交互に繰り返す場合には、第1出力端36aから出力される光の強度と第2出力端36bから出力される光の強度とは、一定の時間幅で同じ大きさとなる。そこで、位相調整回路12は、第1出力光導波路38aの光強度検出電極44で検出された光強度と、第2出力光導波路38bの光強度検出電極44で検出された光強度と、が同じ大きさとなるように、各位相調整用電極40に印加するDC電圧を制御する。これにより、第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差が+π/2と−π/2とを交互に繰り返すようにでき、製造ばらつきによる位相差のずれを補正することができる。なお、このような位相制御は、DC電圧によるほか、電流注入による制御、あるいは、第1光導波路32a及び第2光導波路32bにヒータを設けて、ヒータの温度を制御することで行うことができる。
【0032】
ここで、比較例1に係る光変調装置のチャープ特性を説明する。図3は、比較例1に係る光変調装置のチャープ波形の測定結果である。図3のように、αパラメータが0であるゼロチャープ特性(図3中の実線)を示すことが理想的であるが、比較例1に係る光変調装置では、αパラメータが負側にシフトした負チャープ特性を示している。
【0033】
図4(a)は、比較例1に係る光変調装置に正分散(+800ps/nm)のファイバ分散を有する光ファイバを接続させた場合のファイバ伝送波形の測定結果であり、図4(b)は、負分散(−850ps/nm)のファイバ分散を有する光ファイバを接続させた場合のファイバ伝送波形の測定結果である。なお、測定は、1560nmの波長の光を導入し、各変調用電極42に−5.6VのDCバイアス電圧を印加し、第2光導波路32bの位相調整用電極40に−5.7VのDC電圧を印加して、第1光導波路32aの位相調整用電極40にはDC電圧を印加していない条件で行った。
【0034】
図4(a)及び図4(b)のように、ファイバ分散による波形歪みは、ファイバ分散が正分散である場合と負分散である場合とで非対称であることがわかる。これは、各変調用電極42に印加する変調用の電圧に対して位相変化が線形とはならないことが一因と考えられる。負分散の場合の波形ではゼロレベルが上がっているため、負分散の場合は、正分散の場合に比べて、分散ペナルティが大きくなり易い。例えば、正分散での分散ペナルティが〜0dBであるのに対して、負分散での分散ペナルティが〜1.35dBとなることがある。
【0035】
また、上述したように、マッハツェンダ型光変調器10の光導波路を製造する際に、光導波路の幅や長さ、MMIの分岐比に製造ばらつきが少なからず発生する。光導波路の幅や長さに製造ばらつきが生じると、第1光導波路32aを伝搬する光と第2光導波路32bを伝搬する光との位相差が設定値から外れてしまう。製造ばらつきによる位相差のずれを初期位相差ΔΦOSとする。このような、製造ばらつきによるMMIの分岐比及び初期位相差ΔΦOSのばらつきも、図3で示したような負チャープ特性、図4(a)及び図4(b)に示したような正分散と負分散とでの伝送波形の非対称性に影響を及ぼしていると考えられる。
【0036】
そこで、MMIの分岐比及び初期位相差ΔΦOSのばらつきが、チャープ波長特性及び伝送波形に影響を及ぼすことを調べるために、比較例1に係る光変調装置についてシミュレーションを行った。シミュレーションは、初期位相差ΦOSが0.85πであるとし、第1MMI30による第1光導波路32a側への光の分岐比γが0.45であるとし、各変調用電極42に与える差動信号の位相差Δτが5psecであるとして行った。また、1565nmの波長の光を導入し、各変調用電極42に−5.6VのDCバイアス電圧を印加し、第2光導波路32bの位相調整用電極40に−5.7VのDC電圧を印加する条件で行った。
【0037】
図5は、チャープ波形のシミュレーション結果である。図6(a)は、正分散(+800ps/nm)のファイバ分散を有する光ファイバを接続させた場合のファイバ伝送波形のシミュレーション結果であり、図6(b)は、負分散(−800ps/nm)ファイバ分散を有する光ファイバを接続させた場合のファイバ伝送波形のシミュレーション結果である。図5から図6(b)のように、チャープ波形及びファイバ伝送波形ともに、図3から図4(b)に示した測定結果と同様の結果を示していることがわかる。このことから、MMIの分岐比及び初期位相差ΔΦOSのばらつきが、チャープ波形及びファイバ伝送波形に影響を及ぼしていることがわかる。
【0038】
このように、光導波路の製造ばらつきによるMMIの分岐比及び初期位相差ΔΦOSのばらつきは、チャープ波形及びファイバ伝送波形に影響を及ぼす。製造ばらつきは少なからず生じてしまうことから、接続される光ファイバが正分散であるか負分散であるかによって、分散ペナルティに差が生じてしまうことになる。例えば、負分散の光ファイバが接続された場合には、分散ペナルティが大きくなってしまう場合がある。そこで、このような課題を解決すべく、正分散の光ファイバ及び負分散の光ファイバのどちらが接続された場合でも、分散ペナルティを小さく抑えることが可能な実施例について以下に説明する。
【実施例1】
【0039】
図7は、実施例1に係る光変調器の上面模式図の例である。図7のように、実施例1に係る光変調器は、マッハツェンダ型光変調器10と、位相調整回路12と、駆動回路14と、位相シフト制御回路50と、信号極性反転回路52と、を主として備える。
【0040】
マッハツェンダ型光変調器10は、第1光導波路32a及び第2光導波路32bの夫々に、位相シフト用電極54が設けられている。その他の構成については、比較例1で説明したマッハツェンダ型光変調器10と同じであり、図1に示しているのでここでは説明を省略する。
【0041】
位相シフト用電極54のいずれか一方には、位相シフト制御回路50から所定の大きさのDC電圧が印加され、他方にはDC電圧が印加されない。位相シフト用電極54にDC電圧が印加されると、第1光導波路32a及び第2光導波路32bにおいてコア20の屈折率が変化し、第1光導波路32a及び第2光導波路32bを通過する光の位相が変化する。したがって、位相シフト用電極54のいずれか一方に所定の大きさのDC電圧が印加され、他方にはDC電圧が印加されないと、その電位差に応じた位相シフタが、第1光導波路32a又は第2光導波路32bに現れることとなる。
【0042】
マッハツェンダ型光変調器10の第1出力端36aには、光ファイバ56の一端が接続され、光ファイバ56の他端には光受信器58が接続されている。第1出力端36aからは、変調光信号として利用する出力光信号が出力され、光受信器58は、その出力光信号を受信する。そして、光受信器58は、出力光信号のエラーレートやファイバ伝送波形を測定する。
【0043】
駆動回路14は、第1光導波路32a及び第2光導波路32bに設けられた各変調用電極42に変調用の電圧を印加する。各変調用電極42に印加される変調用の電圧には、DCバイアス電圧がかけられている。駆動回路14は、第1光導波路32aの変調用電極42に出力する変調信号と第2光導波路32bの変調用電極42に出力する変調信号とを差動信号として出力する。
【0044】
位相調整回路12は、各光強度検出電極44で検出される光強度に基づいて、各位相調整用電極40に印加する位相制御信号(第1の位相制御信号)となるDC電圧の大きさを制御して、第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差の設定値からのずれを補正する位相調整を行う。具体的には、位相調整回路12は、各光強度検出電極44で検出される平均光強度が同じ大きさとなるように、各位相調整用電極40に印加するDC電圧を制御して、位相差の設定値からのずれを補正する位相調整を行う。
【0045】
位相シフト制御回路50は、光受信器58で測定されたエラーレートを検知し、そのエラーレートに基づいて、位相シフト用電極54の一方に印加する位相制御信号(第2の位相制御信号)となるDC電圧の値と他方に印加する位相制御信号(第2の位相制御信号)となるDC電圧の値との切替えをする。具体的には、位相シフト制御回路50は、位相シフト用電極54の一方に所定のDC電圧を印加し、他方にはDC電圧を印加しないため、位相シフト用電極54のどちらに所定のDC電圧を印加するかを切替える。これにより、第1光導波路32a又は第2光導波路32bに、DC電圧の大きさに応じた位相シフタが現れることとなる。
【0046】
信号極性反転回路52は、光受信器58で測定されたエラーレートを検知し、そのエラーレートに基づいて、駆動回路14から出力される差動信号の信号極性を反転させる。つまり、信号極性反転回路52による信号極性の反転と、位相シフト制御回路50による位相シフト用電極54の一方に印加するDC電圧値と他方に印加するDC電圧値との切替えと、は連動してなされることとなる。
【0047】
ここで、以下のような定義をする。
光導波路の製造ばらつきにより生じる位相差のずれを初期位相差ΔΦOSとする。
位相シフト用電極54の一方に所定のDC電圧を印加し、他方にはDC電圧を印加しないことで、第1光導波路32a又は第2光導波路32bに現れる位相シフタによる位相シフト量をΦPSとする。
第1光導波路32aの位相調整用電極40に印加したDC電圧で生じる位相シフト量をΦDC1Aとし、第2光導波路32bの位相調整用電極40に印加したDC電圧で生じる位相シフト量をΦDC2Aとする。
各変調用電極42に印加する変調用の電圧にはDCバイアス電圧がかけられており、第1光導波路32aの変調用電極42に印加したDCバイアス電圧で生じる位相シフト量をΦDC1Bとし、第2光導波路32bの変調用電極42に印加したDCバイアス電圧で生じる位相シフト量をΦDC2Bとする。なお、通常、駆動回路14により各変調用電極42に印加するDCバイアス電圧の大きさは同じであることから、ΦDC1B=ΦDC2Bである。
【0048】
図8は、実施例1に係る光変調装置の制御を説明するフローチャートである。図8のように、まず、位相シフト制御回路50は、第1光導波路32aに−π/2の位相シフタが現れるように、位相シフト用電極54の一方に所定のDC電圧を印加し、他方にはDC電圧を印加しない(ステップS10)。
【0049】
次いで、位相調整回路12は、各光強度検出電極44で検出される光強度が同じ大きさになるように各位相調整用電極40に印加するDC電圧を制御して、第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差の設定値からのずれを補正する位相調整をする(ステップS12)。次いで、位相シフト制御回路50及び信号極性反転回路52は、光受信器58で測定されたエラーレートを検知する(ステップS14)。
【0050】
次に、位相シフト制御回路50は、第2光導波路32bに−π/2の位相シフタが現れるように、各位相シフト用電極54に印加するDC電圧値を相互に切替える(ステップS16)。具体的には、位相シフト用電極54の一方に所定のDC電圧を印加していたのを止めてDC電圧を印加しないようにし、DC電圧を印加していなかった他方の位相シフト用電極54に所定のDC電圧を印加するようにする。次いで、信号極性反転回路52は、駆動回路14から出力される差動信号の信号極性を反転させる(ステップS18)。
【0051】
次いで、位相調整回路12は、各光強度検出電極44で検出される光強度が同じ大きさになるように各位相調整用電極40に印加するDC電圧を制御して、第1光導波路32aを通過した光と第2光導波路32bを通過した光との位相差のずれを補正する位相調整をする(ステップS20)。
【0052】
ここで、図9及び図10を用いて、出力光信号の論理と変調信号の論理との関係について説明する。図9は、第1光導波路32aに−π/2の位相シフタが現れた場合の、出力光信号の論理と変調信号の論理との関係について説明する模式図である。図10は、第2光導波路32bに−π/2の位相シフタが現れ、且つ駆動回路14から出力される差動信号の極性が反転された場合の、出力光信号の論理と変調信号の論理との関係について説明する模式図である。
【0053】
第1光導波路32aに−π/2の位相シフタが現れた場合、第1光導波路32aにおいてDC電圧で生じる位相変化量ΦDC1は、ΦDC1=ΔΦOS+ΦPS+ΦDC1A+ΦDC1B=ΔΦOS−π/2+ΦDC1A+ΦDC1Bと表すことができる。また、第2光導波路32bにおいてDC電圧で生じる位相変化量ΦDC2は、ΦDC2=ΦDC2A+ΦDC2Bと表すことができる。上述のように、ΦDC1B=ΦDC2Bであるから、ΦDC1とΦDC2との差は、ΦDC1−ΦDC2=ΔΦOS−π/2+ΦDC1A−ΦDC2Aと表すことができる。
【0054】
一方、第2光導波路32bに−π/2の位相シフタが現れた場合、第1光導波路32aにおいてDC電圧で生じる位相変化量ΦDC1は、ΦDC1=ΔΦOS+ΦDC1A+ΦDC1Bと表すことができる。また、第2光導波路32bにおいてDC電圧で生じる位相変化量ΦDC2は、ΦDC2=ΦPS+ΦDC2A+ΦDC2B=−π/2+ΦDC2A+ΦDC2Bと表すことができる。したがって、ΦDC1とΦDC2との差は、ΦDC1−ΦDC2=ΔΦOS+ΦDC1A−ΦDC2A+π/2と表すことができる。
【0055】
このように、−π/2の位相シフタが、第1光導波路32aに現れるか、第2光導波路32bに現れるかにより、ΦDC1とΦDC2との差(ΦDC1−ΦDC2)はπずれることになる。比較例1で述べたように、各変調用電極42に印加する変調用の電圧によって、第1光導波路32aを伝搬する光と第2光導波路32bを伝搬する光とに−π/2と+π/2の位相差が交互に付加される。このことから、第1光導波路32aに−π/2の位相シフタが現れた場合のΦDC1−ΦDC2を−π/2であるとした場合、図9のように、変調光信号として利用する第1出力端36aからの出力光信号の論理と変調信号の論理とが一致する。
【0056】
一方、第2光導波路32bに−π/2の位相シフタが現れた場合は、第1光導波路32aに−π/2の位相シフタが現れた場合に比べて、位相がπずれるため、ΦDC1−ΦDC2は+π/2となる。このような場合、第1出力端36aから出力される出力光信号の論理と変調信号の論理とが反転してしまうが、駆動回路14から出力される差動信号の極性を反転させることで、図10のように、第1出力端36aからの出力光信号の論理と変調信号の論理とを一致させることができる。
【0057】
したがって、実施例1に係る光変調器では、変調光信号として利用する第1出力端36aから出力される出力光信号の論理と変調信号の論理とを一致させることができる。
【0058】
図8に戻り、位相シフト制御回路50及び信号極性反転回路52は、光受信器58で測定されたエラーレートを検知する(ステップS22)。
【0059】
ここで、ステップS14で検知したエラーレートとステップS22で検知したエラーレートとは異なる値となることを説明する。図11(a)は、第1光導波路32aに−π/2の位相シフタが現れ、駆動回路14からの差動信号の極性が反転されていない場合のチャープ波形のシミュレーション結果である。図11(b)は、第2光導波路32bに−π/2の位相シフタが現れ、駆動回路14からの差動信号の極性が反転されている場合のチャープ波形のシミュレーション結果である。なお、シミュレーションは以下の条件で行った。変調用電極42が設けられた箇所の第1光導波路32a及び第2光導波路32bの長さを1.5mmとした。位相調整用電極40が設けられた箇所の第1光導波路32a及び第2光導波路32bの長さを0.6mmとした。初期位相差ΔΦOSを−0.99πとした。第1MMI30の第1光導波路32a側への光の分岐比を0.45とした。1565nmの波長の光を導入した。変調用電極42に印加するDCバイアス電圧を−6Vとした。消光比は<26dBとした。
【0060】
図11(a)及び図11(b)のように、駆動回路14から出力される差動信号の極性を反転させることで、チャープ波形も反転していることがわかる。即ち、図11(a)のように、差動信号の極性を反転させる前では、負チャープ特性を示していたのに対し、図11(b)のように、差動信号の極性を反転させることで、正チャープ特性を示すようになっている。
【0061】
次に、差動信号の極性を反転させない場合と反転させた場合とについて、ファイバ伝送波形がどのようになるかを説明する。図12(a)及び図12(b)は差動信号の極性を反転させない場合であり、図12(a)は、光ファイバ56が正分散(+800ps/nm)を有する場合のファイバ伝送波形のシミュレーション結果であり、図12(b)は、光ファイバ56が負分散(−800ps/nm)を有する場合のファイバ伝送波形のシミュレーション結果である。図13(a)及び図13(b)は差動信号の極性を反転させた場合であり、図13(a)は、光ファイバ56が正分散(+800ps/nm)を有する場合のファイバ伝送波形のシミュレーション結果であり、図13(b)は、光ファイバ56が負分散(−800ps/nm)を有する場合のファイバ伝送波形のシミュレーション結果である。
【0062】
図12(a)及び図12(b)のように、差動信号の極性を反転させない場合では、光ファイバ56が正分散を有する場合は、きれいなアイパターンを示すのに対し、負分散を有する場合は、アイパターンがつぶれてゼロレベルが上がっている。反対に、図13(a)及び図13(b)のように、差動信号の極性を反転させた場合では、光ファイバ56が正分散を有する場合は、アイパターンがつぶれてゼロレベルが上がっているのに対し、負分散を有する場合は、きれいなアイパターンを示す。
【0063】
このように、光ファイバ56の分散が正分散であれ、負分散であれ、差動信号の極性を反転させる前と後とではアイパターンが異なるため、ステップS14で検知したエラーレートとステップS22で検知したエラーレートとは異なる値となる。
【0064】
図8に戻り、位相シフト制御回路50及び信号極性反転回路52は、ステップS22で検知したエラーレートが、ステップS14で検知したエラーレートよりも小さいかを判断する(ステップS24)。小さいと判断した場合には(Yesの場合)、位相シフト制御回路50は、各位相シフト用電極54に印加しているDC電圧を現状のままにし、信号極性反転回路52は、差動信号の極性を現状のままにする。大きいと判断した場合には(Noの場合)、位相シフト制御回路50は、各位相シフト用電極54に印加するDC電圧値を相互に切替え(ステップS26)、信号極性反転回路52は、駆動回路14から出力される差動信号の極性を反転させない状態にする(ステップS28)。
【0065】
以上説明してきたように、実施例1に係る光変調装置によれば、第1光導波路32aと第2光導波路32bとに設けられた位相シフト用電極54に出力する位相制御信号を切替えて、第1光導波路32a及び第2光導波路32bを伝搬する光の位相を変化させる位相シフト制御回路50を備える。例えば、一方の位相シフト用電極54に印加するDC電圧値と他方の位相シフト用電極54に印加するDC電圧値とを切替えて、第1光導波路32a及び第2光導波路32bを伝搬する光の位相を変化させる位相シフト制御回路50を備える。また、駆動回路14から出力される差動信号の極性を反転させる信号極性反転回路52を備える。これにより、図8で説明したような、光受信器58で測定された変調光信号として利用する出力光信号のエラーレートが小さくなるように、位相シフト用電極54に出力する位相制御信号を切替え、且つ差動信号の極性を反転させる、ということが可能となる。エラーレートが小さくなるように、出力する位相制御信号を切替え、且つ差動信号の極性を反転させることで、光ファイバ56の分散が正分散の場合には、図12(a)に示したファイバ伝送波形を得ることができ、負分散の場合には、図13(b)に示したファイバ伝送波形を得ることができる。よって、光ファイバ56の分散が正分散、負分散であるに関らず、分散ペナルティを小さく抑えることができる。また、図9及び図10で説明したように、変調光信号として利用する出力光信号の論理と変調信号の論理とを一致させることが可能となる。
【0066】
実施例1で説明したように、位相シフト制御回路50による位相制御信号の切替えと、信号極性反転回路52による駆動回路14から出力される差動信号の極性の反転と、は連動してなされる場合が好ましく、また、同時になされる場合がより好ましい。これにより、変調光信号として利用する出力光信号の論理と変調信号の論理とを一致させることができる。
【0067】
位相シフト制御回路50による位相制御信号の切替え、及び信号極性反転回路52による差動信号の極性反転は、変調光信号として利用する出力光信号の光ファイバ56伝送後のエラーレートに基づいて行う場合を例に示したが、これに限られる訳ではない。例えば、出力光信号のファイバ伝送波形に基づいて、位相制御信号の切替え、及び差動信号の極性反転を行う場合でもよい。しかしながら、エラーレートに基づいて、位相制御信号の切替え、及び差動信号の極性反転を行うことで、変調光信号として利用する出力光信号の論理が変調信号の論理に対して反転状態となることが抑制できる。
【0068】
位相シフト制御回路50によって、第1光導波路32a又は第2光導波路32bに−π/2の位相シフタが現れる場合を例に示したが、これに限られる訳ではない。第1光導波路32a又は第2光導波路32bに+π/2の位相シフタが現れる場合でもよい。つまり、位相シフト制御回路50は、第1光導波路32aを伝搬する光と第2光導波路32bを伝搬する光とに−π/2又は+π/2の位相差を付加させるように位相を変化させる場合であればよい。第1光導波路32a又は第2光導波路32bに現れる位相シフタが−π/2の場合と+π/2の場合とでは、ΦDC1−ΦDC2がπずれることになる。このため、位相シフタが−π/2の場合に、変調光信号として利用する出力光信号の論理と変調信号の論理とが一致する場合、位相シフタが+π/2の場合では論理が反転してしまうとも考えられるが、信号極性反転回路52による差動信号の極性反転を適切に行うことで、一致させることができる。例えば、第1光導波路32aに−π/2の位相シフタが現れ、且つ差動信号の極性を反転させない状態で、出力光信号の論理と変調信号の論理とが一致する場合、第1光導波路32aに現れる位相シフタが+π/2の場合では、差動信号の極性を反転させることで、論理を一致させることができる。
【0069】
位相シフト制御回路50は、第1光導波路32aの位相シフト用電極54又は第2光導波路32bの位相シフト用電極54のいずれか一方に位相制御信号を出力する場合には、他方には位相制御信号を出力しない場合を、つまり、一方にDC電圧を印加する場合には、他方にはDC電圧を印加しない場合を例に示したが、これに限られる訳ではない。一方の位相シフト用電極54に印加するDC電圧値と他方の位相シフト用電極54に印加するDC電圧値とが所定の電位差を維持していれば、DC電圧にバイアス電圧がかけられている場合でもよい。
【0070】
第1出力端36aから出力される出力光信号と第2出力端36bから出力される出力光信号とのクロスポイントの狙い値が50%である場合を例に示したが、これに限られる訳ではない。クロスポイントが50%以外の値を狙い値とする場合でもよい。
【0071】
マッハツェンダ型光変調器10は、入力光導波路が2本設けられている場合を例に示したが、これに限られる訳ではなく、入力光導波路が1本の場合でも同様の方法を適用することができる。
【0072】
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
【符号の説明】
【0073】
10 マッハツェンダ型光変調器
12 位相調整回路
14 駆動回路
16 半導体基板
18a 下クラッド層
18b 上クラッド層
20 コア
22 パッシベーション膜
24 絶縁膜
26a 第1入力端
26b 第2入力端
28a 第1入力光導波路
28b 第2入力光導波路
30 第1MMI
32a 第1光導波路
32b 第2光導波路
34 第2MMI
36a 第1出力端
36b 第2出力端
38a 第1出力光導波路
38b 第2出力光導波路
40 位相調整用電極
42 変調用電極
44 光強度検出電極
46 コンタクト層
48 終端抵抗
50 位相シフト制御回路
52 信号極性反転回路
54 位相シフト用電極
56 光ファイバ
58 光受信器

【特許請求の範囲】
【請求項1】
2つの出力光導波路に合分波部を介して接続する2つの光導波路を有するマッハツェンダ型光変調器と、
前記2つの光導波路を伝搬する光を変調させる変調信号を、前記2つの光導波路夫々に設けられた変調用電極に差動信号として出力する駆動回路と、
前記2つの光導波路夫々に設けられた位相調整用電極に出力する第1の位相制御信号を制御して、前記2つの光導波路を伝搬する光の位相を調整する位相調整回路と、
前記2つの光導波路夫々に設けられた位相シフト用電極に出力する第2の位相制御信号を切替えて、前記2つの光導波路を伝搬する光の位相を変化させる位相シフト制御回路と、
前記差動信号の極性を反転させる信号極性反転回路と、を備えることを特徴とする光変調装置。
【請求項2】
前記位相シフト制御回路による前記第2の位相制御信号の切替えと、前記信号極性反転回路による前記差動信号の極性の反転と、は連動してなされることを特徴とする請求項1記載の光変調装置。
【請求項3】
前記2つの出力光導波路の一方から出力された変調光信号として利用する出力光信号の光ファイバ伝送後のエラーレートに基づいて、前記位相シフト制御回路は前記第2の位相制御信号を切替え、前記信号極性反転回路は前記差動信号の極性を反転させることを特徴とする請求項2記載の光変調装置。
【請求項4】
前記エラーレートが小さくなるように、前記位相シフト制御回路は前記第2の位相制御信号を切替え、前記信号極性反転回路は前記差動信号の極性を反転させることを特徴とする請求項3記載の光変調装置。
【請求項5】
前記位相シフト制御回路は、前記2つの光導波路を伝搬する光に−π/2又は+π/2の位相差を付加させるように、前記2つの光導波路を伝搬する光の位相を変化させることを特徴とする請求項1から4のいずれか一項記載の光変調装置。
【請求項6】
前記位相シフト制御回路は、一方の前記位相シフト用電極に前記第2の位相制御信号を出力する場合には、他方の前記位相シフト用電極には前記第2の位相制御信号を出力しないことを特徴とする請求項1から5のいずれか一項記載の光変調装置。
【請求項7】
マッハツェンダ型光変調器の2つの出力光導波路の一方から出力された変調光信号として利用する出力光信号の光ファイバ伝送後のエラーレートに基づいて、前記2つの出力光導波路に合分波部を介して接続する2つの光導波路夫々に設けられた位相シフト用電極に出力する位相制御信号を切替えて、前記2つの光導波路を伝搬する光の位相を変化させ、
前記2つの光導波路を伝搬する光を変調させる変調信号を、前記2つの光導波路夫々に設けられた変調用電極に差動信号として出力する際に、前記位相シフト制御回路による前記位相制御信号の切替えと連動して、前記変調用電極に出力する前記差動信号の極性を反転させる、ことを特徴とする光変調装置の制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2013−113917(P2013−113917A)
【公開日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2011−257907(P2011−257907)
【出願日】平成23年11月25日(2011.11.25)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】