説明

光学ガラス及び光学素子

【課題】屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、耐失透性が高いガラスを、より安価に提供する。
【解決手段】光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でB成分を1.0〜30.0%及びLa成分を10.0〜50.0%含有し、Ta成分の含有量が20.0%以下であり、1.80以上の屈折率(n)を有し、35以上50以下のアッベ数(ν)を有する。光学素子は、この光学ガラスを母材とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学ガラス及び光学素子に関する。
【背景技術】
【0002】
近年、光学系を使用する機器のデジタル化や高精細化が急速に進んでおり、デジタルカメラやビデオカメラ等の撮影機器や、プロジェクタやプロジェクションテレビ等の画像再生(投影)機器等の各種光学機器の分野では、光学系で用いられるレンズやプリズム等の光学素子の枚数を削減し、光学系全体を軽量化及び小型化する要求が強まっている。
【0003】
光学素子を作製する光学ガラスの中でも特に、光学系全体の軽量化及び小型化を図ることが可能な、1.80以上の屈折率(n)を有し、35以上50以下のアッベ数(ν)を有する高屈折率低分散ガラスの需要が非常に高まっている。このような高屈折率低分散ガラスとしては、特許文献1〜4に代表されるようなガラス組成物が知られている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2001−348244号公報
【特許文献2】特開2006−016293号公報
【特許文献3】特開2009−102215号公報
【特許文献4】特開2009−203083号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
光学ガラスから光学素子を作製する方法としては、例えば、光学ガラスから形成されたゴブ又はガラスブロックに対して研削及び研磨を行って光学素子の形状を得る方法、光学ガラスから形成されたゴブ又はガラスブロックを再加熱して成形(リヒートプレス成形)して得られたガラス成形体を研削及び研磨する方法、及び、ゴブ又はガラスブロックから得られたプリフォーム材を超精密加工された金型で成形(精密モールドプレス成形)して光学素子の形状を得る方法が知られている。いずれの方法であっても、溶融したガラス原料からゴブ又はガラスブロックを形成する際には、形成されるガラスの失透を低減することが求められる。ここで、得られるゴブ又はガラスブロックの内部に結晶が発生することで失透が発生した場合、もはや光学素子として好適なガラスを得ることができない。
【0006】
また、光学ガラスの材料コストを低減するために、光学ガラスを構成する諸成分の原料費は、なるべく安価であることが望まれる。また、光学ガラスの製造コストを低減するために、原料の熔解性が高いこと、すなわちより低い温度で熔解することが望まれる。ところが、特許文献1〜4に記載されたガラス組成物は、これらの諸要求に十分応えるものとは言い難い。
【0007】
本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、耐失透性が高いガラスを、より安価に得ることにある。
【課題を解決するための手段】
【0008】
本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、B成分及びLa成分を含有するガラスに対してTa成分の含有量を低減することにより、所望の屈折率及びアッベ数を有しながらもガラスの材料コストが低減され、且つガラスの液相温度が低くなることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。
【0009】
(1) 酸化物換算組成のガラス全質量に対して、質量%でB成分を1.0〜30.0%及びLa成分を10.0〜55.0%含有し、Ta成分の含有量が20.0%以下である光学ガラス。
【0010】
(2) 酸化物換算組成において、TiO成分、Nb成分及びWO成分からなる群より選択される1種以上を含有する(1)に記載の光学ガラス。
【0011】
(3) 酸化物換算組成のガラス全質量に対する、TiO成分、Nb成分及びWO成分からなる群より選択される1種以上の含有量の和が、0.5%以上40.0%以下である(2)に記載の光学ガラス。
【0012】
(4) 酸化物換算組成のガラス全質量に対して、質量%で
TiO成分 0〜20.0%及び/又は
Nb成分 0〜20.0%及び/又は
WO成分 0〜25.0%
を含有する(2)又は(3)記載の光学ガラス。
【0013】
(5) 酸化物換算組成のガラス全質量に対して、質量%で
SiO成分 0〜20.0%及び/又は
ZrO成分 0〜12.0%
の各成分をさらに含有する(1)から(4)のいずれかに記載の光学ガラス。
【0014】
(6) 酸化物換算組成のガラス全質量に対するB成分及びSiO成分の含有量の和が25.0%以下である(1)から(5)のいずれかに記載の光学ガラス。
【0015】
(7) 酸化物換算組成の質量比(ZrO+Ta+Nb)/(B+SiO)が2.00以下である(1)から(6)のいずれかに記載の光学ガラス。
【0016】
(8) 酸化物換算組成のガラス全質量に対して、質量%で
Gd成分 0〜45.0%及び/又は
成分 0〜30.0%及び/又は
Yb成分 0〜20.0%
の各成分をさらに含有する(1)から(7)のいずれかに記載の光学ガラス。
【0017】
(9) 酸化物換算組成のガラス全質量に対するLn成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の質量和が30.0%以上75.0%以下である(1)から(8)のいずれかに記載の光学ガラス。
【0018】
(10) 酸化物換算組成のガラス全質量に対するLn成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の質量和が40.0%より多い(9)に記載の光学ガラス。
【0019】
(11) 酸化物換算組成の質量比Ta/(Ln+ZrO+Nb+WO)が0.300以下である(1)から(10)のいずれかに記載の光学ガラス(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上とする)。
【0020】
(12) 酸化物換算組成のガラス全質量に対して、質量%で
MgO成分 0〜20.0%及び/又は
CaO成分 0〜20.0%及び/又は
SrO成分 0〜20.0%及び/又は
BaO成分 0〜25.0%
の各成分をさらに含有する(1)から(11)のいずれかに記載の光学ガラス。
【0021】
(13) 酸化物換算組成のガラス全質量に対するRO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の質量和が25.0%以下である(12)記載の光学ガラス。
【0022】
(14) 酸化物換算組成のガラス全質量に対して、質量%で
LiO成分 0〜10.0%及び/又は
NaO成分 0〜10.0%及び/又は
O成分 0〜10.0%及び/又は
CsO成分 0〜10.0%
の各成分をさらに含有する(1)から(13)のいずれかに記載の光学ガラス。
【0023】
(15) 酸化物換算組成のガラス全質量に対するRnO成分(式中、RnはLi、Na、K、Csからなる群より選択される1種以上)の質量和が15.0%以下である(14)記載の光学ガラス。
【0024】
(16) 酸化物換算組成の質量比(B+SiO+WO)/(Ln+ZrO+LiO)が0.20以上2.00以下である(1)から(15)のいずれか記載の光学ガラス。
【0025】
(17) 酸化物換算組成のガラス全質量に対して、質量%で
成分 0〜10.0%及び/又は
GeO成分 0〜10.0%及び/又は
ZnO成分 0〜25.0%及び/又は
Al成分 0〜10.0%及び/又は
Ga成分 0〜10.0%及び/又は
Bi成分 0〜20.0%及び/又は
TeO成分 0〜20.0%及び/又は
SnO成分 0〜1.0%及び/又は
Sb成分 0〜1.0%
の各成分をさらに含有する(1)から(16)のいずれか記載の光学ガラス。
【0026】
(18) 1.75以上の屈折率(n)を有し、30以上50以下のアッベ数(ν)を有する(1)から(17)のいずれか記載の光学ガラス。
【0027】
(19) 1300℃以下の液相温度を有する(1)から(18)のいずれか記載の光学ガラス。
【0028】
(20) (1)から(19)のいずれか記載の光学ガラスを母材とする光学素子。
【0029】
(21) (20)記載の光学素子を備える光学機器。
【発明の効果】
【0030】
本発明によれば、B成分及びLa成分を含有するガラスに対してTa成分の含有量を低減することにより、所望の屈折率及びアッベ数を有しながらも、ガラス転移点が低くなり、且つガラスの材料コストが低減される。このため、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、耐失透性が高い光学ガラスを、より安価に得ることができる。
【発明を実施するための形態】
【0031】
本発明の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でB成分を1.0〜30.0%及びLa成分を10.0〜50.0%含有し、Ta成分の含有量が20.0%以下である。Ta成分の含有量を低減することによって、高価であり且つ高温での熔解を要するTa成分の使用量が減少するため、光学ガラスの原料コスト及び製造コストが低減される。それとともに、B成分及びLa成分をベースとすることにより、1.80以上の屈折率(n)及び35以上50以下のアッベ数(ν)を有しながらも、液相温度が低くなり易くなる。このため、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、耐失透性が高い光学ガラスと、これを用いた光学素子をより安価に得ることができる。
【0032】
以下、本発明の光学ガラスの実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。
【0033】
[ガラス成分]
本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中で特に断りがない場合、各成分の含有量は、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
【0034】
<必須成分、任意成分について>
成分は、希土類酸化物を多く含む本発明の光学ガラスにおいて、ガラス形成酸化物として欠かすことの出来ない必須成分である。特に、B成分の含有量を1.0%以上にすることで、ガラスの耐失透性を高め、且つガラスの分散を小さくすることができる。従って、酸化物換算組成のガラス全質量に対するB成分の含有量は、好ましくは1.0%、より好ましくは5.0%、さらに好ましくは8.5%、最も好ましくは10.0%を下限とする。一方、B成分の含有量を30.0%以下にすることで、より大きな屈折率を得易くし、化学的耐久性の悪化を抑えることができる。従って、酸化物換算組成のガラス全質量に対するB成分の含有量は、好ましくは30.0%、より好ましくは20.0%、さらに好ましくは18.0%、最も好ましくは15.0%を上限とする。B成分は、原料として例えばHBO、Na、Na・10HO、BPO等を用いてガラス内に含有することができる。
【0035】
La成分は、ガラスの屈折率を高めるとともに、ガラスの分散を小さくしてガラスのアッベ数を大きくする成分である。特に、La成分の含有量を10.0%以上にすることで、ガラスの屈折率を高めることができる。従って、酸化物換算組成のガラス全質量に対するLa成分の含有量は、好ましくは10.0%、より好ましくは20.0%、さらに好ましくは25.0%、最も好ましくは30.0%を下限とする。一方、La成分の含有量を55.0%以下、より好ましくは50.0%以下にすることで、ガラスの安定性を高めてガラスの失透を低減できる。従って、酸化物換算組成のガラス全質量に対するLa成分の含有量は、好ましくは55.0%、より好ましくは50.0%、さらに好ましくは49.0%、最も好ましくは48.0%を上限とする。La成分は、原料として例えばLa、La(NO・XHO(Xは任意の整数)等を用いてガラス内に含有することができる。
【0036】
Ta成分は、ガラスの屈折率を高めつつ、ガラスの液相温度を低くすることで耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Ta成分の含有量を20.0%以下にすることで、高価なTa成分の含有が低減されるため、所望の光学定数を有する光学ガラスをより低い材料コストで生産できる。一方で、Ta成分の含有量が20.0%を超えると、安定なガラスを得るのが困難になる。従って、酸化物換算組成のガラス全質量に対するTa成分の含有量は、好ましくは20.0%を上限とし、より好ましくは17.5%未満とし、最も好ましくは13.9%を上限とする。ここで、特にTa成分の含有量を9.5%以下にすることで、原料を熔解する温度を下げることが可能になり、原料の溶解に要するエネルギーが低減されるため、光学ガラスの製造コストをも低減できる。従って、この観点における、酸化物換算組成のガラス全質量に対するTa成分の含有量は、好ましくは9.5%、より好ましくは7.0%、最も好ましくは5.0%を上限とする。一方で、Ta成分の含有量を9.5%より多くした場合、ガラスの着色を抑えつつガラスの屈折率を高めることができ、且つ、ガラスの耐失透性を高めることができる。従って、この観点における、酸化物換算組成のガラス全質量に対するTa成分の含有量は、好ましくは9.5%より多くし、より好ましくは11.0%、最も好ましくは12.8%を下限とする。Ta成分は、原料として例えばTa等を用いてガラス内に含有することができる。
【0037】
本発明の光学ガラスは、TiO成分、WO成分及びNb成分からなる群より選択される1種以上を含有することが好ましい。これにより、ガラスの材料コストを低減するためにTa成分の含有量を低減しても、ガラスの屈折率を高めることができ、且つガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対する、TiO成分、Nb成分及びWO成分からなる群より選択される1種以上の含有量の和は、好ましくは0%より多くし、より好ましくは0.5%、最も好ましくは1.0%を下限とする。一方、この含有量の和を40.0%以下にすることで、これらの成分による着色を低減でき、且つ、これら成分の過剰な含有による耐失透性の悪化を抑えることができる。従って、酸化物換算組成のガラス全質量に対する、TiO成分、Nb成分及びWO成分からなる群より選択される1種以上の含有量の和は、好ましくは40.0%、より好ましくは30.0%、さらに好ましくは20.0%、最も好ましくは8.0%を上限とする。
【0038】
TiO成分は、ガラスの屈折率及びアッベ数を調整し、耐失透性を改善する成分であり、本発明の光学ガラス中の任意成分である。しかしながら、TiOが多すぎると逆に耐失透性が悪くなり、可視短波長(500nm以下)におけるガラスの透過率も悪化する。従って、酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは20.0%、より好ましくは10.0%、さらに好ましくは8.0%、最も好ましくは5.0%を上限とする。TiO成分は、原料として例えばTiO等を用いてガラス内に含有することができる。
【0039】
Nb成分は、ガラスの屈折率及び分散を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Nb成分の含有量を20.0%以下にすることで、Nb成分の過剰な含有によるガラスの耐失透性の悪化を抑え、且つ、ガラスの可視光に対する透過率の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するNb成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは12.0%を上限とする。Nb成分は、原料として例えばNb等を用いてガラス内に含有することができる。
【0040】
WO成分は、ガラスの屈折率及び分散を高め、ガラスの耐失透性を向上する成分である。特に、WO成分の含有量を25.0%、より好ましくは20.0%以下にすることで、ガラスの着色を低減し、特に可視−短波長領域(500nm未満)における透過率を低下し難くすることができる。従って、酸化物換算組成のガラス全質量に対するWO成分の含有量は、好ましくは25.0%、より好ましくは20.0%、さらに好ましくは15.0%、最も好ましくは12.0%を上限とする。なお、本発明の光学ガラスはWO成分を含有しなくとも所望の光学定数及び耐失透性を有するガラスを得ることは可能であるが、WO成分を含有することで、ガラスの液相温度がより一層低下するため、ガラスの耐失透性をさらに高めることができる。従って、酸化物換算組成のガラス全質量に対するWO成分の含有量は、好ましくは0%より多くし、より好ましくは0.1%、最も好ましくは1.0%を下限とする。WO成分は、原料として例えばWO等を用いてガラス内に含有することができる。
【0041】
SiO成分は、熔融ガラスの粘度を高め、安定なガラス形成を促し、光学ガラスとして好ましくない失透(結晶物の発生)を低減する成分であり、本発明の光学ガラス中の任意成分である。特に、SiO成分の含有量を20.0%以下にすることで、ガラス転移点(Tg)の上昇を抑え、且つ屈折率の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するSiO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。なお、SiO成分は含有しなくとも技術的に不利益はないが、SiO成分を含有することで、ガラスの液相温度が低くなるため、ガラスをより失透し難くできる。従って、酸化物換算組成のガラス全質量に対するSiO成分の含有量は、好ましくは0.1%、より好ましくは1.0%、さらに好ましくは2.0%を下限とする。特に、TiO成分やWO成分を含有してもガラスを着色し難くできる観点では、SiO成分の含有量は4.0%以上であることが最も好ましい。SiO成分は、原料として例えばSiO、KSiF、NaSiF等を用いてガラス内に含有することができる。
【0042】
ZrO成分は、ガラスの高屈折率及び低分散に寄与する成分であり、本発明の光学ガラス中の任意成分である。しかしながら、ZrO量が多すぎると、逆に耐失透性が悪化する。従って、酸化物換算組成のガラス全質量に対するZrO成分の含有量は、好ましくは12.0%、より好ましくは10.0%、最も好ましくは8.0%を上限とする。なお、ZrO成分は含有しなくとも所望のガラスを得ることは可能であるが、ZrO成分を含有することで、高屈折率低分散の性能を得易くでき、且つ耐失透性を高める効果を得易くできる。従って、酸化物換算組成のガラス全質量に対するZrO成分の含有量は、好ましくは0%より多くし、より好ましくは0.5%、最も好ましくは1.0%を下限とする。ZrO成分は、原料として例えばZrO、ZrF等を用いてガラス内に含有することができる。
【0043】
本発明の光学ガラスは、B成分及びSiO成分の質量和が25.0%以下であることが好ましく、23.0%以下であることがより好ましい。これにより、B成分及びSiO成分の含有による屈折率の低下が抑えられるので、所望の高い屈折率を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するB成分及びSiO成分の質量和は、好ましくは25.0%、より好ましくは23.0%、さらに好ましくは21.0%を上限とし、最も好ましくは20.0%未満とする。
【0044】
また、本発明の光学ガラスは、質量和(B+SiO)に対する質量和(ZrO+Ta+Nb)の比率が2.00以下であることが好ましい。これにより、材料コストの高いZrO成分、Ta成分及びNb成分の含有量が低減するため、所望の低い液相温度を有する光学ガラスを、より安価に作製できる。従って、酸化物換算組成の質量比(ZrO+Ta+Nb)/(B+SiO)は、好ましくは2.00、より好ましくは1.80、最も好ましくは1.50を上限とする。
【0045】
Gd成分は、ガラスの屈折率を高め、且つアッベ数を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Gd成分の含有量を45.0%以下、より好ましくは40.0%以下にすることで、ガラスの所望の光学恒数が得易くなるとともに、Gd成分の過剰な含有によるガラス転移点(Tg)の上昇を抑え、ガラスの耐失透性を高めることができる。また、Gd成分を低減することで、光学ガラスの材料コストを低減できる。従って、酸化物換算組成のガラス全質量に対するGd成分の含有量は、好ましくは45.0%、より好ましくは40.0%、さらに好ましくは30.0%、最も好ましくは25.0%を上限とする。なお、Gd成分は含有しなくとも技術的に不利益はないが、0%より多く含有することで、ガラスの液相温度を低くすることで耐失透性をより高めることができる。従って、酸化物換算組成のガラス全質量に対するGd成分の含有量は、好ましくは0%より多くし、より好ましくは1.0%、さらに好ましくは2.0%を下限とする。ここで、ガラスの屈折率及びアッベ数を高めることで、所望の光学定数を得易くできる観点では、酸化物換算組成のガラス全質量に対するGd成分の含有量は、好ましくは5.0%より多くし、より好ましくは5.5%、最も好ましくは6.0%を下限とする。また、ガラスの耐失透性をより高められる観点では、La成分の含有量に対するGd成分の含有量の比率(Gd/La)は、0.01以上2.00以下が好ましく、0.03以上1.70以下がより好ましく、0.05以上1.50以下が最も好ましい。Gd成分は、原料として例えばGd、GdF等を用いてガラス内に含有することができる。
【0046】
成分及びYb成分は、ガラスの屈折率を高め、分散を小さくする成分であり、本発明の光学ガラス中の任意成分である。特に、Y成分の含有量を30.0%以下にすること、及び/又は、Yb成分の含有量を20.0%以下にすることで、ガラスの所望の光学恒数が得易くなるとともに、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するY成分の含有量は、それぞれ好ましくは30.0%、より好ましくは25.0%、さらに好ましくは20.0%、最も好ましくは15.0%を上限とする。従って、酸化物換算組成のガラス全質量に対するYb成分の含有量は、それぞれ好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。Y成分及びYb成分は、原料として例えばY、YF、Yb等を用いてガラス内に含有することができる。
【0047】
本発明の光学ガラスは、Ln成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の質量和が30.0%以上75.0%以下であることが好ましく、30.0%以上70.0%以下であることがより好ましい。特に、Ln成分の質量和を30.0%以上にすることで、ガラスの屈折率及びアッベ数がいずれも高められるため、所望の屈折率及びアッベ数を有するガラスを得易くすることができる。従って、酸化物換算組成のガラス全質量に対するLn成分の質量和は、好ましくは30.0%、より好ましくは33.0%を下限とし、さらに好ましくは40.0%より多くし、最も好ましくは55.0%よりも多くする。一方、Ln成分の質量和を75.0%以下にすることで、ガラスの液相温度が低くなるため、ガラスの失透を低減できる。従って、酸化物換算組成のガラス全質量に対するLn成分の質量和は、好ましくは75.0%、より好ましくは70.0%、さらに好ましくは65.0%、さらに好ましくは60.0%、最も好ましくは55.0%を上限とする。
【0048】
本発明の光学ガラスは、質量和(Ln+ZrO+Nb+WO)に対するTa成分の含有量の比率が0.300以下であることが好ましい。これにより、屈折率を高める成分のうち材料コストの高いTa成分の含有量が低減されるため、高屈折率を有する光学ガラスをより低コストで作製できる。従って、酸化物換算組成のガラス全質量に対する質量比Ta/(Ln+ZrO+Nb+WO)は、好ましくは0.300、より好ましくは0.280、最も好ましくは0.250を上限とする。
【0049】
MgO成分、CaO成分、SrO成分及びBaO成分は、ガラスの屈折率や熔融性、失透性を調整する成分であり、本発明の光学ガラス中の任意成分である。特に、MgO成分、CaO成分及びSrO成分及びBaO成分の各々の含有量を20.0%以下にすること、及び/又は、BaO成分の含有量を25.0%以下にすることで、これらの成分による屈折率の低下を抑えることで所望の屈折率を得易くし、且つこれらの成分の過剰な含有によるガラスの失透の発生を低減することができる。従って、酸化物換算組成のガラス全質量に対するMgO成分、CaO成分及びSrO成分の各々の含有量は、好ましくは20.0%、より好ましくは10.0%、最も好ましくは5.0%を上限とする。また、酸化物換算組成のガラス全質量に対するBaO成分の含有量は、好ましくは25.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。MgO成分、CaO成分、SrO成分及びBaO成分は、原料として例えばMgCO、MgF、CaCO、CaF、Sr(NO、SrF、BaCO、Ba(NO、BaF等を用いてガラス内に含有することができる。
【0050】
本発明の光学ガラスは、RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の合計が25.0%以下であることが好ましい。これにより、RO成分による屈折率の低下を抑えることで、所望の屈折率を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するRO成分の質量和は、好ましくは25.0%、より好ましくは15.0%を上限とし、さらに好ましくは12.0%未満、最も好ましくは10.0%未満とする。
【0051】
LiO成分、NaO成分、KO成分及びCsO成分は、ガラスの熔融性を改善し、ガラス転移点を低くする成分であり、本発明の光学ガラス中の任意成分である。このうちNaO成分、KO成分及びCsO成分は、ガラスの耐失透性を高める成分でもある。特に、LiO成分、NaO成分、KO成分及びCsO成分の各々の含有量を10.0%以下にすることで、ガラスの屈折率を低下し難くし、且つ、ガラスの安定性を高めて失透等の発生を低減することができる。従って、酸化物換算組成のガラス全質量に対するLiO成分、NaO成分、KO成分及びCsO成分の各々の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。LiO成分、NaO成分、KO成分及びCsO成分は、原料として例えばLiCO、LiNO、LiCO、NaNO、NaF、NaSiF、KCO、KNO、KF、KHF、KSiF、CsCO、CsNO等を用いてガラス内に含有することができる。
【0052】
RnO成分(式中、RnはLi、Na、K、Csからなる群より選択される1種以上)は、ガラスの熔融性を改善するとともに、ガラスの失透を低減する成分である。ここで、RnO成分の合計の含有量を15.0%以下にすることで、ガラスの屈折率を低下し難くし、ガラスの安定性を高めて失透等の発生を低減することができる。従って、酸化物換算組成のガラス全質量に対するRnO成分の質量和は、好ましくは15.0%、より好ましくは10.0%、最も好ましくは5.0%を上限とする。
【0053】
本発明の光学ガラスは、質量和(Ln+ZrO+LiO)に対する、質量和(B+SiO+WO)の比率が0.20以上2.00以下であることが好ましく、0.27以上2.00以下であることがより好ましい。特に、この比率を0.27以上にすることにより、耐失透性を低下させる成分(Ln成分、ZrO成分及びLiO成分)の含有量に対して、耐失透性を高める成分(B成分、SiO成分及びWO)の含有量が増加するため、より液相温度が低く失透し難い光学ガラスを得ることができる。一方、この比率を2.00以下にすることにより、屈折率及びアッベ数を高める成分であるLn成分がガラス中に含まれ易くなるため、所望の屈折率及びアッベ数を得やすくできる。従って、酸化物換算組成の質量比(B+SiO+WO)/(Ln+ZrO+LiO)は、好ましくは0.20、より好ましくは0.27、さらに好ましくは0.28、最も好ましくは0.29を下限とする。また、この質量比は、好ましくは2.00、より好ましくは1.50、最も好ましくは1.00を上限とする。
【0054】
成分は、ガラスの液相温度を下げて耐失透性を向上させる効果を有する成分であり、本発明の光学ガラス中の任意成分である。特に、P成分の含有量を10.0%以下にすることで、ガラスの化学的耐久性、特に耐水性の低下を抑えることができる。従って、酸化物換算組成のガラス全質量に対するP成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。P成分は、原料として例えばAl(PO、Ca(PO、Ba(PO、BPO、HPO等を用いてガラス内に含有することができる。
【0055】
GeO成分は、ガラスの屈折率を高め、耐失透性を向上させる効果を有する成分であり、本発明の光学ガラス中の任意成分である。しかしながら、GeOは原料価格が高いため、その量が多いと生産コストが高くなることで、Ta成分を低減することによる効果が減殺される。従って、酸化物換算組成のガラス全質量に対するGeO成分の含有量は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.0%を上限とする。GeO成分は、原料として例えばGeO等を用いてガラス内に含有することができる。
【0056】
ZnO成分は、ガラス転移温度(Tg)を低くし、化学的耐久性を改善する成分であり、本発明の光学ガラス中の任意成分である。しかしながら、ZnO成分の含有量が多すぎるとガラスの耐失透性が悪化し易くなる。従って、酸化物換算組成のガラス全質量に対するZnO成分の含有量は、好ましくは25.0%、より好ましくは20.0%、さらに好ましくは15.0%、最も好ましくは10.0%を上限とする。なお、ZnO成分は含有しなくても所望の特性を有するガラスを得ることは可能であるが、ZnO成分を含有することにより、ガラス転移点が低くなるため、プレス成形を行い易い光学ガラスを得易くできる。従って、酸化物換算組成のガラス全質量に対するZnO成分の含有量は、好ましくは0%より多く、より好ましくは0.1%、最も好ましくは1.0%を下限とする。ZnO成分は、原料として例えばZnO、ZnF等を用いてガラス内に含有することができる。
【0057】
Al成分及びGa成分は、ガラスの化学的耐久性を向上し、熔融ガラスの耐失透性を向上する成分であり、本発明の光学ガラス中の任意成分である。特に、Al成分及びGa成分の各々の含有量を10.0%以下にすることで、ガラスの失透傾向を弱めて、ガラスの安定性を高めることができる。従って、酸化物換算組成のガラス全質量に対するAl成分及びGa成分の各々の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。Al成分及びGa成分は、原料として例えばAl、Al(OH)、AlF、Ga、Ga(OH)等を用いてガラス内に含有することができる。
【0058】
Bi成分は、屈折率を高め、ガラス転移点(Tg)を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、Bi成分の含有量を20.0%以下にすることで、液相温度の上昇が抑えられるため、ガラスの耐失透性の低下を抑えることができる。また、Bi成分の含有量を20.0%以下にすることで、ガラスの着色を低減できる。従って、酸化物換算組成のガラス全質量に対するBi成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。Bi成分は、原料として例えばBi等を用いてガラス内に含有することができる。
【0059】
TeO成分は、屈折率を高め、ガラス転移点(Tg)を下げる成分であり、本発明の光学ガラス中の任意成分である。しかしながら、TeOは白金製の坩堝や、熔融ガラスと接する部分が白金で形成されている熔融槽でガラス原料を熔融する際、白金と合金化しうる問題がある。従って、酸化物換算組成のガラス全質量に対するTeO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。TeO成分は、原料として例えばTeO等を用いてガラス内に含有することができる。
【0060】
SnO成分は、溶融ガラスの酸化を低減して溶融ガラスを清澄し、且つガラスの光照射に対する透過率を悪化し難くする成分であり、本発明の光学ガラス中の任意成分である。特に、SnO成分の含有量を1.0%以下にすることで、溶融ガラスの還元によるガラスの着色や、ガラスの失透を生じ難くすることができる。また、SnO成分と溶解設備(特にPt等の貴金属)との合金化が低減されるため、溶解設備の長寿命化を図ることができる。従って、酸化物換算組成のガラス全質量に対するSnO成分の含有量は、好ましくは1.0%、より好ましくは0.7%、最も好ましくは0.5%をそれぞれ上限とする。SnO成分は、原料として例えばSnO、SnO、SnF、SnF等を用いてガラス内に含有することができる。
【0061】
Sb成分は、熔融ガラスを脱泡する成分であり、本発明の光学ガラス中の任意成分である。Sb量が多すぎると可視光領域の短波長領域における透過率が悪くなる。従って、酸化物換算組成のガラス全質量に対するSb成分の含有量は、好ましくは1.0%、より好ましくは0.7%、最も好ましくは0.5%を上限とする。Sb成分は、原料として例えばSb、Sb、NaSb・5HO等を用いてガラス内に含有することができる。
【0062】
なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。
【0063】
<含有すべきでない成分について>
次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
【0064】
他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。
【0065】
また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。
【0066】
さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。
【0067】
本発明のガラス組成物は、その組成が酸化物換算組成のガラス全質量に対する質量%で表されているため直接的にモル%の記載に表せるものではないが、本発明において要求される諸特性を満たすガラス組成物中に存在する各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
成分 2.0〜55.0モル%、
La成分 5.0〜35.0モル%、及び
Ta成分 0〜10.0モル%、
TiO成分 0〜30.0モル%及び/又は
Nb成分 0〜15.0モル%及び/又は
WO成分 0〜30.0モル%及び/又は
SiO成分 0〜50.0モル%及び/又は
ZrO成分 0〜18.0モル%及び/又は
Gd成分 0〜25.0モル%及び/又は
成分 0〜20.0モル%及び/又は
Yb成分 0〜10.0モル%及び/又は
MgO成分 0〜50.0モル%及び/又は
CaO成分 0〜40.0モル%及び/又は
SrO成分 0〜30.0モル%及び/又は
BaO成分 0〜35.0モル%及び/又は
LiO成分 0〜30.0モル%及び/又は
NaO成分 0〜25.0モル%及び/又は
O成分 0〜20.0モル%及び/又は
CsO成分 0〜10.0モル%及び/又は
成分 0〜15.0モル%及び/又は
GeO成分 0〜10.0モル%及び/又は
ZnO成分 0〜50.0モル%及び/又は
Al成分 0〜15.0モル%及び/又は
Ga成分 0〜5.0モル%及び/又は
Bi成分 0〜10.0モル%及び/又は
TeO成分 0〜25.0モル%及び/又は
Sb成分 0〜0.5モル%
【0068】
[製造方法]
本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1100〜1500℃の温度範囲で2〜5時間熔融し、攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。
【0069】
[物性]
本発明の光学ガラスは、高い屈折率(n)及び低い分散を有する必要がある。特に、本発明の光学ガラスの屈折率(n)は、好ましくは1.75、より好ましくは1.80、さらに好ましくは1.82、最も好ましくは1.85を下限とする。また、本発明の光学ガラスのアッベ数(ν)は、好ましくは30、より好ましくは35、さらに好ましくは37、最も好ましくは39を下限とし、好ましくは50、より好ましくは47、最も好ましくは45を上限とする。これらにより、光学設計の自由度が広がり、さらに素子の薄型化を図っても大きな光の屈折量を得ることができる。なお、本発明の光学ガラスの屈折率(n)の上限は、例えば2.00以下、より詳細には1.98以下、より詳細には1.95以下であることが多い。
【0070】
また、本発明の光学ガラスは、Ta成分の含有量が少なくても、耐失透性が高い必要がある。特に、本発明の光学ガラスは、1300℃以下の低い液相温度を有することが好ましい。より具体的には、本発明の光学ガラスの液相温度は、好ましくは1300℃、より好ましくは1280℃、最も好ましくは1250℃を上限とする。これにより、より低い温度で熔融ガラスを流出しても、作製されたガラスの結晶化が低減されるため、熔融状態からガラスを形成したときの耐失透性を高めることができ、ガラスを用いた光学素子の光学特性への影響を低減することができる。また、ガラスを安定して形成できる温度の範囲が広くなるため、ガラスの熔解温度を低くしてもガラスを成形でき、ガラスの成形時に消費するエネルギーを抑えることができる。一方、本発明の光学ガラスの液相温度の下限は特に限定しないが、本発明によって得られるガラスの液相温度は、概ね500℃以上、具体的には550℃以上、さらに具体的には600℃以上であることが多い。なお、本明細書中における「液相温度」とは、50mlの容量の白金製坩堝に30ccのカレット状のガラス試料を白金坩堝に入れて1350℃で完全に熔融状態にし、所定の温度まで降温して12時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察し、結晶が認められない一番低い温度を表す。ここで所定の温度とは、1300℃〜1160℃まで20℃刻みで設定した温度を表わす。
【0071】
また、本発明の光学ガラスは、着色が少ないことが好ましい。特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分光透過率70%を示す波長(λ70)が450nm以下であり、より好ましくは430nm以下であり、最も好ましくは400nm以下である。また、分光透過率5%を示す波長(λ)が400nm以下であり、より好ましくは380nm以下であり、最も好ましくは360nm以下である。これにより、ガラスの吸収端が紫外領域の近傍に位置するようになり、可視域におけるガラスの透明性が高められるため、この光学ガラスをレンズ等の光学素子の材料として好ましく用いることができる。
【0072】
また、本発明の光学ガラスは、低い部分分散比(θg,F)を有することが好ましい。より具体的には、本発明の光学ガラスの部分分散比(θg,F)は、アッベ数(ν)との間で、(−2.50×10−3×ν+0.6571)≦(θg,F)≦(−2.50×10−3×ν+0.6971)の関係を満たす。これにより、部分分散比(θg,F)の小さい光学ガラスが得られるため、この光学ガラスから形成される光学素子の色収差を低減できる。本発明の光学ガラスの部分分散比(θg,F)は、好ましくは(−2.50×10−3×ν+0.6571)、より好ましくは(−2.50×10−3×ν+0.6591)、最も好ましくは(−2.50×10−3×ν+0.6611)を下限とする。一方で、本発明の光学ガラスの部分分散比(θg,F)は、好ましくは(−2.50×10−3×ν+0.6971)、より好ましくは(−2.50×10−3×ν+0.6921)、最も好ましくは(−2.50×10−3×ν+0.6871)を上限とする。
【0073】
[ガラス成形体及び光学素子]
作製された光学ガラスから、例えば研磨加工の手段、又は、リヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスに対して研削及び研磨等の機械加工を行ってガラス成形体を作製したり、光学ガラスから作製したプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、研磨加工を行って作製したプリフォームや、公知の浮上成形等により成形されたプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
【0074】
このように、本発明の光学ガラスから形成したガラス成形体は、様々な光学素子及び光学設計に有用であるが、その中でも特に、レンズやプリズム等の光学素子に用いることが好ましい。これにより、径の大きなガラス成形体の形成が可能になるため、光学素子の大型化を図りながらも、カメラやプロジェクタ等の光学機器に用いたときに高精細で高精度な結像特性及び投影特性を実現できる。
【実施例】
【0075】
本発明の実施例(No.1〜No.285)、参考例(No.A〜No.B)及び比較例(No.A〜No.B)の組成、及び、これらのガラスの屈折率(n)、アッベ数(ν)、部分分散比(θg,F)、液相温度、分光透過率が5%及び70%を示す波長(λ及びλ70)の結果を表1〜表37に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。
【0076】
本発明の実施例(No.1〜No.285)、参考例(No.A〜No.B)及び比較例(No.A〜No.B)のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表1〜表37に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1100〜1500℃の温度範囲で2〜5時間熔融した後、攪拌均質化してから金型等に鋳込み、徐冷してガラスを作製した。
【0077】
ここで、実施例(No.1〜No.285)、参考例(No.A〜No.B)及び比較例(No.A〜No.B)のガラスの、屈折率(n)、アッベ数(ν)、及び部分分散比(θg,F)は、日本光学硝子工業会規格JOGIS01―2003に基づいて測定した。そして、求められたアッベ数(ν)及び部分分散比(θg,F)の値について、関係式(θg,F)=−a×ν+bにおける、傾きaが0.0025のときの切片bを求めた。ここで、屈折率(n)、アッベ数(ν)、及び部分分散比(θg,F)は、徐冷降温速度を−25℃/hrにして得られたガラスについて測定を行うことで求めた。
【0078】
また、実施例(No.1〜No.285)、参考例(No.A〜No.B)及び比較例(No.A〜No.B)のガラスの透過率は、日本光学硝子工業会規格JOGIS02に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200〜800nmの分光透過率を測定し、λ(透過率5%時の波長)及びλ70(透過率70%時の波長)を求めた。
【0079】
また、実施例(No.1〜No.285)、参考例(No.A〜No.B)及び比較例(No.A〜No.B)のガラスの液相温度は、50mlの容量の白金製坩堝に30ccのカレット状のガラス試料を白金坩堝に入れて1350℃で完全に熔融状態にし、1300℃〜1160℃まで20℃刻みで設定したいずれかの温度まで降温して12時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察し、結晶が認められない一番低い温度を求めた。
【0080】
【表1】

【0081】
【表2】

【0082】
【表3】

【0083】
【表4】

【0084】
【表5】

【0085】
【表6】

【0086】
【表7】

【0087】
【表8】

【0088】
【表9】

【0089】
【表10】

【0090】
【表11】

【0091】
【表12】

【0092】
【表13】

【0093】
【表14】

【0094】
【表15】

【0095】
【表16】

【0096】
【表17】

【0097】
【表18】

【0098】
【表19】

【0099】
【表20】

【0100】
【表21】

【0101】
【表22】

【0102】
【表23】

【0103】
【表24】

【0104】
【表25】

【0105】
【表26】

【0106】
【表27】

【0107】
【表28】

【0108】
【表29】

【0109】
【表30】

【0110】
【表31】

【0111】
【表32】

【0112】
【表33】

【0113】
【表34】

【0114】
【表35】

【0115】
【表36】

【0116】
【表37】

【0117】
表1〜表37に表されるように、本発明の実施例(No.1〜No.285)の光学ガラスは、いずれも液相温度が1300℃以下、より詳細には1260℃以下であり、所望の範囲内であった。このため、本発明の実施例の光学ガラスは、液相温度が低いことが明らかになった。なお、参考例(No.A〜No.B)及び比較例(No.A〜No.B)は、いずれも失透したため、液相温度が高いものと推察される。
【0118】
また、本発明の実施例の光学ガラスは、λ70(透過率70%時の波長)がいずれも420nm以下、より詳細には405nm以下であった。また、本発明の実施例の光学ガラスは、λ(透過率5%時の波長)がいずれも400nm以下、より詳細には360nm以下であった。このため、本発明の実施例の光学ガラスは、着色し難いことが明らかになった。
【0119】
また、本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.75以上、より詳細には1.86以上であるとともに、この屈折率(n)は2.00以下、より詳細には1.97以下であり、所望の範囲内であった。
【0120】
また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が30以上であるとともに、このアッベ数(ν)は50以下、より詳細には42以下であり、所望の範囲内であった。
【0121】
また、本発明の実施例の光学ガラスは、いずれも部分分散比(θg,F)が(−2.50×10−3×ν+0.6571)以上、より詳細には(−2.50×10−3×ν+0.6665)以上であった。その反面で、本発明の実施例の光学ガラスの部分分散比(−2.50×10−3×ν+0.6971)以下、より詳細には(−2.50×10−3×ν+0.6813)以下であった。そのため、これらの部分分散比(θg,F)が所望の範囲内にあることがわかった。
【0122】
従って、本発明の実施例の光学ガラスは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら安価に作製でき、耐失透性が高く、且つ、着色が少ないことが明らかになった。
【0123】
さらに、本発明の実施例の光学ガラスを用いて、ガラスブロックを形成し、このガラスブロックに対して研削及び研磨を行い、レンズ及びプリズムの形状に加工した。その結果、安定に様々なレンズ及びプリズムの形状に加工することができた。
【0124】
以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。

【特許請求の範囲】
【請求項1】
酸化物換算組成のガラス全質量に対して、質量%でB成分を1.0〜30.0%及びLa成分を10.0〜55.0%含有し、Ta成分の含有量が20.0%以下である光学ガラス。
【請求項2】
酸化物換算組成において、TiO成分、Nb成分及びWO成分からなる群より選択される1種以上を含有する請求項1に記載の光学ガラス。
【請求項3】
酸化物換算組成のガラス全質量に対する、TiO成分、Nb成分及びWO成分からなる群より選択される1種以上の含有量の和が、0.5%以上40.0%以下である請求項2に記載の光学ガラス。
【請求項4】
酸化物換算組成のガラス全質量に対して、質量%で
TiO成分 0〜20.0%及び/又は
Nb成分 0〜20.0%及び/又は
WO成分 0〜25.0%
を含有する請求項2又は3記載の光学ガラス。
【請求項5】
酸化物換算組成のガラス全質量に対して、質量%で
SiO成分 0〜20.0%及び/又は
ZrO成分 0〜12.0%
の各成分をさらに含有する請求項1から4のいずれかに記載の光学ガラス。
【請求項6】
酸化物換算組成のガラス全質量に対するB成分及びSiO成分の含有量の和が25.0%以下である請求項1から5のいずれかに記載の光学ガラス。
【請求項7】
酸化物換算組成の質量比(ZrO+Ta+Nb)/(B+SiO)が2.00以下である請求項1から6のいずれかに記載の光学ガラス。
【請求項8】
酸化物換算組成のガラス全質量に対して、質量%で
Gd成分 0〜45.0%及び/又は
成分 0〜30.0%及び/又は
Yb成分 0〜20.0%
の各成分をさらに含有する請求項1から7のいずれかに記載の光学ガラス。
【請求項9】
酸化物換算組成のガラス全質量に対するLn成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の質量和が30.0%以上75.0%以下である請求項1から8のいずれかに記載の光学ガラス。
【請求項10】
酸化物換算組成のガラス全質量に対するLn成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の質量和が40.0%より多い請求項9に記載の光学ガラス。
【請求項11】
酸化物換算組成の質量比Ta/(Ln+ZrO+Nb+WO)が0.300以下である請求項1から10のいずれかに記載の光学ガラス(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上とする)。
【請求項12】
酸化物換算組成のガラス全質量に対して、質量%で
MgO成分 0〜20.0%及び/又は
CaO成分 0〜20.0%及び/又は
SrO成分 0〜20.0%及び/又は
BaO成分 0〜25.0%
の各成分をさらに含有する請求項1から11のいずれかに記載の光学ガラス。
【請求項13】
酸化物換算組成のガラス全質量に対するRO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の質量和が25.0%以下である請求項12記載の光学ガラス。
【請求項14】
酸化物換算組成のガラス全質量に対して、質量%で
LiO成分 0〜10.0%及び/又は
NaO成分 0〜10.0%及び/又は
O成分 0〜10.0%及び/又は
CsO成分 0〜10.0%
の各成分をさらに含有する請求項1から13のいずれかに記載の光学ガラス。
【請求項15】
酸化物換算組成のガラス全質量に対するRnO成分(式中、RnはLi、Na、K、Csからなる群より選択される1種以上)の質量和が15.0%以下である請求項14記載の光学ガラス。
【請求項16】
酸化物換算組成の質量比(B+SiO+WO)/(Ln+ZrO+LiO)が0.20以上2.00以下である請求項1から15のいずれか記載の光学ガラス。
【請求項17】
酸化物換算組成のガラス全質量に対して、質量%で
成分 0〜10.0%及び/又は
GeO成分 0〜10.0%及び/又は
ZnO成分 0〜25.0%及び/又は
Al成分 0〜10.0%及び/又は
Ga成分 0〜10.0%及び/又は
Bi成分 0〜20.0%及び/又は
TeO成分 0〜20.0%及び/又は
SnO成分 0〜1.0%及び/又は
Sb成分 0〜1.0%
の各成分をさらに含有する請求項1から16のいずれか記載の光学ガラス。
【請求項18】
1.75以上の屈折率(n)を有し、30以上50以下のアッベ数(ν)を有する請求項1から17のいずれか記載の光学ガラス。
【請求項19】
1300℃以下の液相温度を有する請求項1から18のいずれか記載の光学ガラス。
【請求項20】
請求項1から19のいずれか記載の光学ガラスを母材とする光学素子。
【請求項21】
請求項20記載の光学素子を備える光学機器。

【公開番号】特開2012−236754(P2012−236754A)
【公開日】平成24年12月6日(2012.12.6)
【国際特許分類】
【出願番号】特願2011−175632(P2011−175632)
【出願日】平成23年8月11日(2011.8.11)
【出願人】(000128784)株式会社オハラ (539)
【Fターム(参考)】