説明

光学システム及び赤外線撮像システム

【課題】単純な構造からなる光学システム、及び、それを用いた赤外線撮像システムを提供することを目的とする。
【解決手段】微細な凹凸による周期構造によって前記周期構造に共鳴する特定波長領域の光を反射せしめる共振モード格子を有するフィルター素子と、被対象物から輻射される第一の波長領域の光を前記共振モード格子へ導く第一の光学系と、第二の波長領域の光を発する光源と、前記光源が発する前記第二の波長領域の光を前記共振モード格子へ導く第二の光学系と、光の強度を検出する受光素子と、前記光源が発する前記第二の波長領域の光のうち前記共振モード格子で反射した前記特定波長領域の光を前記受光素子へ導く第三の光学系と、を有する光学システムであることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、共振モード格子を利用した光学システム、及び、それを用いた赤外線撮像システムに関する。
【背景技術】
【0002】
近年、防犯用の小型監視カメラや自動車に搭載される暗視カメラなど、暗闇においても生体や物体像を画像として認識することが可能な赤外線カメラの需要が高まっている。これに伴い、赤外線カメラの主要部である赤外線検出器又は赤外線撮像素子の開発が急速に進められている。特に7μm〜15μmの波長領域にある遠赤外線は大気をよく透過し、人間の体温や一般的な外気温を持つ物体からの黒体輻射に多く含まれる波長領域にあるため、この領域の光を撮像することが可能な赤外線撮像素子が重要となっている。
【0003】
赤外線の検出方式は数多くあり、代表的なものに感熱抵抗体の抵抗値が温度に対応して変化する性質を利用したボロメータがある。これは、赤外線の受光による温度変化に応じて感熱抵抗体の抵抗値が変化し、この抵抗値の変化量を測定することによって、赤外線の受光量を検出するものである。ボロメータを利用した赤外線撮像素子に関しては数多くの技術が提案されている(例えば、特許文献1参照)。
【0004】
しかしながら、ボロメータは非常に高価であるため、車載カメラや暗視カメラ等の一般的な用途へは、あまり普及していない。この問題を改善すべく、赤外線の受光による温度変化によって、特定波長領域の光透過率又は反射率が変化する熱光学機能を有する素子を用いる技術が提案されている。
【0005】
この技術によれば、熱光学機能を有する素子に、検出したい赤外線とは異なる波長領域の光を照射し、その反射光又は透過光を安価なシリコン等の受光素子によって受光することで、赤外線の受光量を検出する。従って、従来のボロメータを用いた技術とは異なり受光素子としてシリコン受光素子を用いることが可能になるため、赤外線検出装置の低価格化を実現できる(例えば、特許文献2、3参照)。
【0006】
より詳しく説明すると、特許文献2では、熱光学機能を有する素子として、誘電体状ブロック上に金属膜及び熱光学効果を有する薄膜を形成したものを用い、熱変化によってプラズモン共鳴波長領域がシフトすることを利用した放射温度測定装置が示されている。又、特許文献3では、熱光学機能を有する素子として、熱光学材料を含む光学多層膜フィルターを用い、熱変化によって多層膜フィルターの透過波長領域が変化することを利用した赤外線カメラが示されている。
【0007】
特許文献3に示されている構成について、図25及び図26を参照しながら説明する。図25は、従来の赤外線カメラの概略の構成の例を示す図である。図25を参照するに、赤外線カメラ10は、近赤外光源11と、コリメータレンズ12と、ダイクロイックミラー13と、熱光学素子14(Focal Plane Array、以降FPA14という)と、集光レンズ15と、近赤外光検出器16と、赤外レンズ17とを有する。
【0008】
FPA14は、赤外透過窓14aと、ピクセル素子アレイ14bと、基板14cと、参照フィルター14dと、電子冷却素子14eとを有する。赤外透過窓14a、ピクセル素子アレイ14b、基板14c、参照フィルター14dは、減圧パッケージングされ、電子冷却素子14eによって温度調整されている。20は近赤外光を、21は像を、22は赤外光を示している。
【0009】
図25に示す赤外線カメラ10において、近赤外光源11から出射された近赤外光20は、コリメータレンズ12により平行光とされ、近赤外光を反射し赤外光を透過する性質を有するダイクロイックミラー13により反射され、熱光学機能を有する素子であるFPA14に入射する。FPA14を通過した近赤外光20は集光レンズ15によって近赤外光検出器16へ集光される。
【0010】
一方、像21から発せられる赤外光22は赤外レンズ17によって、FPA14上に集光される。FPA14を構成するピクセル素子アレイ14bはそれぞれが多層膜構造を有しており、温度による屈折率変化によって透過波長領域がシフトする。ピクセル素子アレイ14bに集光される赤外光22は像21からの強度分布に対応しており、入射した赤外光22の強度に応じて温度変化が発生し、透過波長がシフトする。
【0011】
図26は、ピクセル素子アレイのフィルター特性の例を示す図である。図26(a)は、温度T1においてピクセル素子アレイ14bを透過する光のスペクトル分布を示している。図26(b)は、温度T2においてピクセル素子アレイ14bを透過する光のスペクトル分布を示している。図26(a)及び図26(b)において、横軸はピクセル素子アレイ14bに入射する光の波長、縦軸はピクセル素子アレイ14bを透過する光の強度である。
【0012】
図26(a)及び図26(b)に示すように、温度T1では波長λ2に透過光強度のピークがあり、温度T2では波長λ3に透過光強度のピークがある。よって、赤外光の強度に対応して温度がT1からT2に変化すると、図26(a)から図26(b)のように透過スペクトルが変化する。例えば、近赤外光源11として波長λ1の近赤外光を発振する狭帯域レーザを用いたとき、図26(a)及び図26(b)中に示した斜線部が透過光強度となる。透過光強度の2次元像を近赤外検出器16によって撮像することにより、赤外光22を発する像21をとらえることができる。
【特許文献1】特開2002−214035号公報
【特許文献2】特開2004−245674号公報
【特許文献3】米国特許出願公開第2007/0023661号明細書
【発明の開示】
【発明が解決しようとする課題】
【0013】
しかしながら、例えば、特許文献2に示されている技術では、共鳴波長のピーク位置や波長領域を制御することが容易ではない。又、全反射光の減衰を利用しており、全反射を発生させるためには基板がプリズム状又は回折構造を有している必要があり、構造が複雑化するという問題があった。
【0014】
又、例えば、特許文献3に示されている技術では、赤外線検出装置として2次元像を得る装置とする場合に、熱光学機能を有する素子(FPA)が複数のマトリックス状の画素から形成されている必要がある。マトリックス状の画素を形成するには、複雑な構造の多層膜を多数の細かい画素に区切らなくてはならず、加工が困難であるという問題があった。
【0015】
本発明は、上記に鑑みてなされたもので、単純な構造からなる光学システム、及び、それを用いた赤外線撮像システムを提供することを目的とする。
【課題を解決するための手段】
【0016】
上記目的を達成するため、第1の発明は、微細な凹凸による周期構造によって前記周期構造に共鳴する特定波長領域の光を反射せしめる共振モード格子を有するフィルター素子と、被対象物から輻射される第一の波長領域の光を前記共振モード格子へ導く第一の光学系と、第二の波長領域の光を発する光源と、前記光源が発する前記第二の波長領域の光を前記共振モード格子へ導く第二の光学系と、光の強度を検出する受光素子と、前記光源が発する前記第二の波長領域の光のうち前記共振モード格子で反射した前記特定波長領域の光を前記受光素子へ導く第三の光学系と、を有する光学システムであることを特徴とする。
【0017】
第2の発明は、微細な凹凸による周期構造によって前記周期構造に共鳴する特定波長領域の光を透過せしめる共振モード格子を有するフィルター素子と、被対象物から輻射される第一の波長領域の光を前記共振モード格子へ導く第一の光学系と、第二の波長領域の光を発する光源と、前記光源が発する前記第二の波長領域の光を前記共振モード格子へ導く第二の光学系と、光の強度を検出する受光素子と、前記光源が発する前記第二の波長領域の光のうち前記共振モード格子を透過した前記特定波長領域の光を前記受光素子へ導く第三の光学系と、を有する光学システムであることを特徴とする。
【0018】
第3の発明は、請求項1乃至20の何れか一項記載の光学システムと、前記光学システムを制御する制御部と、前記光学システムからの出力信号を処理する信号処理部と、外部と信号をやりとりする外部インターフェース部と、を有する赤外線撮像システムであって、
前記光学システムにおける前記第一の波長領域は、赤外線領域に含まれていることを特徴とする。
【発明の効果】
【0019】
本発明によれば、単純な構造からなる光学システム、及び、それを用いた赤外線撮像システムを提供することができる。
【発明を実施するための最良の形態】
【0020】
以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。
【0021】
〈第1の実施の形態〉
図1を参照しながら、本発明の第1の実施の形態に係る光学システムについて説明する。図1は、本発明の第1の実施の形態に係る光学システムの概略の構成の例を示す図である。図1を参照するに、光学システム100は、光源110と、第二の光学系120と、ハーフミラー130と、フィルター素子140と、第三の光学系150と、受光素子160と、第一の光学系170とを有する。200は光源110から出射された第二の波長領域を有する光(以降、プローブ光200とする)を、210は対象物体を、220は対象物体210からの輻射光を示している。
【0022】
光源110は、所定の波長の光を出射する機能を有する。光源110としては、例えば、半導体レーザ等を用いることができる。第二の光学系120は、入射する光を平行光にする機能を有する。第二の光学系120としては、例えば、光学ガラスや光学プラスチック等で形成されたコリメートレンズ等を用いることができる。ハーフミラー130は、入射する光の一部を反射し、一部を透過する機能を有する。フィルター素子140は、熱光学効果を有する素子である。なお、熱光学効果とは、温度によって屈折率が変化する現象である。第一の光学系170は、入射する光を集光する機能を有する。第三の光学系150は、入射する光を集光する機能を有する。
【0023】
光源110から出射されたプローブ光200は、第二の光学系120によってコリメートされた後にハーフミラー130によって、熱光学効果を有するフィルター素子140へ導かれる。又、対象物体210からの輻射光220は、第一の光学系170によってフィルター素子140へ取り込まれる。フィルター素子140は取り込まれた輻射光220のうち第一の波長領域の光(以降、シグナル光220aとする)を吸収して熱に変換する。変換される熱は、シグナル光220aの強度と対応する。
【0024】
フィルター素子140はプローブ光200を反射する。フィルター素子140で反射したプローブ光200は、第三の光学系150によって受光素子160へ導かれる。後述するように、フィルター素子140のプローブ光200に対する反射率は、シグナル光220aを吸収して生じる熱によって変化する。すなわち、受光素子160へ入射するプローブ光200の強度によって、対象物体210からのシグナル光220aの強度を知ることができる。
【0025】
光学システム100において、特に第一の波長領域が7μm〜15μmの波長領域にある遠赤外線に相当し、フィルター素子140がこの波長領域の光に対して吸収を持ち、遠赤外線に対して感度を持つことが好ましい。この波長領域の光は大気中をよく透過し、人間の体温や一般的な外気温を持つ物体からの黒体輻射に多く含まれるため、7μm〜15μmに感度を有することにより、光学システム100は、暗闇中での暗視カメラとして用いることができる。
【0026】
又、第一の波長領域は、例えば、テラヘルツ帯(波長およそ100μm〜1000μm)と呼ばれる波長領域としてもよい。テラヘルツ帯では、生体に対する透過性が高い、分子の振動準位が多数存在する等の理由から近年研究が進んでおり、テラヘルツ帯を受光するための撮像素子が望まれている。
【0027】
特定の波長に対する感度を上げるために、フィルター素子140へ入射する光の波長のうち所望の第一の波長領域以外の光を減衰させる波長フィルターを備えていても良い。以降の説明においては、第一の波長領域を遠赤外領域として説明するが、これに限定されるものではない。
【0028】
第二の波長領域としては、0.4μm〜1.1μmの間の波長であることが好ましい。この波長範囲に含まれる波長領域を第二の波長領域としたときは、受光素子160としてシリコンを受光部に用いたCCDやCMOS等を用いることが可能である。このような素子は広く普及しており非常に低価格で入手可能なため、光学システム100を安価に構成することができる。以降の説明では第二の波長領域を近赤外領域として説明するが、これに限定されるものではない。
【0029】
ここで、フィルター素子140の具体的な構成について説明する。図2は、フィルター素子の概略の構成の例を示す図である。図2を参照するに、フィルター素子140は、窓141と、共振モード格子142と、基板143と、支柱144と、支持材145とを有する。
【0030】
図2に示すフィルター素子140において、基板143上には複数の共振モード格子142が2次元アレイ状に形成されており、支柱144によって支えられている。共振モード格子142は第一の波長領域の光に対して吸収を有しており、シグナル光220aを吸収して熱に変えることで、光源110からの光の反射率を変化せしめる。
【0031】
図2(a)では、窓141側に第一の光学系170(図示せず)が配置され、窓141から共振モード格子142へシグナル光220aが入射する構成となっており、その光路を模式的に図中点線で示した。シグナル光220aは窓141を透過し共振モード格子142によって吸収される。又、共振モード格子142で吸収しきれなかったシグナル光220aは、基板143へ入射する。
【0032】
共振モード格子142に吸収されるシグナル光220aを増やし感度を上げるためには、基板143がシグナル光220aの波長領域に対して反射率が高くなっており、基板143に入射したシグナル光220aが反射され、再び共振モード格子142へ入射するようになっていることがより好ましい。
【0033】
又、図2(a)では、基板143側に第二の光学系120(図示せず)及び第三の光学系150(図示せず)が配置されており、基板143から共振モード格子142へプローブ光200が入射する構成となっており、その光路を模式的に図中実践で示した。プローブ光200は基板143を透過し共振モード格子142によって反射される。ここで、反射されなかったプローブ光200は窓141に入射することになり、窓141によって反射されてしまうとノイズ光となり光学システム100の感度低下につながるため、窓141はプローブ光200に対して反射率が低くなっていることが好ましい。
【0034】
フィルター素子140及び受光素子160は、画素構造を有さないものでも良いが、2次元アレイ状の画素構造を有することによって、物体の2次元的な像を得ることができる。特に、画素が支柱144と小さい面積で接しており各画素が熱的に孤立していることによって、シャープな2次元像を得ることが可能になる。
【0035】
図3は、フィルター素子における2次元アレイ状の画素構造の概略の構成の例を示す図である。図3(a)は平面図、図3(b)は図3(a)のA−A線に沿う断面図である。図3を参照するに、支柱144が基板143上に形成されており、メンブレン状の共振モード格子142が外側から支柱144によって固定されている。共振モード格子142がメンブレン状となっていることで、共振モード格子142の熱容量を小さくすることが可能となり、熱に対する反応速度を速くすることができる。
【0036】
又、共振モード格子142をメンブレン状にすることによって、共振モード格子142は、フィルター素子140を構成する基板143から熱的に隔離されている。これによって、共振モード格子142は、基板143からの熱伝播の影響を避けることが可能となり、熱ノイズの少ない光学システムを実現することができる。メンブレンの厚さとしては、薄いほど熱容量を小さくすることができるため好ましい。しかし、薄すぎると加工が困難になり、又、機械的強度が弱くなる等の問題が発生するため、1μm〜10μm程度が好ましい。
【0037】
更に、対流などによる熱の影響を小さくするためには、マイクロ真空パッケージなどによって密閉された減圧雰囲気又は不活性ガス雰囲気中に共振モード格子142が封止されていることが好ましい。図2ではフィルター素子140は窓141、基板143、及び支持材145によって減圧パッケージングされている。共振モード格子142が減圧状態又は不活性ガスによって充填された状態でパッケージングされていることにより、対流などによる外部からの熱の影響が少なくなり、熱ノイズがより少ない光学システム100を実現することができる。
【0038】
以上より、窓141を構成する材料としては、シグナル光220aに対して透過率が高くプローブ光200に対して反射率が低いもの、又、基板143を構成する材料としては、シグナル光220aに対して反射率が高くプローブ光200に対しては透過率が高いものを用いることが好ましい。例えば、シグナル光220aが遠赤外線、プローブ光200が近赤外線のときは、窓141を構成する材料として、ZnSやZnSe等のように遠赤外線及び近赤外線の両方に対して透過率の高いもの、或いは、Geのように近赤外線に対して吸収の高いものを用いることができる。
【0039】
プローブ光200の反射率を更に低下させるために、窓141に反射防止膜或いは反射防止構造が施されていることがより好ましい。図4は、窓の反射防止構造の例を示す図である。窓141は、例えば、図4に示すように、反射防止構造としてプローブ光200の波長よりも細かい三角形状141aを有する構造とすることができる。又、基板143を構成する材料としては、SiOやSiなどを用いることができる。シグナル光220aの反射率を更に上げるために、基板143上に反射膜が形成されていることがより好ましい。
【0040】
このように、フィルター素子140の窓141を構成する材料として、シグナル光220aに対して透過率が高くプローブ光200に対して反射率が低い材料を用い、基板143を構成する材料として、シグナル光220aに対して反射率が高くプローブ光200に対して透過率が高い材料を用いることによって、シグナル光220aはフィルター素子140によく吸収され、プローブ光は窓141を構成する材料からの反射によるノイズが少ない構成とすることができ、ノイズが少なく高感度な光学システム100を実現できる。
【0041】
なお、図2(b)に示すように、図2(a)とは逆に、基板143側からシグナル光220aを入射し、窓141側からプローブ光200を入射するようにしても良い。このとき、前述のように、シグナル光220aをよりよく共振モード格子142に吸収させるために、窓141はシグナル光220aに対して反射率が高くなっていることが好ましい。又、窓141はプローブ光200に対して透過率が高いほうが良く、プローブ光200のノイズを減らすために共振モード格子142を透過したプローブ光200が基板143によって反射されないことが望ましい。
【0042】
よって、窓141を構成する材料としては、シグナル光220aに対して反射率が高くプローブ光200に対して透過率が高いもの、基板143を構成する材料としては、シグナル光220aに対して透過率が高くプローブ光200に対して反射率が低いものを用いることが好ましい。材料や構造に関しては、前述と同様に反射防止膜や反射防止構造或いは反射膜を用いることも可能である。
【0043】
このように、フィルター素子140の基板143を構成する材料として、シグナル光220aに対して透過率が高くプローブ光200に対して反射率が低い材料を用い、窓141を構成する材料として、シグナル光220aに対して反射率が高くプローブ光200に対して透過率が高い材料を用いることによって、シグナル光220aはフィルター素子140によく吸収され、プローブ光200は基板143を構成する材料からの反射によるノイズが少ない構成とすることができ、ノイズが少なく高感度な光学システム100を実現できる。
【0044】
ここで、共振モード格子に関して詳細に説明する。共振モード格子とは、回折格子におけるアノマリーの現象の一つであり、格子ピッチと入射光の波長とがある共振条件を満たすと共振現象が発生し、これによって非常に帯域の狭い反射型の波長フィルターを作製することができるものである。共振波長での反射率は理論的には100%に達する。共振モード格子に関しては多くの研究が成されており、例えば、Optics Letters Vol.19 919-921(1994)、Applied Optics Vol.34 8106-81109 (1995)等に述べられている。
【0045】
図5は、共振モード格子の概略の構成の例を示す図である。図5に示す共振モード格子300は、屈折率の異なる2種類の材料から構成されており、より低い屈折率nLを持つ低屈折率材料からなる基板層301上に、より高い屈折率nHを持つ高屈折率材料からなる導波層302が厚さh1で形成され、低屈折率材料からなる格子層303が厚さh2で形成されている。ここで、屈折率nH>屈折率nLとなっており、以後2種類の材料を使用しているときは、屈折率のより高い材料を高屈折率材料、屈折率のより低い材料を低屈折率材料と呼ぶ。
【0046】
共振モード格子300では、入射した光のうち格子層303と共鳴する波長のみが、導波層302の導波モードとカップリングし共鳴反射することとなる。格子層303は凹凸構造が周期pで1方向に配列した周期構造を持っている。このような1方向の周期構造においては、偏光方向に対する依存性が発生するため、図5に示すように溝に平行な電場振動を有する成分をTE偏光と、溝方向に垂直な電場振動を有する成分をTM偏光と呼ぶことにする。
【0047】
図5では、導波層302が熱光学材料によって形成されている。熱光学材料とは、熱変化に対して屈折率の変化量の大きい材料のことであり、明確な定義は無いが、本明細書では、室温下において特定の波長に対して屈折率の温度変化(以下、熱光学係数と呼ぶ)Δn/ΔTが5×10−5以上であることを満たす材料のことを呼ぶことにする。様々な材料に対する熱光学係数に関しては、例えば、Handbook of Thermo-Optic Coefficients of Optical Materials with Applications等に記載されている。
【0048】
熱光学材料としては、熱光学係数が大きいほうが共振モード格子の熱変化に対する特性の変化が大きくなるため好ましく、屈折率の比較的高い材料としてはSi、GaP、GaNなどの半導体材料が、屈折率が比較的低い材料としてはPMMAなどのポリマー材料が好ましい。
【0049】
熱光学効果の高い高屈折率材料である半導体材料を用いることによって、より高感度な光学システムを実現することができる。特に、半導体材料は熱膨張率が小さいため、熱による構造の変化が小さく、より適している。又、熱光学効果の高い低屈折率材料であるポリマー材料を用いることによって、より高感度な光学システムを実現することができる。
【0050】
例えば、半導体材料であるSi、GaP、GaNのおよその熱光学係数(単位は全てK−1)は、それぞれ3×10−4、2×10−4、0.6×10−4であり、ポリマー材料であるPMMAの熱光学係数はおよそ−1×10−4である。これに対して、SiO、Al、CaF等の一般的な光学材料の熱光学係数はおよそ−0.6×10−5、1.26×10−5、−1.18×10−5程度であり、上述の熱光学材料に対して1桁以上小さい。
【0051】
特に半導体材料は熱光学係数が大きいが、熱膨張率が小さいため熱による形状変化が小さくより適している。共振モード格子は、シグナル光に対して吸収を有している必要がある。よって、熱光学材料としては、第一の波長領域の光は吸収し、第二の波長領域の光に対しては透過する材料となっていることがより好ましい。
【0052】
図5に示す共振モード格子300において、一例として、導波層302に高屈折率で熱光学係数の大きい材料であるGaPを、基板層301及び格子層303に低屈折率で熱光学係数の小さい材料であるSiOを用いた場合の反射特性を厳密結合波解析(RCWA)によって計算した。ここで、GaPの屈折率nHは20℃で3.3122、熱光学係数は1.6×10−4とし、SiOの屈折率nLは1.46、熱光学係数は無視できるほど小さいと考えゼロとした。又、導波層302の厚さh1を24.5nm、格子層303の厚さh2を200nm、格子層303の周期pを500nmとした。
【0053】
図6〜図8は、共振モード格子300における厳密結合波解析(RCWA)による反射特性の計算結果の例を示す図である。図6は、温度20℃における、垂直入射したTE偏光に対する反射分光特性を示している。図6において、横軸は共振モード格子300に入射する光の波長、縦軸は共振モード格子300で反射する光の反射光強度である。図6に示すように、波長0.8μm近辺をピークとした共鳴反射光が現れていることがわかる。
【0054】
図7は、GaPが温度によって屈折率変化したときの反射特性変化を示している。図7において、横軸は共振モード格子300に入射する光の波長、縦軸は共振モード格子300の反射率である。nは( )内の温度における屈折率の値である。熱光学係数は温度によって変化するため、ここで表示している温度における屈折率の値nは厳密には実際のものと異なるが、図7に示すように、共鳴反射光のピーク位置が温度によってシフトすることがわかる。
【0055】
図8には波長0.8μmにおける反射光強度の変化を、温度を変数としてプロットしている。図8において、横軸は共振モード格子300の温度、縦軸は共振モード格子300で反射する光の反射光強度である。図8に示すように、共振モード格子300の温度変化によって反射光強度が変調されることがわかる。よって、例えば、図1に示す光学システム100のような構成においては、共振モード格子300がシグナル光220aを吸収して温度変化するため、シグナル光220aの強度変化に応じてプローブ光200(ここでは波長0.8μmの光)の反射率が変化することとなる。
【0056】
このように、共振モード格子300は、特許文献3(USP2007−0023661)に示されるような複雑な多層膜構造と異なり、図5に示すように、少ない膜数、シンプルな構成で必要な機能を得ることができる。従って、図3に示すようなアレイ構造を作製するときに、特許文献3(USP2007−0023661)に示されるような複雑な多層膜構造を加工するのに比べて、容易に加工することができる。
【0057】
又、多層膜構造に対する異なるメリットとして、反射スペクトルの急峻さ(すなわち温度変化による反射光変化の急激さ)を容易に調整できることが挙げられる。これに関して、図9及び図10を参照しながら説明する。図9は、共振モード格子の概略の構成の他の例を示す図(その1)である。図9に示す共振モード格子310は、図5に示す共振モード格子300とは異なる構造を有しており、導波層311及び格子層312が、それぞれ厚さh1及びh2で単一の熱光学材料によって形成されている。
【0058】
図9に示す共振モード格子310において、一例として、導波層311及び格子層312を構成する熱光学材料にPMMAを用いた場合の反射特性を厳密結合波解析(RCWA)によって計算した。ここで、PMMAの温度20℃での屈折率n=1.49、熱光学係数を−1.1×10−4とした。又、導波層311の厚さh1を314nm、格子層312の厚さh2を35nm〜100nmまで変化させ、格子層312の周期pを500nmとした。
【0059】
図10は、共振モード格子310の反射分光特性の例を示す図であり、温度20℃での、垂直入射したTE偏光に対する反射分光特性を示している。図10において、横軸は共振モード格子310に入射する光の波長、縦軸は共振モード格子310で反射する光の反射光強度である。図10に示すように、格子層312の厚さh2の変化によって、共鳴反射光のピーク波長が変化するほか、反射スペクトルの急峻さも変化している。このように、構造を変えただけで容易に反射スペクトル幅及び急峻さを変えることができるため、光学システムの仕様に合わせた光学特性の調整を容易に行うことができる。
【0060】
共振モード格子は、図5や図9で示す構成の他にも様々な構成を取ることができる。図11及び図12を参照しながら、共振モード格子の構成の他の例について説明する。図11は、共振モード格子の概略の構成の他の例を示す図(その2)である。図12は、共振モード格子の概略の構成の他の例を示す図(その3)である。
【0061】
図11に示す共振モード格子320は、高屈折率材料からなる基板層321及びグレーティング層322の上にグレーティング層322を埋めるようにして低屈折率材料からなる低屈折率層323が形成された構成である。ここで、基板層321を構成する高屈折率材料が熱光学材料でも良いし、低屈折率材料323を構成する低屈折率材料が熱光学材料でも良いし、双方が熱光学材料となっていても良い。図12に示す共振モード格子330は、低屈折率材料からなる基板層331及びグレーティング層332の上に高屈折率材料からなるグレーティング層333が成膜された構成である。
【0062】
図9に示す共振モード格子310のように、共振モード格子が単一の材料から成るものでは、構成要素が少なく異なる材料を積層する必要が無いため、より少ない工程で光学システムを作製することができる。しかしながら、共振モード格子が単一の材料から形成されている場合には、共振モード格子を構成する材料として、熱光学材料でありかつ第一の波長領域に対して吸収を有する材料を用いなければならない。
【0063】
これに対して、図11に示す共振モード格子320では、2種類の材料を用いている。2種類以上の材料を用いるメリットとしては、熱光学材料がシグナル光に対して吸収が無くても、共振モード格子を構成する異なる材料がシグナル光を吸収して熱に変えることができればフィルター素子として機能すること、複数の材料の組み合わせによって反射スペクトルの形状を調整することができること等が挙げられる。
【0064】
例えば、ZnSは熱光学材料であるが遠赤外線に対して透過率が高いためシグナル光を吸収できないが、図12に示す高屈折率材料としてZnSを用い、低屈折率材料としてSiOを用いる等、他材料と組み合わせることによって、SiOが遠赤外線を吸収し熱に変えることができるため、本発明に係る共振モード格子を形成する材料として用いることが可能になる。
【0065】
このように、共振モード格子を複数の材料から構成することにより、熱光学材料が必ずしも第一の波長領域に対して吸収を有してなくても良く、別の異なる材料が第一の波長領域に対して吸収率が高ければ良い。これによって、本発明に係る光学システムを構成する材料の選択幅が広がり、より作製が容易になる。
【0066】
図13は、共振モード格子の概略の構成の他の例を示す図(その4)である。図13に示す共振モード格子340は、図5に示す共振モード格子300と同様に低屈折率材料からなる基板層341上に、高屈折率材料からなる導波層342が厚さh1で、低屈折率材料からなる格子層343が厚さh2で形成されている。図13に示すように、格子層343は、周期構造として2次元の周期となっていても良い。
【0067】
格子層343は図13に示すx方向及びy方向にそれぞれpx及びpyの周期を持つ凹凸構造から成る2次元周期構造を持つ。pxとpyとが等しい値のとき、x偏光(x方向に電場振動を持つ光)とy偏光(y方向に電場振動を持つ光)の双方に対して反射分光特性は等しい偏光無依存の共振モード格子となり、プローブ光としてどのような偏光のものも使用できるメリットがある。
【0068】
図14は、共振モード格子340の波長と反射光強度との関係の例を示す図である。図14において、横軸は共振モード格子340に入射する光の波長、縦軸は共振モード格子340で反射する光の反射光強度である。図15は、共振モード格子340の温度と反射光強度との関係の例を示す図である。図15において、横軸は共振モード格子340の温度、縦軸は共振モード格子340で反射する光の反射光強度である。
【0069】
pxとpyとの値が異なるとき、すなわち面内で異方性のある周期構造においては、図14に示すように、波長と反射光強度との関係(反射分光特性)がx偏光とy偏光で異なり、ピーク位置がずれるようになる。このとき、波長λ1における温度変化に対する反射光強度は図15に示すようになる。
【0070】
プローブ光として、x偏光とy偏光両方の成分を持つ光を用い、受光素子としてx方向とy方向両方の偏光成分の光強度を別に検出可能なものを用いることによって、より広い温度範囲を検出することが可能となる。これは例えば、偏光ビームスプリッタで偏光成分によって光路を分けた後に、2つの受光素子を備えることによって達成可能である。このようにして、ダイナミックレンジの広い光学システムを実現することができる。
【0071】
光源としては、温度変化に対する反射光強度変化の感度を上げるために、狭波長帯域を有する光源を用いることが好ましい。プローブ光の波長を狭帯域に制御するためには、光源に狭帯域の波長フィルターを備えていることがより好ましい。光源に狭帯域の波長フィルターを備えることによって、より高感度な光学システムを実現することができる。又、光源に狭帯域の波長フィルターを備えることによって、光源の波長に多少のゆらぎがあっても影響が受けにくくなり、より安定な光学システムを実現することができる。
【0072】
更に、フィルターの透過する波長領域が可変となっている可変フィルターを用いることによって、共振モード格子の温度や、シグナル光の強度にあわせて波長をコントロールすることが可能になる。よって、環境温度の変化による共振モード格子の温度変化や、受光素子の飽和などの問題に対応することができる。例えば、シグナル光となる遠赤外線の強度が強すぎるため、受光素子が飽和してしまっているときに、温調機構によって光源の波長をシフトさせ、受光素子が飽和しないようにプローブ光の反射光強度を制御すること等が考えられる。
【0073】
図16は、可変フィルターの概略の構造の例を示す図である。可変フィルターとしては、図16に示す可変フィルター400のように、透明電極基板401及び402に液晶材料403が挟み込まれたエタロンフィルターで、液晶に印加する電圧Vを制御することにより透過波長を変化させることのできる液晶型波長可変フィルターを用いることができる。
【0074】
光源としては、狭波長帯域で安価である半導体レーザを用いることが特に好ましい。しかしながら、通常の半導体レーザはモードホップによる波長変動が存在する。共振モード格子は、図6に示すように温度変化だけではなく、波長変動によっても反射光強度が変化する。よって、光源にモードホップが存在すると、受光強度が変動する虞がある。
【0075】
これに対して、半導体レーザの中でも波長変動が小さい分布帰還型レーザ(DFBレーザ)、分布ブラッグ反射型レーザ(DBRレーザ)、垂直共振器面発光レーザ(VCSEL)を光源として用いることはより好ましい。これらのレーザでは半導体レーザの共振器に分布帰還型の構造もしくは、分布反射型構造が形成されているため共振する波長帯域を非常に狭く、非常に狭帯域の光を得ることができる。よって、本発明に係る光学システムの光源としてこれらのレーザを用いることによってより高感度で安定な光学システムとすることが可能となる。
【0076】
更に、上述のような光源は温調機構を備えていることが好ましい。半導体レーザ光源は温度によって波長変動が存在し、温度を精密に制御することによって発振波長を制御することができる。特に、DFBレーザやVCSELでは発振波長を温度制御によって精密にコントロールすることができるのでより好ましい。温調機構としては、例えば、ペルチェ素子を用いて電気的にコントロールする機構等が考えられる。
【0077】
又、可変フィルターの説明で述べたように、温調機構を備えていることにより、共振モード格子の温度や、シグナル光の強度にあわせて波長をコントロールすることが可能になる。よって、環境温度の変化による共振モード格子の温度変化や、受光素子の飽和などの問題に対応することができる。又、別の例として共振モード格子へ入射するプローブ光の入射角度を調整できるようになっていても良い。
【0078】
これは、光源からの光をフィルター素子へ導く第二の光学系が入射角度調整機構を備えていることで達成できる。具体的には、例えば、図1に示す光学システム100におけるハーフミラー130に角度調整機構がついていること、或いは、コリメートレンズ102に光軸と垂直な方向に可動できる駆動機構が備わっていることで実現できる。
【0079】
図17は、図9に示す共振モード格子310に入射角を変えて光を入射したときの反射分光特性を示す図である。図17において、横軸は共振モード格子310に入射する光の波長、縦軸は共振モード格子310で反射する光の反射光強度である。導波層311の厚さh1を314nm、格子層312の厚さh2を100nm、格子層312の周期pを500nmとしたとき、入射角度を0度〜3度まで変化させRCWAによる反射率の計算を行った。図17から明らかなように、図9に示す共振モード格子310は、入射角によって反射波長領域が大きく変化する。
【0080】
このように、プローブ光の入射角度調整機構を備えていることによって、前述した可変フィルターと同様に、共振モード格子の温度や、シグナル光の強度にあわせて、共振モード格子が反射するプローブ光の強度を調整することができる。よって、環境温度の変化による共振モード格子の温度変化や、受光素子の飽和などの問題に対応することができる。
【0081】
本発明の第1の実施の形態に係る光学システムによれば、光学システムを構成する共振モード格子の形状を制御することによって、反射光強度もしくは透過光強度の温度依存性の強さを制御することが可能となるため、より高感度な光学システムを実現することができる。又、多層膜のような複雑な構成を用いないため、画素構造をより容易なものとすることが可能となり、単純な構成からなる光学システムを実現することができる。
【0082】
〈第2の実施の形態〉
図18を参照しながら、本発明の第2の実施の形態に係る光学システムについて説明する。図18は、本発明の第2の実施の形態に係る光学システム500の概略の構成の例を示す図である。図18において、図1と同一構成部分については同一符号を付し、その説明は省略する場合がある。
【0083】
図18を参照するに、光学システム500は、光源110と、第二の光学系120と、第三の光学系150と、受光素子160と、フィルター素子510とを有する。フィルター素子510は、第一の光学系520と一体化されている。200は光源110から出射された第二の波長領域を有する光(以降、プローブ光200とする)を、210は対象物体、220は対象物体210からの輻射光を示している。
【0084】
光源110から出射されたプローブ光200は、第二の光学系120によってコリメートされた後に所定の入射角度にて、熱膨張率の異なる複数の材料から成る共振モード格子を有するフィルター素子510に入射する。このように、フィルター素子510へ入射する光は垂直入射では無く、所定の入射角度がついていても良く、これによって図1に示す光学システム100で用いたハーフミラー130を省略することができる。
【0085】
又、対象物体210からの輻射光220は、フィルター素子510と一体的に形成されているマイクロレンズアレイからなる第一の光学系520によってフィルター素子510へ取り込まれる。このように、第一の光学系520はフィルター素子510の窓を構成する材料と一体的に形成されたものであっても良い。
【0086】
フィルター素子510は取り込まれた輻射光のうち第一の波長領域の光(以降、シグナル光220aとする)を吸収して熱に変換する。フィルター素子510は後述するように、熱変化によって一部の形状が変化し、プローブ光200に対する反射率が変化する。反射したプローブ光200は第三の光学系150によって受光素子160へ導かれる。
【0087】
フィルター素子510としては、図1に示す光学システム100で用いた熱光学材料を含む共振モード格子から成るフィルター素子140を用いても良いが、ここでは別の例として異なる熱膨張率を持つ複数の材料によって形成されている共振モード格子を有するフィルター素子を用いた。これに関する詳細を、図19を参照しながら説明する。
【0088】
図19は、フィルター素子の概略の構成の例を示す図である。図19に示すフィルター素子510は基板511上に、2次元アレイ状の画素構造を持つ複数の共振モード格子512が形成されており、支柱513によって支えられている。共振モード格子512は第一の波長領域の光に対して吸収を有しており、シグナル光220aを吸収して熱に変えることで形状が変化し、光源110からの光の反射率を変化せしめる。
【0089】
図20を参照しながら、共振モード格子512に関して詳細を述べる。図20は、共振モード格子512の概略の構成の例を示す図である。図20において、図19と同一構成部分については同一符号を付し、その説明は省略する場合がある。図20(a)に示すように、共振モード格子512は、熱膨張率の低い低屈折率材料部512a上に、熱膨張率の高い高屈折率材料部512bが形成されており、高屈折率材料部512bの上面は周期的な凹凸構造を有する。
【0090】
又、共振モード格子512は一方の側面のみが支柱513によって支えられている。低屈折率材料部512a又は高屈折率材料部512b、又はその両方は、シグナル光を吸収し熱に変える。具体的な材料としては、例えば低屈折率材料としてSiO、高屈折材料としてTiOを用いることが考えられる。SiO及びTiOの熱膨張率(線膨張率、単位は全てK−1)はそれぞれおよそ、0.5×10−6、9×10−6である。
【0091】
共振モード格子512の温度が変化したとき、2種類の材料の熱膨張率の違いにより、図20(b)に示すように、支柱513部を基準に図中に示したようなたわみが生じることになる。これによって、プローブ光200が共振モード格子512へ入射する入射角度が大きくなる。
【0092】
図21は、共振モード格子512のTE偏光に関する反射分光特性の入射角度変化の例を示す図である。図21において、横軸は共振モード格子512に入射する光の波長、縦軸は共振モード格子512で反射する光の反射光強度である。図21に示す特性は、低屈折率材料部512aとして厚さ1μmのSiOを、高屈折率材料部512bとして厚さ0.25μm(凹凸構造部の厚さ0.1μm)のTiOを用いたときのものである。図21から明らかなように、微小な変形による入射角度変化によって反射特性が大きく変わることになる。
【0093】
図22は、共振モード格子512の入射角に対する反射光強度の変化の例を示す図である。図22において、横軸は共振モード格子512に入射する光の入射角、縦軸は共振モード格子512で反射する光の反射光強度である。図22に示す特性は、プローブ光の波長(第二の波長領域)が0.8μmであるときのものである。図22に示すように、プローブ光の波長(第二の波長領域)が0.8μmであるとき、共振モード格子512のたわみによって入射角度が変化すると、反射光強度が大きく変化する。
【0094】
図21や図22は入射角変化のみをシミュレーションしており、変形が直線的であると仮定しているが、実際には反りなどが発生する。しかしながら、このような状態であっても反射光強度に変化が生じるため、熱変形によって反りが発生する共振モード格子であっても、本発明に係るフィルター素子の構成として使用することが可能である。
【0095】
このように、入射角度変化に対して反射特性は非常に敏感であるため、非常に高感度な光学システムを構成することが可能である。又、図5等で示した、熱光学材料を用いた共振モード格子に対して、熱光学係数の大きい特別な材料を用いなくとも、一般的な光学材料によって形成可能であるため、作製がより容易である。
【0096】
又、図19に示すように、フィルター素子510は熱拡散による影響を避けるために、基板511、支持材514、及び窓515によって減圧パッケージングされている。窓515はマイクロレンズアレイからなる第一の光学系520と一体的に形成されている。このため、前述のように第一の光学系520と窓515とを一体化することができ、部品点数の削減が可能である。マイクロレンズアレイからなる第一の光学系520は、複数の画素に対して1つが対応するようになっており、対象物の像を画素部に形成する複眼撮像システムとなっている。
【0097】
本発明の第2の実施の形態に係る光学システムによれば、光学システムを構成する材料に熱光学材料を使用せずに、より一般的な光学材料によって構成することが可能であり、又、共振モード格子を構成するフィルターの反射又は透過光強度変化は角度変化に非常に敏感であるため、高感度な光学システムを実現することができる。又、多層膜のような複雑な構成を用いないため、画素構造をより容易なものとすることが可能となるため、単純な構成からなる光学システムを実現することができる。
【0098】
〈第3の実施の形態〉
図23を参照しながら、本発明の第3の実施の形態に係る光学システムについて説明する。図23は、本発明の第3の実施の形態に係る光学システム600の概略の構成の例を示す図である。図23において、図1と同一構成部分については同一符号を付し、その説明は省略する場合がある。
【0099】
図23を参照するに、光学システム600は、ハーフミラー130の代わりにダイクロイックミラー610を用い、ダイクロイックミラー610をフィルター素子140と第一の光学系170との間に配置した点を除いて、図1に示す光学システム100と同様に構成される。
【0100】
光学システム600において、プローブ光200は、ダイクロイックミラー610によってフィルター素子140へ導かれ、フィルター素子140を透過した光の強度が受光素子160で検出される。又、シグナル光220は、ダイクロイックミラー610を透過してフィルター素子140へと導かれることになる。ここでは、ダイクロイックミラー610としてシグナル光220を透過し、プローブ光200を反射するものを用いたが、逆にシグナル光220を反射し、プローブ光200を透過するものを用いても構わない。
【0101】
図1及び図18に示す光学システム100及び500においても、フィルター素子140又は510によって反射されるプローブ光200の強度を検出する構成とせず、図23で示す光学システム600のように、フィルター素子140を透過するプローブ光200の強度を検出する構成としても構わない。
【0102】
本発明の第3の実施の形態に係る光学システムによれば、本発明の第1の実施の形態及び第2の実施の形態と同様な効果を奏する。
【0103】
〈第4の実施の形態〉
図24を参照しながら、本発明の第4の実施の形態に係る赤外線撮像システムについて説明する。図24は、本発明の第4の実施の形態に係る赤外線撮像システム700の概略の構成の例を示す図である。図24を参照するに、赤外線撮像システム700は、光学システム100と、光学システム制御部710と、信号処理部720と、プロセッサ730と、外部インターフェース740とを有する。図24に示す赤外線撮像システム700は、図1に示す光学システム100を用いた赤外線撮像システムである。
【0104】
赤外線撮像システム700において、光学システム制御部710は、光学システム100を制御する機能を有する。信号処理部720は、光学システム100からの出力信号を処理する機能を有する。プロセッサ730は、光学システム制御部710及び信号処理部720を駆動する機能を有する。外部インターフェース740は、赤外線撮像システム700の外部と信号をやりとりする機能を有する。
【0105】
赤外線撮像システム700は、特に、遠赤外線波長を撮像する撮像システムとして用いることが好ましく、このような撮像システムは、暗闇の中でも人や動物の像を得ることができるため、監視カメラや、自動車等の移動体に搭載する車載カメラとして使用することもできる。なお、光学システム100に代えて、光学システム500、光学システム600、又は、これらに種々の変形及び置換を加えた光学システムを用いることができることは言うまでもない。
【0106】
本発明の第4の実施の形態に係る赤外線撮像システムによれば、本発明に係る光学システムを用いて、単純な構成で高感度に撮像可能な赤外線撮像システムを実現することができる。
【0107】
以上、本発明の好ましい実施の形態について詳説したが、本発明は、上述した実施の形態に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施の形態に種々の変形及び置換を加えることができる。
【図面の簡単な説明】
【0108】
【図1】本発明の第1の実施の形態に係る光学システムの概略の構成の例を示す図である。
【図2】フィルター素子の概略の構成の例を示す図である。
【図3】フィルター素子における2次元アレイ状の画素構造の概略の構成の例を示す図である。
【図4】窓の反射防止構造の例を示す図である。
【図5】共振モード格子の概略の構成の例を示す図である。
【図6】共振モード格子300における厳密結合波解析(RCWA)による反射特性の計算結果の例を示す図(その1)である。
【図7】共振モード格子300における厳密結合波解析(RCWA)による反射特性の計算結果の例を示す図(その2)である。
【図8】共振モード格子300における厳密結合波解析(RCWA)による反射特性の計算結果の例を示す図(その3)である。
【図9】共振モード格子の概略の構成の他の例を示す図(その1)である。
【図10】共振モード格子310の反射分光特性の例を示す図である。
【図11】共振モード格子の概略の構成の他の例を示す図(その2)である。
【図12】共振モード格子の概略の構成の他の例を示す図(その3)である。
【図13】共振モード格子の概略の構成の他の例を示す図(その4)である。
【図14】共振モード格子340の波長と反射光強度との関係の例を示す図である。
【図15】共振モード格子340の温度と反射光強度との関係の例を示す図である。
【図16】可変フィルターの概略の構造の例を示す図である。
【図17】図9に示す共振モード格子310に入射角を変えて光を入射したときの反射分光特性を示す図である。
【図18】本発明の第2の実施の形態に係る光学システム500の概略の構成の例を示す図である。
【図19】フィルター素子の概略の構成の例を示す図である。
【図20】共振モード格子512の概略の構成の例を示す図である。
【図21】共振モード格子512のTE偏光に関する反射分光特性の入射角度変化の例を示す図である。
【図22】共振モード格子512の入射角に対する反射光強度の変化の例を示す図である。
【図23】本発明の第3の実施の形態に係る光学システム600の概略の構成の例を示す図である。
【図24】本発明の第4の実施の形態に係る赤外線撮像システム700の概略の構成の例を示す図である。
【図25】従来の赤外線カメラの概略の構成の例を示す図である。
【図26】ピクセル素子アレイのフィルター特性の例を示す図である。
【符号の説明】
【0109】
100,500,600 光学システム
110 光源
120 第二の光学系
130 ハーフミラー
140,510 フィルター素子
141,515 窓
141a 三角形状
142,300,310,320,330,340,512 共振モード格子
143,511 基板
144,513 支柱
145,514 支持材
150 第三の光学系
160 受光素子
170,520 第一の光学系
200 プローブ光
210 対象物体
220 輻射光
301,321,331,341 基板層
302,311,342 導波層
303,312,343 格子層
322,332,333 グレーティング層
323 低屈折率層
400 可変フィルター
401,402 透明電極基板
512a 低屈折率材料部
512b 高屈折率材料部
610 ダイクロイックミラー
700 赤外線撮像システム
710 光学システム制御部
720 信号処理部
730 プロセッサ
740 外部インターフェース
h1,h2 厚さ
p ピッチ

【特許請求の範囲】
【請求項1】
微細な凹凸による周期構造によって前記周期構造に共鳴する特定波長領域の光を反射せしめる共振モード格子を有するフィルター素子と、
被対象物から輻射される第一の波長領域の光を前記共振モード格子へ導く第一の光学系と、
第二の波長領域の光を発する光源と、
前記光源が発する前記第二の波長領域の光を前記共振モード格子へ導く第二の光学系と、
光の強度を検出する受光素子と、
前記光源が発する前記第二の波長領域の光のうち前記共振モード格子で反射した前記特定波長領域の光を前記受光素子へ導く第三の光学系と、を有する光学システム。
【請求項2】
微細な凹凸による周期構造によって前記周期構造に共鳴する特定波長領域の光を透過せしめる共振モード格子を有するフィルター素子と、
被対象物から輻射される第一の波長領域の光を前記共振モード格子へ導く第一の光学系と、
第二の波長領域の光を発する光源と、
前記光源が発する前記第二の波長領域の光を前記共振モード格子へ導く第二の光学系と、
光の強度を検出する受光素子と、
前記光源が発する前記第二の波長領域の光のうち前記共振モード格子を透過した前記特定波長領域の光を前記受光素子へ導く第三の光学系と、を有する光学システム。
【請求項3】
前記共振モード格子は、前記第一の波長領域の光を吸収すると共に、熱光学効果を有することを特徴とする請求項1又2記載の光学システム。
【請求項4】
前記共振モード格子は、熱膨張率の異なる複数の材料から構成されており、前記複数の材料は、前記第一の波長領域の光を吸収する材料を含むことを特徴とする請求項1又2記載の光学システム。
【請求項5】
前記共振モード格子は、単一の材料から構成されており、前記単一の材料は、前記第一の波長領域の光を吸収すると共に、熱光学効果を有する材料であることを特徴とする請求項3記載の光学システム。
【請求項6】
前記共振モード格子は、複数の材料から構成されており、前記複数の材料は、前記第一の波長領域の光を吸収する材料と、熱光学効果を有する材料とを含むことを特徴とする請求項3記載の光学システム。
【請求項7】
前記単一の材料又は前記複数の材料は、前記第二の波長領域の光に対して透明な材料であることを特徴とする請求項5又は6記載の光学システム。
【請求項8】
前記熱光学効果を有する材料は、半導体材料から構成されることを特徴とする請求項5乃至7の何れか一項記載の光学システム。
【請求項9】
前記熱光学効果を有する材料は、ポリマー材料から構成されることを特徴とする請求項5乃至7の何れか一項記載の光学システム。
【請求項10】
前記フィルター素子は、複数の前記共振モード格子が2次元アレイ状に形成された画素構造を有しており、前記受光素子は2次元アレイ状の画素構造を有していることを特徴とする請求項1乃至9の何れか一項記載の光学システム。
【請求項11】
前記共振モード格子は、メンブレン状であることを特徴とする請求項1乃至10の何れか一項記載の光学システム。
【請求項12】
前記共振モード格子は、前記周期構造が面内の直行する2方向に関して異方性を有していることを特徴とする請求項1乃至11の何れか一項記載の光学システム。
【請求項13】
前記フィルター素子は空洞部を有し、前記共振モード格子は前記空洞部に封止され、前記空洞部は減圧状態又は不活性ガスが充填された状態にされていることを特徴とする請求項1乃至12の何れか一項記載の光学システム。
【請求項14】
前記空洞部は、基板及び窓を含む部材によって形成されており、前記窓は、前記第一の波長領域の光に対して透過率が高く、前記第二の波長領域の光に対して反射率が低い材料から構成され、前記基板は、前記第一の波長領域の光に対して反射率が高く、前記第二の波長領域の光に対して透過率が高い材料から構成されることを特徴とする請求項13記載の光学システム。
【請求項15】
前記空洞部は、基板及び窓を含む部材によって形成されており、前記窓は、前記第一の波長領域の光に対して反射率が高く、前記第二の波長領域の光に対して透過率が高い材料から構成され、前記基板は、前記第一の波長領域の光に対して透過率が高く、前記第二の波長領域の光に対して反射率が低い材料から構成されることを特徴とする請求項13記載の光学システム。
【請求項16】
前記光源は、狭帯域の波長の光のみを透過する波長選択フィルターを備えていることを特徴とする請求項1乃至15の何れか一項記載の光学システム。
【請求項17】
前記波長選択フィルターは、可変波長選択フィルターであり、透過する光の波長を外部信号によって変化させることが可能な構成とされていることを特徴とする請求項16記載の光学システム。
【請求項18】
前記光源は分布帰還型レーザ、分布ブラッグ反射型レーザ、又は、垂直共振器面発光レーザの何れかを用いることを特徴とする請求項1乃至17の何れか一項記載の光学システム。
【請求項19】
前記光源が温調機構を備えていることを特徴とする請求項18記載の光学システム。
【請求項20】
前記第二の光学系は、前記フィルター素子へ入射する光の入射角度を調整する入射角調整機構を備えていることを特徴とする請求項1乃至19の何れか一項記載の光学システム。
【請求項21】
請求項1乃至20の何れか一項記載の光学システムと、前記光学システムを制御する制御部と、前記光学システムからの出力信号を処理する信号処理部と、外部と信号をやりとりする外部インターフェース部と、を有する赤外線撮像システムであって、
前記光学システムにおける前記第一の波長領域は、赤外線領域に含まれていることを特徴とする赤外線撮像システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate


【公開番号】特開2009−264888(P2009−264888A)
【公開日】平成21年11月12日(2009.11.12)
【国際特許分類】
【出願番号】特願2008−113975(P2008−113975)
【出願日】平成20年4月24日(2008.4.24)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】