説明

光学フィルタおよびその製造方法

【課題】分光特性の再現性が良く、さらに帯電抑制を図る。
【解決手段】光学フィルタ1には、透明基板2と、透明基板2上に形成されたフィルタ群3とが備えられている。フィルタ群3は、IAD蒸着法により形成された高屈折率材料からなる第1薄膜31と、EB蒸着法により形成された低屈折率材料のSiO2からなる第2薄膜32とが交互に複数積層されてなる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学フィルタおよびその製造方法に関する。
【背景技術】
【0002】
一般的なカメラや暗視カメラ等に用いられるIRフィルタや、IRカットフィルタ、光学ローパスフィルタなどの光学フィルタは、透明基板上に形成される(例えば、特許文献1参照)。
【0003】
特許文献1などに記載の光学フィルタは、高屈折率材料からなる第1薄膜と、低屈折率材料からなる第2薄膜とから構成され、複数の第1薄膜と複数の第2薄膜とが電子ビーム蒸着(以下、EB蒸着とする)によって交互に積層されてなる。高屈折率材料にはTiO2などが用いられ、低屈折率材料にはSiO2などが用いられている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−266538号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記の光学フィルタの製造で用いるEB蒸着は、真空状態のチャンバー内で成膜対象物(基板)に薄膜を形成する方法である。このEB蒸着による光学フィルタの製造では、チャンバー内の状態(真空度や水の分圧等)により、薄膜の各層の特性がばらつく可能性がある。ここでいうばらつきは、光学フィルタの分光特性の再現性を悪くする原因になり、EB蒸着のみによって製造する光学フィルタでは、所望の分光特性を得ることは難しい。
【0006】
そこで、光学フィルタの分光特性の再現性を良くするために、イオンビームアシスト蒸着(以下、IAD蒸着とする)による光学フィルタの製造が挙げられる。しかしながら、このIAD蒸着による成膜方法では、成膜された薄膜の膜密度が高く、分光特性の再現性が良いが、その一方で、膜密度が高いために薄膜の膜中に水分が入り難くなり、静電気により薄膜の表面が帯電し易くなるといった別の問題が起こる。
【0007】
そこで、上記課題を解決するために本発明は、分光特性の再現性が良く、さらに帯電し難い光学フィルタおよびその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記の目的を達成するため、本発明にかかる光学フィルタは、透明基板と、前記透明基板上に形成されたフィルタ群とが備えられ、前記フィルタ群は、イオンビームアシスト蒸着法により形成された高屈折率材料からなる第1薄膜と、電子ビーム蒸着法により形成された低屈折率材料のSiO2からなる第2薄膜とが交互に複数積層されてなることを特徴とする。
【0009】
本発明によれば、イオンビームアシスト蒸着法により前記第1薄膜が形成されているため、前記第1薄膜の膜密度が高く前記第1薄膜により分光特性の再現性が良く、さらに、電子ビーム蒸着法により前記第2薄膜が形成されているため、前記第2薄膜の膜密度が粗く、前記第2薄膜の膜中に水分を含ませることが可能となり、その結果、前記第2薄膜により帯電抑制を行うことが可能となる。
【0010】
前記構成において、前記第1薄膜の少なくとも一部が、アモルファス状態とされ、前記第2薄膜が、アモルファス状態とされてもよい。
【0011】
この場合、前記第1薄膜の少なくとも一部がアモルファス状態のため、前記第1薄膜の膜内での散乱が抑えられ、透過光の損失を抑えることが可能となる。
【0012】
前記構成において、前記第1薄膜の膜密度は、第1薄膜のバルクに対して密となり、前記第2薄膜の膜密度は、第2薄膜のバルクに対して粗になってもよい。
【0013】
この場合、前記第1薄膜により分光特性を安定させることが可能となる。また、前記第2薄膜の膜中に水分を含ませることが可能となり、その結果、前記第2薄膜により帯電抑制を行うことが可能となる。
【0014】
また、上記の目的を達成するため、本発明にかかる光学フィルタは、透明基板と、前記透明基板上に形成されたフィルタ群とが備えられ、前記フィルタ群は、高屈折率材料からなる第1薄膜と、低屈折率材料のSiO2からなる第2薄膜とが交互に複数積層されてなり、前記フィルタ群の最上層が、電子ビーム蒸着法により形成された前記第2薄膜であり、前記最上層を除く前記フィルタ群の少なくとも1層が、イオンビームアシスト蒸着法により形成されたことを特徴とする。
【0015】
本発明によれば、前記フィルタ群の最上層が、電子ビーム蒸着法により形成された前記第2薄膜であり、前記最上層を除く前記フィルタ群の少なくとも1層が、イオンビームアシスト蒸着法により形成されているので、前記最上層を除く前記フィルタ群の少なくとも1層の膜密度が高く、前記フィルタ群の分光特性の再現性を良くすることが可能となり、さらに、電子ビーム蒸着法により前記フィルタ群の最上層の前記第2薄膜が形成されているので、前記フィルタ群の最上層の前記第2薄膜の膜密度が粗く、前記フィルタ群の最上層の前記第2薄膜の膜中に水分を含ませることが可能となり、その結果、前記フィルタ群の最上層の前記第2薄膜により前記フィルタ群の帯電抑制を行うことが可能となる。
【0016】
また、上記の目的を達成するため、本発明にかかる光学フィルタの製造方法は、透明基板に、高屈折率の材料からなる第1薄膜と、低屈折率材料のSiO2からなる第2薄膜とが交互に複数積層されてなるフィルタ群を形成する形成工程を有し、前記形成工程は、前記第1薄膜をイオンビームアシスト蒸着法により形成し、前記第2薄膜を電子ビーム蒸着法により形成することを特徴とする。
【0017】
本発明によれば、イオンビームアシスト蒸着法により前記第1薄膜が形成されているため、前記第1薄膜の膜密度が高く前記第1薄膜により分光特性の再現性が良く、さらに、電子ビーム蒸着法により前記第2薄膜が形成されているため、前記第2薄膜の膜密度が粗く、前記第2薄膜の膜中に水分を含ませることが可能となり、その結果、前記第2薄膜により帯電抑制を行うことが可能となる。
【0018】
前記方法において、前記第1薄膜と前記第2薄膜とを交互に連続して形成してもよい。
【0019】
この場合、前記第1薄膜の形成と前記第2薄膜の形成とにおいて異なる蒸着方法を採用しても同一の装置内部でイオンビームをアシストするか否かの切り替えを行うのみで連続して薄膜形成を行うことが可能となり、薄膜形成時間を短くすることが可能となる。
【0020】
前記方法において、前記形成工程では、少なくとも一部がアモルファス状態になる前記第1薄膜を形成し、アモルファス状態の前記第2薄膜膜を形成してもよい。
【0021】
この場合、前記第1薄膜の少なくとも一部がアモルファス状態のため、前記第1薄膜の膜内での散乱が抑えられ、透過光の損失を抑えることが可能となる。
【0022】
前記方法において、前記第1薄膜の膜密度は、第1薄膜のバルクに対して密となり、前記第2薄膜の膜密度は、第2薄膜のバルクに対して粗になってもよい。
【0023】
この場合、前記第1薄膜により分光特性を安定させることが可能となる。また、前記第2薄膜の膜中に水分を含ませることが可能となり、その結果、前記第2薄膜により帯電抑制を行うことが可能となる。
【発明の効果】
【0024】
本発明によれば、分光特性の再現性が良く、さらに帯電し難い光学フィルタおよびその製造方法を提供することができる。
【図面の簡単な説明】
【0025】
【図1】図1は、本実施の形態にかかる光学フィルタの構成を示す概略構成図である。
【図2】図2は、本実施の形態にかかる、フィルタ群の積層状態を示す光学フィルタの拡大図である。
【図3】図3は、本実施の形態にかかる成膜装置の概略構成図である。
【発明を実施するための形態】
【0026】
以下、本発明の実施の形態について図面を参照して説明する。
【0027】
本実施の形態にかかる光学フィルタ1には、図1に示すように、透明基板2と、この透明基板2の一主面21上に形成されたフィルタ群3と、透明基板2の他主面22上に形成されたARコート(Anti Reflection Coating)4とが設けられている。なお、フィルタ群3は、IRカットフィルタ(Infrared Cut filter)に対応する。
【0028】
透明基板2には、大気中における屈折率が1.54である水晶基板が用いられている。
【0029】
フィルタ群3は、図1,2に示すように、高屈折率材料からなる第1薄膜31と、低屈折率材料からなる第2薄膜32とが交互に複数積層されてなる。そのため、透明基板2の一主面21側から数えて奇数番目の層が第1薄膜31により構成され、偶数番目の層が第2薄膜32により構成されている。
【0030】
第1薄膜31には高屈折率材料であるTiO2(大気中における屈折率が2.30)が用いられ、第2薄膜32には低屈折率材料であるSiO2(大気中における屈折率が1.46)が用いられ、第1薄膜31の積層合計の光学膜厚と、第2薄膜32の積層合計の光学膜厚との光学膜厚比が、1:1に設定されている。なお、ここでいう光学膜厚比の1:1は、厳密に1:1に限定されるものではなく、当業者が許容する1:1近傍の割合も含まれる。
【0031】
また、フィルタ群3は、透明基板2の一主面21側から順に序数詞で定義される複数層、本実施の形態では1層、2層、3層・・・40層から構成されている。これら1層、2層、3層・・・40層それぞれの層は、第1薄膜31と第2薄膜32とが積層されて構成されている。また、積層される第1薄膜31と第2薄膜32との光学膜厚が異なることにより1層、2層、3層・・・40層それぞれの厚さが異なる。なお、ここでいう光学膜厚は、下記する数式1により求められる。
【0032】
[数式1]
Nd=λ/4(Nd:光学膜厚、d:物理膜厚、N:屈折率、λ:中心波長)
【0033】
上記構成からなるフィルタ群3は、次に示すフィルタ群3の製造方法により、光の屈折率に基づく第1薄膜31および第2薄膜32の厚さや光学特性の最適化が行なわれた状態で透明基板2に形成される。
【0034】
<フィルタ群3の製造方法(形成工程)>
フィルタ群3は、図3に示す成膜装置5を用いて、物理蒸着法により透明基板2上に第1薄膜31と第2薄膜32とを交互に蒸着して形成する。
【0035】
成膜装置5は、図3に示すように、成膜装置5の筺体となるチャンバー51内に、2つの蒸着材料(Ti35とSiO2)を配する蒸着源52と、蒸着源52に対向し、透明基板2を内側面に配する半球状体の載置部59と、成膜対象となる透明基板2を加熱するヒータ部53と、透明基板2への任意の蒸着材料(Ti35とSiO2のいずれか1つ)の蒸着を停止するシャッタ54と、気化させた蒸着材料の飛散をイオンアシストするイオン銃55と、チャンバー51内を真空状態にするための排気口57と、チャンバー51内に酸化を促進させるためのO2ガスを注入するガス導入バルブ58とが設けられている。なお、イオン銃55には、不活性ガスであるArガスを導入するガス導入バルブ56が設けられている。
【0036】
透明基板2へのフィルタ群3の形成では、まず、成膜装置5のチャンバー51内のヒータ部53近傍の載置部59に、透明基板2を配置する。この時、透明基板2の一主面21が蒸着源52に向くように配する。透明基板2をチャンバー51内に配した後に、排気口57からチャンバー51内を真空引きしてチャンバー51内を真空状態にする。なお、TiO2膜である第1薄膜31を形成する際のみ、ガス導入バルブ58からO2ガス(酸素ガス)を注入する。
【0037】
チャンバー51内を真空状態にした後に、イオンビームアシスト蒸着法(以下、IAD蒸着法とする)により第1薄膜31を透明基板2に形成する。このIAD蒸着による第1薄膜31の形成では、蒸着源52に配したTi35(蒸着材料)に電子ビームを照射してTi35を加熱蒸発させる。加熱蒸発させたTi35は、透明基板2に向かって蒸発して行く。このときにO2と結合、もしくは透明基板2上でO2と結合しTiO2とした状態で透明基板2に堆積させる(TiO2膜の形成)。さらに、蒸着物質が透明基板2に到達したのちイオンアシストされることにより、酸素との結合が促進される。この蒸着により透明基板2に第1薄膜31を形成し、この時、透明基板2に形成された第1薄膜31が1層となる。なお、この時、蒸着源52のSiO2(蒸着材料)の上空にはシャッタ54が配され、SiO2が透明基板に蒸着しないようになっている。
【0038】
1層の第1薄膜31を透明基板2に形成した後に、シャッタ54を図3に示す矢印方向に移動させて蒸着源52のTi35の上空にシャッタ54を配し、イオン銃55によるイオンアシストを停止する。その後、電子ビーム蒸着法(以下、EB蒸着法とする)により第2薄膜32を透明基板2に形成した1層の第1薄膜31上に積層する(形成する)。このEB蒸着による第2薄膜32の形成では、蒸着源52に配したSiO2(蒸着材料)に電子ビームを照射してSiO2を加熱蒸発させる。この蒸発により透明基板2(厳密には透明基板2に形成した1層の第1薄膜31)に第2薄膜32を形成する。この時の第2薄膜32が2層となる。
【0039】
2層の第2薄膜32を1層の第1薄膜31上に形成した後に、シャッタ54を図3に示す矢印方向に移動させて蒸着源52のSiO2の上空にシャッタ54を配し、イオン銃55によるイオンアシストを再開し、3層の第1薄膜31を1層の第1薄膜31の形成工程と同工程により形成する。そして、3層の第1薄膜31を2層の第2薄膜32上に形成した後に、4層の第2薄膜32を2層の第2薄膜32の形成工程と同工程により形成する。以下、同様に、第1薄膜31と第2薄膜32とを交互に連続して積層して5層〜40層を形成して、透明基板2上にフィルタ群3を形成する。
【0040】
上記のフィルタ群3の製造方法では、第1薄膜31をIAD蒸着法により形成し、第2薄膜32をEB蒸着法により形成している。
【0041】
そのため、IAD蒸着法により形成した第1薄膜31であるTiO2膜では、少なくとも一部が緻密なアモルファス状態になり、EB蒸着法により形成した第2薄膜32であるSiO2膜は、多孔質性アモルファス状態になる。また、IAD蒸着法により形成した第1薄膜31の膜密度は第1薄膜31のバルクに対して密となり、EB蒸着法により形成した第2薄膜32は第2薄膜32のバルクに対して粗となる。そのため、IAD蒸着法により形成した第1薄膜31により分光特性を安定させることができる。また、EB蒸着法により形成した第2薄膜32の膜密度は第2薄膜32のバルクに対して粗状態になるので、第2薄膜32の膜中に水分を含ませることができ、その結果、第2薄膜32により帯電抑制を行うことができる。ここでいうバルクとは、結晶の内部(外部環境に接していない部分)のことをいい、単結晶バルクのことをいいます。そして、本実施の形態では、第1薄膜31のバルクの膜密度は、TiO2のバルクの密度である4.26g/cm3に近い値をとるため密となり、第2薄膜32のバルクの膜密度は、SiO2のバルクの密度である2.21g/cm3より小さい値をとるため粗となる。なお、本実施の形態では、第1薄膜31にTiO2用い、第2薄膜32にSiO2を用いたバルクの密度となっているが、第1薄膜31に他の材料を用いた場合、その他の材料のバルクを比較対象とする。
【0042】
このように、フィルタ群3では、第1薄膜31により分光特性の安定を図り、第2薄膜32により帯電抑制を図ることができるので、分光特性の再現性が良く、さらに帯電し難い光学フィルタ1となる。
【0043】
また、本実施の形態によれば、第1薄膜31の形成工程と第2薄膜32の形成工程とにおいて異なる蒸着方法を採用しても連続して薄膜形成を行うことができ、薄膜形成時間を短くすることができる。
【0044】
なお、上記の本実施の形態では、40層のフィルタ群3について説明しているが、フィルタ群3の層数はこれに限定されるものではなく、任意に設定可能である。
【0045】
また、本実施の形態では、奇数層に第1薄膜31、偶数層に第2薄膜32を用いているが、これに限定されるものではなく、最終層が第2薄膜32であれば、奇数層に第2薄膜32、偶数層に第1薄膜31を用いてもよい。
【0046】
また、本実施の形態では、透明基板2を用いているが、これに限定されるものではなく、光線が透過可能な基板であれば、例えばガラス板であってもよい。また、透明基板2も限定されるものではなく、単板の水晶板、例えば複屈折板であってもよく、複数枚からなる複屈折板であってもよい。また、水晶板とガラス板を組合わせて透明基板を構成してもよい。
【0047】
また、本実施の形態では、第1薄膜31にTiO2を用いているが、これに限定されるものではなく、第1薄膜31が高屈折率材料からなっていればよく、例えば、Nb25、またはTa25を用いてもよい。なお、Nb25、またはTa25は、TiO2と略同じ屈折率を有するので、第1薄膜31にNb25、またはTa25を用いた場合、上記の実施例と同様の効果を有する。
【0048】
また、本実施の形態では、IAD蒸着法により形成した第1薄膜31と、EB蒸着法により形成した第2薄膜32とからなるフィルタ群3を用いているが、これに限定されるものではなく、フィルタ群3の最上層となる第2薄膜32以外の少なくとも1つの第2薄膜32をIAD蒸着法により形成してもよい。
【0049】
また、本実施の形態では、IAD蒸着法により形成した第1薄膜31と、EB蒸着法により形成した第2薄膜32とからなるフィルタ群3を用いているが、これに限定されるものではなく、フィルタ群3の最上層が、EB蒸着法により形成された第2薄膜32であり、最上層を除くフィルタ群3の少なくとも1層が、IAD蒸着法により形成されていればよく、例えば、フィルタ群3の最下層がIAD蒸着法により形成した第1薄膜31であり、フィルタ群3の最上層がEB蒸着法により形成した第2薄膜32であってもよい。他の形態として、フィルタ群3の最上層の第2薄膜32がEB蒸着法により形成され、その他の全ての層がIAD蒸着法により形成されてもよい。この構成によれば、フィルタ群3の最上層が、EB蒸着法により形成された第2薄膜32であり、最上層を除くフィルタ群3の少なくとも1層が、IAD蒸着法により形成されているため、IAD蒸着法により形成された薄膜の膜密度が高く、IAD蒸着法により形成された薄膜によりフィルタ群3の分光特性の再現性を良くすることができ、さらに、EB蒸着法によりフィルタ群3の最上層の第2薄膜32が形成されているため、フィルタ群3の最上層の第2薄膜32の膜密度が粗く、フィルタ群3の最上層の第2薄膜32の膜中に水分を含ませることができ、その結果、フィルタ群3の最上層の第2薄膜32によりフィルタ群3の帯電抑制を行うことができる。
【0050】
また、本実施の形態では、透明基板2上に第1薄膜31と第2薄膜32とを交互に蒸着して形成しているが、これに限定されるものではなく、フィルタ群3の一部が、第1薄膜31を連続して積層されてもよく、または、第2薄膜32を連続して積層されてもよい。特に、フィルタ群3の最上層の第2薄膜32が、EB蒸着法により連続して積層された第2薄膜32である場合、帯電抑制に好適な第2薄膜32を連続して積層することができるため、フィルタ群3の帯電抑制に好適な形態となる。
【0051】
また、本実施の形態では、透明基板2の一主面21上にフィルタ群3を形成し、透明基板2の他主面22上にARコート4を形成しているが、これに限定されるものではなく、透明基板2の両主面(一主面21および他主面22)にフィルタ群3を分割して形成してもよい。この場合、基板の両主面(一主面21および他主面22)に分割して形成されたフィルタ群3の最上層を除く薄膜(例えば第1薄膜31)をIAD蒸着法により形成し、フィルタ群3の最上層に配する第2薄膜32をEB蒸着法により形成することで、分光特性の再現性が良く、さらに帯電抑制を図ることができる。
【0052】
なお、本発明は、その精神や主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
【産業上の利用可能性】
【0053】
本発明は、帯電防止用の光学フィルタに好適である。
【符号の説明】
【0054】
1 光学フィルタ
2 透明基板
21 透明基板の一主面
22 透明基板の他主面
3 フィルタ群
31 第1薄膜
32 第2薄膜
4 ARコート
5 成膜装置
51 チャンバー
52 蒸着源
53 ヒータ部
54 シャッタ
55 イオン銃
56 ガス導入バルブ(イオン銃用)
57 排気口
58 ガス導入バルブ(チャンバー用)

【特許請求の範囲】
【請求項1】
光学フィルタにおいて、
透明基板と、前記透明基板上に形成されたフィルタ群とが備えられ、
前記フィルタ群は、イオンビームアシスト蒸着法により形成された高屈折率材料からなる第1薄膜と、電子ビーム蒸着法により形成された低屈折率材料のSiO2からなる第2薄膜とが交互に複数積層されてなることを特徴とする光学フィルタ。
【請求項2】
請求項1に記載の光学フィルタにおいて、
前記第1薄膜の少なくとも一部が、アモルファス状態とされ、
前記第2薄膜が、アモルファス状態とされたことを特徴とする光学フィルタ。
【請求項3】
請求項1または2に記載の光学フィルタにおいて、
前記第1薄膜の膜密度は、第1薄膜のバルクに対して密となり、前記第2薄膜の膜密度は、第2薄膜のバルクに対して粗になることを特徴とする光学フィルタ。
【請求項4】
光学フィルタにおいて、
透明基板と、前記透明基板上に形成されたフィルタ群とが備えられ、
前記フィルタ群は、高屈折率材料からなる第1薄膜と、低屈折率材料のSiO2からなる第2薄膜とが交互に複数積層されてなり、
前記フィルタ群の最上層が、電子ビーム蒸着法により形成された前記第2薄膜であり、
前記最上層を除く前記フィルタ群の少なくとも1層が、イオンビームアシスト蒸着法により形成されたことを特徴とする光学フィルタ。
【請求項5】
光学フィルタの製造方法において、
透明基板に、高屈折率の材料からなる第1薄膜と、低屈折率材料のSiO2からなる第2薄膜とが交互に複数積層されてなるフィルタ群を形成する形成工程を有し、
前記形成工程は、前記第1薄膜をイオンビームアシスト蒸着法により形成し、前記第2薄膜を電子ビーム蒸着法により形成することを特徴とする光学フィルタの製造方法。
【請求項6】
請求項5に記載の光学フィルタの製造方法において、
前記第1薄膜と前記第2薄膜とを交互に連続して形成することを特徴とする光学フィルタの製造方法。
【請求項7】
請求項5または6に記載の光学フィルタの製造方法において、
前記形成工程では、少なくとも一部がアモルファス状態になる前記第1薄膜を形成し、アモルファス状態の前記第2薄膜を形成することを特徴とする光学フィルタの製造方法。
【請求項8】
請求項5乃至7のうちいずれか1つに記載の光学フィルタの製造方法において、
前記第1薄膜の膜密度は、第1薄膜のバルクに対して密となり、前記第2薄膜の膜密度は、第2薄膜のバルクに対して粗になることを特徴とする光学フィルタの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2013−109004(P2013−109004A)
【公開日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2011−251402(P2011−251402)
【出願日】平成23年11月17日(2011.11.17)
【出願人】(000149734)株式会社大真空 (312)
【Fターム(参考)】