説明

光学フィルム

【課題】 透明性、耐熱性、光学等方性がいずれも高く、各種光学用途に応じた特性を十分に発揮できる、光学フィルムを提供する。
【解決手段】 本発明にかかる光学フィルムは、ラクトン環含有重合体及び該重合体と熱力学的に相溶する熱可塑性樹脂を主成分として含む。本発明にかかる光学フィルムは、各種光学部材の基材フィルムとして有用である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明にかかる光学フィルムは、各種光学基材の基材フィルムとして好適な、ラクトン環含有重合体及び該重合体と熱力学的に相溶する熱可塑性樹脂を主成分として含む光学フィルムに関する。
【背景技術】
【0002】
PMMAに代表されるアクリル樹脂は、光学性能に優れ、高い光線透過率や低複屈折率、低位相差の光学等方材料として各種光学材料への適応が成されていた。しかし近年、液晶表示装置やプラズマディスプレイ、有機EL表示装置等のフラットディスプレイや赤外線センサー、光導波路等の進歩に伴い、光学用透明高分子材料、特にフィルム等の光学用透明高分子材料に対する要請が高まっている。フィルム状の光学用透明高分子材料に要求される特性としては、まず、透明性、光学等方性が高いことが挙げられ、それらと共に耐熱性も要求される。
【0003】
しかしながら、従来の光学用透明高分子材料からなる光学フィルムは、これらの特性を十分に満足するものではなかった。
【0004】
他方、透明性と耐熱性とを共に兼ね備えた熱可塑性樹脂として、分子鎖中に水酸基とエステル基とを有する重合体をラクトン環化縮合反応させることによって得られるラクトン環含有重合体が知られている(例えば、特許文献1、2、3、4参照)。しかし、光学等方性、耐光性が十分に発現できず、機械的強度も満足できるものではなかったので、フィルム状の光学用透明高分子材料とすることは従来はなされていなかった。更に該ラクトン環含有重合体のみでは、耐熱性を向上させるためにラクトン環構造の含有量を増加させた場合、光学等方性も低下する方向となり、低複屈折で低位相差の光学フィルムを得ることは困難であった。
【0005】
【特許文献1】特開2000−230016号公報
【特許文献2】特開2001−151814号公報
【特許文献3】特開2002−120326号公報
【特許文献4】特開2002−254544号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明が解決しようとする課題は、透明性、耐熱性、光学等方性がいずれも高く、各種光学部材の基材フィルムとしての特性を十分に発揮できる、光学フィルムを提供することにある。
【課題を解決するための手段】
【0007】
本発明者は、上記課題を解決するべく鋭意検討を行った。その結果、ラクトン環含有重合体及び該重合体と熱力学的に相溶する熱可塑性樹脂を主成分として含む熱可塑性樹脂組成物を特定条件下でフィルム化すると、光学部材の基材フィルムに適した光学特性、機械的特性を有し、透明性と耐熱性とを共に兼ね備えた光学フィルムを提供できることを見出した。
【0008】
すなわち、本発明にかかる光学フィルムは、ラクトン環含有重合体及び該重合体と熱力学的に相溶する熱可塑性樹脂を主成分として含む。
【0009】
前記ラクトン環含有重合体は、下記一般式(1)で表されるラクトン環構造を有することがある。
【0010】
【化1】

【0011】
(式中、R、R、Rは、それぞれ独立に、水素原子または炭素数1〜20の有機残基を表す。なお、有機残基は酸素原子を含んでいても良い。)
本発明にかかるその他の熱可塑性樹脂は、該ラクトン環含有重合体と熱力学的に相溶し、透明性や耐熱性、低位相差、優れた機械強度の性能を有する光学フィルムを提供でき得るものであれば、特に種類は問わないが、シアン化ビニル系単量体単位と芳香族ビニル系単量体単位とを含む共重合体であれば、これらの性能を全て満たす事が可能である。更に好ましくは、アクリロニトリル−スチレン系共重合体である。
【0012】
前記光学フィルムは、ガラス転移温度が120℃以上で、面方向の100μmあたりの位相差が20nm以下、全光線透過率が85%以上である。
【発明の効果】
【0013】
本発明によれば、透明性、耐熱性、光学等方性がいずれも高く、各種光学部材の基材フィルムとしての性能を十分に発揮できる。
【発明を実施するための最良の形態】
【0014】
以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。
【0015】
〔ラクトン環含有重合体〕
本発明にかかる光学用面状熱可塑性樹脂成形体は、ラクトン環含有重合体を主成分として含む。
【0016】
ラクトン環含有重合体は、好ましくは、下記一般式(1)で表されるラクトン環構造を有する。
【0017】
【化2】

【0018】
(式中、R、R、Rは、それぞれ独立に、水素原子または炭素数1〜20の有機残基を表す。なお、有機残基は酸素原子を含んでいても良い。)
ラクトン環含有重合体構造中の一般式(1)で表されるラクトン環構造の含有割合は、好ましくは5〜90重量%、より好ましくは10〜70重量%、さらに好ましくは10〜60重量%、特に好ましくは10〜50重量%である。ラクトン環含有重合体構造中の一般式(1)で表されるラクトン環構造の含有割合が5重量%よりも少ないと、耐熱性、耐溶剤性、表面硬度が不十分になることがあり、好ましくない。ラクトン環含有重合体構造中の一般式(1)で表されるラクトン環構造の含有割合が90重量%よりも多いと、成形加工性に乏しくなることがあり、好ましくない。
【0019】
ラクトン環含有重合体は、一般式(1)で表されるラクトン環構造以外の構造を有していてもよい。一般式(1)で表されるラクトン環構造以外の構造としては、特に限定されないが、ラクトン環含有重合体の製造方法として後に説明するような、(メタ)アクリル酸エステル、水酸基含有単量体、不飽和カルボン酸、下記一般式(2a)で表される単量体から選ばれる少なくとも1種を重合して構築される重合体構造単位(繰り返し構造単位)が好ましい。
【0020】
【化3】

【0021】
(式中、Rは水素原子またはメチル基を表し、Xは水素原子、炭素数1〜20のアルキル基、アリール基、−OAc基、−CN基、−CO−R基、または−C−O−R基を表し、Ac基はアセチル基を表し、RおよびRは水素原子または炭素数1〜20の有機残基を表す。)
ラクトン環含有重合体構造中の一般式(1)で表されるラクトン環構造以外の構造の含有割合は、(メタ)アクリル酸エステルを重合して構築される重合体構造単位(繰り返し構造単位)の場合、好ましくは10〜95重量%、より好ましくは10〜90重量%、さらに好ましくは40〜90重量%、特に好ましくは50〜90重量%であり、水酸基含有単量体を重合して構築される重合体構造単位(繰り返し構造単位)の場合、好ましくは0〜30重量%、より好ましくは0〜20重量%、さらに好ましくは0〜15重量%、特に好ましくは0〜10重量%である。不飽和カルボン酸を重合して構築される重合体構造単位(繰り返し構造単位)の場合、好ましくは0〜30重量%、より好ましくは0〜20重量%、さらに好ましくは0〜15重量%、特に好ましくは0〜10重量%である。一般式(2a)で表される単量体を重合して構築される重合体構造単位(繰り返し構造単位)の場合、好ましくは0〜30重量%、より好ましくは0〜20重量%、さらに好ましくは0〜15重量%、特に好ましくは0〜10重量%である。
【0022】
ラクトン環含有重合体の製造方法については、特に限定はされないが、好ましくは、重合工程によって分子鎖中に水酸基とエステル基とを有する重合体(a)を得た後に、得られた重合体(a)を加熱処理することによりラクトン環構造を重合体に導入するラクトン環化縮合工程を行うことによって得られる。
【0023】
重合工程においては、下記一般式(1a)で表される単量体を含む単量体成分の重合反応を行うことにより、分子鎖中に水酸基とエステル基とを有する重合体を得る。
【0024】
【化4】

【0025】
(式中、RおよびRは、それぞれ独立に、水素原子または炭素数1〜20の有機残基を表す。)
一般式(1a)で表される単量体としては、例えば、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシメチル)アクリル酸イソプロピル、2−(ヒドロキシメチル)アクリル酸ノルマルブチル、2−(ヒドロキシメチル)アクリル酸ターシャリーブチルなどが挙げられる。これらの中でも、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチルが好ましく、耐熱性向上効果が高い点で、2−(ヒドロキシメチル)アクリル酸メチルが特に好ましい。一般式(1a)で表される単量体は、1種のみ用いても良いし、2種以上を併用しても良い。
【0026】
重合工程において供する単量体成分中の一般式(1a)で表される単量体の含有割合は、好ましくは5〜90重量%、より好ましくは10〜70重量%、さらに好ましくは10〜60重量%、特に好ましくは10〜50重量%である。重合工程において供する単量体成分中の一般式(1a)で表される単量体の含有割合が5重量%よりも少ないと、耐熱性、耐溶剤性、表面硬度が不十分になることがあり、好ましくない。重合工程において供する単量体成分中の一般式(1a)で表される単量体の含有割合が90重量%よりも多いと、重合時、ラクトン環化時にゲル化が起こることや、得られた重合体の成形加工性が乏しくなることがあり、好ましくない。
【0027】
重合工程において供する単量体成分中には、一般式(1a)で表される単量体以外の単量体を含んでいても良い。このような単量体としては、特に限定されないが、例えば、(メタ)アクリル酸エステル、水酸基含有単量体、不飽和カルボン酸、下記一般式(2a)で表される単量体が好ましく挙げられる。一般式(1a)で表される単量体以外の単量体は、1種のみ用いても良いし、2種以上を併用しても良い。
【0028】
【化5】

【0029】
(式中、Rは水素原子またはメチル基を表し、Xは水素原子、炭素数1〜20のアルキル基、アリール基、−OAc基、−CN基、−CO−R基、または−C−O−R基を表し、Ac基はアセチル基を表し、RおよびRは水素原子または炭素数1〜20の有機残基を表す。)
(メタ)アクリル酸エステルとしては、一般式(1a)で表される単量体以外の(メタ)アクリル酸エステルであれば特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸シクロヘキシル、アクリル酸ベンジルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジルなどのメタクリル酸エステル;などが挙げられ、これらは1種のみ用いても良いし、2種以上を併用しても良い。これらの中でも特に、耐熱性、透明性が優れる点から、メタクリル酸メチルが好ましい。
【0030】
一般式(1a)で表される単量体以外の(メタ)アクリル酸エステルを用いる場合、重合工程に供する単量体成分中のその含有割合は、本発明の効果を十分に発揮させる上で、好ましくは10〜95重量%、より好ましくは10〜90重量%、さらに好ましくは40〜90重量%、特に好ましくは50〜90重量%である。
【0031】
水酸基含有単量体としては、一般式(1a)で表される単量体以外の水酸基含有単量体であれば特に限定されないが、例えば、α−ヒドロキシメチルスチレン、α−ヒドロキシエチルスチレン、2−(ヒドロキシエチル)アクリル酸メチルなどの2−(ヒドロキシアルキル)アクリル酸エステル;2−(ヒドロキシエチル)アクリル酸などの2−(ヒドロキシアルキル)アクリル酸;などが挙げられ、これらは1種のみ用いても良いし、2種以上を併用しても良い。
【0032】
一般式(1a)で表される単量体以外の水酸基含有単量体を用いる場合、重合工程に供する単量体成分中のその含有割合は、本発明の効果を十分に発揮させる上で、好ましくは0〜30重量%、より好ましくは0〜20重量%、さらに好ましくは0〜15重量%、特に好ましくは0〜10重量%である。
【0033】
不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、α−置換アクリル酸、α−置換メタクリル酸などが挙げられ、これらは1種のみ用いても良いし、2種以上を併用しても良い。これらの中でも特に、本発明の効果を十分に発揮させる点で、アクリル酸、メタクリル酸が好ましい。
【0034】
不飽和カルボン酸を用いる場合、重合工程に供する単量体成分中のその含有割合は、本発明の効果を十分に発揮させる上で、好ましくは0〜30重量%、より好ましくは0〜20重量%、さらに好ましくは0〜15重量%、特に好ましくは0〜10重量%である。
【0035】
一般式(2a)で表される単量体としては、例えば、スチレン、ビニルトルエン、α−メチルスチレン、アクリロニトリル、メチルビニルケトン、エチレン、プロピレン、酢酸ビニルなどが挙げられ、これらは1種のみ用いても良いし、2種以上を併用しても良い。これらの中でも特に、本発明の効果を十分に発揮させる点で、スチレン、α−メチルスチレンが好ましい。
【0036】
一般式(2a)で表される単量体を用いる場合、重合工程に供する単量体成分中のその含有割合は、本発明の効果を十分に発揮させる上で、好ましくは0〜30重量%、より好ましくは0〜20重量%、さらに好ましくは0〜15重量%、特に好ましくは0〜10重量%である。
【0037】
単量体成分を重合して分子鎖中に水酸基とエステル基とを有する重合体を得るための重合反応の形態としては、溶剤を用いた重合形態であることが好ましく、溶液重合が特に好ましい。
【0038】
重合温度、重合時間は、使用する単量体の種類、使用比率等によって異なるが、好ましくは、重合温度が0〜150℃、重合時間が0.5〜20時間であり、より好ましくは、重合温度が80〜140℃、重合時間が1〜10時間である。
【0039】
溶剤を用いた重合形態の場合、重合溶剤は特に限定されず、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトンケトンなどのケトン系溶剤;テトラヒドロフランなどのエーテル系溶剤;などが挙げられ、これらの1種のみを用いても良いし、2種以上を併用しても良い。また、使用する溶剤の沸点が高すぎると、最終的に得られるラクトン環含有重合体の残存揮発分が多くなることから、沸点が50〜200℃のものが好ましい。
【0040】
重合反応時には、必要に応じて、重合開始剤を添加してもよい。重合開始剤としては特に限定されないが、例えば、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−アミルパーオキシ−2−エチルヘキサノエートなどの有機過酸化物;2,2´−アゾビス(イソブチロニトリル)、1,1´−アゾビス(シクロヘキサンカルボニトリル)、2,2´−アゾビス(2,4−ジメチルバレロニトリル)などのアゾ化合物;などが挙げられ、これらは1種のみを用いても良いし、2種以上を併用しても良い。重合開始剤の使用量は、用いる単量体の組み合わせや反応条件などに応じて適宜設定すればよく、特に限定されない。
【0041】
重合を行う際には、反応液のゲル化を抑止するために、重合反応混合物中の生成した重合体の濃度が50重量%以下となるように制御することが好ましい。具体的には、重合反応混合物中の生成した重合体の濃度が50重量%を超える場合には、重合溶剤を重合反応混合物に適宜添加して50重量%以下となるように制御することが好ましい。重合反応混合物中の生成した重合体の濃度は、より好ましくは45重量%以下、さらに好ましくは40重量%以下である。なお、重合反応混合物中の重合体の濃度があまりに低すぎると生産性が低下するため、重合反応混合物中の重合体の濃度は、10重量%以上であることが好ましく、20重量%以上であることがより好ましい。
【0042】
重合溶剤を重合反応混合物に適宜添加する形態としては、特に限定されず、連続的に重合溶剤を添加しても良いし、間欠的に重合溶剤を添加しても良い。このように重合反応混合物中の生成した重合体の濃度を制御することによって、反応液のゲル化をより十分に抑止することができ、特に、ラクトン環含有割合を増やして耐熱性を向上させるために分子鎖中の水酸基とエステル基の割合を高めた場合であってもゲル化を十分に抑制できる。添加する重合溶剤としては、重合反応の初期仕込み時に用いた溶剤と同じ種類の溶剤であっても良いし、異なる種類の溶剤であっても良いが、重合反応の初期仕込み時に用いた溶剤と同じ種類の溶剤を用いることが好ましい。また、添加する重合溶剤は、1種のみの溶剤であっても良いし、2種以上の混合溶剤であっても良い。
【0043】
以上の重合工程を終了した時点で得られる重合反応混合物中には、通常、得られた重合体以外に溶剤が含まれているが、溶剤を完全に除去して重合体を固体状態で取り出す必要はなく、溶剤を含んだ状態で続くラクトン環化縮合工程に導入することが好ましい。また、必要な場合は、固体状態で取り出した後に、続くラクトン環化縮合工程に好適な溶剤を再添加してもよい。
【0044】
重合工程で得られた重合体は、分子鎖中に水酸基とエステル基とを有する重合体(a)であり、重合体(a)の重量平均分子量は、好ましくは1000〜2000000、より好ましくは5000〜1000000、さらに好ましくは10000〜500000、特に好ましくは50000〜500000である。重合工程で得られた重合体(a)は、続くラクトン環化縮合工程において、加熱処理されることによりラクトン環構造が重合体に導入され、ラクトン環含有重合体となる。
【0045】
重合体(a)へラクトン環構造を導入するための反応は、加熱により、重合体(a)の分子鎖中に存在する水酸基とエステル基が環化縮合してラクトン環構造を生じる反応であり、その環化縮合によってアルコールが副生する。ラクトン環構造が重合体の分子鎖中(重合体の主骨格中)に形成されることにより、高い耐熱性が付与される。ラクトン環構造を導く環化縮合反応の反応率が不十分であると、耐熱性が十分に向上しなかったり、成形時の加熱処理によって成形途中に縮合反応が起こり、生じたアルコールが成形品中に泡やシルバーストリークとなって存在してしまったりするので好ましくない。
【0046】
ラクトン環化縮合工程において得られるラクトン環含有重合体は、好ましくは、下記一般式(1)で表されるラクトン環構造を有する。
【0047】
【化6】

【0048】
(式中、R、R、Rは、それぞれ独立に、水素原子または炭素数1〜20の有機残基を表す。なお、有機残基は酸素原子を含んでいても良い。)
重合体(a)を加熱処理する方法については特に限定されず、公知の方法が利用できる。例えば、重合工程によって得られた、溶剤を含む重合反応混合物を、そのまま加熱処理してもよい。また、溶剤の存在下で、必要に応じて閉環触媒を用いて加熱処理してもよい。また、揮発成分を除去するための真空装置あるいは脱揮装置を持つ加熱炉や反応装置、脱揮装置のある押出機等を用いて加熱処理を行うこともできる。
【0049】
環化縮合反応を行う際に、重合体(a)に加えて、他の熱可塑性樹脂を共存させてもよい。また、環化縮合反応を行う際には、必要に応じて、環化縮合反応の触媒として一般に用いられるp−トルエンスルホン酸等のエステル化触媒またはエステル交換触媒を用いてもよいし、酢酸、プロピオン酸、安息香酸、アクリル酸、メタクリル酸等の有機カルボン酸類を触媒として用いても良い。特開昭61−254608号公報や特開昭61−261303号公報に示されている様に、塩基性化合物、有機カルボン酸塩、炭酸塩などを用いてもよい。
【0050】
環化縮合反応を行う際には、特開2001−151814号公報に示されているように有機リン化合物を触媒として用いることが好ましい。触媒として有機リン化合物を用いることにより、環化縮合反応率を向上させることができるとともに、得られるラクトン環含有重合体の着色を大幅に低減することができる。さらに、有機リン化合物を触媒として用いることにより、後述の脱揮工程を併用する場合において起こり得る分子量低下を抑制することができ、優れた機械的強度を付与することができる。
【0051】
環化縮合反応の際に用いる触媒の使用量は、特に限定されないが、重合体(a)に対して、好ましくは0.001〜5重量%、より好ましくは0.01〜2.5重量%、さらに好ましくは0.01〜1重量%、特に好ましくは0.05〜0.5重量%である。触媒の使用量が0.001重量%未満であると、環化縮合反応の反応率の向上が十分に図れないおそれがあり、一方、5重量%を超えると、着色の原因となったり、重合体の架橋により溶融賦形しにくくなったりするので、好ましくない。
【0052】
触媒の添加時期は特に限定されず、反応初期に添加しても、反応途中に添加しても、それらの両方で添加しても良い。
【0053】
環化縮合反応を溶剤の存在下で行い、且つ、環化縮合反応の際に、脱揮工程を併用することが好ましい。この場合、環化縮合反応の全体を通じて脱揮工程を併用する形態、および、脱揮工程を環化縮合反応の過程全体にわたっては併用せずに過程の一部においてのみ併用する形態が挙げられる。脱揮工程を併用する方法では、縮合環化反応で副生するアルコールを強制的に脱揮させて除去するので、反応の平衡が生成側に有利となる。
【0054】
脱揮工程とは、溶剤、残存単量体等の揮発分と、ラクトン環構造を導く環化縮合反応により副生したアルコールを、必要により減圧加熱条件下で、除去処理する工程をいう。この除去処理が不十分であると、生成した樹脂中の残存揮発分が多くなり、成形時の変質等によって着色したり、泡やシルバーストリークなどの成形不良が起こったりする問題等が生じる。
【0055】
環化縮合反応の全体を通じて脱揮工程を併用する形態の場合、使用する装置については特に限定されないが、本発明をより効果的に行うために、熱交換器と脱揮槽からなる脱揮装置やベント付き押出機、また、前記脱揮装置と前記押出機を直列に配置したものを用いることが好ましく、熱交換器と脱揮槽からなる脱揮装置またはベント付き押出機を用いることがより好ましい。
【0056】
前記熱交換器と脱揮槽からなる脱揮装置を用いる場合の反応処理温度は、150〜350℃の範囲が好ましく、200〜300℃の範囲がより好ましい。反応処理温度が150℃より低いと、環化縮合反応が不十分となって残存揮発分が多くなるおそれがあり、350℃より高いと、着色や分解が起こるおそれがある。
【0057】
前記熱交換器と脱揮槽からなる脱揮装置を用いる場合の、反応処理時の圧力は、931〜1.33hPa(700〜1mmHg)の範囲が好ましく、798〜66.5hPa(600〜50mmHg)の範囲がより好ましい。上記圧力が931hPaより高いと、アルコールを含めた揮発分が残存し易いという問題があり、1.33hPaより低いと、工業的な実施が困難になっていくという問題がある。
【0058】
前記ベント付き押出機を用いる場合、ベントは1個でも複数個でもいずれでもよいが、複数個のベントを有する方が好ましい。
【0059】
前記ベント付き押出機を用いる場合の反応処理温度は、150〜350℃の範囲が好ましく、200〜300℃の範囲がより好ましい。上記温度が150℃より低いと、環化縮合反応が不十分となって残存揮発分が多くなるおそれがあり、350℃より高いと、着色や分解が起こるおそれがある。
【0060】
前記ベント付き押出機を用いる場合の、反応処理時の圧力は、931〜1.33hPa(700〜1mmHg)の範囲が好ましく、798〜13.3hPa(600〜10mmHg)の範囲がより好ましい。上記圧力が931hPaより高いと、アルコールを含めた揮発分が残存し易いという問題があり、1.33hPaより低いと、工業的な実施が困難になっていくという問題がある。
【0061】
なお、環化縮合反応の全体を通じて脱揮工程を併用する形態の場合、後述するように、厳しい熱処理条件では得られるラクトン環含有重合体の物性が悪化するおそれがあるので、好ましくは、上述した脱アルコール反応の触媒を使用し、できるだけ温和な条件で、ベント付き押出機等を用いて行うことが好ましい。
【0062】
また、環化縮合反応の全体を通じて脱揮工程を併用する形態の場合、好ましくは、重合工程で得られた重合体(a)を溶剤とともに環化縮合反応装置系に導入するが、この場合、必要に応じて、もう一度ベント付き押出機等の上記反応装置系に通してもよい。
【0063】
脱揮工程を環化縮合反応の過程全体にわたっては併用せずに、過程の一部においてのみ併用する形態を行っても良い。例えば、重合体(a)を製造した装置を、さらに加熱し、必要に応じて脱揮工程を一部併用して、環化縮合反応を予めある程度進行させておき、その後に引き続いて脱揮工程を同時に併用した環化縮合反応を行い、反応を完結させる形態である。
【0064】
先に述べた環化縮合反応の全体を通じて脱揮工程を併用する形態では、例えば、重合体(a)を、2軸押出機を用いて、250℃近い、あるいはそれ以上の高温で熱処理する時に、熱履歴の違いにより環化縮合反応が起こる前に一部分解等が生じ、得られるラクトン環含有重合体の物性が悪くなるおそれがある。そこで、脱揮工程を同時に併用した環化縮合反応を行う前に、予め環化縮合反応をある程度進行させておくと、後半の反応条件を緩和でき、得られるラクトン環含有重合体の物性の悪化を抑制できるので好ましい。特に好ましい形態としては、脱揮工程を環化縮合反応の開始から時間をおいて開始する形態、すなわち、重合工程で得られた重合体(a)の分子鎖中に存在する水酸基とエステル基をあらかじめ環化縮合反応させて環化縮合反応率をある程度上げておき、引き続き、脱揮工程を同時に併用した環化縮合反応を行う形態が挙げられる。具体的には、例えば、予め釜型の反応器を用いて溶剤の存在下で環化縮合反応をある程度の反応率まで進行させておき、その後、脱揮装置のついた反応器、例えば、熱交換器と脱揮槽とからなる脱揮装置や、ベント付き押出機等で、環化縮合反応を完結させる形態が好ましく挙げられる。特にこの形態の場合、環化縮合反応用の触媒が存在していることがより好ましい。
【0065】
上述のように、重合工程で得られた重合体(a)の分子鎖中に存在する水酸基とエステル基を予め環化縮合反応させて環化縮合反応率をある程度上げておき、引き続き、脱揮工程を同時に併用した環化縮合反応を行う方法は、本発明においてラクトン環含有重合体を得る上で好ましい形態である。この形態により、ガラス転移温度がより高く、環化縮合反応率もより高まり、耐熱性に優れたラクトン環含有重合体が得られる。この場合、環化縮合反応率の目安としては、実施例に示すダイナッミクTG測定における、150〜300℃間での重量減少率が2%以下であることが好ましく、より好ましくは1.5%以下であり、さらに好ましくは1%以下である。
【0066】
脱揮工程を同時に併用した環化縮合反応の前に予め行う環化縮合反応の際に採用できる反応器は特に限定されないが、好ましくは、オートクレーブ、釜型反応器、熱交換器と脱揮槽とからなる脱揮装置等が挙げられ、さらに、脱揮工程を同時に併用した環化縮合反応に好適なベント付き押出機も使用できる。より好ましくは、オートクレーブ、釜型反応器である。しかしながら、ベント付き押出機等の反応器を使用するときでも、ベント条件を温和にしたり、ベントをさせなかったり、温度条件やバレル条件、スクリュウ形状、スクリュウ運転条件等を調整することで、オートクレーブや釜型反応器での反応状態と同じ様な状態で環化縮合反応を行うことが可能である。
【0067】
脱揮工程を同時に併用した環化縮合反応の前に予め行う環化縮合反応の際には、好ましくは、重合工程で得られた重合体(a)と溶剤とを含む混合物を、(i)触媒を添加して、加熱反応させる方法、(ii)無触媒で加熱反応させる方法、および、前記(i)または(ii)を加圧下で行う方法が挙げられる。
【0068】
なお、ラクトン環化縮合工程において環化縮合反応に導入する「重合体(a)と溶剤とを含む混合物」とは、重合工程で得られた重合反応混合物をそのまま使用してもよいし、一旦溶剤を除去したのちに環化縮合反応に適した溶剤を再添加してもよいことを意味する。
【0069】
脱揮工程を同時に併用した環化縮合反応の前にあらかじめ行う環化縮合反応の際に再添加できる溶剤としては、特に限定されず、例えば、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;クロロホルム、DMSO、テトラヒドロフランなどでもよいが、好ましくは、重合工程で用いることができる溶剤と同じ種類の溶剤である。
【0070】
上記方法(i)で添加する触媒としては、一般に用いられるp−トルエンスルホン酸等のエステル化触媒またはエステル交換触媒、塩基性化合物、有機カルボン酸塩、炭酸塩などが挙げられるが、本発明においては、前述の有機リン化合物を用いることが好ましい。触媒の添加時期は特に限定されず、反応初期に添加しても、反応途中に添加しても、それらの両方で添加しても良い。添加する触媒の量は特に限定されないが、重合体(a)の重量に対し、好ましくは0.001〜5重量%、より好ましくは0.01〜2.5重量%、さらに好ましくは0.01〜1重量%、特に好ましくは0.05〜0.5重量%である。方法(i)の加熱温度と加熱時間は特に限定されないが、加熱温度としては、好ましくは室温以上、より好ましくは50℃以上であり、加熱時間としては、好ましくは1〜20時間、より好ましくは2〜10時間である。加熱温度が低いと、あるいは、加熱時間が短いと、環化縮合反応率が低下するので好ましくない。また、加熱時間が長すぎると、樹脂の着色や分解が起こる場合があるので好ましくない。
【0071】
上記方法(ii)としては、例えば、耐圧性の釜などを用いて、重合工程で得られた重合反応混合物をそのまま加熱する方法等が挙げられる。加熱温度としては、好ましくは100℃以上、さらに好ましくは150℃以上である。加熱時間としては、好ましくは1〜20時間、より好ましくは2〜10時間である。加熱温度が低いと、あるいは、加熱時間が短いと、環化縮合反応率が低下するので好ましくない。また、加熱時間が長すぎると、樹脂の着色や分解が起こる場合があるので好ましくない。
【0072】
上記方法(i)、(ii)ともに、条件によっては加圧下となっても何ら問題はない。
【0073】
脱揮工程を同時に併用した環化縮合反応の前に予め行う環化縮合反応の際には、溶剤の一部が反応中に自然に揮発しても何ら問題ではない。
【0074】
脱揮工程を同時に併用した環化縮合反応の前に予め行う環化縮合反応の終了時、すなわち、脱揮工程開始直前における、ダイナミックTG測定における150〜300℃の間での重量減少率は、2%以下が好ましく、より好ましくは1.5%以下であり、さらに好ましくは1%以下である。重量減少率が2%より高いと、続けて脱揮工程を同時に併用した環化縮合反応を行っても、環化縮合反応率が十分高いレベルまで上がらず、得られるラクトン環含有重合体の物性が低下するおそれがある。なお、上記の環化縮合反応を行う際に、重合体(a)に加えて、他の熱可塑性樹脂を共存させてもよい。
【0075】
重合工程で得られた重合体(a)の分子鎖中に存在する水酸基とエステル基を予め環化縮合反応させて環化縮合反応率をある程度上げておき、引き続き、脱揮工程を同時に併用した環化縮合反応を行う形態の場合、予め行う環化縮合反応で得られた重合体(分子鎖中に存在する水酸基とエステル基の少なくとも一部が環化縮合反応した重合体)と溶剤を、そのまま脱揮工程を同時に併用した環化縮合反応に導入してもよいし、必要に応じて、前記重合体(分子鎖中に存在する水酸基とエステル基の少なくとも一部が環化縮合反応した重合体)を単離してから溶剤を再添加する等のその他の処理を経てから脱揮工程を同時に併用した環化縮合反応に導入しても構わない。
【0076】
脱揮工程は環化縮合反応と同時に終了することには限らず、環化縮合反応の終了から時間をおいて終了しても構わない。
【0077】
ラクトン環含有重合体は、重量平均分子量が、好ましくは1000〜2000000、より好ましくは5000〜1000000、さらに好ましくは10000〜500000、特に好ましくは50000〜500000である。
【0078】
ラクトン環含有重合体は、ダイナミックTG測定における150〜300℃の間での重量減少率が1%以下であることが好ましく、より好ましくは0.5%以下上、さらに好ましくは0.3%以下である。
【0079】
ラクトン環含有重合体は、環化縮合反応率が高いので、成形後の成形品中に泡やシルバーストリークが入るという欠点が回避できる。さらに、高い環化縮合反応率によってラクトン環構造が重合体に十分に導入されるため、得られたラクトン環含有重合体が十分に高い耐熱性を有している。
【0080】
ラクトン環含有重合体は、15重量%のクロロホルム溶液中での着色度(YI)が6以下となるものが好ましく、より好ましくは3以下、さらに好ましくは2以下、最も好ましくは1以下である。着色度(YI)が6を越えると、着色により透明性が損なわれ、本来目的とする用途に使用できない場合がある。
【0081】
ラクトン環含有重合体は、熱重量分析(TG)における5%重量減少温度が、280℃以上であることが好ましく、より好ましくは290℃以上、さらに好ましくは300℃以上である。熱重量分析(TG)における5%重量減少温度は、熱安定性の指標であり、これが280℃未満であると、十分な熱安定性を発揮できないおそれがある。
【0082】
ラクトン環含有重合体は、ガラス転移温度(Tg)が、好ましくは115℃以上、より好ましくは125℃以上、さらに好ましくは130℃以上、さらに好ましくは135℃以上、最も好ましくは140℃以上である。
【0083】
ラクトン環含有重合体は、それに含まれる残存揮発分の総量が、好ましくは5000ppm以下、より好ましくは2000ppm以下である。残存揮発分の総量が5000ppmよりも多いと、成形時の変質等によって着色したり、発泡したり、シルバーストリークなどの成形不良の原因となる。
【0084】
ラクトン環含有重合体は、射出成形により得られる成形品の、ASTM−D−1003に準じた方法で測定された全光線透過率が、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上である。全光線透過率は、透明性の目安であり、これが85%未満であると、透明性が低下し、本来目的とする用途に使用できないおそれがある。
【0085】
〔その他の熱可塑性樹脂〕
本発明にかかるその他の熱可塑性樹脂は、ラクトン環含有重合体とブレンドしてフィルム状にした際に、ガラス転移温度が120℃以上、面方向の100μmあたりの位相差が20nm以下で、全光線透過率が85%以上の性能を有するものであれば、特に種類は問わないが、熱力学的に相溶する熱可塑性樹脂の方が、透明性や機械強度を向上させる点において好ましい。
【0086】
本発明にかかる光学フィルム中のラクトン環含有重合体とその他の熱可塑樹脂の含有割合は、好ましくは60〜99:1〜40重量%、より好ましくは70〜97:3〜30重量%、さらに好ましくは80〜95:5〜20重量%である。光学フィルム中のラクトン環含有重合体の含有割合が60重量%よりも少ないと、本発明の効果を十分に発揮できないおそれがある。
【0087】
本発明にかかるその他の熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリ(4−メチル−1−ペンテン)等のオレフィン系ポリマー;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系ポリマー;ポリメタクリル酸メチル等のアクリル系ポリマー;ポリスチレン、スチレン−メタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、アクリロニトリル−ブタジエン−スチレンブロック共重合体等のスチレン系ポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリサルホン;ポリエーテルサルホン;ポリオキシベンジレン;ポリアミドイミド;ポリブタジエン系ゴム、アクリル系ゴムを配合したABS樹脂やASA樹脂等のゴム質重合体;などが挙げられる。ゴム質重合体は、表面に本発明のラクトン環重合体と相溶し得る組成のグラフト部を有するのが好ましく、また、ゴム質重合体の平均粒子径は、フィルム状とした際の透明性向上の観点から、100nm以下である事が好ましく、70nm以下である事が更に好ましい。
【0088】
ラクトン環含有重合体と熱力学的に相溶する熱可塑性樹脂としては、シアン化ビニル系単量体単位と芳香族ビニル系単量体単位とを含む共重合体、具体的にはアクリロニトリル−スチレン系共重合体やポリ塩化ビニル樹脂、メタクリル酸エステル類を50重量%以上含有する重合体を用いるとよい。それらの中でもアクリロニトリル−スチレン系共重合体を用いるとガラス転移温度が120℃以上、面方向の100μmあたりの位相差が20nm以下で、全光線透過率が85%以上である光学フィルムが容易に得られる。なお、ラクトン環含有重合体とその他の熱可塑性樹脂とが熱力学的に相溶することは、これらを混合して得られた熱可塑性樹脂組成物のガラス転移点を測定することによって確認することができる。具体的には、示差走査熱量測定器により測定されるガラス転移点がラクトン環含有重合体とその他の熱可塑性樹脂との混合物について1点のみ観測されることによって、熱力学的に相溶していると言える。
その他の熱可塑性樹脂としてアクリロニトリル−スチレン系共重合体を用いる場合、その製造方法は、乳化重合法や懸濁重合法、溶液重合法、バルク重合法等を用いる事が可能であるが、得られる光学フィルムの透明性や光学性能の観点から溶液重合法かバルク重合法で得られたものである事が好ましい。
【0089】
本発明にかかる光学フィルム成形用熱可塑樹脂組成物は、その他の添加剤を含んでいてもよい。その他の添加剤としては、例えば、ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;フェニルサリチレート、(2,2´−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−ヒドロキシベンゾフェノン等の紫外線吸収剤;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーや無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;などが挙げられる。
【0090】
光学用面状熱可塑性樹脂成形体中のその他の添加剤の含有割合は、好ましくは0〜5重量%、より好ましくは0〜2重量%、さらに好ましくは0〜0.5重量%である。
【0091】
〔光学フィルム〕
本発明の光学フィルムは、各種光学用途に応じた特性を十分に発揮できる、光学フィルムである。
【0092】
本発明の光学フィルムのガラス転移温度が120℃以上、好ましくは125℃以上、更に好ましくは130℃以上である。
本発明の光学フィルムは、面方向の100μmあたりの位相差が20nm以下であり、好ましくは10nm以下である。
本発明の光学フィルムは、全光線透過率が85%以上、好ましくは87%以上、更に好ましくは90%以上である。
【0093】
本発明の光学フィルムは、位相差の入射角依存性が小さく、入射角0°の100μmあたりの位相差Rと入射角40°の100μmあたりの位相差R40との差(R40−R)が、好ましくは20nm以下、より好ましくは10nm以下である。
本発明の光学フィルムの膜厚は、1μm以上500μm未満が好ましく、より好ましくは10μm以上300μm未満である。膜厚が1μmよりも薄い光学フィルムは、強度に乏しいため好ましくないし、延伸を行う場合に破断等が起こりやすい。
【0094】
本発明の光学フィルムは、ASTM−D−882−61Tに基づいて測定した引張強度が10MPa以上100MPa未満であることが好ましく、より好ましくは30MPa以上100MPa未満である。10MPa未満の場合には、十分な機械的強度を発現できなくなるおそれがあるため好ましくない。100MPaを超えると、加工性が悪くなるため好ましくない。
【0095】
本発明の光学フィルムは、ASTM−D−882−61Tに基づいて測定した伸び率が1%以上であることが好ましく3%以上であることが更に好ましい。上限は特に限定されないが、通常は100%以下が好ましい。1%未満の場合には、靭性に欠けるため好ましくない。
【0096】
本発明の光学フィルムは、ASTM−D−882−61Tに基づいて測定した引張弾性率が0.5GPa以上であることが好ましく、より好ましくは1GPa以上、さらに好ましくは2GPa以上である。上限は特に限定されないが、通常は20GPa以下が好ましい。0.5GPa未満の場合には、十分な機械的強度を発現できなくなるおそれがあるため好ましくない。
本発明の光学フィルムの製造方法は、特に限定されないが、例えば、ラクトン環含有重合体と、その他の熱可塑樹脂やその他の添加剤などを、従来公知の混合方法にて混合し、予め熱可塑性樹脂組成物としてから、光学フィルムを製造する事ができる。この熱可塑性樹脂組成物の製造方法は、例えば、オムニミキサー等の混合機でプレブレンドした後、得られた混合物を押出混練する方法を採用することができる。この場合、押出混練に用いる混練機は、特に限定されるものではなく、例えば、単軸押出機、二軸押出機等の押出機や加圧ニーダー等、従来公知の混練機を用いることができる。
【0097】
フィルム成形の方法としては、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法など、公知のフィルム成形方法が挙げられる。これらの中でも、溶液キャスト法(溶液流延法)、溶融押出法が好ましい。この際、前述のように予め押出し混練した熱可塑性樹脂組成物を用いても良いし、ラクトン環含有重合体と、その他の熱可塑樹脂やその他の添加剤などを、別々に溶液に溶解して均一な混合液とした後、溶液キャスト法(溶液流延法)や溶融押出法のフィルム成形工程に供しても良い。
【0098】
溶液キャスト法(溶液流延法)に用いられる溶媒としては、例えば、クロロホルム、ジクロロメタンなどの塩素系溶媒;トルエン、キシレン、ベンゼン、およびこれらの混合溶媒などの芳香族系溶媒;メタノール、エタノール、イソプロパノール、n−ブタノール、2−ブタノールなどのアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルフォキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、酢酸エチル、ジエチルエーテル;などが挙げられる。これら溶媒は1種のみ用いても良いし、2種以上を併用しても良い。
【0099】
溶液キャスト法(溶液流延法)を行うための装置としては、例えば、ドラム式キャスティングマシン、バンド式キャスティングマシン、スピンコーターなどが挙げられる。
【0100】
溶融押出法としては、Tダイ法、インフレーション法などが挙げられ、その際の、フィルムの成形温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。
上記Tダイ法でフィルム成形する場合は、公知の単軸押出し機や2軸押出し機の先端部にTダイを取り付け、フィルム状に押出したフィルムを巻取りロール状のフィルムを得る事ができる。この際、巻取りロールの温度を適宜調整して、押出し方向に延伸を加えることで、一軸延伸工程とする事も可能である。また、押出し方向と垂直な方向にフィルムを延伸する工程を加える事で、逐次二軸延伸、同時二軸延伸などの工程を加えることも可能である。
【0101】
本発明の光学フィルムは、未延伸フィルムであっても良いし、延伸フィルムであっても良い。延伸する場合は、一軸延伸フィルムでも良いし、2軸延伸フィルムでも良い。2軸延伸フィルムとする場合は、同時2軸延伸したものでも良いし、逐次2軸延伸したものでも良い。2軸延伸した場合は、機械強度が向上しフィルム性能が向上する。本発明の光学フィルムは、その他の熱可塑性樹脂を混合する事により、延伸しても位相差の増大を抑制する事ができ、光学等方性を保つ事ができる。
【0102】
延伸温度としては、フィルム原料の熱可塑樹脂組成物のガラス転移温度近辺で行うことが好ましく、具体的には、(ガラス転移温度−30)℃〜(ガラス転移温度+100)℃で行うことが好ましく、より好ましくは(ガラス転移温度−20)℃〜(ガラス転移温度+80)℃である。(ガラス転移温度−30)℃よりも低いと、十分な延伸倍率が得られないために好ましくない。(ガラス転移温度+100)℃よりも高いと、樹脂の流動(フロー)が起こり安定な延伸が行えなくなるために好ましくない。
【0103】
面積比で定義した延伸倍率は、好ましくは1.1〜25倍の範囲、より好ましくは1.3〜10倍の範囲で行われる。1.1倍よりも小さいと、延伸に伴う靭性の向上につながらないために好ましくない。25倍よりも大きいと、延伸倍率を上げるだけの効果が認められない。
【0104】
延伸速度(一方向)としては、好ましくは10〜20000%/分の範囲、より好ましくは100〜10000%/分の範囲である。10%/分よりも遅いと、十分な延伸倍率を得るために時間がかかり、製造コストが高くなるために好ましくない。20000%/分よりも早いと、延伸フィルムの破断等が起こるおそれがあるために好ましくない。
【0105】
フィルムの光学等方性や力学特性を安定化させるため、延伸処理後に熱処理(アニーリング)などを行うこともできる。
【実施例】
【0106】
以下に、実施例および比較例によって本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。以下では、便宜上、「重量部」を単に「部」と、「リットル」を単に「L」と記すことがある。
【0107】
<重合反応率、重合体組成分析>
重合反応時の反応率および重合体中の特定単量体単位の含有率は、得られた重合反応混合物中の未反応単量体の量をガスクロマトグラフィー(島津製作所社製、装置名:GC17A)を用いて測定して求めた。
【0108】
<ダイナミックTG>
重合体(もしくは重合体溶液あるいはペレット)を一旦テトラヒドロフランに溶解もしくは希釈し、過剰のヘキサンもしくはメタノールへ投入して再沈殿を行い、取り出した沈殿物を真空乾燥(1mmHg(1.33hPa)、80℃、3時間以上)することによって揮発成分などを除去し、得られた白色固形状の樹脂を以下の方法(ダイナミックTG法)で分析した。
【0109】
測定装置:Thermo Plus2 TG−8120 Dynamic TG((株)リガク社製)
測定条件:試料量 5〜10mg
昇温速度:10℃/min
雰囲気:窒素フロー 200ml/min
方法:階段状等温制御法(60℃〜500℃の間で重量減少速度値0.005%/sec以下で制御)
<脱アルコール反応率とラクトン環構造の占める割合>
脱アルコール反応率を、重合で得られた重合体組成からすべての水酸基がメタノールとして脱アルコールした際に起こる重量減少量を基準にし、ダイナミックTG測定において重量減少が始まる前の150℃から重合体の分解が始まる前の300℃までの脱アルコール反応による重量減少から求めた。
【0110】
すなわち、ラクトン環構造を有した重合体のダイナミックTG測定において150℃から300℃までの間の重量減少率の測定を行い、得られた実測重量減少率を(X)とする。他方、当該重合体の組成から、その重合体組成に含まれる全ての水酸基がラクトン環の形成に関与するためアルコールになり脱アルコールすると仮定した時の理論重量減少率(すなわち、その組成上において100%脱アルコール反応が起きたと仮定して算出した重量減少率)を(Y)とする。なお、理論重量減少率(Y)は、より具体的には、重合体中の脱アルコール反応に関与する構造(水酸基)を有する原料単量体のモル比、すなわち当該重合体組成における前記原料単量体の含有率から算出することができる。これらの値(X、Y)を脱アルコール計算式:
1−(実測重量減少率(X)/理論重量減少率(Y))
に代入してその値を求め、%で表記すると、脱アルコール反応率が得られる。そして、この脱アルコール反応率だけ所定のラクトン環化が行われたものとして、ラクトン環化に関与する構造(水酸基)を有する原料単量体の当該重合体組成における含有量(重量比)に、脱アルコール反応率を乗じることで、当該重合体中のラクトン環構造の占める割合を算出することができる。
【0111】
例として、後述の実施例1で得られるペレットにおいてラクトン環構造の占める割合を計算する。この重合体の理論重量減少率(Y)を求めてみると、メタノールの分子量は32であり、2−(ヒドロキシメチル)アクリル酸メチルの分子量は116であり、2−(ヒドロキシメチル)アクリル酸メチルの重合体中の含有率(重量比)は組成上20.0重量%であるから、(32/116)×20.0≒5.52重量%となる。他方、ダイナミックTG測定のよる実測重量減少率(X)は0.17重量%であった。これらの値を上記の脱アルコール計算式に当てはめると、1−(0.17/5.52)≒0.969となるので、脱アルコール反応率は96.9%である。そして、重合体ではこの脱アルコール反応率分だけ所定のラクトン環化が行われたものとして、2−(ヒドロキシメチル)アクリル酸メチルの当該重合体中における含有率(20.0重量%)に、脱アルコール反応率(96.9%=0.969)を乗じると、当該重合体中のラクトン環構造の占める割合は19.4(20.0×0.969)重量%となる。
【0112】
<重量平均分子量>
重合体の重量平均分子量は、GPC(東ソー社製GPCシステム)のポリスチレン換算により求めた。展開液はテトラヒドロフランを用いた。
【0113】
<樹脂の熱分析>
樹脂の熱分析は、試料約10mg、昇温速度10℃/min、窒素フロー50cc/minの条件で、DSC((株)リガク社製、装置名:DSC−8230)を用いて行った。なお、ガラス転移温度(Tg)は、ASTM−D−3418に従い、中点法で求めた。
【0114】
<メルトフローレート>
メルトフローレートは、JIS−K6874に基づき、試験温度240℃、荷重10kgで測定した。
【0115】
<光学特性>
屈折率異方性(リタデーション:Re)は、王子計測器社製KOBRA−21ADHを用いて測定した。可視光透過率は、日本電色工業社製NDH−1001DPを用いて測定した。
【0116】
〔製造例1〕
攪拌装置、温度センサー、冷却管、窒素導入管を付した30L反応釜に、8000gのメタクリル酸メチル(MMA)、2000gの2−(ヒドロキシメチル)アクリル酸メチル(MHMA)、10000gの4−メチル−2−ペンタノン(メチルイソブチルケトン、MIBK)、5gのn−ドデシルメルカプタンを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、開始剤として5.0gのターシャリーブチルパーオキシイソプロピルカーボネート(アクゾ化薬製、商品名:カヤカルボン Bic−75)を添加すると同時に、10.0gのターシャリーブチルパーオキシイソプロピルカーボネートと230gのMIBKからなる溶液を2時間かけて滴下しながら、還流下(約105〜120℃)で溶液重合を行い、さらに4時間かけて熟成を行った。
【0117】
得られた重合体溶液に、30gのリン酸ステアリル/リン酸ジステアリル混合物(堺化学製、商品名:Phoslex A−18)を加え、還流下(約90〜120℃)で5時間、環化縮合反応を行った。次いで、上記環化縮合反応で得られた重合体溶液を、バレル温度260℃、回転数100rpm、減圧度13.3〜400hPa(10〜300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出し機(φ=29.75mm、L/D=30)に、樹脂量換算で2.0kg/時間の処理速度で導入し、該押出し機内で環化縮合反応と脱揮を行い、押出すことにより、透明なペレット(1A)を得た。
【0118】
得られたペレット(1A)について、ダイナミックTGの測定を行ったところ、0.17重量%の重量減少を検知した。また、ペレットの重量平均分子量は133000であり、メルトフローレートは6.5g/10分、ガラス転移温度は131℃であった。

〔実施例1〕
製造例1で得られたペレット(1A)とアクリロニトリル−スチレン(AS)樹脂(東洋スチレン社製;商品名 トーヨーAS AS20)を1A/AS樹脂=90/10の重量比で単軸押出し機(φ=30mm)を用いて混錬することにより、透明なペレットを得た。得られたペレットのガラス転移温度は127℃であった。
このペレットをメチルエチルケトンに溶解させ、溶液キャスト法で60μmのフィルム(1B)を作成した。また、このフィルムを100℃で0.1m/分の速度で1.5倍に単軸延伸することで50μmの延伸フィルム(1C)を得た。
得られたフィルム(1B)、(1C)の光学特性の評価を行った結果を表1に示した。

〔実施例2〕
実施例1と同様に1A/AS樹脂=80/20の重量比で単軸押出し機を用いて混錬することにより、透明なペレットを得た。得られたペレットのガラス転移温度は125℃であった。
このペレットを用いて実施例1と同様に50μmキャストフィルム(2B)を作成した。また、このフィルムを実施例1と同様の条件で1.5倍に単軸延伸した45μmの延伸フィルム(2C)を得た。
得られたフィルム(2B)、(2C)の光学特性の評価を行った結果を表1に示した。
【0119】
〔比較例1〕
製造例1で得られたペレット(1A)のみを用いて、50μmのキャストフィルム(3B)を作成した。このフィルムを実施例1と同様の条件で1.5倍に単軸延伸した40μmの延伸フィルム(3C)を得た。
得られたフィルム(3B)、(3C)の光学特性の評価を行った結果を表1に示した。
【0120】
【表1】


【特許請求の範囲】
【請求項1】
ラクトン環含有重合体とその他の熱可塑性樹脂の熱可塑性樹脂組成物からなるフィルムで、ガラス転移温度が120℃以上、面方向の100μmあたりの位相差が20nm以下で、全光線透過率が85%以上である光学フィルム。
【請求項2】
前記ラクトン環含有重合体は、下記一般式(1)で表されるラクトン環構造を有する、請求項1に記載の光学フィルム。
【化1】

(式中、R、R、Rは、それぞれ独立に、水素原子または炭素数1〜20の有機残基を表す。なお、有機残基は酸素原子を含んでいても良い。)
【請求項3】
その他の熱可塑性樹脂が、シアン化ビニル系単量体単位と芳香族ビニル系単量体単位とを含む共重合体からなる請求項1又は2の光学フィルム。
【請求項4】
その他の熱可塑性樹脂が、アクリロニトリル−スチレン系共重合体からなる請求項3の光学フィルム。

【公開番号】特開2006−171464(P2006−171464A)
【公開日】平成18年6月29日(2006.6.29)
【国際特許分類】
【出願番号】特願2004−364917(P2004−364917)
【出願日】平成16年12月16日(2004.12.16)
【出願人】(000004628)株式会社日本触媒 (2,292)
【Fターム(参考)】