説明

光学プローブ及びそれを用いた分光測定装置

【課題】 液体の任意の点での成分濃度などの物理量の測定を実用化する。
【解決手段】 光学プローブは、透明材料からなり、第1の光ファイバを挿入可能な第1の孔と、前記の透明材料との屈折率差による全反射面となる2または3の平面を備える内部空隙であって、前記の2個または3個の平面を、第1の孔の中の第1の光ファイバからの入射光を順次全反射するように配置した内部空隙と、第2の光ファイバを挿入可能な第2の孔であって、前記の内部空隙の平面により順次反射された光が入射する位置に設けられた第2の孔と、第1の光ファイバから、内部空隙の前記の2個または3個の平面を経て、第2の光ファイバに至る光路の途中に設けられ、光路に垂直な対向する2つの境界面を備え、外部に通じる空洞部とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体の成分濃度、温度などの物理量の光学的測定に関するものである。
【背景技術】
【0002】
半導体製造における洗浄工程においては、強酸、強アルカリの薬液が使用される。たとえば、シリコンウエハー表面のエッチングにおいては、アンモニアと過酸化水素の混合液が使用される。エッチング工程において、エッチング量の管理のため、エッチング液中の各成分の濃度が測定される。
【0003】
液体の成分濃度は近赤外線などを用いて分光測定装置により測定できる。半導体のエッチング及び洗浄液の濃度測定にも分光測定装置を用いた分析、定量が用いられている。たとえば、特開平6−265471号公報に記載された混酸の濃度測定方法及び濃度測定装置では、多変量解析により得られた検量線式を用いて、フローセル中に混酸を導入し近赤外光の吸光度を求めて酸の濃度を決定する。また、温度が吸光度の因子であることも知られており、吸光度測定から液体の温度も決定できる。
【0004】
しかし、従来の光学的濃度測定では、エッチング及び洗浄の行われている槽(以下洗浄槽という)、または薬液のオーバーフロータンクや薬液の原液タンクより、測定対象となる液体を分光測定装置のフローセルへ導入する方法を採っている。この場合、フローセルに液体を導入するまでの時間的遅延があるため、フローセルへの液体導入にかかる間の洗浄槽の濃度変化をとらえられない。また、原液タンクから導入する方式に至っては、洗浄槽内の濃度を計測しているとはいいがたい。
【0005】
エッチング液中の成分の光学的濃度測定のため、直接にエッチング槽内のエッチング液に浸漬する光学プローブも提案されている。特開2000−88749号公報に記載された光学プローブは、測定光を十分な距離だけ透過させるため、多数の反射面を設けた石英のプリズムを用いる。この光学プローブには、外部の分光測定装置からの2本の光ファイバが接続され、液体中に浸漬される。1本の光ファイバにより光学プローブ内に光を導入し、入射光は各反射面で次々と全反射され、光学プローブを通った光(透過光)は別の光ファイバを経て外部の分光測定装置に戻される。光学プローブ内の光路の一部は、エッチング液を通るので、分光測定装置は透過光を測定できる。
【特許文献1】特開平6−265471号公報
【特許文献2】特開平3−209149号公報
【特許文献3】特開2000−88749号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
半導体洗浄工程での歩留まりの低下については、シリコンウエハー表面が接触する薬液の濃度、温度の変化に大きく依存し、槽内での薬液の濃度・温度分布の多くについては明らかになっていない。したがって、槽内の任意の点で濃度・温度の測定を行えることが望ましい。
【0007】
しかし、上述の浸漬型光学プローブは、反射面が多数(6面以上)存在しているので、寸法が大きい。半導体洗浄槽は、薬液の使用効率を最大限に上げるため、余剰空間は最小に設計されている。たとえばウエハーの場合、槽の寸法はウエハーに合わされているので、センサを設置するための余裕は狭い。このため、そのような大型の光学プローブを既存の半導体洗浄槽に適用することは現実的でない。また、多数の反射面を加工しなければならないので、プローブ加工の難易度が高い。
【0008】
この発明の目的は、測定対象となる液体の任意の点での成分濃度などの物理量の測定を実用化することである。
【課題を解決するための手段】
【0009】
本発明に係る光学プローブは、透明材料からなる光学プローブであって、第1の光ファイバを挿入可能な第1の孔と、前記の透明材料との屈折率差による全反射面となる2または3の平面を備える内部空隙であって、前記の2個または3個の平面を、第1の孔の中の第1の光ファイバからの入射光を順次全反射するように配置した内部空隙と、第2の光ファイバを挿入可能な第2の孔であって、前記の内部空隙の平面により順次反射された光が入射する位置に設けられた第2の孔と、第1の光ファイバから、内部空隙の前記の2個または3個の平面を経て、第2の光ファイバに至る光路の途中に設けられ、光路に垂直な対向する2つの境界面を備え、外部に通じる空洞部とを備える。
【0010】
前記の光学プローブにおいて、たとえば、前記の透明材料の屈折率が1.4142以上であり、前記の平面の数が2である。
【0011】
前記の光学プローブにおいて、たとえば、前記の透明材料の屈折率が1.4142と1.155の間であり、前記の平面の数が3である。
【0012】
前記の光学プローブにおいて、好ましくは、前記の第1の光ファイバの出射側と前記の第2の光ファイバの入射側にそれぞれ集光レンズを備える。
【0013】
本発明に係る分光測定装置は、測定対象の液体に光を透過させ、複数波長の光(たとえば近赤外光)についてその各強度をそれぞれ検出し、その検出値に基づいて上記液体の物理量を測定する分光測定装置である。この分光測定装置は、前記の光学プローブと、近赤外光を複数波長の光に分光し、第1の光ファイバを介して光学プローブに送る光源と、前記の光学プローブから第2の光ファイバを介して光を受光し、受光した光の強度に応じた光強度信号を発生する光検出部と、酸の濃度が既知の複数の混酸のサンプルについての複数波長の光の吸光度と酸の濃度との間の定数項を含む吸光度の多次多項式を用いて多変量解析法により求めた検量線式を保持する一方、上記光検出部が出力する光強度信号から各波長の光の吸光度をそれぞれ演算し、演算した各波長の上記光の吸光度から上記検量線式に基づいて測定対象の液体の物理量(たとえば、液体中の成分濃度や温度)を演算する物理量演算手段とを備える。
【発明の効果】
【0014】
小型の浸漬型光学プローブを提供できる。したがって、光学プローブが対象液中に浸漬されると、常時、光学プローブに測定対象液が導入できる。このため、測定装置内へ対象液を導入する機構(フローセルなど)が不要になる。
【0015】
小型の光学プローブを液体中に導入できるので、たとえばエッチング槽内の液体の任意の点の物理量(成分濃度、温度)のインライン測定が可能になる。また、多点の測定を行うことで、槽内の濃度及び温度の分布を知ることができ、槽内の濃度や温度のムラを知ることができ、洗浄工程での歩留まりが向上できる。
【発明を実施するための最良の形態】
【0016】
以下、本発明の実施の形態を添付の図面を参照して説明する。なお、図面において、同じ参照記号は同一または同等のものを示す。
【0017】
本発明に係る光学プローブは、透明な材料から成り、内部に全反射を起こす空隙を設けることを特徴とする。内部空隙は、実質的に屈折率が1であり、光学プローブの材料との屈折率差による全反射面となる2または3の平面を備える。すなわち、内部空隙は、光学プローブの本体と空隙との屈折率差を利用したプリズム機構である。分光測定装置と光学プローブとの間は2本の光ファイバで接続され、光学プローブは、測定対象の液体に浸漬される。測定光を1つの光ファイバにより光学プローブに導入すると、光は全反射面で順次反射されて、もう1つの光ファイバから出ていく。光路の一部に設けた空洞部には、測定対象の液体が入るので、その液体を透過した光が分光測定装置に送られる。この光学プローブを用いて、液体の任意の点の物理量(成分濃度及び温度)のインライン測定が可能になる。
【0018】
図1は2回反射型の光学プローブの1例の正面を示し、図2は、孔22と空隙34を通る断面を示す。この光学プローブのほぼ直方体の形状の本体10は、そのほぼ中央部に、空洞部12を備える。空洞部12は、光学プローブを液体に浸漬したときに液体で満たされる空間である。この例では、空洞部12は、図の左右方向に広がり、本体の長手方向に垂直な上下の平行面12aを備え、一方の面12aに垂直に入射した光は、そのまま他方の面12aを透過する。本体10の両側に補強用の側部14、16が配置され、本体10と一体化される。側部14,16は、本体を補強するとともに、空洞部12の側面を区画し、液体は図の正面側から空洞部12に入る。空洞部12の上側には、2本の光ファイバ(たとえばφ0.5mm)18,20を挿入するための孔22,24が、本体の長手方向に平行に設けられ、孔22,24の下には、凸レンズ26,28を保持する空間30,32が設けられる。光ファイバ18,20は、たとえば石英、サファイア、フッ素樹脂(金属元素を含まない)で構成される。空洞部12の下側には、2つの全反射用内部空間(空隙)34,36が設けられる。内部空隙34,36は、本体の長手方向と45度の角度をなす平面34a,36aを備える。内部空隙34,36は空気などの気体を含んでいるか、または、真空であり、屈折率nが実質的に1.0である。本体10は、nが1.4142(=21/2)以上の屈折率の材質(金属元素を含まない透明材料たとえば石英、サファイア、ダイアモンドなど)で構成される。nが1.4142以上の屈折率の材質で構成される場合、面34a及び36aで2回の全反射がおこる。図1の例では、内部空隙34,36は、3角形の断面を備え、3角形の最長辺に対応する面34a,36aは、本体の長手方向と45度の角度をなす。この屈折率差により、この面に45度の入射角で光が入射されると、その光は全反射される。すなわち、測定光の入射面と出射面が同一平面であり、内部空隙34,36はプリズムとして作用をする。光の反射回数が2回だけであるので、2つの光ファイバ18,20の間の光路長を短くできるという長所がある。これにより、透過光が暗くなるのを防止できる。反射面の数が少ないため、光学プローブの寸法は小さくできる(たとえば幅1cm×高さ3cm)。なお、空洞部12を本体10の往復の2つの光路のうち一方側のみに設けて、光が液体を1回だけ透過するようにしてもよい。
【0019】
測定においては、分光測定装置から一方の光ファイバ18を通って測定光を入射すると、光は、レンズ26で集光された後、矢印で示すように、空洞部12の面12aに垂直に入射し、空洞部12の中の液体を透過して、空洞部12の下方に進む。また、空洞部の下方から面12aに垂直に入射する光は、空洞部12の中の液体をふたたび透過し、さらにレンズ28を通って、他方の光ファイバ20に入る。したがって、光ファイバ18から入射した光は、空洞部12の液体を通り、一方の空間34で反射され、続いてもう一方の空間36で反射され、さらに、ふたたび空洞部12の液体を通って、上方に向かう。こうして、液体の透過光が分光装置に送られる。
【0020】
なお、空間34,36は、全反射面34a,36aを備える必要があるが、その他の形状は限定されない。好ましくは、空間34,36の3角形の最長辺34a,36aに対応しない他の2つの面を粗くしておくと、プローブの外からの光が入ってこなくなる。
【0021】
図3は、2回反射型の光学プローブの別の例を示す。この光学プローブが図1及び図2に示した光学プローブと異なるのは、空洞部12’の位置を本体10’の下側の2つの内部空隙34,36の間に位置させたことと、補強のための側部14,16を用いないことである。2つの対向する面12a’は本体の長手方向に平行である。空洞部12’の位置を本体10’の下側にしたため、図1及び図2に示した光学プローブに比べて、本体10’の縦方向の長さが短くできるが、幅方向の長さは長くなる。
【0022】
また、上述の2つの例では、2本の光ファイバ18,20を平行に設置して光学プローブを小さくしている。しかし、一般的には、図4に1例を示すように、2本の光ファイバ18,20は、必ずしも平行でなくてもよい。
【0023】
図5は、3回反射型の光学プローブの1例を示す。この光学プローブが図1〜図4に示した光学プローブと異なるのは、本体10の材質と、3回反射を可能にする内部空隙35の形状である。本体10は、金属元素を含まない1.155〜1.4142以上の屈折率の材質、たとえば、透明フッ素化合物であるPTFE、PFA(旭ガラス(株)製Cytopなど)からなる。また、内部空隙35は、3つの反射面35aを備え、相互に120度の角度をなす。入射光は、各反射面35aに60度の入射角で入射し、全反射される。
【0024】
光学プローブや光ファイバは、半導体のエッチング及び洗浄の行われている槽に浸漬する場合、強酸、強アルカリによる腐食、溶出をきわめて微量またはゼロに抑制できる透明材料(2回反射型光学プローブにおいてたとえば石英)を用いる。サファイアガラスは、2回反射型光学プローブにおいて、希フッ酸などの、石英が使えない被測定対象の液体に使用できる。また、光学プローブなどを金属元素を含まない材料で構成するのは、半導体薬液に溶け出さない材料を用いると、光学プローブが割れても悪影響を及ぼさせないためである。これに対し、たとえば金属蒸着による鏡を反射面として設けると、プローブが割れるとき金属が溶け出して、悪影響を及ぼす。
【0025】
上述の光学プローブは、種々の形状の素材を組み合わせて一体化することにより製造できる。たとえば、図1〜図2に示す光学プローブにおいて、3角状のプリズムを矩形開口にはめ込むことにより全反射面を構成できる。
【0026】
上述のいずれかの光学プローブを用いることにより、従来のフローセルを用いる場合と同様に、分光測定装置で吸光度を求め、液体中の物理量(成分濃度、液体温度など)を測定できる。測定方法としては、たとえば、特開平6−265471号公報に記載されている方法が採用できる。この方法では、測定対象の混酸に光を透過させ、複数波長の光についてその各強度をそれぞれ検出し、その検出値に基づいて混酸中の酸の濃度を測定する。まず、光ファイバを取り付けた光学プローブを、成分濃度既知の液体対象液中に浸漬せしめ、波長域の異なる近赤外域の複数の波長の光を透過させ、透過光の強度値を測定する。この測定を複数のサンプルについて繰り返す。そして、上記複数のサンプルの強度値から吸光度を演算し、吸光度と液体中の物理量との間の検量線式を求める。次に、光ファイバ及び光学プローブを、測定対象の液体中に浸漬せしめ、上記の異なる複数の波長の光を透過させ、透過光の強度値を測定する。そして、強度値から吸光度を演算し、吸光度と上記検量線式を用い、液体中の物理量(成分濃度、液体温度)を決定する。
【0027】
図6は、半導体製造における洗浄のためのシステムを備える。このシステムは、半導体ウェハの洗浄を行うエッチング槽100、エッチング槽内100内のエッチング液に浸漬可能な上述の光学プローブ110および分光測定装置120〜150からなる。分光測定装置は、光学プローブ110にインラインで試料を導入することを除いて従来と同様の構成を備える。光学プローブ110は光ファイバ18,20により分光測定装置に接続される。
【0028】
エッチング槽100は、オーバーフロータンク104を備えている。エッチング槽100には、原液タンク102から原液が供給される。
【0029】
分光測定装置の光源120では、図7に示すように、たとえばタングステン、ハロゲンランプからなる発光素子120からの放射光を凸レンズ122で集光させる。この凸レンズ122の焦点位置に配置された絞り124を通過した光を干渉フィルタ126で分光する。回転円板128は、選択された透過波長を有する8枚の干渉フィルタ126を等角度間隔で保持し、駆動モータ127によりたとえば1000rpmで回転駆動される。干渉フィルタ126は、水の特性吸収帯が顕著にあらわれる近赤外域において、特定成分の濃度変化に対してスペクトルの変動が大きく、他成分の妨害や干渉の影響が少ない波長を有するものが選択される。具体的には、水の特性吸収帯である980nmとその近傍、1200nmとその近傍、1460nmとその近傍、1940nmとその近傍、2500nmとその近傍において、近赤外吸収スペクトルの変動は、各イオン種によって固有のスペクトルを与える。また、酢酸に関しては、1680nm,1720nm,2260nm,2480nm,2510nmに特性吸収がある。そこで、干渉フィルタ126としては、これら波長の光を含む800nmないし2600nmの範囲の波長のうちから、濃度を測定する濃度に応じて、たとえば8つの波長を選択し、これら8つの波長の光をそれぞれ透過させるフィルタを8枚使用する。
【0030】
干渉フィルタ126を透過した光を、凸レンズ129で集光させ、光ファイバ18を経て、エッチング槽100内の光学プローブ110に導入する。光学プローブ110内でエッチング液を透過した光は、もう一方の光ファイバ20を経て分光部130に入る。
【0031】
分光部130は、上述の透過光を集光させる凸レンズ(図示しない)およびこの凸レンズから入射する光を光電流に変換する受光素子(図示しない)を備える。増幅器132は、分光部130から出力される、光学プローブからの透過光の強度に対応する透過光強度信号を増幅し、A/D変換器134は、増幅器132の出力をディジタル信号に変換する。
【0032】
データ処理装置140は、A/D変換器134より入力する透過光強度信号から各波長の光の吸光度をそれぞれ演算し、次に、演算した各波長の光の吸光度および検量線式に基づいて上記各波長の吸光度から混酸中の酸の濃度を演算する。データ処理装置140は、全体を制御するマイクロプロセッサ142、マイクロプロセッサ142を動作させるためのプログラム等が格納されたROM144、上記検量線式や各種データを記憶するRAM146、データや各種の命令を入力するキーボード等の入力装置148、上記データ処理の結果を出力するプリンタ、ディスプレイ等の出力装置150等から構成される。
【0033】
小型の浸漬型光学プローブ110がエッチング槽100内の薬液中に浸漬されると、常時、光学プローブに測定対象液が導入できる。このため、測定装置内へ対象液を導入する機構(フローセルなど)が不要になる。また、たとえばエッチング槽100内の液体の任意の点の物理量(成分濃度、温度)のインライン測定が可能になる。また、多点の測定を行うことで、槽内の濃度及び温度の分布を知ることができ、槽内の濃度や温度のムラを知ることができ、洗浄工程での歩留まりが向上できる。(なお、図6では、光学プローブ110は液面付近に位置されているが、槽内の所望の位置に設置できる。)また、測定中に光学プローブ110が割れたとしても、薬液の組成に影響を及ぼすことはない。
【0034】
図8は、マイクロプロセッサ142によるデータ処理のより具体的な内容を示す。まず、透過光強度の測定データを入力する(ステップ10)。ここで、図6の測定装置の駆動モータ127の回転により回転円板128を回転駆動して、分光部130で、回転円板128に保持されている8枚の干渉フィルタ126の透過波長の光がそれぞれ光学プローブ内の混酸を透過した透過光を受光してサンプル透過度に比例するアナログ信号を発生する。これら信号を増幅器132で増幅した後、A/D変換器134でディジタル信号に変換する。そして、このA/D変換器134からのディジタル信号(透過光強度)を入力する。
【0035】
次に、透過光強度の測定データに対して、次の式(1)
【数1】

の演算を実行し、吸光度Aを求める(ステップS12)。ここで、i=1〜8、Rは測定対象サンプルのi番目の波長での透過強度値、Bは基準濃度の混酸(たとえば、フッ酸+硝酸+酢酸)または水を光学プローブ110に入れたときのi波長の透過強度値、Dは光学プローブ110を遮光したときのi番目の波長での透過強度値、である。透過強度値BおよびDは予め測定しておき、入力装置148からRAM146に格納しておく。
【0036】
次に、吸光度Aに対して次の式(2)
【数2】

の変換を行なう(ステップS14)。この変換を行なうのは次の理由による。式(1)により演算される吸光度Aは、光源の明るさの変動、受光素子の感度変動、光学系のひずみ等により変化する。しかしこの変化はあまり波長依存性はなく、8波長の各吸光度データに同相、同レベルで重畳する。したがって、式(2)のように、各波長間の差を取ることにより、上記変化を相殺できる。また、サンプル自体の温度変動による吸光度Aの変動は、たとえば出願人による特開平3−209149号公報に記載の方法を採用して除去できる。
【0037】
次に、式(2)で得られたSをもとに次の式(3)
【数3】

の演算を行い、フッ酸濃度C1、硝酸濃度C2および酢酸濃度C3を演算する(ステップS16)。ここで、混酸がたとえばフッ酸+硝酸+酢酸である場合を考えていて、F(S)、G(S)、H(S)は、それぞれ、フッ酸、硝酸、酢酸の検量線式である。
【0038】
フッ酸の検量線式F(S)は、Sのそれぞれの1次項から高次項を含むとともに、SとSi+1あるいはその高次項の各乗算であるクロス項および定数項を含み、次の式(4)で表される。
【数4】

ここで、S,Si+1は式(1),式(2)により得られたデータ、α,β,γは検量線式の係数、Z0は定数項である。式(4)は、既知濃度の混酸(フッ酸+硝酸+酢酸)の標準サンプルを用いて、図6の分光測定装置により予め求めておき、データ処理装置140のRAM146に格納しておく。
【0039】
また、硝酸の検量線式G(S)および酢酸の検量線式H(S)は、いずれもフッ酸についての式(4)と同様の式である。これら検量線式についても、同様に、濃度測定装置により、既知濃度の混酸(フッ酸+硝酸+酢酸)の上記標準サンプルを用いて予め求めておき、データ処理装置140のRAM146に格納しておく。
【0040】
次に、式(4)の演算により得られたフッ酸の濃度C1,硝酸の濃度C2および酢酸の濃度Cを、出力装置150に出力する(ステップS18)。たとえば、CRT画面に表示し、印字用紙にハードコピーとして出力し、または、外部へ送信する。
【0041】
また、得られたフッ酸の濃度C1、硝酸の濃度C2および酢酸の濃度C3のデータに基づいて、現時点における混酸の槽100の状態を把握し、これらデータより演算することができる、槽100の管理に必要なパラメータ値、たとえば原液追加量、原液追加の時間、廃液量、廃液時間を演算し、その結果を出力装置150に出力する(ステップS20)。
【0042】
なお、以上の例では、液体中の成分濃度の測定方法について説明したが、温度も吸光度の1因子であるので、液体温度も同様に吸光度測定により求められる。すなわち、上述の測定方法は、吸光度に関連する各種物理量の測定に使用できる。
【0043】
なお、この例では、測定対象の混酸は、フッ酸+硝酸+酢酸であったが、他の混酸、たとえば、フッ酸+硝酸、リン酸+硝酸、フッ酸+硝酸+酢酸、リン酸+硝酸+酢酸、フッ酸+塩酸、硫酸+塩酸、王水も同様にデータ処理をすればよいことはいうまでもない。
【図面の簡単な説明】
【0044】
【図1】2回反射型の光学プローブの正面図
【図2】2回反射型の光学プローブの側面断面図
【図3】2回反射型の光学プローブの変形例の正面図
【図4】2回反射型の光学プローブの他の変形例の正面図
【図5】3回反射型の光学プローブの正面図
【図6】分光測定装置の構成を示す図
【図7】分光測定装置の光源のブロック図
【図8】分光測定装置のデータ処理のフローチャート
【符号の説明】
【0045】
10 光学プローブの本体、 12 空洞部12、 18,20 光ファイバ、 26,28 凸レンズ、 34,36 内部空隙、 34a,36a 全反射面、 120 光源、 130 分光部、 140 データ処理部。

【特許請求の範囲】
【請求項1】
透明材料からなる光学プローブであって、
第1の光ファイバを挿入可能な第1の孔と、
前記の透明材料との屈折率差による全反射面となる2または3の平面を備える内部空隙であって、前記の2個または3個の平面を、第1の孔の中の第1の光ファイバからの入射光を順次全反射するように配置した内部空隙と、
第2の光ファイバを挿入可能な第2の孔であって、前記の内部空隙の平面により順次反射された光が入射する位置に設けられた第2の孔と、
第1の光ファイバから、内部空隙の前記の2個または3個の平面を経て、第2の光ファイバに至る光路の途中に設けられ、光路に垂直な対向する2つの境界面を備え、外部に通じる空洞部と
を備える光学プローブ。
【請求項2】
前記の透明材料の屈折率が1.4142以上であり、前記の平面の数が2であることを特徴とする請求項1に記載された光学プローブ。
【請求項3】
前記の透明材料の屈折率が1.4142と1.155の間であり、前記の平面の数が3であることを特徴とする請求項1に記載された光学プローブ。
【請求項4】
前記の第1の光ファイバの出射側と前記の第2の光ファイバの入射側にそれぞれ集光レンズを備えたことを特徴とする請求項1〜3のいずれかに記載された光学プローブ。
【請求項5】
測定対象の液体に光を透過させ、複数波長の光についてその各強度をそれぞれ検出し、その検出値に基づいて上記液体の物理量を測定する分光測定装置であって、
請求項1〜4のいずれかに記載された光学プローブと、
近赤外光を複数波長の光に分光し、第1の光ファイバを介して光学プローブに送る光源と、
前記の光学プローブから第2の光ファイバを介して光を受光し、受光した光の強度に応じた光強度信号を発生する光検出部と、
酸の濃度が既知の複数の混酸のサンプルについての複数波長の光の吸光度と酸の濃度との間の定数項を含む吸光度の多次多項式を用いて多変量解析法により求めた検量線式を保持する一方、上記光検出部が出力する光強度信号から各波長の光の吸光度をそれぞれ演算し、演算した各波長の上記光の吸光度から上記検量線式に基づいて測定対象の液体の物理量を演算する物理量演算手段と
を備えたことを特徴とする分光測定装置。
【請求項6】
前記の物理量が液体中の成分濃度と温度であることを特徴とする請求項5に記載された分光測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2006−23200(P2006−23200A)
【公開日】平成18年1月26日(2006.1.26)
【国際特許分類】
【出願番号】特願2004−202072(P2004−202072)
【出願日】平成16年7月8日(2004.7.8)
【出願人】(000001096)倉敷紡績株式会社 (296)
【Fターム(参考)】