説明

光路変換機能を有する光導波路の製造方法

【課題】微細な加工が可能で、面精度が高い、光路変換機能を有する光導波路を、簡略な工程で直接基板上に直接形成できる製造方法及び該製造方法により製造した光導波路を提供すること。
【解決手段】クラッド部分をポジ型感光性樹脂により形成する光導波路の製造方法において、該ポジ型感光性樹脂の現像工程における膜減りにより形成される傾斜面を光路変換ミラー面とする。好ましくは上記ポジ型感光性樹脂として、ポリシロキサン系のポジ型感光性樹脂を用い、上記クラッド部分により取り囲まれたコア部分をネガ型感光性樹脂により形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光通信、光情報処理等で用いられる光路変換機能を有する光導波路の製造方法に関する。
【背景技術】
【0002】
光導波路は、光導波路デバイス、光集積回路、光配線基板等の光デバイスに組み込まれ、光通信、光情報処理等の分野で広く用いられており、光硬化性樹脂やポジ型感光性樹脂等の高分子樹脂材料を使用したポリマー光導波路の開発も盛んに行われている。
これは、高分子材料が、スピンコート法やディップ法等により薄膜形成が容易であり、大面積の光学部品の作製が容易であること、成膜に際して高温での熱処理工程が不要であり、半導体基板やプラスチック基板等の、高温での熱処理が困難な基板上に、光導波路の作製が可能であること、高分子の柔軟性や強靱性を生かしたフレキシブルな光導波路の作製が可能であること等の利点によるものである(例えば、特許文献1参照)。
【0003】
光インターコネクションをはじめとする種々の光通信用光源として、コスト、性能の点から、面発光レーザー(VCSEL)が注目されているが、面発光レーザーからのレーザー光は基板面に対し垂直方向に出射されるため、これを基板面に対し水平に配置された光導波路に入射するには、約90°の光路変換が必要となる。
【0004】
光路変換の方法としては、光路変換用素子を用いる方法が挙げられるが、光デバイスを製造する場合に、光通信用光源、光導波路及び光路変換用素子を正確に位置決めし接着しなければならず煩雑であることから、光導波路自体に光変換ミラー面を設ける方法が提案されている。
【0005】
光導波路自体に光変換ミラー面を設ける方法としては、例えば、傾斜角を有するブレードによる切削加工によって生成した研削面を光路変換ミラー面とする方法(例えば、特許文献2参照)、レーザー光で光導波路板に斜め方向の貫通孔を設け、その貫通孔の壁面を光路変換ミラー面とする方法等のレーザーアブレーションによる加工方法(例えば、特許文献3参照)、プレス成形により下部クラッド部分に傾斜面を形成し光路変換ミラー面とする方法(例えば、特許文献4参照)等が挙げられる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2005−128302号公報
【特許文献2】特開平10−300961号公報
【特許文献3】特開2000−347052号公報
【特許文献4】特開2003−57466号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1に記載されているような、ブレードを用いた方法では、必要な部分以外にも溝が形成されたり、低損失なミラーを作製する条件が切削条件や材料に大きく依存したりするという課題があり、また光回路基板の微細化、高密度化が困難であるという課題があった。
また、特許文献2に記載されているような、レーザーアブレーションによる加工方法では、平滑な加工面を形成することができる材料に制限があり、加工中の除去物による壁面ダメージが発生して平滑面を確保することが難しいという課題があった。
また、特許文献2〜4に記載された方法は、何れも、光導波路を製造してから光路変換ミラー面を形成するため、光路変換機能を有する光導波路を基板上に直接、形成することができず、工程が煩雑になるという課題があった。
このため、微細な加工が可能で、面精度が高い、光路変換機能を有する光導波路を、簡略な工程で基板上に直接形成できる製造方法が求められていた。
【0008】
一方、ポジ型感光性樹脂を使用してポリマー光導波路を製造する場合には、パターン化された光を照射した後、現像液を用いて不要部分を溶解除去しパターンを形成する。
ポジ型感光性樹脂は、初期状態では現像液に対して難溶解性であるが、紫外線等のエネルギー線に露光されることにより現像液への溶解性が向上し、このような露光部分と非露光部分との現像液への溶解速度の差を利用してパターニングが行われる。
この現像工程では、現像液と長く接触することによりパターンの表面及びパターンの側面が溶解する「膜減り」と呼ばれる現象が起こることが知られている。
【0009】
例えば、ポジ型感光性樹脂を用いてフォトリソグラフィによりパターンを形成する場合には、通常、溶剤等で希釈されたポジ型感光性樹脂を対象材料に塗布する工程(塗布工程)、ポジ型感光性樹脂の層にパターン化された光を照射し、光が照射された部分(露光部分)の現像液への溶解性を向上させる工程(露光工程)、露光部分を現像液で溶解除去して非露光部分のパターンを残す工程(現像工程)、残された非露光部分を硬化させる工程(硬化工程)により、パターンが形成される。
【0010】
ポジ型感光性樹脂は、現像液に対して難溶解性ではあるが不溶性ではないため、ポジ型感光性樹脂の層を用いたパターニングの現像工程では、露光部分ほどではないが非露光部分でも、現像液による溶解が徐々に起こる。
このような現像工程における非露光部分が溶解する現象は、「膜減り」と呼ばれているが、このような非露光部分の溶解は、非露光部分の上面だけでなく、露光部分の溶解除去により露出した非露光部分の側面でも起こる。
このため、非露光部の現像後の層の厚さが現像前よりも薄くなるだけでなく、現像後の非露光部の上部は下部よりもパターン幅が狭くなることとなる。
【0011】
「膜減り」は、フォトレジストの分野では微細なパターンを形成する上での障害となることから「膜減り」の少ない樹脂組成物の開発や現像方法の検討は盛んに行われているが、「膜減り」を積極的に利用したパターンの形成方法は知られていない。
また、フォトレジストを使用した光導波路の製造では、コア部分をパターン形成で製造する場合が多く、クラッド部分をパターン形成で製造する場合は少ない。
【0012】
従って、本発明の目的は、微細な加工が可能で、面精度が高い、光路変換機能を有する光導波路を、簡略な工程で直接基板上に直接形成できる製造方法及び該製造方法により製造した光導波路を提供することにある。
【課題を解決するための手段】
【0013】
本発明者は、上記課題を解決すべく鋭意検討した結果、光導波路を製造してから光路変換ミラー面を形成するのではなく、光導波路を製造する際に、光変換ミラー面を形成することができれば、光路変換機能を有する光導波路が、基板上に直接、簡略な工程で、また大量に製造することが可能となる、即ち、ポジ型感光性樹脂を使用してポリマー光導波路を製造する場合、基板上に、ポジ型感光性樹脂の層を形成させ、パターンの現像工程において光導波路の光路変換ミラー面を形成できれば、安価な方法で、多数の光路変換ミラー面が一度に形成できるようになるという着想に至った。
【0014】
本発明者は、この着想に基づき、更に検討を重ねた結果、クラッド部分をポジ型感光性樹脂により形成する場合に、従来は、微細なパターンを形成する上での障害であった、現像工程において発生する「膜減り」によって形成されるパターンの側面の傾斜面が光路変換ミラー面として利用できることを見出し、本発明を完成するに至った。
【0015】
すなわち本発明は、クラッド部分をポジ型感光性樹脂により形成する光導波路の製造方法において、該ポジ型感光性樹脂の現像工程における膜減りにより形成される傾斜面を光路変換ミラー面とすることを特徴とする、光路変換機能を有する光導波路の製造方法を提供するものである。
【0016】
また、本発明は、クラッド部分がポジ型感光性樹脂により形成され、該ポジ型感光性樹脂の現像工程における膜減りにより形成される傾斜面を光路変換ミラー面とする、光路変換機能を有する光導波路を提供するものである。
【発明の効果】
【0017】
本発明によれば、光路変換機能を有する光導波路が、基板上に直接、簡略な工程で製造できる。
【図面の簡単な説明】
【0018】
【図1】図1(a)は、基板上にクラッド部分形成用ポジ型感光性樹脂の層が形成されたことを示す概略図である。図1(b)は、上記クラッド部分形成用ポジ型感光性樹脂の層が硬化してクラッド部分が形成されことを示す概略図である。図1(c)は、上記クラッド部分上に更にクラッド部分形成用ポジ型感光性樹脂の層が形成されたことを示す概略図である。図1(d)は、パターンマスクを使用した露光により、上記クラッド部分形成用ポジ型感光性樹脂の層の露光部分の現像液に対する溶解性が向上したことを示す概略図である。また図1(a’)〜(d’)は、それぞれ図1(a)〜(d)の中央部分の断面図である。
【図2】図2(e)は、上記露光部分が現像液に溶解するとともに、非露光部分も徐々に溶解し、該非露光部分に「膜減り」による傾斜面(光路変換ミラー面)が形成されつつあることを示す概略図である。図2(f)は、露光部分の溶解が進み、非露光部分の傾斜面がクラッド部分に達したことを示す概略図である。図2(g)は、上記クラッド部分形成用ポジ型感光性樹脂の層の非露光部分が硬化してクラッド部分が形成されことを示す概略図である。また図2(e’)〜(g’)は、それぞれ図2(e)〜(g)の中央部分の断面図である。
【図3】図3(h)は、上記クラッド部分にコア部分形成用ネガ型感光性樹脂の層が形成されたことを示す概略図である。図3(i)は、パターンマスクを使用した露光により、上記コア部分形成用ネガ型感光性樹脂の層の露光部分が硬化して現像液に対して難溶性となった(コア部分が形成された)ことを示す概略図である。図3(j)は、上記コア部分形成用ネガ型感光性樹脂の層の非露光部分が現像液に溶解し、露光部分(コア部分)が残ったことを示す概略図である。図3(k)は、上記コア部分上にクラッド部分形成用ポジ型感光性樹脂の層が形成されたことを示す概略図である。また図3(h’)〜(k’)は、それぞれ図3(h)〜(k)の中央部分の断面図である。
【図4】図4(l)は、光導波路の光路を確保するための、パターンマスクを使用した露光により、上記傾斜面上のクラッド部分形成用ポジ型感光性樹脂の層の現像液に対する溶解性が向上したことを示す概略図である。図4(m)は、上記傾斜面上のクラッド部分形成用ポジ型感光性樹脂の層が現像液に溶解されて光路となる空洞部分が形成されたことを示す概略図である。図4(n)は、上記クラッド部分形成用ポジ型感光性樹脂の層が硬化してコア部分上にクラッド部分が形成されたことを示す概略図である。図4(o)は、上記光路となる空洞部分にコア部分形成用ネガ型感光性樹脂の層が形成されたことを示す概略図である。図4(p)は、上記コア部分形成用ネガ型感光性樹脂の層が硬化して上記空洞部分にコア部分が形成されたことを示す概略図である。また図4(l’)〜(p’)は、それぞれ図4(l)〜(p)の中央部分の断面図である。
【図5】図5(A)は光路変換ミラー面を2つ有する光導波路における光の進行方向を示す概略図であり、図5(B)は光路変換ミラー面を1つ有する光導波路における光の進行方向を示す概略図である。
【発明を実施するための形態】
【0019】
以下、本発明について好ましい実施形態に基づき詳細に説明する。
本発明の製造方法が適用される光導波路は、光路となる芯状のコア部分の一部又は全部をクラッド部分で取り囲んだもので、コア部分は、通常、シート状又は板状である。光導波路は、コア部分及びクラッド部分の構造により、スラブ型、埋め込み型、半埋め込み型、リッジ型等に分類されるが、本発明の光導波路の製造方法ではいずれの構造の光導波路へも応用が可能である。
以下、本発明の光導波路の製造方法が好ましく使用される埋め込み型光導波路について説明するが、本発明は埋め込み型光導波路に限定されるものではない。
【0020】
本願発明の光導波路の製造方法において、光導波路の光路変換ミラー面となる傾斜面を形成する「膜減り」は、本願明細書の「発明が解決しようとする課題」の項で説明したように、ポジ型感光性樹脂の現像工程おいて、非露光部分が現像液に長時間接触することにより、非露光部分の溶解が起こるという現象をいう。
このような溶解は、非露光部分の上面だけでなく、露光部分の溶解により露出した非露光部分の側面でも発生する。
このため、非露光部分は下部に比べて上部の幅が狭くなり、非露光部分の側面は上面又は側面に対して垂直ではなく、側面と上面とのなす角が鈍角であり側面と底面とのなす角が鋭角であるような傾斜を有する。
本発明は、現像時に形成されるこのような非露光部分の側面の傾斜を光導波路の光路変換に利用したものであり、更に詳しくは、クラッド部分をポジ型感光性樹脂により形成する光導波路の製造方法において、該ポジ型感光性樹脂の現像工程における膜減りにより形成される傾斜面を光路変換ミラー面とするものである。
【0021】
上記光路変換ミラー面となる傾斜面の角度は、特に限定されないが、光路が90°に変換されることが好ましいことから、非露光部分の側面と底面とのなす角が40〜50°又は非露光部分の側面と上面とのなす角が130〜140°であることが好ましく、上記側面と底面とのなす角が43〜47°又は側面と上面とのなす角が133〜137°であることが更に好ましく、上記側面と底面とのなす角が44〜46°又は側面と上面とのなす角が134〜136°であることが最も好ましい。
【0022】
以下、本発明の光路変換機能を有する光導波路の製造方法を、図1(a)〜図4(p)及び図1(a’)〜図4(p’)の概略図を用いて具体的に説明する。図1(a)〜図4(p)は、本発明の光導波路の製造工程を示す概略図であり、図1(a’)〜図4(p’)は、それぞれ図1(a)〜図4(p)の中央部分の断面図である。
【0023】
図1(a)及び(a’)から図2(g)及び(g’)は、光導波路のクラッド部分3に傾斜面が形成されるまでの工程を示す。図1(a)及び(a’)に示すように、基板1上にクラッド部分形成用ポジ型感光性樹脂を塗布し、必要に応じて加熱乾燥させて、クラッド部分形成用ポジ型感光性樹脂の層2が形成される。このクラッド部分形成用ポジ型感光性樹脂の層2を常法により硬化させて、図1(b)及び(b’)に示すように、クラッド部分3(下部クラッド層)が形成される。傾斜面を形成するために、図1(c)及び(c’)に示すように、クラッド部分3上に、更にクラッド部分形成用のポジ型感光性樹脂を塗布し、必要に応じて加熱乾燥させて、クラッド部分形成用ポジ型感光性樹脂の層2が形成される。
【0024】
コア部分を形成させる溝を形成するために、図1(d)及び(d’)に示すように、パターンマスク4を通して、クラッド部分形成用ポジ型感光性樹脂の層2に紫外線5を照射し、クラッド部分形成用ポジ型感光性樹脂の層2の露光部分の、現像液に対する溶解性を向上させる(露光により現像液への溶解性が向上したクラッド部分形成用ポジ型感光性樹脂の層6)。この後、露光部分を現像液で溶解すると、現像液に対する溶解性が向上した露光部分だけでなく、図2(e)及び(e’)に示すように、露光部分の溶解により露出した非露光部分の側面でも徐々に溶解が起こり、該非露光部分の側面には、「膜減り」により傾斜面が形成され始め、図2(f)及び(f’)に示すように、この傾斜面は、クラッド部分3に達し、クラッド部分形成用ポジ型感光性樹脂の層2には傾斜面を有する溝が形成される。クラッド部分形成用ポジ型感光性樹脂の層2を常法により硬化させることにより、図2(g)及び(g’)に示すように、傾斜面を有する溝のあるクラッド部分3が形成される。
【0025】
図3(h)及び(h’)から図3(j)及び(j’)は、光導波路のコア部分8と光路変換ミラー面9が形成されるまでの工程を示す。尚、本発明の製造方法において、コア部分形成用の樹脂は、ポジ型感光性樹脂、ネガ型感光性樹脂の何れでもよいが、「膜減り」が少ないことからネガ型感光性樹脂が好ましい。以下では、コア部分8をネガ型感光性樹脂により形成する場合について説明するが、コア部分8をポジ型感光性樹脂で形成しても、本発明の光路変換ミラー面9を有する光導波路が製造できる。
【0026】
傾斜面を有する溝のあるクラッド部分3にコア部分形成用ネガ型感光性樹脂を塗布し、必要に応じて加熱乾燥させて、図3(h)及び(h’)に示すように、コア部分形成用ネガ型感光性樹脂の層7が形成される。図3(i)及び(i’)に示すように、パターンマスク4を通して、コア部分形成用ネガ型感光性樹脂の層7の中央部分のみに紫外線5を照射して硬化させ、未硬化部分を現像液で溶解除去することで、図3(j)及び(j’)に示すようにコア部分8が形成される。コア部分8は、両端のクラッド部分との境界に傾斜面を有しており、この傾斜面が光路変換ミラー面9となる。
【0027】
図3(k)及び(k’)から図4(n)及び(n’)は、光導波路の光路が確保されると共にクラッド部分3が形成される工程を示す。コア部分8上に、クラッド部分3を形成するために、図3(k)及び(k’)に示すように、コア部分8上にクラッド部分形成用ポジ型感光性樹脂を塗布し、必要に応じて加熱乾燥させて、クラッド部分形成用ポジ型感光性樹脂の層2が形成される。光導波路の光路を確保するために、図4(l)及び(l’)に示すように、パターンマスク4を通して、光路変換ミラー面9の上部のクラッド部分形成用ポジ型感光性樹脂の層2に選択的に紫外線5を照射して現像液に対する溶解性を向上させた後、現像液により溶解除去して、図4(m)及び(m’)に示すように、光路変換ミラー面9の上部に光路となる空洞部分を形成する。残ったクラッド部分形成用ポジ型感光性樹脂の層2を、図4(n)及び(n’)に示すように、常法により硬化させて、コア部分8上にクラッド部分3(上部クラッド層)が形成される。図4(n)及び(n’)のように、光路変換ミラー面9の上部に空洞部分を有したままでも、光路変換機能を有する光導波路として使用できるが、空洞部分への埃の侵入の防止や、形成した光導波路の信頼性向上の点から、この空洞部分にもコア部分8を形成することが好ましい。
【0028】
図4(o)及び(o’)から図4(p)及び(p’)は、光路変換ミラー面9の上部の空洞部分にコア部分8が形成される工程を示す。光路変換ミラー面9の上部の空洞部分に、図4(o)及び(o’)に示すように、コア部分形成用ネガ型感光性樹脂を塗布し、必要に応じて加熱乾燥させて、コア部分形成用ネガ型感光性樹脂の層7が形成される。図4(p)及び(p’)に示すように、コア部分形成用ネガ型感光性樹脂の層7を、常法により硬化させて、上記空洞部分にコア部分8が形成されることにより、光路変換機能を有する光導波路が完成する。
【0029】
図5(A)及び図5(B)は、本発明の製造方法により得られた光導波路の光の進路を示す概略図である。図5(A)に示すように、本発明の製造方法により得られた光導波路内の2つの光路変換ミラー面9により、入射光を約180°に光路変換することができる。入射光を約90°に光路変換する場合には、2つの光路変換ミラー面9を有する光導波路を切断して、図5(B)のように光路変換ミラー面を1つにすればよい。
【0030】
これまでの図を用いた説明では、光導波路を基板上に直接形成する場合について説明したが、光導波路は、基板上に直接形成される必要はなく、例えば、本発明の光導波路の製造方法により、PET(ポリエチレンテレフタレート)樹脂等のフィルム上に光導波路を形成し、その後、この光導波路を基板等に装着してもよい。
【0031】
上述したように、本発明の製造方法では、クラッド部分形成用ポジ型感光性樹脂の層2の、非感光部分と感光部分との現像液に対する溶解速度の差を利用している。非感光部分と感光部分との現像液に対する溶解速度の差が大きい場合には、「膜減り」が少ないために、非露光部分の底面と、非露光部分の「膜減り」による側面(傾斜面)との角度が大きくなり、逆に、溶解速度の差が小さい場合には、「膜減り」が多くなって、非露光部分の底面と、非露光部分の「膜減り」による側面(傾斜面)との角度が小さくなる。
本発明の光導波路の製造方法により得られる光路変換ミラー面9の角度は、上述したように、光路が約90°に変換される角度、即ち、光路に対して約45°であることが好ましいが、このような角度を得るためには、非感光部分と感光部分との現像液に対する溶解速度を適度な範囲に設定する必要がある。
【0032】
本発明の製造方法では、現像時にレジストの膨潤が少なく良好な光路変換ミラー面9を形成するために、クラッド部分3は、アルカリ現像が可能なポジ型感光性樹脂を用いて、アルカリ性水溶液により現像する。現像液に対するポジ型感光性樹脂の溶解速度に与える要因としては、ベース樹脂の種類、感光剤の種類と配合量、増感剤の種類と配合量、現像液の種類と現像温度等が挙げられる。非感光部分と感光部分との現像液に対する溶解速度の調整が容易であることから、感光剤の配合量により、このような溶解速度を調整することが好ましい。感光剤の配合量により、溶解速度を調整する場合、感光剤の配合量が多いほど、非感光部分と感光部分との現像液に対する溶解速度差が大きくなって、非露光部分の「膜減り」による傾斜面の傾斜角は大きくなり、逆に、感光剤の配合量が少ないほど、溶解速度差が小さくなって、非露光部分の「膜減り」による傾斜面の傾斜角は小さくなる。
【0033】
溶解度を調整するために用いられる上記感光剤としては、感光性が高く、溶解速度の調整が容易であることから、ジアゾキノン化合物が好ましく、フェノール性水酸基を有する化合物の水素原子が下記式(1)で表される基で置換された化合物(4−ジアゾナフトキノンスルホン酸エステル)又は下記式(2)で表される基で置換された化合物(5−ジアゾナフトキノンスルホン酸エステル)が更に好ましい。
【0034】
【化1】

【0035】
このようなジアゾキノン化合物の、好ましい具体例としては、例えば、以下の式(3)〜(8)で表される化合物及びそれらの位置異性体等を例示することができる。
【0036】
【化2】

(式(3)〜(8)中、Qは上記式(1)若しくは式(2)で表される基又は水素原子である。但し、それぞれの式において、全てが水素原子であることはない。)
【0037】
尚、式(5)で表される基はi線(波長365nm)領域に吸収を持つため、i線露光に適し、式(6)で表される基は広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適していることから、露光する波長によって式(5)で表される基、式(6)で表される基の何れかを選択することが好ましい。
【0038】
本発明の製造方法によれば、光路変換機能を有する光導波路を直接基板上に形成することが可能である。このような基板では、光学素子等を実装する場合に、はんだが用いられることから、光導波路を形成する材料にも耐熱性が要求される。耐熱性の高い光導波路が形成できるポジ型感光性樹脂としては、ポリシロキサン系のポジ型感光性樹脂が挙げられ、中でも、特開2010−101957号公報に記載のポジ型感光性樹脂組成物が好ましく、原料の入手の容易さや、得られる光導波路の耐熱性の点から、(A)成分として、下記一般式(9)で表わされる環状シロキサン化合物と下記一般式(10)で表わされるアリールアルコキシシラン化合物とを反応させて得られるシリコーン樹脂、(B)成分として、グリシジル基を有するシロキサン化合物、(C)成分として、ジアゾナフトキノン類、特に、上記のフェノール性水酸基を有する化合物の水素原子が上記式(1)で表される基で置換された化合物(4−ジアゾナフトキノンスルホン酸エステル)又は上記式(2)で表される基で置換された化合物(5−ジアゾナフトキノンスルホン酸エステル)、及び(D)成分として、有機溶剤を含有するポジ型感光性組成物が更に好ましい。
【0039】
【化3】

(式中、R1は炭素数1〜3のアルキル基を表わし、m、n及びpは、m:n:p=1:0〜2:0.5〜3であり、m+n+p=3〜6となる数を表す。)
【0040】
【化4】

(式中、R2及びR3は、それぞれ独立して炭素数1〜3のアルキル基を表わし、fは2〜3の数を表わす。)
【0041】
上記(A)成分である、上記一般式(9)で表わされる環状シロキサン化合物と上記一般式(10)で表わされるアリールアルコキシシラン化合物とを反応させて得られるシリコーン樹脂は、下記一般式(9a)で表わされる環状シロキサン化合物と、上記一般式(10)で表わされるアリールアルコキシシラン化合物とを反応させた後、t−ブチルエステル基及びt−ブチルエーテル基を、特開2010−101957号公報に記載の方法により脱離することによっても得ることができる。
【0042】
【化5】

(式中、m、n及びpは、上記一般式(9)と同義である。)
【0043】
上記(B)成分である、グリシジル基を有するシロキサン化合物としては、基板との密着性に優れることから、下記一般式(11)で表わされる、3−グリシドキシプロピル基を有する環状シロキサン化合物が好ましい。
【化6】

(式中、xは3〜6の数を表わす。)
【0044】
本発明の光導波路のコア部形成用樹脂としては、上述したように、現像液による「膜減り」が少ないことから、ネガ型感光性樹脂が好ましいが、光導波路の耐熱性の点から、ポリシロキサン系のネガ型感光性樹脂がより好ましく、中でも、特開2004−010849号公報記載のネガ型感光性樹脂や特開2007−238868号公報記載のネガ型感光性樹脂がより一層好ましい。
【0045】
本発明の製造方法により得られる光導波路は、光導波路デバイス、光集積回路、光配線基板等の光デバイス、特に、面発光レーザーを光源とする光デバイスに好適に利用できる。
【実施例】
【0046】
以下に実施例を挙げ、本発明を更に説明するが、本発明はこれらに限定されるものではない。
【0047】
〔ベース樹脂Aの製造〕
特開2010−101957号公報の実施例の環状シロキサン化合物(a−1)の製造方法に準拠し、下記の式(12)の環状シロキサン化合物を得た。
【化7】

【0048】
撹拌器、温度計、及び還流器を有する反応容器に、上記一般式(9a)で表わされる環状シロキサン化合物として、上記式(12)で表わされる環状シロキサン化合物100質量部、上記一般式(10)で表わされるアリールアルコキシシラン化合物として、フェニルトリメトキシシラン40質量部、及び溶媒としてトルエン200質量部を加えて、10℃で氷冷攪拌しながら、5%シュウ酸水溶液50質量部を30分かけて滴下した。系内温度を10℃に保ったまま15時間攪拌の後、50℃、減圧下で還流脱水・脱アルコール処理し、50℃減圧下で溶媒のトルエンを1−メトキシ−2−プロパノールアセテート(以下PGMEAという)へと溶媒交換を行ない、生成物の25%PGMEA溶液とした。t−ブチル基を脱離するために、三フッ化ホウ素ジエチルエーテル錯体3質量部を加えて、80℃で3時間攪拌の後、減圧下で100質量部の脱溶媒処理をし、酸性物質の吸着剤(協和化学工業製、商品名:キョーワード500SH)を10質量部加えた後に、80℃で1時間攪拌したスラリー溶液について、濾過により固形物を除去し、ベース樹脂Aの30%PGMEA溶液を得た。ベース樹脂Aは、特開2010−101957号公報の実施例のシリコーン樹脂(a)に相当する化合物である。ベース樹脂Aのテトラヒドルフランを溶媒としたGPC分析によるポリスチレン換算の質量平均分子量は6400であり、特開2010−101957号公報記載の方法により測定したシラノール基含量は5.4質量%であった。
【0049】
<45°の傾斜面を得るための感光剤の配合量の決定>
上記(A)成分として、上記ベース樹脂Aの30%PGMEA溶液、上記(B)成分として、2,4,6,8−テトラキス(3−グリシドキシプロピル)−2,4,6,8−テトラメチルシクロテトラシロキサン、上記(C)成分として、上記式(3)において全てのQが上記式(2)で表される基である化合物(ダイトーケミックス社製、商品名:PA−6)、及び上記(D)成分としてPGMEAを用いて、各成分が[表1]に示す割合になるように配合し、ポジ型感光性樹脂組成物である組成物1〜8を調製した。
【0050】
【表1】

【0051】
(試験片の調製方法)
縦25mm及び横25mmの正方形のガラス基板を試験片形成用基板に用いた。この試験片形成用基板に対し、上記のポジ型感光性樹脂組成物である組成物1〜8を、それぞれ乾燥後の層の厚さが10μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱処理し層中の溶剤を完全に除去した後、超高圧水銀灯により200mJ/cm2(波長365nm露光換算)の紫外線を照射した後、大気雰囲気下150℃で60分間の加熱処理を行い硬化させた。硬化面上に、硬化面と同一のポジ型感光性組成物を乾燥後の層の厚さ20μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱処理し層中の溶剤を完全に除去した。該層の上にスリット幅20μm、スリット長10mmのフォトマスクを設置し、超高圧水銀灯により70mJ/cm2(波長365nm露光換算)の紫外線を照射した。次に、この試験片を現像液である液温23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に、70秒浸漬した後、水洗し、風乾した。風乾した試験片に超高圧水銀灯により200mJ/cm2(波長365nm露光換算)の紫外線を照射した後、大気雰囲気下150℃で60分間の加熱処理を行った。「膜減り」により形成された硬化物の傾斜面の、ガラス基板に対する角度を測定するために、試験片をパターンに対して垂直方向に切断し、走査型電子顕微鏡を用いて切断面を拡大し、ガラス基板と傾斜面との角度を測定した。結果を〔表1〕に示す。〔表1〕の結果から(C)成分の感光剤をベース樹脂A100質量部に対して、7質量部配合することにより、45°の傾斜角が得られることがわかった。このため、組成物4の配合をコア部形成用ポジ型感光性樹脂組成物として用いることとした。
【0052】
<ベース樹脂Bの製造>
特開2007−238868号公報の実施例の(A1)に準じて、ベース樹脂Bを合成した。即ち、撹拌器、温度計及び還流器を有する反応容器に、フェニルトリメトキシシラン178.5g(0.90mol)、3,4−エポキシシクロへキシルエチルトリメトキシシランを24.6g(0.10mol)、溶媒としてトルエン600gを仕込み、氷冷しながら0.032質量%のリン酸水溶液108gを5〜10℃を1時間かけて滴下した後、更に5時間撹拌した。2質量%の水酸化ナトリウム水溶液6.7gを加えた後、加熱してトルエンを還流させ、共沸により水を除去した。Si−OH基を封止するためにオルトギ酸トリエチル890g(6.0mol)を添加し、130℃で1時間加熱攪拌した。吸着剤(協和化学工業製 商品名:キョーワード600S)を45g加え、100℃で1時間加熱攪拌した。吸着剤を濾過して除去後、120℃、3mmHgにて揮発成分を除去し、トルエン45g、メタノール1000gを加えて2層分離して、下層を除去した。110℃、3mmHgにて揮発成分を除去し、エポキシ基を有するベース樹脂Bを得た。ベース樹脂Bのテトラヒドルフランを溶媒としたGPC分析によるポリスチレン換算の質量平均分子量は1800であり、1H−NMRによる分析の結果、シラノール基(Si−OH)は検出されなかった。また、電位差法により測定したエポキシ当量は、1428であった。
【0053】
<コア部分形成用ネガ型感光性樹脂組成物の調製>
ベース樹脂B100質量部、2,2−ビス(3,4−エポキシシクロへキシル)プロパン80質量部、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート20質量部、触媒としてビス−[4−(ビス(4−ブトキシフェニル)スルホニオ)フェニル]スルフィドヘキサフルオロアンチモネート0.6質量部からなる組成物をコア部分形成用ネガ型感光性樹脂組成物として用いた。
【0054】
〔光路変換部を持つ光導波路の形成〕
図1(a)及び(a’)に示すように、縦25mm及び横25mmの正方形のガラス基板1上に、クラッド部分形成用ポジ型感光性樹脂組成物として、上記組成物4を、乾燥後の層の厚さが30μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱乾燥し層中の溶剤を完全に除去し、クラッド部分形成用ポジ型感光性樹脂組成物の層2を形成した。
【0055】
このクラッド部分形成用ポジ型感光性樹脂組成物の層2を、超高圧水銀灯により200mJ/cm2(波長365nm露光換算)の紫外線5を照射した後、大気雰囲気下150℃で60分間の加熱処理を行い硬化させて、図1(b)及び(b’)に示すように、クラッド部分3(下部クラッド層)を形成した。
【0056】
図1(c)及び(c’)に示すように、クラッド部分3(下部クラッド層)上に、クラッド部分形成用ポジ型感光性樹脂組成物として、上記組成物4を、乾燥後の層の厚さが30μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱乾燥し層中の溶剤を完全に除去し、クラッド部分形成用ポジ型感光性樹脂組成物の層2を形成した。
【0057】
図1(d)及び(d’)に示すように、クラッド部分形成用ポジ型感光性樹脂組成物の層2上にスリット幅30μm、スリット長10mmのフォトマスク(パターンマスク)4を設置し、超高圧水銀灯により70mJ/cm2(波長365nm露光換算)の紫外線5を照射することにより、クラッド部分形成用ポジ型感光性樹脂組成物の層2の露光部分の、現像液に対する溶解性を向上させた。
【0058】
この後、現像液である液温23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に、70秒浸漬することにより、図2(e)及び(e’)に示すように、露光部分を現像液で溶解すると共に、露光部分の溶解により露出した非露光部分の側面を溶解させて、クラッド部分形成用ポジ型感光性樹脂組成物の層2に、図2(f)及び(f’)に示すような、膜減りによる傾斜面を有する溝を形成した。
【0059】
ついで、傾斜面を有する溝が形成されたクラッド部分形成用ポジ型感光性組成物の層2に、超高圧水銀灯により200mJ/cm2(波長365nm露光換算)の紫外線5を照射した後、大気雰囲気下150℃で60分間の加熱処理を行い硬化させることにより、図2(g)及び(g’)に示すように、傾斜面を有する溝が形成されたクラッド部分3を形成した。
【0060】
クラッド部分3の傾斜面を有する溝に、上記で得られたコア部分形成用ネガ型感光性樹脂組成物を、乾燥後の層の厚さが30μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱乾燥し層中の溶剤を完全に除去し、図3(h)及び(h’)に示すように、コア部分形成用ネガ型感光性樹脂組成物の層7を形成した。
【0061】
図3(i)及び(i’)に示すように、コア部分形成用ネガ型感光性樹脂組成物の層7上に、スリット幅30μm、スリット長250μmのフォトマスク(パターンマスク)4を設置し、コア部分形成用ネガ型感光性樹脂組成物の層7の中央部分のみに、超高圧水銀灯により mJ/cm2(波長365nm露光換算)の紫外線5を照射して硬化させ、未硬化部分を、現像液であるアセトン100質量部とイソプロパノール100質量部の混合溶液で溶解除去することで、図3(j)及び(j’)に示すようにコア部分8を形成した。尚、コア部分8は、両端のクラッド部分との境界に傾斜面を有しており、この境界面が光路変換ミラー面9となる。
【0062】
図3(k)及び(k’)に示すように、コア部分8上に、クラッド部分形成用ポジ型感光性樹脂として、上記組成物4を、乾燥後の層の厚さが60μmになるようスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱乾燥し層中の溶剤を完全に除去し、クラッド部分形成用ポジ型感光性樹脂組成物の層2を形成した。
【0063】
図4(l)及び(l’)に示すように、クラッド部分形成用ポジ型感光性樹脂組成物の層2上に、スリット幅 μm、スリット長 μmのフォトマスク(パターンマスク)4を設置し、光路変換ミラー面9の上部のクラッド部分形成用ポジ型感光性樹脂の層2に超高圧水銀灯により70mJ/cm2(波長365nm露光換算)の紫外線5を照射して現像液に対する溶解性を向上させた後、現像液である液温23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に、70秒浸漬することにより露光部分を除去して、図4(m)及び(m’)に示すように、光路変換ミラー面9の上部に光路となる空洞部分を形成した。残ったクラッド部分形成用ポジ型感光性樹脂の層2を、図4(n)及び(n’)に示すように、超高圧水銀灯により200mJ/cm2(波長365nm露光換算)の紫外線5を照射した後、大気雰囲気下150℃で60分間の加熱処理を行い硬化させることにより、コア部分8上にクラッド部分3(上部クラッド層)を形成した。
【0064】
図4(o)及び(o’)に示すように、上記空洞部分に、上記で得られたコア部分形成用ネガ型感光性樹脂組成物を、乾燥後に、上記空洞部分が完全に埋まるようにスピンコート法により塗布した後、溶剤を揮発させ、更に80℃で2分間加熱乾燥し層中の溶剤を完全に除去し、図3(h)及び(h’)に示すように、コア部分形成用ネガ型感光性樹脂組成物の層7を形成した。
図4(p)及び(p’)に示すように、コア部分形成用ネガ型感光性樹脂組成物の層7を、超高圧水銀灯により mJ/cm2(波長365nm露光換算)の紫外線5を照射して硬化させて、上記空洞部分にコア部分8を形成させて、光路変換機能を有する光導波路を完成した。
【0065】
得られた光導波路は、下部クラッド層の厚さ30μm、上部クラッド層の厚さ60μm、コア部の厚さ30μm、コア部の幅30μm、2つの光路変換面間の長さ10mm、導波路間間隔250μmの光変換部を有していた。
【0066】
〔挿入損失測定〕
本発明の製造方法により得られた光導波路の光の挿入損失測定を評価するために、図5(A)に示すように光を挿入した場合の光の挿入損失を測定した。挿入損失測定はJPCA規格の「高分子光導波路の試験方法(JPCA-4PE02-05-1S-2008)」の挿入損失の測定方法に準拠した。なお、駿河精機社製の調芯機を用い、測定用光源としては、0.85μmのLED光源(アンリツ社製、型式:Stabirized Light Sоurce MG−93B)を使用した。50GIマルチモードファイバーで試験片の一方の端面(入射端)から光を入射し、試験片の他方の端面(出射端)から出射した光を200PCFファイバーで受光し、ファイバーで受けた光を光検出器(アンリツ社製、型式MU931422A)で計測した。測定の際、入射端、出射端にそれぞれ屈折率整合剤を使用した。
本発明の製造方法により得られた10本の光導波路の挿入損失の平均は3.5dBであり、優れた光路変換機能を有することが確認できた。
【符号の説明】
【0067】
1 基板
2 クラッド部分形成用ポジ型感光性樹脂の層
3 クラッド部分
4 パターンマスク
5 紫外線
6 露光により現像液への溶解性が向上したクラッド部分形成用ポジ型感光性樹脂の層
7 コア部分形成用ネガ型感光性樹脂の層
8 コア部分
9 光路変換ミラー面(傾斜面)
10 光の進路

【特許請求の範囲】
【請求項1】
クラッド部分をポジ型感光性樹脂により形成する光導波路の製造方法において、該ポジ型感光性樹脂の現像工程における膜減りにより形成される傾斜面を光路変換ミラー面とすることを特徴とする、光路変換機能を有する光導波路の製造方法。
【請求項2】
上記ポジ型感光性樹脂として、ポリシロキサン系のポジ型感光性樹脂を用いる請求項1に記載の、光路変換機能を有する光導波路の製造方法。
【請求項3】
上記クラッド部分により取り囲まれたコア部分をネガ型感光性樹脂により形成する請求項1又は2に記載の、光路変換機能を有する光導波路の製造方法。
【請求項4】
クラッド部分がポジ型感光性樹脂により形成され、該ポジ型感光性樹脂の現像工程における膜減りにより形成される傾斜面を光路変換ミラー面とする、光路変換機能を有する光導波路。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate