説明

内燃機関の可変動弁装置

【課題】バルブリフト可変機構の大型化及び重量増加を抑制するとともに、組み付けの手間を低減することのできる内燃機関の可変動弁装置を提供する。
【解決手段】バルブリフト可変機構14の出力アーム18に形成された支持案内部32を立壁部45の孔31に挿入することで、バルブリフト可変機構14が支持案内部32によって立壁部45に支持される。また、この支持案内部32は内部を通過するコントロールシャフト16の軸方向変位を案内するものでもあり、同シャフト16の軸方向変位を通じてバルブリフト可変機構14の駆動が行われる。このようにバルブリフト可変機構14の支持、及び、コントロールシャフト16の軸方向変位の案内は支持案内部32によって実現されるため、その実現のためにコントロールシャフト16の外側にパイプ状のロッカシャフトを設ける必要がなくなる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関の可変動弁装置に関するものである。
【背景技術】
【0002】
従来より、内燃機関の可変動弁装置として、特許文献1に示されるように、機関バルブのバルブ特性を可変とするバルブリフト可変機構をシリンダヘッドに設けられた立壁部に支持し、それら立壁部及びバルブリフト可変機構を貫通するコントロールシャフトを軸方向に変位させることで同機構を駆動するものが知られている。
【0003】
上記特許文献1では、図12に示されるように、バルブリフト可変機構91を立壁部92に隣接させ、同立壁部92に形成された孔93及びバルブリフト可変機構91にパイプ状のロッカシャフト94を挿通し、そのロッカシャフト94によってバルブリフト可変機構91を立壁部92に支持している。また、ロッカシャフト94の内部にはコントロールシャフト95が配設され、バルブリフト可変機構91を駆動するためのコントロールシャフト95の軸方向への変位を、ロッカシャフト94の内周面によって案内するようにしている。
【特許文献1】特開2001−263015公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
上述したように、特許文献1の可変動弁装置では、バルブリフト可変機構91を立壁部92に支持したり、コントロールシャフト95の軸方向変位を案内したりするために、ロッカシャフト94が設けられている。
【0005】
ただし、こうしたロッカシャフト94はコントロールシャフト95の外側に配置されることとなる。このため、それらを組み合わせたシャフト全体が大径化することは避けられず、同シャフト全体が挿通されるバルブリフト可変機構91も自ずと上記シャフトの径方向(図中の上下方向)に大型化し、同機構14の重量増加に繋がる。
【0006】
また、ロッカシャフト94を設けることにより、可変動弁装置の部品点数が増加し、それに伴い同装置の組み付けにかかる手間が増えることも無視できない問題となる。
本発明はこのような実情に鑑みてなされたものであって、その目的は、バルブリフト可変機構の大型化及び重量増加を抑制するとともに、組み付けの手間を低減することのできる内燃機関の可変動弁装置を提供することにある。
【課題を解決するための手段】
【0007】
以下、上記目的を達成するための手段及びその作用効果について記載する。
上記目的を達成するため、請求項1記載の発明では、内燃機関の機関バルブのリフト特性を可変とするバルブリフト可変機構と、そのバルブリフト可変機構に隣接して同機構を支持する立壁部とを備え、前記立壁部に形成された孔を貫通するとともに前記バルブリフト可変機構を貫通するコントロールシャフトを軸方向に変位させることで、前記バルブリフト可変機構の駆動を行う内燃機関の可変動弁装置において、前記バルブリフト可変機構における前記立壁部側の端部には、同立壁部の孔に挿入されるとともに同孔に挿入された前記コントロールシャフトの軸方向変位を案内する支持案内部が形成されていることを要旨とした。
【0008】
上記構成によれば、支持案内部を立壁部の孔に挿入することで、バルブリフト可変機構が立壁部に支持されることとなる。更に、支持案内部は、立壁部の孔に挿入されたコントロールシャフトの軸方向変位を案内するものでもある。このようにバルブリフト可変機構の支持、及び、コントロールシャフトの案内は支持案内部によって実現され、その実現のためにコントロールシャフトの外側にパイプ状のロッカシャフトを配置する必要はなくなる。従って、ロッカシャフトを設けることに伴うバルブリフト可変機構のロッカシャフト(コントロールシャフト)の径方向への大型化、及び、同機構の重量増加を抑制することができ、且つ、ロッカシャフトを組み付けなくてもよい分だけ組み付け作業の手間を低減することができる。
【0009】
請求項2記載の発明では、請求項1記載の発明において、前記支持案内部における前記軸方向の長さは、同支持案内部によって前記バルブリフト可変機構を前記立壁部に支持するのに必要な値に設定され、前記支持案内部の内周面については、その一部が前記コントロールシャフトの外径と同径となるように、且つ、それ以外の部分がコントロールシャフトの外径よりも大径となるように形成されていることを要旨とした。
【0010】
支持案内部における上記軸方向長さについては、同支持案内部によってバルブリフト可変機構を立壁部に支持するのにある程度以上の長さが必要になる。一方、コントロールシャフトの軸方向変位の案内は支持案内部の内周面を同シャフトの外周面に接触させた状態で行われる。ここで、支持案内部の軸方向長さを上記のように設定すると、それに合わせて支持案内部の内周面も上記軸方向に長くなる。しかし、コントロールシャフトの案内を実現する上では、支持案内部の内周面の上記軸方向長さを上述したように長くする必要はなく、むしろ長くすることによって支持案内部の径方向についての肉厚が無駄に大きくなり、バルブリフト可変機構の重量増加を招くという弊害が生じる。この点、上記構成によれば、支持案内部の内周面の上記軸方向一部のみがコントロールシャフトの外径と同径に形成され、上記案内を実現するための同シャフトの外周面への接触が図られる。そして、支持案内部の内周面の他の部分については、コントロールシャフトの外径よりも大径となるように形成され、当該部分での支持案内部の径方向についての肉厚が小とされる。これにより、支持案内部の径方向についての肉厚が無駄に大きくなり、バルブリフト可変機構の重量増加を招くのを抑制することができる。
【0011】
請求項3記載の発明では、請求項1又は2記載の発明において、前記バルブリフト可変機構には、前記立壁部の孔よりも大径となる大径部が形成されていることを要旨とした。
上記構成によれば、バルブリフト可変機構が立壁部側に変位しようとしても、同機構の大径部が立壁部の壁面に引っかかるため、同機構が上記変位によって立壁部の孔に没入してしまうのを回避することができる。
【0012】
請求項4記載の発明では、請求項1又は2記載の発明において、前記立壁部の孔における前記支持案内部が挿入される部分には、それ以外の部分よりも大径となる拡径部が形成されていることを要旨とした。
【0013】
上記構成によれば、立壁部の孔における支持案内部が挿入される部分と、それ以外の部分との境界に段差が形成される。そして、バルブリフト可変機構が立壁部側に変位すると、支持案内部の先端が上記段差に突き当たるため、同機構が上記変位によって立壁部の孔に没入してしまうのを回避することができる。また、バルブリフト可変機構に請求項3に記載したような立壁部の孔よりも大径の大径部を形成する必要がないため、その大径部を形成することに伴うバルブリフト可変機構の大型化及び重量増加を抑制することもできる。
【0014】
請求項5記載の発明では、請求項1〜4のいずれか一項に記載の発明において、前記バルブリフト可変機構は、内燃機関の各気筒に対応して設けられるとともに、同じく各気筒に対応して設けられた前記立壁部に挟まれるものであって、前記立壁部の孔内には、同立壁部における前記軸方向の両側に位置する前記バルブリフト可変機構の支持案内部がそれぞれ前記孔の長さ方向両端に挿入された状態にあるとき、それら支持案内部の間に挟まれるシムが設けられ、前記シムは、前記コントロールシャフトと同一または近似の熱膨張率を有する材料によって形成されていることを要旨とした。
【0015】
上記構成によれば、コントロールシャフトと同一または近似の熱膨張率を有する材料によって形成されるシムが立壁部の孔内に配設され、このシムを上記軸方向長さの異なるものに適宜交換することで、バルブリフト量可変機構の上記軸方向の位置決めが行われるようになる。ところで、コントロールシャフトは熱膨張により軸方向に長くなるが、そのときには上記シムも当該シャフトと同一または近似の熱膨張率で軸方向に長くなるため、同シムによって上記軸方向について位置決めされるバルブリフト可変機構とコントロールシャフトとの間に位置関係のずれが生じることはほとんどない。従って、その位置関係のずれに起因して、バルブリフト可変機構の駆動による機関バルブのバルブ特性の変更を適切に行えなくなるのを抑制することができる。
【0016】
請求項6記載の発明では、請求項1〜5のいずれか一項に記載の発明において、前記立壁部の孔の内周面には当該立壁部よりも高強度の材料によって形成されるカラーが配設され、このカラーの内周面における前記軸方向の両端にそれぞれ前記支持案内部が挿入されることを要旨とした。
【0017】
立壁部の材質としては、内燃機関の軽量化を意図して強度よりも軽量であることを重視した材質を選択することが多い。このため、バルブリフト可変機構が駆動され、支持案内部の外周面が立壁部の孔の内周面に対して摺動すると、そのときの摩擦によって孔の内周面の摩耗が大となる傾向がある。しかし、上記構成によれば、孔の内周面には高強度の材料によって形成されるカラーが配設され、このカラーの内周面に支持案内部が挿入されるため、バルブリフト可変機構の駆動時には支持案内部の外周面が上記カラーの内周面に対して摺動するようになる。従って、支持案内部の外周面が孔の内周面に対し摺動することはなく、そのときの摩擦によって孔の内周面が摩耗するのを抑制することができる。
【0018】
請求項7記載の発明では、請求項6記載の発明において、前記カラーは、前記コントロールシャフトと同一または近似の熱膨張率を有する材料によって形成され、同カラーの内周面における前記軸方向両端に挿入された前記支持案内部の間に対応する部分が前記孔の中心側に突出して前記シムを兼ねるものとなっていることを要旨とした。
【0019】
上記構成によれば、立壁部の孔の内周面に配設されたカラーがシムを兼ねるものとなっているため、可変動弁装置の部品点数を少なく抑えることができる。
請求項8記載の発明では、請求項4、6、7のいずれか一項に記載の発明において、前記バルブリフト可変機構は、回転するカムに押されて前記コントロールシャフトの軸線を中心に揺動する入力アームと、前記入力アームの揺動に基づき前記軸線を中心に揺動して機関バルブをリフトさせる出力アームと、前記入力アーム及び前記出力アームに対し互いに歯すじの傾斜方向の異なるギヤを介して連結されるとともに前記コントロールシャフトによって軸方向に往復移動させられるスライダとを備え、前記アームに前記支持案内部が形成されていることを要旨とした。
【0020】
上記アームは揺動により機関バルブをリフトさせる。このため、入力アーム及び出力アームについては、できる限り軽量化して揺動時の慣性力を小とすることが好ましい。上記構成を請求項4に記載の発明に適用した場合、揺動するアームの軽量化が図られるため、上述したアーム揺動時の慣性力が小とされるようになる。
【0021】
また、上記アームの揺動時には支持案内部が立壁部の孔内で周方向に回動するため、同支持案内部の外周面が孔の内周面に接触していると、支持案内部の外周面が孔の内周面に対し周方向に摺動し、そのときの摩擦による孔の内周面の摩耗が問題となる。上記構成を請求項6又は7に記載の発明に適用した場合、アームの揺動に伴って支持案内部が回動するときの上記孔の内周面の摩耗が的確に抑制されるようになる。
【発明を実施するための最良の形態】
【0022】
以下、本発明を自動車用多気筒エンジンの可変動弁装置に具体化した一実施形態を図1〜図6に従って説明する。
図1は、エンジン1における所定気筒のシリンダヘッド2周りの構造を示す拡大断面図である。このエンジン1においては、シリンダヘッド2、シリンダブロック3、及びピストン5によって燃焼室6が区画され、この燃焼室6には吸気通路7及び排気通路8が各々二つに分岐した状態で接続されている(図1には一方のみ図示)。そして、吸気通路7と燃焼室6との間は吸気バルブ9の開閉動作によって連通・遮断され、排気通路8と燃焼室6との間は排気バルブ10の開閉動作によって連通・遮断されるようになる。なお、これら吸気バルブ9及び排気バルブ10はそれぞれ各気筒毎に二つずつ設けられている。
【0023】
シリンダヘッド2には、吸気バルブ9及び排気バルブ10を駆動するための吸気カムシャフト11及び排気カムシャフト12が設けられている。これら吸気カムシャフト11及び排気カムシャフト12は、エンジン1のクランクシャフトからの回転伝達によって回転するようになっている。また、吸気カムシャフト11及び排気カムシャフト12には、それぞれ吸気カム11a及び排気カム12aが設けられている。そして、これら吸気カム11a及び排気カム12aの吸気カムシャフト11及び排気カムシャフト12との一体回転を通じて、吸気バルブ9及び排気バルブ10が開閉動作するようになっている。
【0024】
また、エンジン1には、吸気バルブ9及び排気バルブ10といった機関バルブのバルブ特性を可変とするバルブリフト可変機構として、吸気バルブ9の最大リフト量及び吸気カム11aの作用角を可変とするバルブリフト可変機構14が吸気カム11aと吸気バルブ9との間に設けられている。このバルブリフト可変機構14の駆動を通じて、例えば吸入空気量を多く必要とするエンジン運転状態になるほど、最大リフト量及び作用角が大となるよう制御される。これは最大リフト量及び作用角を大とするほど、吸気通路7から燃焼室6への空気の吸入が効率よく行われ、上述した吸入空気量に関する要求を満たすことが可能なためである。
【0025】
次に、バルブリフト可変機構14の詳細な構造について説明する。
バルブリフト可変機構14は、回転する吸気カム11aにより押されて上記吸気カムシャフト11と平行に延びるコントロールシャフト16の軸線を中心に揺動する入力アーム17と、この入力アーム17の揺動に基づき上記コントロールシャフト16の軸線を中心に揺動する出力アーム18とを備えている。入力アーム17については、ローラ19が回転可能に取り付けられるとともに、そのローラ19が吸気カム11aに押しつけられるようコイルスプリング20によって吸気カム11a側に付勢されている。また、出力アーム18については、その揺動時にロッカアーム21に押しつけられ、同ロッカアーム21を介して吸気バルブ9をリフトさせるものである。
【0026】
このロッカアーム21の一端部はラッシュアジャスタ22によって支持され、同ロッカアーム21の他端部は吸気バルブ9に接触している。また、ロッカアーム21は吸気バルブ9のバルブスプリング24によって出力アーム18側に付勢され、これによりロッカアーム21の一端部と他端部との間に回転可能に支持されたローラ23が出力アーム18に押しつけられている。
【0027】
従って、吸気カム11aの回転に基づき入力アーム17及び出力アーム18が揺動すると、出力アーム18がロッカアーム21を介して吸気バルブ9をリフトさせ、吸気バルブ9の開閉動作が行われるようになる。そして、バルブリフト可変機構14では、入力アーム17と出力アーム18との揺動方向についての相対位置を変更することで、上記吸気バルブ9の最大リフト量、及び吸気カム11aの吸気バルブ9に対する作用角が可変とされる。即ち、入力アーム17と出力アーム18とを揺動方向について互いに接近させるほど、吸気バルブ9の最大リフト量及び吸気カム11aの作用角は小となってゆく。逆に、入力アーム17と出力アーム18とを揺動方向について互いに離間させるほど、吸気バルブ9の最大リフト量及び吸気カム11aの作用角は大となってゆく。
【0028】
ここで、バルブリフト可変機構14における入力アーム17と出力アーム18との揺動方向についての相対位置を変更する構造について、図2〜図4を併せ参照して詳しく説明する。
【0029】
図2は、バルブリフト可変機構14の内部構造、詳しくは入力アーム17及び出力アーム18の内側の構造を示す破断斜視図である。同図に示されるように、各アーム17,18のうち、入力アーム17は二つの出力アーム18によって挟まれた状態となっている。そして、入力アーム17は吸気カム11a(図1参照)に対応して位置し、二つの出力アーム18はそれぞれ二つの吸気バルブ9(図1参照)に対応して位置している。また、入力アーム17及び出力アーム18の内部には、コントロールシャフト16と連結されたスライダ26が位置している。このスライダ26の外壁において、長手方向中央部にはヘリカルスプライン27を有する入力ギヤ27aが設けられ、長手方向両端部にはヘリカルスプライン29を有する出力ギヤ29aが設けられている。
【0030】
一方、図3に示されるように、入力アーム17の内壁にはヘリカルスプライン28を有する円環状の内歯ギヤ28aが形成され、出力アーム18の内壁にはヘリカルスプライン30を有する円環状の内歯ギヤ30aが形成されている。そして、入力アーム17の内歯ギヤ28aはスライダ26の入力ギヤ27a(図2)と噛み合わされ、出力アーム18の内歯ギヤ30aはスライダ26の出力ギヤ29a(図2)と噛み合わされている。なお、ヘリカルスプライン27,28とヘリカルスプライン29,30とは、互いに傾斜角が異なっており、例えば互いに歯すじの傾斜方向が逆となっている。
【0031】
図4に示されるようにスライダ26は円筒状に形成されている。このスライダ26の内側にはコントロールシャフト16が挿入されている。そして、コントロールシャフト16は、ピン51によってスライダ26と連結されている。このピン51は、入力ギヤ27aの外周側からスライダ26内部に挿入され、コントロールシャフト16の外周面に嵌め込まれるとともにスライダ26の内周面に係合している。より具体的には、ピン51におけるコントロールシャフト16の外周面から突出する部分にブッシュ(図示せず)が取り付けられ、同ブッシュがスライダ26の内周面に周方向へと延びるように形成された溝(図示せず)に嵌め込まれる。これにより、コントロールシャフト16が軸方向に変位すると、上記ブッシュの外側面が溝の内側面に押しつけられ、スライダ26がコントロールシャフト16と一体移動するようになる。
【0032】
なお、入力アーム17及び出力アーム18が揺動するときには、それに伴いスライダ26もコントロールシャフト16に対し周方向に変位するが、こうした変位は上記ブッシュに対し上記溝が周方向に相対移動することによって許容される。
【0033】
コントロールシャフト16を軸線方向に変位させ、それによってスライダ26を軸線方向に変位させると、ヘリカルスプライン27,29とヘリカルスプライン28,30との噛み合いにより、入力アーム17と出力アーム18との揺動方向についての相対位置が変更される。具体的には、コントロールシャフト16を図2の矢印L方向に変位させるほど入力アーム17と出力アーム18との相対位置が互いに接近するように変更され、コントロールシャフト16を矢印H方向に変位させるほど入力アーム17と出力アーム18との相対位置が互いに離間するように変更される。こうした入力アーム17及び出力アーム18の相対位置の変更を通じて、吸気カム11aの回転により出力アーム18が揺動したときの吸気バルブ9の最大リフト量、及び吸気カム11aの作用角が可変とされる。
【0034】
次に、入力アーム17、出力アーム18、及び、スライダ26等を備えるバルブリフト可変機構14のシリンダヘッド2への取り付け構造について、図5及び図6を参照して説明する。
【0035】
図5は、シリンダヘッド2の上部に形成されたカムキャリア41を上方から見た平面図である。
このカムキャリア41には複数の立壁部45が各気筒に対応して互いに平行となるように設けられ、これら立壁部45の間には上記バルブリフト可変機構14が配設されている。そして、バルブリフト可変機構14は隣接する立壁部45に挟まれた状態で当該立壁部45に支持されるようになっている。また、バルブリフト可変機構14を駆動するための上記コントロールシャフト16は各バルブリフト可変機構14及び各立壁部45を貫通しており、同シャフト16の一端部(図中の左端部)はスライドアクチュエータ47に連結されている。このスライドアクチュエータ47の駆動を通じてコントロールシャフト16が軸方向に変位させられ、入力アーム17と出力アーム18との揺動方向についての相対位置が変更されるようバルブリフト可変機構14の駆動が行われる。
【0036】
図6は、バルブリフト可変機構14の立壁部45での支持構造を示す拡大図である。
同図から分かるように、各立壁部45にはコントロールシャフト16を挿通するための孔31が形成されている。
【0037】
また、上記立壁部45に挟まれたバルブリフト可変機構14においては、各アーム17,18のうちの入力アーム17が二つの出力アーム18によって挟まれた状態となっている。このため、バルブリフト可変機構14の立壁部45側の端部には出力アーム18が位置することとなる。そして、出力アーム18における立壁部45側の面には、バルブリフト可変機構14を立壁部45に支持するための支持案内部32が形成されている。この支持案内部32は上記孔の延びる方向に突出する円筒状をなしている。また、支持案内部32の外径は上記孔31の内径と同径とされ、支持案内部32の内径は上記コントロールシャフト16の外径と同径とされている。そして、立壁部45の孔31の長手方向両端部には、同立壁部45に隣接するバルブリフト可変機構14の出力アーム18に形成された支持案内部32がそれぞれ挿入される。このように支持案内部32を孔31に挿入することで、バルブリフト可変機構14が立壁部45に支持されることとなる。なお、支持案内部32の長手方向(上記軸方向)についての長さは、バルブリフト可変機構14を立壁部45に支持するのに必要な長さに設定されている。
【0038】
また、立壁部45における孔31の内部には、当該孔31の長手方向両端部にそれぞれ支持案内部32が挿入されたとき、それら支持案内部32によって挟まれる円筒状のシム33が設けられている。このシム33は、各バルブリフト可変機構14におけるコントロールシャフト16の軸線方向についての位置を規定するためのものである。そして、各バルブリフト可変機構14の位置決めは、各立壁部45に対応する上記シム33を孔31の延びる方向についての長さの異なるものに適宜交換することで実現される。なお、こうした各バルブリフト可変機構14の位置決めにより、出力アーム18と立壁部45との間には、同立壁部45の熱膨張を吸収するためのクリアランスCが設けられる。また、シム33の材質はコントロールシャフト16と同一の材質となっている。ちなみに、本実施形態のコントロールシャフト16は、強度の確保を重視して高強度の材料、例えば鉄系材料によって形成されている。このため、上記シム33もコントロールシャフト16を形成する材料と同じ材料である鉄系材料によって形成される。
【0039】
そして、立壁部45の孔31内に上記シム33を配設するとともに、その孔31の長手方向両端に支持案内部32をそれぞれ挿入した状態にあっては、バルブリフト可変機構14を貫通するコントロールシャフト16が上記孔31内のシム33及び支持案内部32の内部を通過することとなる。このコントロールシャフト16のバルブリフト可変機構14を駆動するための軸方向変位は、同機構14の立壁部45側の端部に形成された支持案内部32の内周面によって案内される。そして、バルブリフト可変機構14の駆動によって出力アーム18がコントロールシャフト16の軸線を中心に揺動するときには、当該支持案内部32が孔31に挿入された状態であり、且つ、支持案内部32の外周面が立壁部45の孔31の内周面に摺接した状態となる。このため、立壁部45の孔31に支持案内部32が挿入された状態でバルブリフト可変機構14が駆動されることになり、当該駆動時にも上記支持案内部32によってバルブリフト可変機構14が立壁部45に支持されることとなる。
【0040】
以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)出力アーム18に形成された支持案内部32を立壁部45の孔31に挿入することで、バルブリフト可変機構14が上記支持案内部32によって立壁部45に支持されるようになる。また、この支持案内部32は内部を通過するコントロールシャフト16の軸方向変位を案内するものでもある。このようにバルブリフト可変機構14の支持、及び、コントロールシャフト16の軸方向変位の案内は支持案内部32によって実現されるため、その実現のために[背景技術]の欄に記載したようなロッカシャフト(図12参照)を設ける必要はなくなる。仮に、こうしたロッカシャフトを採用した場合、バルブリフト可変機構14の大型化及び重量増加が生じるといった問題や、当該機構14の組み付けの手間が増えるといった問題が生じるのは、[発明が解決しようとする課題]の欄に記載したとおりである。しかし、上述した支持案内部32を形成してロッカシャフトを廃止すれば、コントロールシャフト16の外側にロッカシャフトを設けなくてもよい分、バルブリフト可変機構14を上記コントロールシャフト16の径方向について従来よりも小型化することができる。このことは、言い換えれば上記ロッカシャフトを用いることによるバルブリフト可変機構14の上記コントロールシャフト16の径方向についての大型化、及び、それに伴う重量増加を抑制できるということである。更に、上記ロッカシャフトをエンジン1に組み付けなくてもよいため、その分だけ組み付け作業の手間を低減することができるという効果も得られる。
【0041】
(2)バルブリフト可変機構14の入力アーム17及び出力アーム18は、コントロールシャフト16の軸線を中心とする揺動により吸気バルブ9をリフトさせるものである。このため、入力アーム17及び出力アーム18については、できる限り軽量化して揺動時の慣性力を小とすることが好ましい。この点、本実施形態では、上記(1)の効果から明らかなように、入力アーム17及び出力アーム18について、その大型化及び重量増加を抑制すること、言い換えればロッカシャフトを用いた場合に比べて軽量化を図ることが可能になる。従って、入力アーム17及び出力アーム18の揺動時の慣性力を小とすることができるようになる。
【0042】
(3)各バルブリフト可変機構14の上記軸方向についての位置決めは、立壁部45の孔31内に設けられたシム33を長手方向の長さの異なるものに適宜交換することによって実現される。このシム33はコントロールシャフト16と同一の材質となっているため、熱膨張によりコントロールシャフト16が軸方向に長くなったときには当該シム33も同シャフト16と同一の熱膨張率で上記軸方向に長くなる。従って、コントロールシャフト16及びシム33に熱膨張が生じたとき、同シム33によって軸方向についての位置決めが行われるバルブリフト可変機構14とコントロールシャフト16との間に上記軸方向についての位置関係のずれが生じることはない。
【0043】
ここで、バルブリフト可変機構14の上記軸方向についての位置決め方法として、従来はバルブリフト可変機構14(出力アーム18)と立壁部45との対向する壁面間にシムを設けるとともに、そのシムを厚さの異なるものに適宜交換するという方法が採用されていた。この場合、バルブリフト可変機構14が上記シムを介して立壁部45に突き当てられるため、立壁部45の熱膨張の影響を受けるようになる。この立壁部45はエンジン1に形成されており、同立壁部45を形成する材料としてはエンジン1と同じく強度よりも軽量であることを重視した材料、例えばアルミニウム合金といったコントロールシャフト16を形成する材料と異なる材料を用いることが多い。従って、コントロールシャフト16及び立壁部45に熱膨張が生じると、それらの熱膨張率の違いに起因してバルブリフト可変機構14とコントロールシャフト16との間に上記軸方向についての位置関係のずれが生じることは避けられない。そして、こうした位置関係のずれに起因して、バルブリフト可変機構14の駆動による吸気バルブ9の最大リフト量及び吸気カム11aの作用角の変更を適切に行えなくなる。
【0044】
しかし、本実施形態でのバルブリフト可変機構14の上記軸方向についての位置決めは、コントロールシャフト16と同一の材質からなる任意の長さのシム33を孔31内に配設することにより、同機構14を立壁部45に突き当てることなく実現されている。このようにバルブリフト可変機構14は立壁部45に突き当てられていないため、熱膨張によって上述したような位置関係のずれが生じることはなく、そのずれに起因してバルブリフト可変機構14の駆動による吸気バルブ9の最大リフト量及び吸気カム11aの作用角の変更を適切に行えなくなるのを抑制することができる。
【0045】
(4)バルブリフト可変機構14(出力アーム18)と立壁部45との間にはクリアランスCが設けられている。このため、仮に立壁部45の熱膨張率がコントロールシャフト16及びシム33の熱膨張率よりも大きいとしても、立壁部45の熱膨張は上記クリアランスCによって吸収され、同機構14が立壁部45に関係なくシム33によって上記軸方向について位置決めされた状態となる。従って、上記立壁部45の熱膨張がバルブリフト可変機構14の上記軸方向位置に影響を及ぼすことはなく、その熱膨張によってバルブリフト可変機構14とコントロールシャフト16との間の上記軸方向についての位置関係のずれが生じることもない。
【0046】
なお、上記実施形態は、例えば以下のように変更することもできる。
・図7(a)に示されるように、立壁部45の孔31の内周面に当該立壁部45よりも高強度の材料、例えば鉄系材料からなる円筒状のカラー34を配設し、このカラー34の内周面における上記軸方向中央部にシム33を配置するとともに、カラー34の内周面における上記軸方向両端部にそれぞれ支持案内部32を挿入してもよい。ここで、立壁部45は強度よりも軽量であることを重視した材質を選択することが多く、バルブリフト可変機構14の駆動時に出力アーム18の揺動により支持案内部32が回動し、その外周面が孔31の内周面に対し摺動すると、そのときの摩擦によって孔31の摩耗が大となる傾向がある。しかし、上記のようにカラー34を配設することで、バルブリフト可変機構14の駆動時には、支持案内部32の外周面が立壁部45よりも高強度の材料からなるカラー34の内周面に対して摺動するようになる。従って、支持案内部32の外周面が孔31の内周面に対し摺動することはなく、そのときの摩擦によって孔31の内周面が摩耗するのを抑制することができる。なお、上記カラー34としては、図7(b)に示されるように、二つに分割可能なものを採用することが、孔31内への配設を容易に行う上で好ましい。
【0047】
・上記カラー34を設ける場合、同カラー34は立壁部45よりも高強度の材質であればよく、必ずしもコントロールシャフト16と同一の材質である必要はない。
・図8に示されるように、カラー34をシム33と同一の材料によって形成するとともに、上記カラー34の内周面における上記軸方向両端に挿入された支持案内部32間に対応する部分を孔31の中心に向けて突出させ、この部分でシム33を兼ねるようにしてもよい。なお、こうした構成では、カラー34を上記部分の上記軸方向長さの異なるものに適宜交換することで、バルブリフト可変機構14の上記軸方向についての位置決めがなされる。この場合、カラー34がシム33を兼ねるため、可変動弁装置の部品点数を少なく抑えることができる。
【0048】
・図9に示されるように、支持案内部32の外径を出力アーム18(バルブリフト可変機構14)の外径と同じにしてもよい。この場合、立壁部45の孔31の径が大きくなり、小さい孔31を形成する場合に比べて孔31の形成を容易に行うことができる。ただし、こうした構成では、孔31の内径がバルブリフト可変機構14(出力アーム18等)の外形とほぼ同じになり、同機構14が孔31に没入してしまうおそれがある。このことを回避するため、立壁部45に近いアーム(この場合は出力アーム18)に孔31よりも大径となる大径部35が形成される。これにより、バルブリフト可変機構14が立壁部45が変位しようとしても、大径部35が立壁部45の壁面に引っ掛かり、同機構14が上記変位によって孔31に没入してしまうのを回避することができる。また、この構成では、大径部35と立壁部45の壁面との間に、バルブリフト可変機構14の上記軸方向についての位置決めを行うためのシム36が配設される。そして、このシム36を厚さの異なるものに適宜交換することで、バルブリフト可変機構14の上記軸方向についての位置決めが実現される。
【0049】
・図9に示される支持案内部32においては、その上記軸方向長さがバルブリフト可変機構14を立壁部45に支持することの可能な値まで長くされ、それに合わせて支持案内部32の内周面の上記軸方向長さも長くなる。支持案内部32の内周面はコントロールシャフト16の軸方向変位を案内するものであり、それを実現するのに当該内周面の上記軸方向長さをある程度確保する必要はある。しかし、支持案内部32を上記のように長くした場合、支持案内部32の内周面の上記軸線方向長さは、上記コントロールシャフト16の案内を実現する上で必要以上に長い値になる。そして、このように支持案内部32の内周面を上記軸方向に長くすることによって、支持案内部32の径方向についての肉厚が無駄に大きくなり、バルブリフト可変機構14(出力アーム18)の重量増加を招くという弊害が生じる。
【0050】
こうしたことに対処するため、図10に示されるように、支持案内部32の内周面を形成してもよい。すなわち、この場合の支持案内部32の内周面については、その一部(この場合は入力アーム17側)のみがコントロールシャフト16の外径と同径に形成され、それ以外の部分(支持案内部32の先端側)はコントロールシャフト16の外径よりも大径となるように形成される。この構成によれば、支持案内部32の内周面の一部によってコントロールシャフト16の上記軸方向変位の案内を図りつつ、当該内周面における同シャフト16の外径よりも大径となる部分では支持案内部32の径方向についての肉厚を小とすることができる。これにより、支持案内部32の径方向についての肉厚が無駄に大きくなり、バルブリフト可変機構14の重量増加を招くのを抑制することができる。
【0051】
なお、支持案内部32の内周面について、コントロールシャフト16の外径と同径になる部分と、その外径よりも大径になる部分との位置関係を、図10に示される関係と逆にすることも可能である。この場合も上記と同等の効果が得られるようになる。
【0052】
・図9及び図10に示される立壁部45の孔31の内周面に、当該立壁部45よりも高強度の材料からなる円筒状のカラーを配設し、そのカラーにおける上記軸方向両端に支持案内部32を挿入するようにしてもよい。この場合、出力アーム18の揺動時、支持案内部32の摺動によって孔31の内周面が摩耗するのを、上記カラーによって抑制することができる。
【0053】
・図9及び図10に示される例では、バルブリフト可変機構14が孔31に没入しないよう大径部35を設けたが、この大径部35を省略することを意図して孔31の内周面を図11に示されるような形状に形成することもできる。すなわち、孔31の内周面において、上記軸方向中央部を孔31の中心に向けて突出させ、孔31の上記軸方向両端部であって支持案内部32が挿入される部分を他の部分(中央部)よりも大径となる拡径部37とする。この場合、孔31における支持案内部32が挿入される部分とそれ以外の部分との境界に段差38が形成される。このため、バルブリフト可変機構14が立壁部45側に変位しようとすると、支持案内部32の先端が上記段差38に突き当たるため、同機構14が上記変位によって孔31に没入してしまうのを抑制することができる。以上により、バルブリフト可変機構14に図9及び図10に示されるような大径部35を形成する必要がなくなり、その大径部35を形成することに伴うバルブリフト可変機構14の大型化及び重量増加を抑制することができるようになる。また、この構成では、支持案内部32の先端と上記段差38との間に、バルブリフト可変機構14の上記軸方向についての位置決めを行うためのシム39が配設される。そして、このシム39を厚さの異なるものに適宜交換することで、バルブリフト可変機構14の上記軸方向についての位置決めが実現される。
【0054】
・図11に示される孔31の拡径部37に、立壁部45よりも高強度の材料からなる円筒状のカラーを配設し、そのカラーの内周面に支持案内部32を挿入するようにしてもよい。この場合、出力アーム18の揺動時に支持案内部32の摺動によって孔31の内周面が摩耗するのを、上記カラーによって抑制することができる。また、このカラーにおける段差38側の端部を孔31の中心側に突出させ、この部分で上記シム39を兼ねるようにしてもよい。なお、こうした構成では、カラーを上記部分の上記軸方向長さの異なるものに適宜交換することで、バルブリフト可変機構14の上記軸方向についての位置決めがなされる。この場合、上記カラーがシム39を兼ねるため、可変動弁装置の部品点数を少なく抑えることができる。
【0055】
・上記各実施形態では、立壁部45に出力アーム18が隣接するバルブリフト可変機構14に本発明を適用したが、出力アーム18と入力アーム17との位置関係を逆にしたバルブリフト可変機構、すなわち入力アーム17が立壁部45に隣接するバルブリフト可変機構に本発明を適用してもよい。この場合、入力アーム17に上述した支持案内部32や大径部35が形成されることとなる。
【0056】
・排気バルブ10の最大リフト量、及び、排気カム12aの排気バルブ10に対する作用角といった排気バルブ10のバルブ特性を可変とするバルブリフト可変機構を備えた可変動弁装置に本発明を適用してもよい。
【図面の簡単な説明】
【0057】
【図1】本実施形態の可変動弁装置が適用されるエンジンのシリンダヘッド周りの構造を示す拡大断面図。
【図2】バルブリフト可変機構の内部構造を示す破断斜視図。
【図3】入力アーム及び出力アームの内部構造を示す破断斜視図。
【図4】バルブリフト可変機構の内部構造を示す分解斜視図。
【図5】シリンダヘッドのカムキャリアを示す平面図。
【図6】バルブリフト可変機構の立壁部での支持構造を示す拡大図。
【図7】(a)は立壁部の内部構造の他の例を示す断面図であり、(b)はカラーの径方向断面図である。
【図8】立壁部の内部構造の他の例を示す断面図。
【図9】支持案内部及び立壁部の内部構造の他の例を示す断面図。
【図10】支持案内部及び立壁部の内部構造の他の例を示す断面図。
【図11】支持案内部及び立壁部の内部構造の他の例を示す断面図。
【図12】バルブリフト可変機構の立壁部での支持構造の従来例を示す略図。
【符号の説明】
【0058】
1…エンジン、2…シリンダヘッド、3…シリンダブロック、5…ピストン、6…燃焼室、7…吸気通路、8…排気通路、9…吸気バルブ、10…排気バルブ、11…吸気カムシャフト、11a…吸気カム、12…排気カムシャフト、12a…排気カム、14…バルブリフト可変機構、16…コントロールシャフト、17…入力アーム、18…出力アーム、19…ローラ、20…コイルスプリング、21…ロッカアーム、22…ラッシュアジャスタ、23…ローラ、24…バルブスプリング、26…スライダ、27…ヘリカルスプライン、27a…入力ギヤ、28…ヘリカルスプライン、28a…内歯ギヤ、29…ヘリカルスプライン、29a…出力ギヤ、30…ヘリカルスプライン、30a…内歯ギヤ、31…孔、32…支持案内部、33…シム、34…カラー、35…大径部、36…シム、37…拡径部、38…段差、39…シム、41…カムキャリア、45…立壁部、47…スライドアクチュエータ、51…ピン。

【特許請求の範囲】
【請求項1】
内燃機関の機関バルブのリフト特性を可変とするバルブリフト可変機構と、そのバルブリフト可変機構に隣接して同機構を支持する立壁部とを備え、前記立壁部に形成された孔を貫通するとともに前記バルブリフト可変機構を貫通するコントロールシャフトを軸方向に変位させることで、前記バルブリフト可変機構の駆動を行う内燃機関の可変動弁装置において、
前記バルブリフト可変機構における前記立壁部側の端部には、同立壁部の孔に挿入されるとともに同孔に挿入された前記コントロールシャフトの軸方向変位を案内する支持案内部が形成されている
ことを特徴とする内燃機関の可変動弁装置。
【請求項2】
前記支持案内部における前記軸方向の長さは、同支持案内部によって前記バルブリフト可変機構を前記立壁部に支持するのに必要な値に設定され、
前記支持案内部の内周面については、その一部が前記コントロールシャフトの外径と同径となるように、且つ、それ以外の部分がコントロールシャフトの外径よりも大径となるように形成されている
請求項1記載の内燃機関の可変動弁装置。
【請求項3】
前記バルブリフト可変機構には、前記立壁部の孔よりも大径となる大径部が形成されている
請求項1又は2記載の内燃機関の可変動弁装置。
【請求項4】
前記立壁部の孔における前記支持案内部が挿入される部分には、それ以外の部分よりも大径となる拡径部が形成されている
請求項1又は2記載の内燃機関の可変動弁装置。
【請求項5】
前記バルブリフト可変機構は、内燃機関の各気筒に対応して設けられるとともに、同じく各気筒に対応して設けられた前記立壁部に挟まれるものであって、
前記立壁部の孔内には、同立壁部における前記軸方向の両側に位置する前記バルブリフト可変機構の支持案内部がそれぞれ前記孔の長さ方向両端に挿入された状態にあるとき、それら支持案内部の間に挟まれるシムが設けられ、
前記シムは、前記コントロールシャフトと同一または近似の熱膨張率を有する材料によって形成されている
請求項1〜4のいずれか一項に記載の内燃機関の可変動弁装置。
【請求項6】
請求項1〜5のいずれか一項に記載の内燃機関の可変動弁装置において、
前記立壁部の孔の内周面には当該立壁部よりも高強度の材料によって形成されるカラーが配設され、このカラーの内周面における前記軸方向の両端にそれぞれ前記支持案内部が挿入される
ことを特徴とする内燃機関の可変動弁装置。
【請求項7】
前記カラーは、前記コントロールシャフトと同一または近似の熱膨張率を有する材料によって形成され、同カラーの内周面における前記軸方向両端に挿入された前記支持案内部の間に対応する部分が前記孔の中心側に突出して前記シムを兼ねるものとなっている
請求項6記載の内燃機関の可変動弁装置。
【請求項8】
前記バルブリフト可変機構は、回転するカムに押されて前記コントロールシャフトの軸線を中心に揺動する入力アームと、前記入力アームの揺動に基づき前記軸線を中心に揺動して機関バルブをリフトさせる出力アームと、前記入力アーム及び前記出力アームに対し互いに歯すじの傾斜方向の異なるギヤを介して連結されるとともに前記コントロールシャフトによって軸方向に往復移動させられるスライダとを備え、前記アームに前記支持案内部が形成されている
請求項4、6、7のいずれか一項に記載の内燃機関の可変動弁装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2006−322368(P2006−322368A)
【公開日】平成18年11月30日(2006.11.30)
【国際特許分類】
【出願番号】特願2005−145619(P2005−145619)
【出願日】平成17年5月18日(2005.5.18)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【出願人】(000185488)株式会社オティックス (305)
【Fターム(参考)】