説明

再生水素化精製触媒及び炭化水素油の製造方法

【課題】 安定期において高い水素化異性化活性と抑制された分解活性を有し、低温流動性に優れた中間留分を高い収率で得ることができる再生水素化精製触媒、及び該再生水素化精製触媒を用いる炭化水素油の製造方法を提供すること。
【解決手段】 本発明の再生水素化精製触媒は、固体酸性を有する非晶性複合金属酸化物を含む担体と、前記担体に担持された周期表第8族〜第10族の貴金属から選択される少なくとも一種の活性金属と、を含む使用済みの水素化精製触媒を再生してなり、触媒の全質量を基準とし、炭素原子換算で0.05〜1質量%の炭素質物質を含有する再生水素化精製触媒である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、再生水素化精製触媒及びその再生水素化精製触媒を用いる炭化水素油の製造方法に関する。
【背景技術】
【0002】
近年、環境に対する意識の高まりから、硫黄分及び芳香族炭化水素等の環境負荷物質の含有量が低い液体燃料が求められている。このような観点から、硫黄分及び芳香族炭化水素を実質的に含まず、脂肪族炭化水素に富む燃料油基材、特に灯油・軽油基材を製造できる技術として、天然ガス等の炭化水素原料から改質反応により合成ガス(一酸化炭素ガスと水素ガスとを主成分とする混合ガス)を製造し、この合成ガスからフィッシャー・トロプシュ合成反応(以下、「FT合成反応」ということもある。)により炭化水素を合成し、更にこの炭化水素を水素化処理及び分留により精製することにより燃料油基材を得る技術が注目されている(例えば特許文献1を参照。)。この技術はGTL(Gas To Liquids)プロセスと呼ばれる。
【0003】
合成ガスからFT合成反応によって得られる合成油(以下、「FT合成油」ということもある。)は、幅広い炭素数分布を有する脂肪族炭化水素類を主成分とする混合物である。このFT合成油を沸点に応じて分留することにより、ナフサ留分、中間留分及びワックス留分を得ることができる。そして、これら各留分のうち中間留分は、灯油・軽油基材に相当する最も有用な留分であり、これを高い収率で得ることが望まれる。
【0004】
一方、FT合成反応においては、主生成物である飽和脂肪族炭化水素の他に、副生成物として、オレフィン類並びに一酸化炭素由来の酸素原子を含むアルコール類等の含酸素化合物が生成し、これらの副生成物(不純物)は、FT合成油を分留して得られるナフサ留分や中間留分に多く含まれる。そして、これらの不純物を含む炭化水素を燃料として使用した場合、エンジンの構成材料が損傷を受けるおそれがあるため、これらの不純物を除去する必要がある。この不純物の除去は、GTLプロセスにおいてFT合成油を精製するアップグレーディング工程において、不純物を含むナフサ留分、中間留分等の炭化水素油を水素化精製することにより行なうことができる。
【0005】
また、FT合成反応によって生成する炭化水素は基本的に直鎖状脂肪族炭化水素であり、直鎖状脂肪族炭化水素は結晶性が高いことから、これを多く含む燃料油は低温において流動性を失う。そのため、灯油・軽油基材となる中間留分においては、水素化異性化により、直鎖状脂肪族炭化水素を分枝鎖状炭化水素に転化し、低温流動性の改良を行なうことが必要となる。この水素化異性化は、前記の水素化精製と同時に行なわれることが一般的である。
【0006】
中間留分の水素化異性化を伴う水素化精製を行なう水素化精製工程には、ゼオライト及び/又は非晶性複合金属酸化物等の固体酸性を有する担体に、周期表第8族〜第10族の貴金属から選択される水素化能を有する活性金属が担持された水素化精製触媒が用いられる(例えば特許文献2、3を参照。)。
【0007】
一般的に、水素化精製触媒を反応装置に充填して水素化精製の運転を開始すると、運転時間の経過と共に触媒の活性が低下する。そして、触媒の活性が所定の水準まで低下すると、水素化精製工程の運転を停止し、触媒を交換することとなる。そして、反応装置から抜き出された使用済みの水素化精製触媒(以下、「使用済み水素化精製触媒」あるいは単に「使用済み触媒」ということもある。)については、これを再生して再利用することにより、高価な触媒に要するコストを低減することができ、また使用済み触媒を廃棄物として処分することも避けられる。
【0008】
なお、従来の水素化精製触媒の再生においては、使用済み触媒を焼成することにより、水素化精製工程において触媒上で生成して沈着し、触媒活性低下の大きな要因と考えられる炭素質物質を実質的に全て除去していた。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2004−323626号公報
【特許文献2】特開2008−169355号公報
【特許文献3】特開2007−269901号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
一方で、使用済み触媒を再生して得られる水素化精製触媒(以下、「再生水素化精製触媒」あるいは単に「再生触媒」ということもある。)の活性は、新規(未使用)の触媒と同等までには回復せず、再生触媒を使用した場合に得られる中間留分の収率も新規の触媒に比較して低下する傾向にあった。コスト面で有利であり、廃棄物の排出を抑制できる再生触媒を有効に活用するためには、低温流動性に優れた中間留分、中でも軽油留分を従来の再生触媒よりも高い収率で得ることができる再生触媒が提供されることが求められていた。特に、触媒を交換して水素化精製の運転を開始してから運転時間が500時間程度経過し、運転初期の大きな活性の低下が終息した後に緩やかな活性低下が継続する所謂「安定期」において、高い中間留分収率、中でも軽油留分収率を与える再生水素化精製触媒が求められていた
【0011】
一般に水素化精製触媒は、前述の水素化精製及び水素化異性化に対する活性の他に、不可避的に分解反応(水素化分解反応)、すなわち炭化水素の炭素−炭素結合を開裂して分子量を低下させる反応に対する活性も有する。そのため中間留分の水素化精製においては、中間留分の沸点範囲の下限よりも低い沸点を有する軽質留分が一部生成する。この軽質留分の生成は、中間留分、特に軽油留分の収率の低下に繋がるため抑制することが好ましいが、その一方で水素化異性化の進行を高い水準に維持し、求められる生成油の低温流動性を確保することも求められる。このためには、水素化精製触媒に対して、水素化異性化活性を極力維持して、分解活性を抑制することが要求される。
【0012】
しかし、再生水素化精製触媒において、水素化異性化活性を極力維持しながら、分解活性を抑制する方法については未だ十分な検討がなされていなかった。
【0013】
本発明は、上記事情に鑑みてなされたものであり、安定期において、高い水素化異性化活性と抑制された分解活性を有し、低温流動性に優れた中間留分、特に軽油留分を高い収率で得ることができる再生水素化精製触媒、及び該再生水素化精製触媒を用いる炭化水素油の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0014】
上記課題を解決するために本発明者らは鋭意検討を行った結果、炭素質物質を特定の量含有する特定の再生水素化精製触媒が、安定期において、直鎖状脂肪族炭化水素に対する水素化異性化活性は十分有しつつ分解活性は抑制されており、低温流動性に優れた中間留分、中でも軽油留分の収率を高めることができることを見出し、この知見に基づいて本発明を完成するに至った。
【0015】
すなわち本発明は、固体酸性を有する非晶性複合金属酸化物を含む担体と、前記担体に担持された周期表第8族〜第10族の貴金属から選択される少なくとも一種の活性金属と、を含む使用済み水素化精製触媒を再生してなり、触媒の全質量を基準とし、炭素原子換算で0.05〜1質量%の炭素質物質を含有する再生水素化精製触媒を提供する。
【0016】
上記構成を有する本発明の再生水素化精製触媒によれば、安定期において、直鎖状脂肪族炭化水素に富む中間留分が含まれる原料油を水素化精製して、分枝鎖状脂肪族炭化水素に富み、低温流動性に優れる中間留分を高い収率で得ることができる。
【0017】
本発明の再生水素化精製触媒においては、非晶性複合金属酸化物がシリカジルコニア、シリカアルミナ及びアルミナボリアから選択される少なくとも一種であることが好ましい。この再生水素化精製触媒を直鎖状脂肪族炭化水素に富む中間留分を含む原料油の水素化精製に用いた場合、分枝鎖状脂肪族炭化水素に富み、低温流動性に優れる中間留分を一層高い収率で得ることができる。
【0018】
また、本発明の再生水素化精製触媒においては、貴金属が白金であることが好ましい。この再生水素化精製触媒を用いた場合、分枝鎖状脂肪族炭化水素に富み、低温流動性に一層優れる中間留分を得ることができる。
【0019】
本発明はまた、分子状水素の共存下、沸点が25〜360℃の範囲にある直鎖状脂肪族炭化水素を80質量%以上含み且つ沸点が150〜360℃の範囲にある直鎖状脂肪族炭化水素を20質量%以上含む原料油を、上記本発明の再生水素化精製触媒に接触させる炭化水素油の製造方法を提供する。
【0020】
本発明の炭化水素油の製造方法によれば、本発明の再生水素化精製触媒を用いることにより、上記原料油から、分枝鎖状脂肪族炭化水素に富み、低温流動性に優れる中間留分を高い収率で得ることができる。
【0021】
本発明の炭化水素油の製造方法においては、上記原料油がフィッシャー・トロプシュ合成反応により得られる合成油であることが好ましい。原料油としてフィッシャー・トロプシュ合成反応により得られる合成油を用いることにより、硫黄分及び芳香族炭化水素を含まず、分枝鎖状脂肪族炭化水素に富み、低温流動性に優れる中間留分を高い収率で得ることができる。
【発明の効果】
【0022】
本発明によれば、高い水素化異性化活性と抑制された分解活性を有し、低温流動性に優れた中間留分を高い収率で得ることができる再生水素化精製触媒、及び該再生水素化精製触媒を用いる炭化水素油の製造方法を提供することできる。これにより、安価な再生触媒を用いて、低温流動性に優れる中間留分を高い収率で得ることができる。
【図面の簡単な説明】
【0023】
【図1】本発明の炭化水素油の製造方法の一実施形態が実施される炭化水素油の製造装置を示す概略構成図である。
【発明を実施するための形態】
【0024】
初めに、本発明の再生水素化精製触媒の好ましい実施形態について説明する。
【0025】
本実施形態の再生水素化精製触媒は、固体酸性を有する非晶性複合金属酸化物を含む担体と、前記担体に担持された周期表第8族〜第10族の貴金属から選択される少なくとも一種の活性金属と、を含む使用済みの水素化精製触媒を再生してなり、触媒の全質量を基準とし、炭素原子換算で0.05〜1質量%の炭素質物質を含有することを特徴とする。
【0026】
本実施形態の再生水素化精製触媒は、使用済み水素化精製触媒を再生して製造される。使用済み水素化精製触媒及びその再生処理については後に詳述する。
【0027】
本実施形態の再生水素化精製触媒を構成する担体に含まれる固体酸性を有する非晶性複合金属酸化物としては、例えば、アルミナ、シリカ、チタニア、ジルコニア、ボリア、マグネシア等の金属酸化物単位から選択される2種又は3種以上の組み合わせからなる複合金属酸化物が挙げられる。
【0028】
固体酸性を有する非晶性複合金属酸化物の具体的な例としては、シリカアルミナ、シリカジルコニア、アルミナボリア、アルミナジルコニア、シリカチタニア、シリカマグネシア等が挙げられる。これらの中でも、シリカアルミナ、シリカジルコニア、アルミナボリアが好ましく、シリカジルコニアがより好ましい。
【0029】
前記担体は、少量のゼオライトを含んでもよい。この場合に好ましいゼオライトとしては、超安定Y(USY)型ゼオライト、Y型ゼオライト、モルデナイト及びベータゼオライトなどが挙げられる。この場合の、ゼオライトの含有量は特に限定されないが、担体の全質量を基準として0.5〜10質量%が好ましく、1〜5質量%がより好ましい。
【0030】
前記担体は、担体の成型性及び機械的強度の向上を目的として、バインダが配合されていてもよい。好ましいバインダとしては、アルミナ、シリカ、マグネシア等が挙げられる。担体にバインダを配合する場合のその配合量は特に限定されないが、担体の全質量を基準として20〜98質量%、好ましくは30〜96質量%である。
【0031】
前記担体は、成型されたものが好ましい。成型された担体の形状は特に限定されないが、球状、円筒状、三つ葉型・四つ葉型の断面を有する異形円筒状、ディスク状等が挙げられる。担体の成型方法は限定されず、押出成型、打錠成型等の公知の方法が用いられる。成型された担体は通常焼成される。
【0032】
本実施形態の再生水素化精製触媒において担体に担持される活性金属としては、周期表第8族〜第10族の貴金属から選択される少なくとも一種である。活性金属の具体的な例としては、第8族の貴金属としてはルテニウム及びオスミウム、第9族の貴金属としてはロジウム及びイリジウム、第10族の貴金属としてはパラジウム及び白金である。これらの中でも、白金、パラジウムが好ましく、白金がより好ましい。また、白金−パラジウムの組み合わせも好ましく用いられる。なお、ここで周期表とは、IUPAC(International Union of Pure and Applied Chemistry(国際純正・応用化学連合))の規定に基づく長周期型の元素の周期表をいう。
【0033】
本実施形態の再生水素化精製触媒において担体に担持される活性金属の含有量としては、担体の質量を基準として、金属原子換算で0.1〜3質量%であることが好ましい。活性金属の含有量が前記下限値未満の場合には、水素化精製及び水素化異性化が充分に進行しない傾向にある。一方、活性金属の含有量が前記上限値を超える場合には、活性金属の分散が低下して触媒の活性が低下する傾向があり、また触媒コストが上昇する。
【0034】
本実施形態の再生水素化精製触媒は、触媒の全質量を基準とし、炭素原子換算で0.05〜1質量%の炭素質物質を含有する。この炭素質物質は、炭素原子あるいは炭素原子と少量の水素原子及び/又は酸素原子等から構成され、明確に構造が特定されない炭素状の物質を包含する。具体的には、後に再生水素化精製触媒の製造方法に関する説明において詳述するが、中間留分を含む炭化水素原料を水素化精製する際に、水素化精製触媒上に生成、沈着する炭素質物質を焼成して得られる炭素質物質、あるいは一旦再生された水素化精製触媒に有機化合物を付着させ、これを炭化することにより得られる炭素質物質等である。
【0035】
炭素質物質の再生水素化精製触媒中の含有量が炭素原子換算で0.05質量%未満である場合には、特に安定期において、再生水素化精製触媒の分解反応に対する活性(分解活性)を十分に抑制することができず、生成油における中間留分収率、特に軽油留分収率を向上することが困難となる傾向にある。一方、炭素質物質の含有量が1質量%を超える場合には、安定期における再生水素化精製触媒の水素化異性化に対する活性(異性化活性)の低下が顕著になり、生成する中間留分、特に軽油留分の低温流動性を維持するためには水素化精製の反応温度を高くする必要があり、触媒の寿命が短縮される傾向にある。
【0036】
なお、再生水素化精製触媒中の炭素質物質の定量方法としては、当該触媒の試料を酸素気流中、高周波により加熱して炭素質物質を燃焼させ、燃焼ガス中の二酸化炭素を、赤外線吸収を利用した検出器により定量する方法(例えば堀場製作所社製炭素・硫黄分析装置EMIA−920Vによる。)を採用する。
【0037】
次に、本実施形態の再生水素化精製触媒を製造する方法について、2つの態様を例として以下に説明する。
【0038】
まず、本実施形態の再生水素化精製触媒を製造する方法の第1実施形態について説明する。第1実施形態の方法は、使用済み水素化精製触媒に再生処理を施す際に実施する焼成工程において、使用済み水素化精製触媒中に、所定量の炭素質物質を残留させる方法である。
【0039】
はじめに、本実施形態の水素化精製触媒のベースとなる新規(未使用)の水素化精製触媒の製造方法について説明する。なお、新規の水素化精製触媒が含有する担体及び活性金属の構成は、上述の本実施形態の再生水素化精製触媒と同一である。
【0040】
まず、上述の固体酸性を有する非晶性複合金属酸化物又はそのゲルと、上述のバインダと、必要に応じて水等の液体からなる混合物を混練し、粘土状の捏和物を調製する。
【0041】
次に、上記捏和物を押出成型することにより成型物を得て、更に該成型物を例えば70〜150℃にて乾燥する。
【0042】
次に、乾燥された成型物を焼成することにより担体を得る。このとき、焼成条件としては、焼成により得られる担体の機械的強度が十分に発現するように選択する。担体の焼成条件としては、種々の焼成温度と焼成時間との組み合わせを設定することができるが、例えば、焼成温度としては300〜550℃の範囲が好ましく、350〜500℃の範囲がより好ましい。また、焼成時間としては0.1〜10時間程度の範囲が好ましく、0.2〜8時間程度の範囲がより好ましい。
【0043】
次に、上述のようにして得られた担体に、上述の活性金属元素を含む化合物を担持する。担持に使用されるこれらの貴金属元素を含む化合物としては、当該貴金属元素を含むものであれば特に限定されず、公知の化合物が使用されるが、溶媒、特に水に可溶な無機又は有機化合物が利用される。活性金属元素を含む化合物の具体的な例としては、貴金属がルテニウムである場合にはRuClなど、貴金属がオスミウムである場合にはOsCl・3HO、(NH[OsCl]など、貴金属がロジウムである場合にはRhCl・3HOなど、貴金属がイリジウムである場合にはHIrCl・6HOHなど、貴金属がパラジウムである場合には(NHPdCl、Pd(NHCl・HOおよびPd(CCOなど、貴金属が白金である場合にはPtCl、HPtCl、(NHPtCl、HPt(OH)、Pt(NHCl・HOおよびPt(Cなどが挙げられる。
【0044】
これらの活性金属元素を含む化合物の担持は、公知の方法により行なうことができる。すなわち、前記化合物の溶液、好ましくは水溶液により前記成形された担体を含浸する方法、イオン交換する方法などが好ましく利用される。含浸法としては特に限定されず、Incipient Wetness法などが好ましく利用される。
【0045】
次に、前記方法により活性金属元素を含む化合物が担持された担体を乾燥する。乾燥は例えば70〜150℃程度の温度で行なうことができる。
【0046】
このようにして得られた活性金属元素を含む化合物が担持された担体(以下、「触媒前駆体」ということもある。)を焼成して、水素化精製触媒を得る。前記触媒前駆体の焼成においては、担体に担持された活性金属元素を含む化合物から活性金属原子以外の成分、すなわち対イオン、配位子等を除去する。
【0047】
触媒前駆体の焼成条件は、種々の焼成温度と焼成時間との組み合わせを設定することができるが、例えば、焼成温度は300〜550℃の範囲が好ましく、350〜530℃の範囲がより好ましい。また、焼成時間としては0.1〜10時間程度の範囲が好ましく、0.2〜8時間程度の範囲がより好ましい。
【0048】
以上のようにして、水素化精製触媒を得ることができる。
【0049】
次に、上記の水素化精製触媒を用いた中間留分を含む原料油の水素化精製を実施することによって、使用済み水素化精製触媒が発生する過程の概略を説明する。
【0050】
上記の水素化精製触媒を水素化精製反応装置に充填し、通常は分子状水素(水素ガス)により還元処理を行い触媒の活性化を行なう。その後、水素化精製反応装置にFT合成油由来の中間留分の炭化水素を含む原料油を水素ガスと共に供給し、水素化精製(水素化異性化を含む)を開始する。反応温度は後述する水素化異性化の指標が所定の値となるように設定する。
【0051】
運転開始後、運転時間の経過と共に水素化精製触媒の活性(主として水素化異性化活性)が低下する。この活性低下の原因は定かではないが、原料油中に含まれるFT合成反応の副生成物である含酸素化合物、あるいは含酸素化合物の水素化脱酸素により生成する水による弱い被毒作用、触媒上で生成する炭素質物質の沈着、更には触媒が長時間高温(反応温度)に晒されることによる活性金属の凝集などが考えられる。この活性低下に対して、運転期間を通じて前記水素化異性化の指標を維持し、生成油の低温流動性を確保するために、運転時間の経過と共に、低下した触媒活性を補償する幅で反応温度を高める運転を行う。そして、反応温度が、反応装置の耐熱性、あるいは分解反応の増加等の観点から決定される上限温度に達した時点で、水素化精製反応装置の運転を停止する。
【0052】
運転停止後、反応装置内を窒素ガス等によりパージし、冷却した上で装置を開放し、充填されていた水素化精製触媒を抜き出す。この抜き出された触媒が使用済み水素化精製触媒である。
【0053】
なお、上記説明においては、当初水素化精製反応装置に未使用の水素化精製触媒を充填する例を挙げたが、未使用の触媒に代えて再生触媒を充填してもよい。この場合、運転停止後に反応装置から抜き出される触媒(使用済み触媒)が、再度の再生処理を施すことによって再使用可能と判断される場合には、再生処理を行ってもよい。すなわち、本実施形態の再生触媒は、複数回の使用及び複数回の再生処理を行ったものも包含する。なお、以下の説明は、特に断らない限り、未使用の水素化精製触媒から得られた使用済み水素化精製触媒の例について行なう。
【0054】
次に、上記の使用済み水素化精製触媒の再生処理について説明する。再生処理は主として、使用済み水素化精製触媒中に含まれる、水素化精製工程において触媒中に沈着した炭素質物質の含有量を測定する炭素分測定工程と、脱油工程と、焼成工程とを含む。
【0055】
炭素分測定工程においては、例えば、採取した使用済み水素化精製触媒の試料を、ヘキサン等の低沸点炭化水素溶媒で洗浄して残留する水素化精製工程における原料油及びその生成油である炭化水素を除去し、減圧乾燥等により前記溶媒を除去し、前述の炭素質物質の定量方法に供することにより、該触媒中の炭素質物質を定量する。この結果は、焼成工程の条件の決定に資することができる。なお、前記溶媒による洗浄前後の前記試料の質量の変化から、使用済み水素化精製触媒中に残留する炭化水素の含有量も定量することができ、その結果は、脱油工程の条件の決定に資することができる。
【0056】
脱油工程は、使用済み水素化精製触媒を窒素ガス等の不活性気流下、好ましくは窒素気流下に加熱することにより、該触媒が含有する水素化精製工程における原料油及びその生成油である炭化水素の少なくとも一部を除去する工程である。
【0057】
脱油工程の条件としては、種々の温度と時間との組み合わせを設定することができるが、前述の炭素分測定工程において定量された、使用済み水素化精製触媒中に残留する炭化水素の量を考慮して決定することが好ましい。例えば、脱油工程の温度は250〜550℃の範囲が好ましく、280〜500℃の範囲がより好ましい。また、脱油時間としては0.2〜10時間程度の範囲が好ましく、0.5〜8時間程度の範囲がより好ましい。この脱油工程における脱油が不十分であると、後段の焼成工程において、触媒中に残留した炭化水素が急激な酸化反応(燃焼)を起こすことがある。この場合、触媒の実質的な温度が設定される焼成温度に対して過度に上昇し、触媒中の活性金属の凝集を招き、再生水素化精製触媒の活性が低下することがある。また、使用済み水素化精製触媒中の炭素質物質も焼失し、再生水素化精製触媒中に所定量の炭素質物質を残存させることができなくなる場合がある。
【0058】
脱油された使用済み水素化精製触媒は、次に焼成工程に供される。この焼成工程においては、使用済み水素化精製触媒中に含まれる、水素化精製工程において触媒上で生成し、沈着した炭素質物質を、本実施形態の再生水素化精製触媒に含まれる炭素質物質の含有量が本発明に係る上限値以下となるように、酸化分解により除去するが、同時に炭素質物質の含有量が本発明に係る下限値を下回らないように調整する。また、前記脱油工程を経て触媒中に残留している炭化水素を酸化分解して除去する。なお、使用済み水素化精製触媒中に含まれる炭素質物質の量が目的とする再生水素化精製触媒中の炭素質物質の含有量に見合う量よりも少ない場合には、使用済み水素化精製触媒中に含まれる炭化水素の炭化により、炭素質物質を新たに生成させてもよい。この焼成工程により、得られる再生水素化精製触媒中の炭素質物質の含有量を、炭素原子換算で0.05〜1質量%とする。
【0059】
焼成工程の条件としては、種々の温度と時間との組み合わせを設定することができるが、前述の炭素分測定工程において定量された、使用済み水素化精製触媒中の炭素質物質の量を考慮して決定することが好ましい。例えば、焼成温度は300〜550℃の範囲が好ましく、350〜530℃の範囲がより好ましい。また、焼成時間としては0.1〜10時間程度の範囲が好ましく、0.2〜8時間程度の範囲がより好ましい。
【0060】
なお、白金、パラジウム等の貴金属は、酸化反応に対する触媒活性を有する。そのため、前記焼成工程においては、比較的低い温度においても、使用済み水素化精製触媒中に含まれる炭素質物質の酸化が進行しやすい。そして、この酸化の反応熱により触媒の実質的な温度が上昇して前記酸化が急激に進行する、すなわち炭素質物質が燃焼することがある。この場合、得られる再生水素化精製触媒中の炭素質物質の含有量を制御することができず、炭素質物質が全て焼失するか、あるいは所定の値よりも小さい含有量の炭素質物質を含む触媒が得られる傾向にある。更にこの場合、燃焼熱により触媒の実質的な温度が設定した焼成温度を大きく超えて上昇することにより、活性金属が凝集して、得られる再生水素化精製触媒の活性が低下する傾向にある。このような急激な酸化反応の発生を防止するためには、焼成工程においては、少なくともその初期において、炭素質物質の急激な酸化を抑制し、酸化が緩やかに進行する条件を選択することが好ましい。具体的には、焼成を行なうための加熱装置に脱油した使用済み水素化精製触媒を仕込み、設定された焼成温度まで昇温する際に、少なくとも前記炭素質物質の酸化が進行する温度範囲(例えば250〜400℃程度)において、昇温速度を十分に小さくし、昇温の過程で前記急激な酸化反応が生起されないようにすることが好ましい。このような昇温速度としては、例えば、1〜50℃/hであり、好ましくは5〜30℃/h程度である。
【0061】
また、触媒前駆体の焼成を2段階で行うことも好ましい。すなわち、第1の段階では炭素質物質の酸化が緩やかに進行するよう、より低温の条件にて焼成を行い、酸化が進行して、急激な酸化が進行しない程度まで炭素質物質の残存量が減少した段階で、第2の段階としてより高温の条件にて焼成を行い、触媒中の炭素質物質の含有量を制御する方法である。この場合、第1の段階の焼成温度としては、例えば250〜400℃の範囲、第2の焼成温度としては例えば350〜550℃の範囲が選択される。
【0062】
以上により、本実施形態の再生水素化精製触媒が得られる。
【0063】
次に、本実施形態の再生水素化精製触媒を製造する方法の第2実施形態について説明する。第2実施形態の方法は、使用済み水素化精製触媒を従来の再生処理方法により再生し、炭素質物質を実質的に含まない再生水素化精製触媒を一旦製造し、該触媒を有機化合物中に浸漬した後、これを焼成又は加熱処理することにより、該触媒に所定量の炭素質物質を含有せしめる方法である。
【0064】
第2実施形態の方法に用いる使用済み水素化精製触媒は、上記第1実施形態の方法に用いた使用済み水素化精製触媒と同様のものである。
【0065】
上記使用済み水素化精製触媒に対して、上記第1実施形態の方法と同様にして炭素分測定工程及び脱油工程(第1脱油工程)を施す。
【0066】
脱油された使用済み触媒は焼成工程(第1焼成工程)に供される。この第1焼成工程においては、使用済み触媒中の炭素質物質が実質的に残留しないように炭素質物質の酸化分解による除去を行う。
【0067】
第1焼成工程の条件としては、種々の温度と時間との組み合わせを設定することができるが、前述の炭素分測定工程において定量された、使用済み水素化精製触媒中の炭素質物質の量を考慮して決定することが好ましい。例えば、焼成温度は350〜600℃の範囲が好ましく、400〜550℃の範囲がより好ましい。また、焼成時間としては0.1〜10時間程度の範囲が好ましく、0.2〜8時間程度の範囲がより好ましい。
【0068】
上記第1焼成工程においては、上述の第1実施形態における焼成工程の説明において述べた、昇温時の昇温速度の調整あるいは2段階の焼成を行なうことにより、炭素質物質の急激な酸化を防止することが好ましく行なわれる。
【0069】
上記のようにして一旦焼成工程を経て再生された触媒(「予備再生触媒」という。)を、液状の有機化合物に浸漬する(浸漬工程)。液状の有機化合物としては、触媒毒となる硫黄分、窒素分、ハロゲン分等を含まないものであれば特に限定されないが、液状の炭化水素であることが好ましく、例えばGTLプロセスにより製造されたナフサ留分、灯油留分、軽油留分等が好適に使用される。触媒をこれらの液状の有機化合物に浸漬する方法は特に限定されない。
【0070】
液状の有機化合物に浸漬した予備再生触媒を該有機化合物中から取り出し、不活性ガス、好ましくは窒素ガス中で脱油工程(第2脱油工)を施す。第2脱油工程により、浸漬によって予備再生触媒に付着した過剰な有機化合物が揮散する。第2脱油工程の条件は、温度は180〜500℃程度、時間は0.1〜10時間程度の範囲から、浸漬する有機化合物等を勘案して適宜決定する。
【0071】
次に、脱油された予備触媒を、分子状酸素を含む雰囲気下、好ましくは空気雰囲気下に焼成工程(第2焼成工程)に供し、予備再生触媒に残留した例えば軽油等の上記有機化合物を炭化させて、炭素質物質を生成させる。焼成条件は、使用する有機化合物、脱油工程の後に予備再生触媒に残留する有機化合物の含有量、目的とする本実施形態の再生水素化精製触媒に含有せしめる炭素質物質の含有量等に応じて適宜設定することができる。例えば、焼成温度は、300〜550℃の範囲が好ましく、350〜530℃がより好ましい。焼成時間は、0.1〜10時間程度が好ましく、0.2〜8時間程度がより好ましい。こうして、再生触媒中に炭素質物質を、その含有量が炭素原子換算で0.05〜1質量%となるように生成させる。
【0072】
なお、上記の例における第2焼成工程に代えて、窒素ガス等の不活性ガス雰囲気下で、加熱処理することにより、予備再生触媒に付着させた有機化合物を炭化させて所定量の炭素質物質を再生触媒中に生成させてもよい。
【0073】
以上のようにして、本実施形態の再生水素化精製触媒を得ることができる。
【0074】
次に、本発明の炭化水素油の製造方法について説明する。
【0075】
本発明の炭化水素油の製造方法は、上述の本実施形態の再生水素化精製触媒に、分子状水素の共存下、沸点が25〜360℃の範囲にある直鎖状脂肪族炭化水素を80質量%以上含み且つ沸点が150〜360℃の範囲にある直鎖状脂肪族炭化水素を20質量%以上含む原料油を接触させる工程を有する。この工程により原料油の水素化精製、すなわち前記原料油中に含まれる不純物であるオレフィン類及び含酸素化合物除去及び直鎖状脂肪族炭化水素の水素化異性化が行われる。
【0076】
以下、本発明の炭化水素油の製造方法が好ましく利用されるGTLプロセスの例に沿って、本発明の炭化水素油の製造方法の実施形態について説明を行なう。
【0077】
図1は、本発明の炭化水素油の製造方法の一実施形態が実施される炭化水素油の製造装置を含む、GTLプロセスにおけるアップグレーディングユニットに相当する製造設備を示す概略構成図である。
【0078】
まず、図1を参照して、本発明の炭化水素油の製造方法の好適な実施形態が実施される、FT合成反応によって得られる炭化水素(FT合成油)から、ナフサ、灯油・軽油基材を製造する装置について説明する。
【0079】
図1に示される炭化水素油の製造装置100は、合成ガス(一酸化炭素ガスと水素ガスの混合ガス)を原料として、FT合成反応により炭化水素油(FT合成油)を合成するFT合成反応装置(図示省略。)から、ライン1を経てFT合成油の供給を受ける。なお、FT合成反応装置は、天然ガスを改質して合成ガスを製造する改質反応装置(図示省略。)から合成ガスの供給を受ける。
【0080】
炭化水素油の製造装置100は、FT合成油を粗ナフサ留分、粗中間留分及び粗ワックス留分に分留する第1精留塔20と、第1精留塔20の塔頂からライン2により供給される粗ナフサ留分を水素化精製するナフサ留分水素化精製反応装置30と、第1精留塔20の中央部からライン3により供給される粗中間留分を水素化精製及び水素化異性化する中間留分水素化精製反応装置32と、第1精留塔20の底部からライン4により供給される粗ワックス留分を水素化分解するワックス留分水素化分解反応装置34と、中間留分の水素化精製物及びワックス留分の水素化分解物を分留する第2精留塔60を主として備えている。
【0081】
ここで、ナフサ留分は、概ね25℃以上であり概ね150℃よりも低い沸点を有する(概ねC〜C10)炭化水素留分であり、中間留分は沸点が概ね150〜360℃である(概ねC11〜C21)炭化水素留分であり、ワックス留分は沸点が概ね360℃を越える(概ねC22以上)炭化水素留分である。また、粗ナフサ留分、粗中間留分及び粗ワックス留分は、それぞれ水素化精製又は水素化分解を受けておらず、飽和脂肪族炭化水素(パラフィン)以外の不純物(FT合成反応の副生成物)であるオレフィン類及びアルコール類等の含酸素化合物を含むそれぞれの前記留分を意味する。
【0082】
中間留分水素化精製反応装置32は、本実施形態の炭化水素油の製造方法を実施する装置であり、その内部に、好ましくは固定床として、上記本実施形態の再生水素化精製触媒が充填されている。ライン3により供給される粗中間留分は、ライン3に接続する水素ガス供給ライン(図示省略。)により供給される水素ガスと混合され、ライン3上に配設された熱交換器等の加熱手段(図示省略。)により反応温度まで加熱された後、中間留分水素化精製反応装置32に供給され、水素化異性化を含む水素化精製が施される。
【0083】
ナフサ留分水素化精製反応装置30には好ましくは固定床として、水素化精製触媒が充填されている。該水素化精製触媒は、上記本実施形態の再生水素化精製触媒であってもよい。ライン2により供給される粗ナフサ留分は、ライン2に接続する水素ガス供給ライン(図示省略。)により供給される水素ガスと混合され、ライン2上に配設された熱交換器等の加熱手段(図示省略。)により反応温度まで加熱された後、ナフサ留分水素化精製反応装置30に供給され、水素化精製される。
【0084】
ワックス留分水素化分解反応装置34には、好ましくは固定床として、水素化分解触媒が充填されている。ライン4により供給される粗ワックス留分は、ライン4に接続するライン13によりリサイクルされる未分解ワックス(詳細は後述)及びライン4に接続する水素ガス供給ライン(図示省略。)により供給される水素ガスと混合され、ライン4上に配設される熱交換器等の加熱手段(図示省略。)により反応温度まで加熱された後、ワックス留分水素化分解反応装置34に供給され、水素化分解される。
【0085】
炭化水素油の製造装置100は、ナフサ留分水素化精製反応装置30、中間留分水素化精製反応装置32及びワックス留分水素化分解反応装置34の下流に、それぞれ気液分離器40、42及び44を備え、それぞれの反応装置から排出される水素化精製物又は水素化分解物である液体炭化水素と、未反応の水素ガス及びガス状の炭化水素を含む気体成分とを気液分離する。また、それぞれの気液分離器には、水素化精製又は水素化分解時に副生する水を排出するための装置(図示省略。)が付随する。
【0086】
炭化水素油の製造装置100は、気液分離器40の下流に、ライン5を介して供給される水素化精製されたナフサ留分から、炭素数4以下の炭化水素を主成分とするガス状炭化水素を、その塔頂に接続されたライン8から排出するナフサスタビライザー50を備える。また、ナフサスタビライザー50の塔底から、ライン9によりガス状炭化水素が除去されたナフサ留分が供給され、これを貯留するためのナフサタンク70が備えられている。
【0087】
第2精留塔60は、気液分離器42及び気液分離器44の下流に配設され、気液分離器42からライン6を介して供給される水素化精製された中間留分と、気液分離器44からライン7を介して供給されるワックス留分の水素化分解物とが供給され、これらの混合物を分留する。第2精留塔60には、その中央部に接続され、分留された灯油留分を取り出し、灯油タンク72に移送するためのライン11、その下部に接続され、分留された軽油留分を取り出し、軽油タンク74に移送するためのライン12が設けられている。また、第2精留塔60の塔底には、ワックス留分水素化分解反応装置34内で十分に分解されなかった未分解ワクッスを主成分とする第2精留塔60の塔底油を抜き出し、ワックス留分水素化分解反応装置34の上流のライン4にリサイクルするためのライン13が接続されている。更に第2精留塔60の塔頂には、ナフサ留分を主な成分とする軽質炭化水素を抜き出し、ナフサスタビライザー50に供給するライン10が接続されている。
【0088】
次に、図1を参照し、本発明の炭化水素油の製造方法の一実施形態について説明する。
【0089】
上述の本実施形態の再生水素化精製触媒は、中間留分水素化精製反応装置32に充填される。そして、中間留分水素化精製反応装置32に原料油を通油する前に、再生水素化精製触媒は還元処理により活性化される。還元処理は通常、再生水素化精製触媒を加熱下に分子状水素(水素ガス)に接触させることにより行なう。具体的には、水素気流中で例えば250〜550℃程度の温度で、0.5〜20時間程度の時間還元処理を行う。
【0090】
FT合成反応装置(図示省略。)よりライン1を経て供給されるFT合成油は、第1精留塔20において粗ナフサ留分、粗中間留分及び粗ワックス留分に分留される。分留された粗中間留分は、第1精留塔20の中央部からライン3により抜き出される。中間留分は、一般的に沸点が概ね150〜360℃(概ねC11〜C21)である炭化水素混合物からなる留分である。FT合成油を分留して得られる粗中間留分は、前記沸点範囲をもつ直鎖状飽和脂肪族炭化水素を主成分とし、不純物として、FT合成反応の副生成物であるオレフィン類及びアルコール類等の含酸素化合物を含む。粗中間留分は水素ガスと混合された上で反応温度まで加熱され、中間留分水素化精製反応装置32に供給される。該反応装置には、前述の本実施形態の再生水素化精製触媒が充填されており、粗中間留分と水素ガスとの混合物が該触媒と接触することにより、粗中間留分の水素化精製及び水素化異性化が進行する。
【0091】
粗中間留分の水素化精製は、粗中間留分中に含まれる不純物(オレフィン類及びアルコール等の含酸素化合物)を除去する反応である。オレフィン類(不飽和脂肪族炭化水素類)は水素化されて飽和脂肪族炭化水素(パラフィン)に転化される。また、アルコール類等の含酸素化合物は水素化脱酸素されて、飽和脂肪族炭化水素と水等に転化される。
【0092】
水素化異性化は、直鎖状飽和脂肪族炭化水素(ノルマルパラフィン)を骨格異性化し、分枝鎖状飽和炭化水素(イソパラフィン)に転化する。水素化異性化により、中間留分中のノルマルパラフィンの含有量が低下し、イソパラフィンの含有量が増加することにより、パラフィンの結晶性が低下し、燃料油としての低温流動性が向上する。水素化異性化の進行の程度を判断するひとつの指標として、生成油中の、例えば炭素数18(C18)の炭化水素(オクタデカン)における分枝鎖を有するオクタデカン(イソオクタデカン)の比率(100×イソオクタデカンの質量/全オクタデカンの質量(%)、以下、「C18異性体率」という。)を利用することができる。軽油基材としての低温流動性を満たすためには、例えばC18異性体率が85%以上であることが好ましい。
【0093】
本実施形態においては、例えばC18異性体率で表される水素化異性化の進行の程度が基準を満たすように水素化異性化を行なうためには、主として中間留分水素化精製反応装置32の反応温度を調整して運転を行う。
【0094】
前述のように、一般的に水素化精製触媒は、水素化精製反応装置における運転時間の経過と共にその活性が低下する。水素化精製触媒として再生触媒を使用した場合も同様である。従って、C18異性体率を例えば85%に維持しようとすると、運転時間の経過と共に低下した触媒の活性を補償するために、反応温度を高めていく運転を行なう。具体的には、各運転時間において、水素化精製反応装置32から排出される生成油をガスクロマトグラフィー法により分析し、C18異性体率を算出して、このC18異性体率を例えば85%になるように、当該運転時間における反応温度を決定する。
【0095】
水素化精製反応装置32における反応温度は180〜400℃、好ましくは200〜370℃、更に好ましくは250〜350℃、特に好ましくは280〜340℃である。ここで、反応温度とは、中間留分水素化精製反応装置22内の触媒層の重量平均温度のことである。反応温度が400℃を越えると、軽質分への分解が進行して中間留分の収率が減少するだけでなく、生成物が着色し、燃料油基材としての使用が制限される傾向にある。一方、反応温度が180℃を下回ると、アルコール類等の含酸素化合物が十分に除去されずに残存し、また、水素化異性化反応によるイソパラフィンの生成が抑制される傾向にある。
【0096】
中間留分水素化精製反応装置22における圧力(水素分圧)は0.5〜12MPaであることが好ましく、1〜5MPaであることがより好ましい。前記圧力が0.5MPa未満の場合には水素化精製及び水素化異性化が十分に進行しない傾向にあり、一方、12MPaを超える場合には装置に高い耐圧性が要求され、設備コストが上昇する傾向にある。
【0097】
中間留分水素化精製反応装置22における液空間速度(LHSV[liquid hourly space velocity])は0.1〜10h−1であることが好ましく、0.3〜3.5h−1であることがより好ましい。LHSVが0.1h−1未満の場合には軽質分への分解が進行して中間留分の収率が減少し、また生産性が低下する傾向にあり、一方、10.0h−1を超える場合には、水素化精製及び水素化異性化が十分に進行しない傾向にある。
【0098】
中間留分水素化精製反応装置32における水素ガス/油比は50〜1000NL/Lであることが好ましく、70〜800NL/Lであることがより好ましい。ここで、「NL」とは、標準状態(0℃、101325Pa)における水素容量(L)のことを意味する。水素ガス/油比が50NL/L未満の場合には水素化精製及び水素化異性化が十分に進行しない傾向にあり、一方、1000NL/Lを超える場合には、大規模な水素供給装置等が必要となる傾向にある。
【0099】
中間留分水素化精製反応装置32においては、前述のように、粗中間留分の主成分である直鎖状飽和脂肪族炭化水素(ノルマルパラフィン)を分枝鎖状飽和炭化水素(イソパラフィン)へ転化する水素化異性化反応を行うが、生成油から得られる軽油留分の液体燃料基材としての低温流動性が規格を満たすためには、粗中間留分中のノルマルパラフィンの一定割合以上をイソパラフィンに転化する必要がある(例えばC18異性体率が85%以上とすることが好ましい。)。
【0100】
一方、粗中間留分の水素化精製においては、副反応として、炭化水素の分解反応(水素化分解反応)が生起される。この分解反応は、炭化水素の炭素−炭素結合を開裂し、炭素数の少ない炭化水素を生成する。したがって、この分解反応が優勢になると軽質炭化水素の生成が増加し、中間留分(沸点範囲が概ね150〜360℃)の収率、中でも軽油留分(沸点範囲が概ね250〜360℃)の収率が低下する。
【0101】
水素化異性化反応は、水素化精製触媒中の活性金属による水素化−脱水素活性と、担体の固体酸性の二種の触媒機能により進行することが知られているが、水素化分解反応も同様に前記二種の触媒機能により進行する。したがって、従来の再生水素化精製触媒を用いて、生成油、特に軽油留分の低温流動性を確保するために水素化精製反応装置32の反応温度を調整して、水素化異性化を一定水準まで進行させると、分解反応も同時に進行し、中間留分収率、特に軽油留分収率が低下する傾向にある。
【0102】
従来の炭素質物質を含まない再生水素化精製触媒は、運転開始後500時間程度の運転時間が経過した後の安定期における分解活性が比較的に大きい。従って、所定の水素化異性化の水準(例えばC18異性体率が85%)を維持するように反応温度を設定すると、副反応である分解反応が進行し、軽油留分(沸点範囲が例えば250〜360℃)の沸点範囲の下限を下回る軽質留分の生成が増加し、軽油留分の収率が低下する傾向にあった。
【0103】
これに対して、本実施形態の再生水素化精製触媒は上記特定の構成を有することにより高い水素化異性化活性と抑制された水素化分解活性を両立することができ、該触媒を用いることにより、高いC18異性体率と高い中間留分収率、特に軽油留分収率とを同時に達成することができる。
【0104】
このような本実施形態の再生水素化精製触媒のもつ特徴が発現される作用機構は定かではないが、本発明者らは以下のように推定している。すなわち、水素化精製触媒は、活性金属による水素化−脱水素能と、担体が有する固体酸性の2種の機能を有する。そして、水素化異性化反応及び副反応である水素化分解反応は、共に複合化された前記2種の機能により進行すると考えられる。一方、水素化精製触媒中に含まれる炭素質物質は、特に担体上の固体酸性を有する活性点(酸点)の作用を阻害すると考えられる。酸点には、主として分解反応、あるいは分解反応と異性化反応の両方に対して活性をもつものと、主として水素化異性化に対して活性をもつものとが存在すると推定される。本実施形態の再生水素化精製触媒においては、炭素質物質が炭素原子換算で0.05〜1質量%含まれることにより、この炭素質物質が選択的に、分解反応あるいは分解反応と異性化反応の両方に対して活性をもつ酸点に作用し、その活性を阻害するものと推定される。したがって、この炭素質物質は一部水素化異性化活性を低下させるものの、その低下の幅は小さく、これに対して分解反応に対する活性を大幅に抑制することができると考えられる。その結果、必要なC18異性体率を維持するために水素化異性化活性の低下が補われるように反応温度を高めても、分解反応が十分抑制されるために、従来の再生水素化精製触媒に比較して高い軽油留分収率を得ることができると推定される。また、触媒の安定期においても、高い中間留分選択性を維持できる理由については、必ずしも明確ではないが、炭素質物質の含有量が0.05質量%より小さい再生水素化精製触媒は、運転初期に新たな炭素質物質の生成が顕著であり、本実施形態の水素化精製触媒においては新たな炭素質物質の生成が少ないことと関係していると考えられる。
【0105】
中間留分水素化精製反応装置32から排出される生成物は、気液分離器42に導入され、液体生成物(液体炭化水素)と未反応の水素ガス及びガス状炭化水素を主成分とする気体成分とが分離される。液体炭化水素は下流の第2精留塔60に導入され、気体成分は水素化処理反応に再利用される。
【0106】
第1精留塔20の塔頂から抜き出される粗ナフサは、ライン2を経て水素ガスと混合され、反応温度まで加熱されてナフサ留分水素化精製反応装置30に供給され、水素化精製される。
【0107】
ナフサ留分水素化精製反応装置30に充填される水素化精製触媒としては、公知の水素化精製触媒を用いることができるが、上述の本実施形態の再生水素化精製触媒を用いてもよい。ナフサ留分水素化精製反応装置30においては、粗ナフサ留分に含まれるオレフィン類は水素化により飽和炭化水素に変換され、またアルコール類などの含酸素化合物は水素化脱酸素により炭化水素と水等とに変換される。なお、粗ナフサ留分は炭素数が概ね10以下の炭化水素であり、その特性として、水素化異性化及び水素化分解は殆ど起こらない。
【0108】
粗ナフサ留分中にはオレフィン類及びアルコール類等の含酸素化合物が比較的に高い濃度で含まれ、これらを飽和炭化水素に転化する水素化精製反応においては、大きな反応熱が発生する。したがって、粗ナフサ留分のみを水素化精製に供すると、ナフサ留分水素化精製反応装置30内でナフサ留分の温度が過度に上昇する場合がある。そこで、ナフサ留分水素化精製反応装置30から排出される水素化精製されたナフサ留分の一部をライン14によりナフサ留分水素化精製反応装置30の上流のライン2にリサイクルすることにより、粗ナフサ留分を精製済みのナフサ留分により希釈して、水素化精製に供することが好ましい。
【0109】
ナフサ留分水素化精製反応装置30における反応温度は、180〜400℃、好ましくは280〜350℃、更に好ましくは300〜340℃である。ここで、反応温度とは、ナフサ留分水素化精製反応装置30内の触媒層の平均温度のことである。反応温度が前記下限温度以上であれば、粗ナフサ留分が充分に水素化精製され、前記上限温度以下であれば、触媒の寿命低下が抑制される。
【0110】
ナフサ留分水素化精製反応装置30における圧力(水素分圧)は0.5〜12MPaであることが好ましく、1〜5MPaであることがより好ましい。前記圧力が0.5MPa以上であれば、粗ナフサ留分が充分に水素化精製され、12MPa以下であれば、設備の耐圧性を高めるための設備費を抑制できる。
【0111】
ナフサ留分水素化精製反応装置30における液空間速度(LHSV[liquid hourly space velocity])は0.1〜10h−1であることが好ましく、0.3〜3.5h−1であることがより好ましい。LHSVが0.1h−1以上であれば、反応器の容積を過大にしなくてもよく、10h−1以下であれば、粗ナフサ留分が効率的に水素化精製される。
【0112】
ナフサ留分水素化精製反応装置30における水素ガス/油比は50〜1000NL/Lであることが好ましく、70〜800NL/Lであることがより好ましい。ここで、「NL」とは、標準状態(0℃、101325Pa)における水素容量(L)のことを意味する。水素ガス/油比が50NL/L以上であれば、粗ナフサ留分が充分に水素化精製され、1000NL/L以下であれば、多量の水素ガスを供給するための設備が不要となり、また運転コストの上昇を抑制できる。
【0113】
ナフサ留分水素化精製反応装置30から排出された生成油は、気液分離器40において未反応の水素ガスを主成分とする気体成分と、液体炭化水素とに気液分離される。気体成分は水素化処理反応に再利用され、液体炭化水素はライン5を経てナフサスタビライザー50に供給され、C以下のガス状炭化水素がライン8から除去され、主としてC〜C10からなるナフサ留分はライン9を経てナフサタンク70に貯留される。
【0114】
第1精留塔20の塔底からライン4にて抜き出される粗ワックス留分は、ライン4に接続するライン13によりリサイクルされる未分解ワックス(詳細は後述)及び水素ガスが混合され、反応温度まで加熱されてワックス留分水素化分解反応装置34に供給され、水素化分解される。
【0115】
ワックス留分水素化分解反応装置34に充填される水素化分解触媒としては、例えば、固体酸を含んで構成される担体に、活性金属として周期表第8〜10族に属する金属を担持した触媒が挙げられる。
【0116】
好適な前記担体としては、超安定Y(USY)型ゼオライト、Y型ゼオライト、モルデナイトおよびβゼオライトなどの結晶性ゼオライト、ならびに、シリカアルミナ、シリカジルコニア、およびアルミナボリアなどの固体酸性を有する非晶性複合金属酸化物の中から選ばれる1種類以上の固体酸を含んで構成されるものが挙げられる。更に前記担体は、USY型ゼオライトと、シリカアルミナ、アルミナボリアおよびシリカジルコニアの中から選ばれる1種以上の固体酸とを含んで構成されるものがより好ましく、USY型ゼオライトと、アルミナボリア及び/又はシリカアルミナとを含んで構成されるものが更に好ましい。
【0117】
USY型ゼオライトの平均粒子径に特に制限はないが、好ましくは1.0μm以下、より好ましくは0.5μm以下である。また、USY型ゼオライトにおいて、シリカ/アルミナのモル比(アルミナに対するシリカのモル比)は10〜200であることが好ましく、15〜100であることがより好ましく、20〜60であることがさらに好ましい。
【0118】
また、前記担体は、結晶性ゼオライト0.1〜80質量%と、固体酸性を有する非複合金属酸化物0.1〜60質量%とを含んで構成されるものであることが好ましい。
【0119】
前記担体は、上記固体酸とバインダとを含む担体組成物を成形した後、焼成することにより製造できる。固体酸の配合割合は、担体全体の質量を基準として1〜70質量%であることが好ましく、2〜60質量%であることがより好ましい。また、前記担体がUSY型ゼオライトを含んで構成される場合、USY型ゼオライトの配合割合は、担体全体の質量を基準として0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。さらに、前記担体がUSY型ゼオライトおよびアルミナボリアを含んで構成される場合、USY型ゼオライトとアルミナボリアの配合比(USY型ゼオライト/アルミナボリア)は、質量比で0.03〜1であることが好ましい。また、前記担体がUSY型ゼオライトおよびシリカアルミナを含んで構成される場合、USY型ゼオライトとシリカアルミナとの配合比(USY型ゼオライト/シリカアルミナ)は、質量比で0.03〜1であることが好ましい。
【0120】
バインダとしては、特に制限はないが、アルミナ、シリカ、チタニア、マグネシアが好ましく、アルミナがより好ましい。バインダの配合量は、担体全体の質量を基準として20〜98質量%であることが好ましく、30〜96質量%であることがより好ましい。
【0121】
前記担体組成物の焼成温度は、400〜550℃の範囲内にあることが好ましく、470〜530℃の範囲内であることがより好ましく、490〜530℃の範囲内であることがさらに好ましい。
【0122】
前記活性金属である周期表第8〜10族の金属としては、具体的にはコバルト、ニッケル、ロジウム、パラジウム、イリジウム、白金などが挙げられる。これらのうち、ニッケル、パラジウムおよび白金、好ましくはパラジウムおよび白金の中から選ばれる金属を1種単独または2種以上組み合わせて用いることが好ましい。これらの金属は、含浸やイオン交換などの常法によって上述の担体に担持することができる。担持する金属量には特に制限はないが、当該金属がコバルト、ニッケル等の貴金属以外の金属である場合には、金属酸化物として担体の質量基準で2〜50質量%程度であることが好ましい。また、当該金属が白金、パラジウム、ロジウム、イリジウム等の貴金属である場合には、金属の合計量が担体全体の質量に対して0.1〜3.0質量%であることが好ましい。水素化活性を有する金属の含有量が前記下限値未満の場合には、水素化分解が充分に進行しない傾向にある。一方、水素化活性を有する金属の含有量が前記上限値を超える場合には、水素化活性を有する金属の分散が低下して触媒の活性が低下する傾向となり、また触媒コストが上昇する。
【0123】
粗ワックス留分と未分解ワックスとの混合物(以下、「被処理ワックス」ということもある。)はワックス留分水素化分解反応装置34において水素化分解されて、中間留分に相当する成分へと転換される。この際、粗ワックス留分に含まれるオレフィン類は水素化されてパラフィン炭化水素に転化され、アルコール類等の含酸素化合物は水素化脱酸素されてパラフィン炭化水素と水等とに転化される。また、同時に、燃料油基材としての低温流動性の向上に寄与するノルマルパラフィンの水素化異性化によるイソパラフィンの生成も進行する。また、被処理ワックスの一部は過度に水素化分解を受け、目的とする中間留分に相当する沸点範囲の炭化水素よりも更に低沸点のナフサ留分に相当する炭化水素に転換される。また、被処理ワックスの一部は水素化分解が更に進行し、ブタン類、プロパン、エタン、メタンなどの炭素数4以下のガス状炭化水素へと転換される。一方、被処理ワックスの一部は十分に水素化分解することなく未分解ワックスとしてワックス留分水素化分解反応装置34から排出される。
【0124】
ワックス留分水素化分解反応装置34における被処理ワックスの水素化分解においては、下記式(1)で定義される「分解率」を50〜90%、好ましくは60〜80%とすることが望ましい。
分解率(%)=[(被処理ワックス単位質量中の沸点が360℃を超える炭化水素の質量)−(水素化分解生成物単位質量中の沸点が360℃を超える炭化水素の質量)]×100/(被処理ワックス単位質量中の沸点が360℃を超える炭化水素の質量)…(1)
【0125】
前記分解率が50%未満である場合には、被処理ワックスの水素化分解が不十分であり、水素化分解生成物中に占める中間留分に相当する沸点範囲の留分の比率が低下する。一方、分解率が90%を超える場合には、被処理ワックスの分解が過度に進行し、中間留分の沸点範囲の下限を下回る沸点を有する炭化水素の生成が増加し、分解生成物中に占める中間留分の比率が低下する。分解率は、ワックス留分水素化分解反応装置34における反応温度により制御する方法が一般的である。
【0126】
なお、上記の「未分解ワックス」とは、被処理ワックスの中で、沸点が360℃以下となるまで水素化分解が進行しないものをいう。未分解ワックスは、後述する第2精留塔60において塔底油として分離され、ワックス留分水素化分解反応装置34にリサイクルされる。また、「水素化分解生成物」とは、特に断らない限り、ワックス留分水素化分解反応装置34から排出される未分解ワックスを含む全ての生成物を意味する。
【0127】
ワックス留分水素化分解反応装置34における反応温度(触媒床重量平均温度)としては、180〜400℃が例示でき、好ましくは200〜370℃、より好ましくは250〜350℃、さらに好ましくは280〜350℃である。反応温度が400℃を超えると、水素化分解が過度に進行して、目的とする中間留分の収率が低下する傾向にある。また、水素化分解生成物が着色して、燃料基材としての使用が制限される場合もある。一方、反応温度が180℃より低い場合は、ワックス留分の水素化分解が十分に進行せず、中間留分の収率が低下する傾向にある。また、ワックス留分中のオレフィン類やアルコール類等の含酸素化合物が十分に除去されない傾向にある。
【0128】
ワックス留分水素化分解反応装置34における水素分圧としては、例えば0.5〜12MPaであり、1.0〜5.0MPaが好ましい。
【0129】
ワックス留分水素化分解反応装置34における液空間速度(LHSV)としては、例えば0.1〜10.0h−1であり、0.3〜3.5h−1が好ましい。水素ガスとワックス留分との比(水素ガス/油比)は、特に制限はないが、例えば50〜1000NL/Lであり、70〜800NL/Lが好ましい。ここで、「NL」とは、標準状態(0℃、101325Pa)における水素容量(L)のことを意味する。水素ガス/油比が50NL/L未満の場合には水素化分解が十分に進行しない傾向にあり、一方、1000NL/Lを超える場合には、過大な水素ガス供給源が必要となる傾向にある。
【0130】
ワックス留分水素化分解反応装置34から排出された水素化分解生成物は気液分離器44において気液分離される。すなわち、未反応の水素ガス及び主としてC以下の炭化水素ガスからなる気体成分と、ナフサ留分から未分解ワックスまでに相当する炭素数分布をもつ炭化水素油である液体成分とを分離する。分離された気体成分は水素化処理反応に再利用される。液体成分は、中間留分水素化精製反応装置32から気液分離器42を経て供給される中間留分の水素化精製物と混合され、第2精留塔60へ供給される。
【0131】
第2精留塔60では、取り出す炭化水素油に応じてカット・ポイントを複数設定し、中間留分水素化精製反応装置32から供給される中間留分の水素化精製物と、ワックス留分水素化分解反応装置34から供給されるワックス留分の水素化分解物とからなる混合油の分留が行われる。
【0132】
本実施形態においてはカット・ポイントを150℃、250及び360℃に設定する。第2精留塔60の塔頂からは、ライン10によりナフサ留分を含む軽質留分が抜き出され、上述のナフサスタビライザー50に供給され、C以下の炭化水素ガスが除去されて、製品ナフサとしてナフサタンク70に貯留される。第2精留塔60の中央部からは、ライン11により灯油留分が抜き出され、灯油タンク72に貯留される。第2精留塔60の下部からはライン12により軽油留分が抜き出され、軽油タンク74に貯留される。第2精留塔60の塔底からはライン13により未分解ワックスを主成分とする塔底油が抜き出され、ライン4にリサイクルされ、粗ワックス留分と共にワックス留分水素化分解反応装置34に供給されて再度水素化分解される。
【0133】
以上のようにして、軽油留分、灯油留分、ナフサ留分が得られる。
【0134】
本発明の炭化水素油の製造方法は上述の実施形態の例に限定されることはなく、本発明の趣旨を逸脱しない範囲において、種々の変更、追加等を行なうことができる。
【0135】
例えば、上述の実施形態においては、FT合成反応装置から供給されるFT合成油を、第1精留塔20において粗ナフサ留分、粗中間留分及び粗ワックス留分に分留する形態としたが、この分留において、粗ナフサ留分と粗中間留分とを粗ナフサ・中間留分としてひとつの留分として分留してもよい。そして、前記粗ナフサ・中間留分を、本発明の再生水素化精製触媒が充填された単一の水素化精製反応装置において水素化精製に供してもよい。
【0136】
更には、FT合成油を第1精留塔20において分留することなく、FT合成反応装置内の温度において気液分離することにより、当該温度において気体となる軽質炭化水素を冷却して液化させた軽質液体炭化水素と、当該温度において液体である重質液体炭化水素とに分別してもよい。そして、ナフサ留分水素化精製反応装置30を設けることなく、前記軽質液体炭化水素を、本発明の再生水素化精製触媒が充填された中間留分水素化精製反応装置32において水素化精製に供し、前記重質液体炭化水素を、ワックス留分水素化分解反応装置34において水素化分解に供してもよい。
【0137】
また、上述の実施形態においては、中間留分水素化精製反応装置32から排出される水素化精製された中間留分と、ワックス留分水素化分解反応装置34から排出されるワックス留分の水素化分解生成物との混合物を第2精留塔60にて分留する形態としたが、これに限定されることはなく、例えば中間留分水素化精製反応装置32から排出される水素化精製された中間留分と、ワックス留分水素化分解反応装置34から排出されるワックス留分の水素化分解生成物とを、それぞれ別の精留塔において分留してもよい。
【0138】
更に、上述の実施形態においては、製品としてナフサ留分、灯油留分、軽油留分を得たが、灯油留分及び軽油留分をひとつの留分(中間留分)として回収してもよい。
【実施例】
【0139】
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0140】
(参考例)
<新規水素化精製触媒の調製>
粉末状のシリカジルコニア(シリカ単位/ジルコニア単位モル比が7)を60質量%と粉末状のアルミナを40質量%とを含有する組成物に水を加えて粘土状に混練して捏和物を調製した。この捏和物を押出成型により直径約1.5mm、長さ約3mmの円柱状に成型した。得られた成型体を120℃で3時間乾燥し、更に空気中、450℃で3時間焼成して担体を得た。
【0141】
この担体を、担体の質量を基準とし、白金原子として0.8質量%となる量のジクロロテトラアンミン白金(II)の水溶液により、Incipient wetness法を用いて含浸し、更にこれを120℃で3時間乾燥して触媒前駆体を得た。
【0142】
次に上記で得られた触媒前駆体を空気雰囲気下、500℃にて1時間焼成することにより水素化精製触媒を得た。
【0143】
<新規水素化精製触媒による炭化水素油の製造>
上記により得られた水素化精製触媒を固定床流通式反応器に充填し、水素気流下、340℃で4時間の還元処理を行って触媒を活性化した。
【0144】
次に、FT合成反応により得られたFT合成油を精留塔により分留し、沸点が150〜360℃の範囲にある中間留分の炭化水素(C11〜C21)を原料油として得た。この原料油を分析した結果、3.6質量%のオレフィン分及び4.0質量%の含酸素化合物を含むノルマルパラフィンであった。
【0145】
上記原料油を、前記水素化精製触媒を充填した固定床流通式反応器に、水素ガスと共に供給して水素化精製(水素化精製反応及び水素化異性化反応)を行なった。反応条件は、反応圧力(水素ガスの圧力)を3.0MPa、LHSVを2.0h−1、水素/油比を340NL/Lとした。また、生成物中のオクタデカン(C18)についてガスクロマトグラフィー法により分析を行い、全オクタデカンに対する分枝鎖を有するオクタデカン(イソオクタデカン)の比率(100×イソオクタデカンの質量/全オクタデカンの質量、C18異性体率)を算出し、このC18異性体率が85%となるように反応温度を決定した。運転開始時の反応温度は334℃であった。
【0146】
反応器から排出された生成物を熱交換器により約35℃に冷却し、気液分離器によりガス成分と液体成分を分離し、液体成分(炭化水素油)を精留塔に供給し、250℃をカットポイントとして分留を行い、沸点250℃以上の留分を軽油留分として回収した。
【0147】
運転時間の経過と共に、水素化精製触媒の活性が低下するので、C18異性体率を経時的に監視して常に85%となるように反応温度を高めていった。そして、運転開始から11000時間経過したところで運転を停止し、反応器内を窒素ガスにてパージし、反応器を室温まで冷却した後開放し、充填されていた使用済み触媒を抜き出した。
【0148】
(実施例1)
<再生水素化精製触媒の調製>
(炭素分測定工程)
参考例により得た使用済み触媒から一部試料を採取し、ヘキサンにて十分に洗浄した後、減圧乾燥器にて70℃で2時間乾燥した。この試料中に含まれる炭素質物質を堀場製作所社製炭素・硫黄分析装置EMIA−920Vにより定量した。その結果、使用済み触媒はその乾燥全質量に対して、炭素原子として3.5質量%の炭素質物質を含有していた。また、試料のヘキサン洗浄・乾燥の前後における質量変化から、使用済み触媒の炭化水素含有量は触媒の乾燥全質量に対して9質量%と算出された。
【0149】
(脱油工程)
使用済み水素化精製触媒に対して、窒素気流中400℃にて3時間、脱油処理を行なった。
【0150】
(焼成工程)
脱油した使用済み触媒を加熱炉内に触媒前駆体を仕込み、空気雰囲気下、300℃まで昇温し、その後300〜400℃の間を10℃/hの昇温速度で昇温し、その後500℃にて2時間焼成することにより、再生水素化精製触媒を得た。得られた再生水素化精製触媒中の炭素質物質を前述の炭素・硫黄分析装置により定量した結果、触媒の全質量を基準とし、炭素原子換算で0.05質量%であった。
【0151】
<再生触媒による炭化水素油の製造>
上記により得た再生水素化精製触媒を反応器に充填した以外は、参考例における「新規水素化精製触媒による炭化水素油の製造」と同様にしてFT合成油由来の中間留分の炭化水素原料油の水素化精製を行なった。運転時間の経過と共に触媒の活性が低下するので、生成油のC18異性体率が85%を維持するように、反応温度を高めていった。運転開始後2000時間経過した時点(安定期)におけるC18異性体率を85%とする反応温度は341℃であった。また、その時の、供給した原料油の質量流量に対する精留塔からの軽油留分の抜き出し流量の比率から算出した軽油留分の収率は43質量%であった。なお、生成油中には、オレフィン分及び含酸素化合物は実質的に含まれていなかった。結果を表1に示す。
【0152】
(実施例2)
<再生水素化精製触媒の調製>
再生水素化精製触媒の調製の焼成工程において、昇温後の焼成条件を500℃、0.5時間とした以外は、実施例1と同様にして再生水素化異性化触媒を得た。この再生水素化精製触媒中の炭素質物質の含有量は炭素原子換算で0.5質量%であった。
【0153】
<炭化水素油の製造>
上記により得られた再生水素化精製触媒を反応器に充填した以外は、実施例1と同様にしてFT合成油由来の中間留分の水素化精製を行なった。運転時間2000時間時点での、C18異性体率を85%とする反応温度は343℃であり、軽油留分の収率は44質量%であった。また、生成油中にはオレフィン分及び含酸素化合物は実質的に含まれていなかった。結果を表1に示す。
【0154】
(実施例3)
<再生水素化精製触媒の調製>
再生水素化精製触媒の調製の焼成工程において、昇温後の焼成条件を490℃、0.5時間とした以外は、実施例1と同様にして再生水素化異性化触媒を得た。この再生水素化精製触媒中の炭素質物質の含有量は炭素原子換算で0.8質量%であった。
【0155】
<炭化水素油の製造>
上記により得られた再生水素化精製触媒を反応器に充填した以外は、実施例1と同様にしてFT合成油由来の中間留分の水素化精製を行なった。運転時間2000時間時点での、C18異性体率を85%とする反応温度は344℃であり、軽油留分の収率は44質量%であった。また、生成油中にはオレフィン分及び含酸素化合物は実質的に含まれていなかった。結果を表1に示す。
【0156】
(実施例4)
<再生水素化精製触媒の調製>
(第1脱油工程)
参考例により得た使用済み触媒に対して、窒素気流中400℃にて3時間、脱油処理を行なった。
【0157】
(第1焼成工程)
脱油した使用済み触媒を加熱炉内に触媒前駆体を仕込み、空気雰囲気下、300℃まで昇温し、その後300〜400℃の間を10℃/hの昇温速度で昇温し、その後580℃にて1時間焼成することにより、予備再生触媒を得た。得られた予備再生触媒中の炭素質物質を定量した結果、炭素が検出されなかった(炭素原子換算含有量が0.02質量%以下)。
【0158】
(浸漬工程)
参考例の「新規水素化精製触媒による炭化水素油の製造」において得られた軽油留分に上記予備再生触媒を浸漬した。
【0159】
(第2脱油工程)
前記予備再生触媒を軽油留分中より引き上げ、窒素気流中400℃にて3時間、脱油処理を行なった。
【0160】
(第2焼成工程)
第2脱油工程を経た予備再生触媒を、第1焼成工程における昇温条件と同一の条件で昇温後、450℃にて1時間焼成して再生水素化精製触媒を得た。この再生水素化精製触媒中の炭素質物質の含有量は炭素原子換算で0.2質量%であった。
【0161】
<炭化水素油の製造>
上記により得られた再生水素化精製触媒を用いて、実施例1と同様にしてFT合成油由来の中間留分の水素化精製を行なった。運転時間2000時間時点での、C18異性体率を85%とする反応温度は342℃であり、軽油留分の収率は44質量%であった。また、生成油中にはオレフィン分及び含酸素化合物は実質的に含まれていなかった。結果を表2に示す。
【0162】
(比較例1)
<再生水素化精製触媒の調製>
実施例4の「再生水素化精製触媒の調製」の「第1焼成工程」で得られた触媒(予備再生触媒)をそのまま再生水素化精製触媒とした。前述のように、この再生水素化精製触媒中には炭素質物質が検出されなかった(炭素原子換算含有量が0.02質量%以下)。
【0163】
<炭化水素油の製造>
上記により得られた再生水素化精製触媒を反応器に充填した以外は、実施例1と同様にしてFT合成油由来の中間留分の水素化精製を行なった。運転時間2000時間時点での、C18異性体率を85%とする反応温度は340℃であり、軽油留分の収率は39質量%であった。また、生成油中にはオレフィン分及び含酸素化合物は実質的に含まれていなかった。結果を表1に示す。
【0164】
(比較例2)
<再生水素化精製触媒の調製>
実施例4の「再生水素化精製触媒の調製」の「第2焼成工程」における昇温後の焼成条件を430℃、1時間とした以外は実施例4と同様にして再生水素化精製触媒を得た。この再生水素化精製触媒中の炭素質物質の含有量は、炭素原子換算にて1.2質量%であった。
【0165】
<炭化水素油の製造>
上記により得られた再生水素化精製触媒を反応器に充填した以外は、実施例1と同様にしてFT合成油由来の中間留分の水素化精製を行なった。運転時間2000時間時点での、C18異性体率を85%とする反応温度は349℃であり、軽油留分の収率は41質量%であった。また、生成油中にはオレフィン分及び含酸素化合物は実質的に含まれていなかった。結果を表2に示す。
【0166】
【表1】



【0167】
【表2】



【0168】
表1及び表2の結果から、炭素質物質の含有量が0.05〜1質量%である実施例1〜4の再生水素化精製触媒によれば、炭素質物質の含有量が0.05質量%未満である比較例1の再生水素化精製触媒に比較して、同一のC18異性体率において、高い軽油留分収率が得られることが明らかとなった。また、炭素質物質の含有量が1質量%を超える比較例2の再生水素化精製触媒にあっては、同一のC18異性体率において、比較的高い軽油収率を得ることはできるが、同一のC18異性体率を得るための反応温度が高くなり、触媒の寿命の点で問題となる。
【符号の説明】
【0169】
20…第1精留塔、30…ナフサ留分水素化精製反応装置、32…中間留分水素化精製反応装置34…ワックス留分水素化分解反応器、50…第2精留塔、100…炭化水素油の製造装置。

【特許請求の範囲】
【請求項1】
固体酸性を有する非晶性複合金属酸化物を含む担体と、前記担体に担持された周期表第8族〜第10族の貴金属から選択される少なくとも一種の活性金属と、を含む使用済み水素化精製触媒を再生してなり、
触媒の全質量を基準とし、炭素原子換算で0.05〜1質量%の炭素質物質を含有する、再生水素化精製触媒。
【請求項2】
前記非晶性複合金属酸化物が、シリカジルコニア、シリカアルミナ及びアルミナボリアから選択される少なくとも一種である、請求項1記載の再生水素化精製触媒。
【請求項3】
前記活性金属が白金である、請求項1又は2記載の再生水素化精製触媒。
【請求項4】
分子状水素の共存下、沸点が25〜360℃の範囲にある直鎖状脂肪族炭化水素を80質量%以上含み且つ沸点が150〜360℃の範囲にある直鎖状脂肪族炭化水素を20質量%以上含む原料油を、請求項1〜3のいずれか一項記載の再生水素化精製触媒に接触させる、炭化水素油の製造方法。
【請求項5】
前記原料油が、フィッシャー・トロプシュ合成反応により得られる合成油である、請求項4記載の炭化水素油の製造方法。


【図1】
image rotate


【公開番号】特開2012−214605(P2012−214605A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2011−80576(P2011−80576)
【出願日】平成23年3月31日(2011.3.31)
【出願人】(504117958)独立行政法人石油天然ガス・金属鉱物資源機構 (101)
【出願人】(509001630)国際石油開発帝石株式会社 (57)
【出願人】(000004444)JX日鉱日石エネルギー株式会社 (1,898)
【出願人】(591090736)石油資源開発株式会社 (70)
【出願人】(000105567)コスモ石油株式会社 (443)
【出願人】(306022513)新日鉄エンジニアリング株式会社 (897)
【Fターム(参考)】