説明

凍結乾燥物の製造方法。

【課題】凍結乾燥試薬をより簡易でありながら定量的に製造することを実現する。
【解決手段】化学的溶液を毛管力により、保持可能な貫通孔を有する支持部材を用いて、試薬溶液を貫通孔に供給して、これを保持した後、当該試薬を保持したまま、超低温冷媒に接触させるなどして、貫通孔内で、凍らせた後、貫通孔内の凍結試薬を取り出し、凍結乾燥を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固形試薬、固形医薬関連物質等、固形状の凍結乾燥物の製造方法に関する。
【背景技術】
【0002】
近年、臨床検査において、種々の極微量反応検出系が提案されている。これは検体量が少なくて済み、被験者の負担軽減を図れること、臨床での迅速性を図れること、使用者側でのコスト軽減を図れること等、多くの利点があるためである。このため、極微量の診断薬を反応の場に供する手段も種々提案されている。微量反応試薬の凍結乾燥法もそのひとつであり、その製造法は、
例えば特開昭63−22161号公報に記載されている様に、液体窒素に試薬を滴下、噴霧させた後、凍結乾燥して球状試薬を得る手法が開示されている。
この手法は、短時間に多数の球状試薬を得ることが出来る反面、液体窒素下に試薬溶液を滴下すると、瞬間的に凍結せず、試薬と液体窒素間に温度差がある間、表面上を浮遊し、ブラウン運動的な軌跡を描いて、移動する為、壁面との衝突や、粒子同士の衝突のため、割れが生じたりして定量性が損なわれる場合がある。
【0003】
特開平5−306216は、凹部を複数個配列している容器に溶液を入れ、凍結乾燥させる手法が開示されている。
当該手法は、定量的な微量固形物の製造も可能とするが、凹部に封入された状態での凍結乾燥物であるため、気化方向が、上部一方向しかなく、十分な凍結乾燥を施すためには、時間を要し、時間をかけても場合によっては、十分な凍結乾燥ができない場合があった。
【0004】
【特許文献1】特開昭63−22161号公報
【特許文献2】特表2004−510996号公報
【特許文献3】特開平5−306216号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
上述したように、これまでの製造法は量産性に優れるものの定量性に劣ること、また定量性は確保できるが、時間を必要とし量産性に劣ること等、一長一短があった。
さらに、前記の球状試薬の場合、凍結時さらには凍結乾燥後の互いとの摩擦によって静電気の帯電が避けられず、1個の固体試薬がより小さくなるにつれ、静電気力の影響等、いままであまり影響の無かった外因によりその取り扱いが困難になり、少ない空間に定量の固体試薬を入れることがより困難になる。特に球状の場合は、静電気力によりウェルに収容できない場合がある。
そこで本発明ではこれら諸問題を解決し、短時間で大量且つ定量的な微量固形物の製造を可能とするばかりか、微量固形物を効率的に反応容器に組み込むことも実現した。
【課題を解決するための手段】
【0006】
本発明は上記に鑑みなされたものであって、
化学的溶液を毛管力により、保持可能な貫通孔を有する支持部材を用いて、試薬溶液を貫通孔に供給して、これを保持した後、当該試薬を保持したまま、超低温冷媒に接触させて、貫通孔内で、凍らせた後、貫通孔内の凍結試薬を取り出し、凍結乾燥を行うことで、 凍結乾燥がしやすい環境が形成できると共に、一時に製造できる試薬数を多くでき、量産性にすぐれ、試薬を個別に保持することで摩擦による帯電を防ぎ、取り扱いが簡易な形状を有する凍結乾燥物の製造方法を実現する。

【0007】
本発明における化学的溶液は、例えば、対外診断試薬、標識をつけた抗体等、検査、診断、計測に使用される液体であり、
保持可能な貫通孔とは、毛管力によって内部に液体が保持され得る大きさであって例えば、化学的溶液供給側が、0.5mm〜5mm、凍結試薬を取り出し側が0.5mm〜 5mmであって、好ましくは 化学的溶液供給側が、1mm〜3mm、凍結試薬を取り出し側が1mm〜4mmが例示される。
本発明は、好ましくは、化学的溶液の供給側が、凍結試薬取り出し側より小さい孔形として、全体的にテーパーがかかった状態や、取り出し側の直前から、広がる方向でテーパーを形成してもよい。
【0008】
本発明における支持部材としては、アクリル樹脂、ABS樹脂、アルミニウム、ステンレス等が例示される。
凍結試薬を受けプレートの広めの凹部に入れたまま、凍結乾燥を行う際の、凍結乾燥方式は、例えば、棚式凍結乾燥方式、真空チャンバー外付け式凍結乾燥方式が示される。
【発明の効果】
【0009】
本発明は、微量な固形凍結試薬等を、定量的に、簡易な手法で製造することができ、より微量な検体から、各種情報を得る場合、必要となる微量でかつ定量的な乾燥試薬の形成が可能となる。
又、球状試薬よりも取り扱いやすい、円柱形乃至円錐台形の試薬が製造でき、静電気等の影響を受けにくく、様々なチップへの供給が支障なく行うことができる。
【発明を実施するための最良の形態】
【0010】
本発明は、微量な凍結乾燥物を、定量的に簡易に製造する手法であって、検体溶液とふれることで、溶解反応を生じさせ、発色させるためのものや、触媒作用を微量空間で発揮させる固形物を定量的に製造するものであって、
今般、微量検体でも検査可能な測定装置の普及に併せて、微小な凍結乾燥試薬の製造を量産的に行う自動化された装置が好適である。
【実施例1】
【0011】
凍結乾燥物を試薬に置き換えた実施例を図に示し詳細に説明する。
本実施例は、発色反応を生じさせる凍結乾燥試薬の製造方法を示し、
具体的な工程としては、
試薬溶液を孔の開いたプレートに保持する工程、試薬溶液を保持したプレートごと低温冷媒へ浸積させ凍結させる工程、前記凍結した試薬を、プレートから、他の容器などへ取り出す工程、取り出された凍結試薬を、凍結乾燥処理する工程が例示される。
これらの工程及び工程で用いられる試薬、器具等について、詳細に分設する。
【0012】
試薬溶液を孔の開いたプレートに保持する工程について

1. 試薬の調製
表1に示す組成で各項目の試薬を調製した。表1の組成物とは別に、凍結乾燥の賦形剤としてデキストラン等の糖類、ウシ血清アルブミン等の蛋白質、ポリエチレングリコール等の合成高分子を単独、又は複数種類組み合わせて添加した。また、界面活性剤としてTriton等の非イオン界面活性剤、アルキル硫酸ナトリウム等の陰イオン界面活性剤、ドデシルトリメチルアンモニウムブロミド等の陽イオン界面活性剤を単独、又は複数種組み合わせて添加した。
測定項目に対応する12の試薬組成の一例を表1示す。
【表1】

【0013】

試薬溶液を毛管力で保持するための治具としてプレート01の形状の一例を図1に示す。
図1(a)は、プレート01の上面図であり、X−X’での断面図を図1(b)に示した。例えば、厚さ5mmのプレート01には、内径1mmの円柱形の貫通孔03が形成されている。
プレート01の縁部には、凍結乾燥用プレートと嵌合するために下方向に向かって収束するように傾斜が施されている。
図1(c)は、貫通孔03の周辺を拡大した図である。

上部には、押し出し棒が挿入しやすいように、孔形を広くした受け部02が形成されている。03は、試薬溶液が保持される貫通孔の部分であり、口径は、少なくとも毛管力が作用し得る長さで、所要量が保持できる程度であれば良い。
図1(d)は、例えば 上面内径1.2mm、テーパー角07が付された円錐台形の貫通孔04を有する厚さ5mmのプレート01の一例を示す。上部には、図1と同様受け部02が形成されている。テーパー角07は、2°〜8°前後の何れかの値が示される。
図1(e)は、 例えば、上面内径3mm、テーパー角08の円錐台形の貫通孔06を有する厚さ5mmのプレートを示す。上部には、図1と同様受け部05が形成されている。受け部の角度は、図1(c)、図1(d)と同じような角度でも良い。
【0014】
以上、プレートの大きさ、貫通孔の口径を具体的数値を例示して説明したが、この例に示す上限値と下限値を範囲として捉えても良く、更にこれ以上でも、これ以下でも、少なくとも目的とする大きさの試薬が形成でき、しかも毛管力が作用する範囲の貫通孔であれば、範囲を超えた値をとり得る場合もある。
【0015】
当該試薬充填プレートの材質は、一例としてアクリル樹脂、ABS樹脂等のプラスチック類、アルミニウム、ステンレス等の金属類を使用できるが、その材質と試薬との化学的特性、低温による変形を考慮して適切に選択されることが望ましい。
【0016】
試薬充填プレートへの試薬充填工程

プレート01に試薬を充填する方法の一例として図2で示すように数μl量の液体試薬をマイクロシリンジ23で貫通孔03に1つ1つ充填していく方法が示される。


図2において、21は、凍結工程でも使用可能な凍結用槽であり、底面には、プレートが接触しないために、突起22が、貫通孔部と一致しないような状態となる部位に複数個形成されている。
23は、マイクロシリンジであり、先端の孔形は、少なくとも貫通孔03の孔形よりも小さいものが用いられることが好ましい。
マイクロシリンジ23の液吐出部としては、例えば、ポリプロピレン製のチップ、ステンレス製のシリンジ針(先端が平滑なもの)等が好適に使用される。
又、マイクロシリンジ23の駆動方法としては、手動式、自動式いずれも利用可能であり、又、1乃至複数のシリンジを同時に使用する場合もある。
24は、マイクロシリンジ23によって、液体試薬が供給され、貫通孔03内で、毛管力によって保持された液体試薬を示す。
この手法によれば、1枚のプレートで複数種類の試薬を凍結することができる利点を有する。
【0017】
他方、 液体試薬を例えば深さが、プレートよりも大きい容器に入れ、そこに試薬充填プレートを浸漬し(プレートを浸漬したときに液高が数mm高くなるように液量を調整)、プレートを取り出す方法も示される。
この手法はプレート全体を液体試薬槽に漬けることで、1枚のプレートに一度の操作で試薬を充填することができる利点を有する。
液体試薬24は、貫通孔03内に限り充填されてもよいが、場合によっては、受け部02まで充填されても良い。いずれにしろ定量性を確保する必要から、いずれの貫通孔に対しても、同量の液体試薬が供給されることが好ましい。
【0018】
凍結工程
凍結工程としては、図3で示す様に 液体窒素31に例えば20秒間浸漬して凍結させる手法が例示できる。浸積時間は、この時間に限らず5〜60秒が示されるが、少なくとも、形状が保持できる程度に短期間に凍れば良いことから、例えば、ドライアイス等であれば、多少時間が長くかかっても利用可能である。 図3において、31は、液体窒素であり、凍結用槽21内に供給され、プレート01を覆うように充填されている。
液体窒素31は、超低温冷媒であるため、予め、凍結用槽21へ供給して、そこへプレートを浸積するか、予めプレート01を凍結用槽21内に据え置いた状態で、液体窒素31を供給するかが選択された後、プレート01を押さえて、試薬が凍結するまで据え置く。
【0019】
尚、液体窒素であるため、瞬間的に試薬は凍結するため据え置く時間は、ごく短時間である。
液体窒素の他にも、瞬間的に凍結させる手法として、-80℃で冷却したエタノールに30秒間浸漬させて凍結させる手法が例示される。
瞬間的でなくても、-20℃の冷凍庫内で2時間凍結させる手法-80℃の冷凍庫内で1時間凍結させる手法が例示され、適宜選択可能である。冷凍庫に入る手法は、比較的大きなプレートを用いて試薬を凍結することができる利点を有する。
【0020】
押し出し工程としては、以下の例を示す。
プレート内で凍結した試薬は、特に液体窒素のような超低温冷媒の場合、貫通孔内で凍結しているため、そのままでは、取り出しにくく、後述の押出しピンを用いることで容易に取り出しが可能となる。 図4は、取り出す際の状態の一例を示している。
41は、取出槽であり、内部には、試薬受槽43が据え置かれ、その周囲に液体窒素、液体ヘリウム、ドライアイス等の冷却媒体42が、試薬受槽43を適度に冷却する程度充填されている。
44は、試薬受け凹部であり、プレートから押し出された凍結試薬を受け、更に凍結乾燥がされやすいための空間が形成される程度の容積を備えている。
試薬受槽43の上部は、プレート01が固定的に結合できる凹状を有していることが好ましい。
【0021】
45は、押し出しピンであり、貫通孔03内の半溶解凍結試薬を上部方向から押し出すためのものである。押し出しピン45は、1つでも良く、46で示すように、複数個を並列に置いた状態の線状、平面状に形成した櫛歯とした押出プレートとしてもよく、この場合は、一度に試薬を押し出すことが可能となる。そのほか、 先端の内径が貫通孔程度の孔形のノズルを有するエアーコンプレッサーで押出したり、 試薬充填プレートを真空チャンバーに装着し、真空を引いて大気圧で押出したりしてもよい。
【0022】
凍結試薬の回収冶具を用いた回収工程
プレート01から、押し出された凍結試薬32は、試薬受槽43内の受け凹部44にそれぞれ装填され、図5で示す状態で、真空凍結乾燥処理が施される。
凍結乾燥方式としては、例えば、棚式凍結乾燥方式 、真空チャンバー外付け式凍結乾燥方式が示され、その何れの方式においても十分な凍結乾燥ができるが、その他の方式を用いても良い場合もある。
凍結乾燥の時間は、試薬の量に応じて異なるが、0.04〜0.1torrの場合おおよそ2〜10時間であり、このまま取り出されて、他のパッケージに密封的に保存されるか、取り出された後、そのまま使用される。
【0023】
凍結乾燥試薬の保存

凍結乾燥した保存方法としては、例えば、 アルミニウム製受けプレートに入った状態で蓋をし、密封容器中で保管したり、 自動分析用試薬容器に入れ、密封容器中で保管する手法がとられ得る
実際、凍結乾燥したALP測定試薬を本実施例を用いて、12℃の空間で保存したところ、12ヶ月間試薬活性の変化は認められなかった。
【0024】

チップへの供給

次に試薬受けプレートの凹部に置かれた凍結乾燥試薬を取り出した後、ロータータイプの血液分析用チップ上の試薬反応槽へ入れる場合の構成を図6に示し説明する。
図6において、61は、導入路であり、62は、V字型の谷部をもつ試薬誘導路であり、63は、供給路であり、一体的に形成されている。
供給路63は、固形の円筒状の試薬が移動可能な孔形面積を備えている。
導入路61は、図示するほど大きくなる必要がないが、試薬が移動する際角部に位置するため、移動がスムーズな大きさと形状があれば良い。
601は、ローター状の検査チップであり、中央に検体供給孔602があり、調整流路603を経て試薬反応槽604と接続している。
調整流路603は、例えば、液体を、遠心による血球分離、希釈、定量分配処理するような機能を備えている。
試薬を収容する空間で形成される試薬反応槽604は、数mmの直径を備えて円周上に1乃至複数配置されている。
【0025】
図6で示す試薬供給装置は、凍結乾燥して得られる試薬が円筒状であって、供給部がやはり円筒状であり、凍結乾燥試薬が、斜めになったり、横になったりして、試薬反応槽へ、挿入できない状態となることを解消するためのものである。
即ち、V字型の谷部をもつ試薬誘導路は、傾斜をもち、上方向から凍結乾燥試薬51が供給されると、図で示すように谷部の方向と凍結乾燥試薬の長軸方向とが一致した状態となりながら、導入路61へ移動していき、供給路63にスムーズに固形試薬が入り込める。
供給路63に入り込んだ固形試薬はそのまま、つまることなく試薬反応槽604に供給され、605と同様の状態となる。
尚、試薬誘導路61及び62に振動を与えたり、傾斜を大きくすることで、供給時間や、スムーズな供給動作を実現させることも可能である。
本発明では、必ずしもローター状の検査チップを用いる必要はなく、凍結乾燥試薬を、一時的又は継続的に収容されるような空間であれば、好適に適用される。
【実施例2】
【0026】
実施例1は、各工程について分説したが次に他の実施例として、一連の工程の流れと本実施例に基づく実験例を説明する。

図1(a)で示す試薬充填用のプレート01を図2で示す凍結用槽21に置き、プレート01は、液体窒素を供給した時、移動しないように凍結用槽21内で固定する。
次に図2で示す貫通孔03にALP測定用試薬を3μLづつマイクロシリンジ23で充填していく、充填が完了した後、凍結用槽21に図3で示す液体窒素31を供給し、凍結させた。
その後、図4で示す取出槽41に、試薬受槽43を固定し、周辺の冷却媒体42を供給して冷却し、プレート01を、試薬受槽43に嵌合する。
ハンドプレス機を用いて押出プレート46を凍結試薬を充填したプレート01に押し込むことにより一時に全ての凍結した試薬32をそれぞれ試薬受槽43の試薬受け凹部44に押出した。
【0027】
図5で示すように、この凍結試薬32を試薬受槽43に入れたまま、棚式凍結乾燥装置(ULVAC社製)で4時間程度乾燥させた。
その後、試薬受け凹部44内の凍結乾燥試薬51を図示しないが、真空ピンセットで吸引採取し、上述の様に保管又は図6の供給装置で試薬反応槽等に供給される。

【0028】
凍結乾燥試薬の評価

凍結乾燥試薬の溶解性の確認

表1に示す12項目の試薬を調製し、3μLを実施例1、2で示す方法により凍結乾燥処理を施して凍結乾燥試薬を得た。
これら凍結乾燥試薬を容積が0.6mlのポリプロピレン製容器に入れ、3μLの生理食塩水又は適宜希釈した血清を添加したところ、いずれの凍結乾燥試薬も速やかに溶解した。

【0029】
凍結乾燥前後の試薬活性の比較

表1に示す組成でアスパラギン酸アミノトランスフェラーゼ(AST)測定用試薬及び尿酸測定試薬を調製した。実施例で示す方法により1.8mlの液体試薬を3μLづつ凍結乾燥して600個の凍結乾燥試薬を作製した。
凍結乾燥前の試薬又は脱イオン水で溶解した凍結乾燥試薬の活性を7170s型自動分析装置(日立製)を用いて測定した。検体は人工血清であるスイトロールII EX(日水製薬製)に、ASTの場合はヒト肝臓由来AST標品を添加したもの、尿酸の場合は尿酸標品を添加したものを用いた。図7は検体のAST濃度と反応液の単位時間当りのO.D.365nmの変化量をプロットしたグラフである。図8は検体の尿酸濃度と反応液のO.D.600nmをプロットしたグラフである。いずれも凍結乾燥前後で試薬活性の差は認められなかった。


【産業上の利用可能性】
【0030】
本発明は、保存性、定量性に優れた凍結乾燥を要する試薬、医薬などの化学物質を手軽に製造できることから、いわゆるPOC等、携行して使用される血液成分診断機器用の試薬を含む使い捨て可能なチップ用等の微量固形試薬として利用可能である。

【図面の簡単な説明】
【0031】
【図1】本発明の実施例を説明するための図。
【図2】本発明の実施例を説明するための図。
【図3】本発明の実施例を説明するための図。
【図4】本発明の実施例を説明するための図。
【図5】本発明の実施例を説明するための図。
【図6】本発明の実施例を説明するための図。
【図7】本発明の実施例における凍結乾燥前後のAST測定値比較を示すグラフ図。
【図8】本発明の実施例における凍結乾燥前後の尿酸測定値比較を示すグラフ図。
【符号の説明】
【0032】
01 プレート
02 受け部
03 貫通孔
04 テーパーがある貫通孔
21 凍結用槽
22 突起
23 マイクロシリンジ
31 液体窒素
41 取出槽
42 冷却媒体
43 試薬受槽
45 押し出しピン



【特許請求の範囲】
【請求項1】
化学的溶液を毛管力により保持可能な程度の貫通孔を有するプレートを用いて、化学的溶液を保持した後、低温冷媒に接触させて、凍らせた後、貫通孔内の凍結した化学的溶液を取り出して凍結乾燥を行う凍結乾燥物の製造方法。
【請求項2】
前記化学的溶液が試薬乃至薬物であり、前記プレートには、複数の貫通孔が形成され、一度に複数個の凍結乾燥試薬乃至凍結乾燥薬物を製造する請求項1に記載の凍結乾燥物の製造方法。
【請求項3】
前記プレートが、アクリル、ABS樹脂、アルミニウム、ステンレスから選ばれてなる請求項1に記載の凍結乾燥物の製造方法。
【請求項4】
前記低温冷媒が液体窒素、液体ヘリウム、有機溶媒、ドライアイス、製氷機、冷凍庫、冷蔵庫である請求項1に記載の凍結乾燥物の製造方法。
【請求項5】
前記貫通孔の孔形が、化学的溶液供給側が、0.5mm〜5mm、凍結試薬を取り出し側が0.5mm〜5mmである円柱形乃至円錐台形が形成されている請求項1に記載の凍結乾燥物の製造方法。
【請求項6】
その一端が収容空間の開口部に位置し、その他端方向には、前記凍結乾燥試薬を供給する供給部位が形成されると共に前記他端と前記一端を結ぶ方向に沿って谷部が形成された誘導路を備えてなり、前記誘導路の供給部位に供給された凍結乾燥試薬は、谷部に沿って移動し、収容空間に装填される凍結乾燥物の装填用具。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2008−174505(P2008−174505A)
【公開日】平成20年7月31日(2008.7.31)
【国際特許分類】
【出願番号】特願2007−10686(P2007−10686)
【出願日】平成19年1月19日(2007.1.19)
【出願人】(000126757)株式会社アドバンス (60)
【Fターム(参考)】