説明

分光特性測定装置及び分光特性測定方法

【課題】光路長差を伸縮させるために低価格の駆動装置を用いながらも、高精度なインターフェログラムを得ることができる分光特性測定装置及び分光特性測定方法を提供する。
【解決手段】本発明の分光特性測定装置は、被測定物Sの測定点から発せられた光を対物レンズ2によって固定ミラー部161、可動ミラー部162に導き、これらミラー部161、162によって反射された光を結像レンズ18によって同一点に導く。制御部22は可動ミラー部162を繰り返し移動、停止させて固定ミラー部161、可動ミラー部161によって反射された光の光路長差を間欠的に伸縮させる。処理部24は、前記可動ミラー部162が各停止位置にあるときに同一点に導かれた光の強度を検出し、これら光強度とそのときの光路長差の値から補間して複数の等間隔の光路長差における光強度を求め、この光強度に基づきインターフェログラムを作成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、干渉光強度の変化を表すインターフェログラムをフーリエ変換することにより被測定物の分光特性を測定する分光特性測定装置及び分光特性測定方法に関する。
【背景技術】
【0002】
物体の分光特性を測定する技術として、被測定物の一輝点から生じる物体光束の干渉現象を利用することにより被測定物のインターフェログラムを求め、このインターフェログラムをフーリエ変換することにより分光特性を測定する装置が提案されている(特許文献1、2参照)。この装置では、被測定物に入射させた光が該被測定物の各測定点(輝点)で反射、散乱、屈折等することによって、そこから多様な方向に向かって発せられた光を対物レンズを介して固定ミラー及び可動ミラーに導き、これら2つのミラーで反射された2つの光束の干渉現象によって結像面に形成される干渉光の強度を検出する。前記可動ミラーを移動させて2つの光束の光路長差を変化させると、両光束を構成する種々の波長の光の干渉光強度は、その波長に応じた周期で周期的に変化するため、所定の光路長差間隔で干渉光強度を検出することで干渉光強度変化、即ちインターフェログラムを取得することができる。このインターフェログラムをフーリエ変換することにより波長ごとの相対強度である分光特性(スペクトル)を測定することができる。
【0003】
特許文献1、2では、可動ミラーは、静電容量センサー付ピエゾステージを用いて移動させる。静電容量センサー付きピエゾステージは、静電容量センサーによりピエゾステージの位置を高精度に測定しつつ、ピエゾ素子の伸縮を利用して該ピエゾステージを微小移動させる。従って、静電容量センサー付ピエゾステージを用いると、可動ミラーの位置を高精度に制御することができる。ところが、このような静電容量センサー付ピエゾステージは高価であり、分光特性測定装置のコストを上昇させてしまうという欠点がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2008-309706号公報
【特許文献2】特開2008-309707号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
これに対して、より安価な駆動装置として、インパクト駆動アクチュエータが挙げられる。インパクト駆動アクチュエータは、例えば圧電素子からなる変位発生手段とこの変位発生手段に取り付けられた駆動軸を備えている。インパクト駆動アクチュエータでは、立ち上がり及び立ち下がりの一方が急峻で他方が緩やかなパルス電圧を圧電素子に印加して駆動軸を軸方向に移動させ、この駆動軸に摩擦結合させた移動体を軸方向に移動させる。例えば緩やかに増加する電圧を圧電素子に印加した場合、該圧電素子は緩やかに変形し、駆動軸と摩擦結合した移動体は駆動軸と共に移動する。一方、急峻に減少する電圧を圧電素子に印加すると、該圧電素子は急峻に変形して駆動軸が元の位置に戻るが、このときは駆動軸と移動体の間にすべりが生じるため、移動体はその位置にとどまる。このような動作が繰り返されることにより、移動体が間欠的に移動される。
【0006】
ところが、インパクト駆動アクチュエータは1パルス毎の移動体の移動量が一定ではない。このようなインパクト駆動アクチュエータで可動ミラーを移動させる場合は、可動ミラーが停止している時に干渉光強度を検出することになるが、可動ミラーの停止位置が等間隔にならないため、干渉光強度変化の光路長差の間隔がばらつき、高精度なインターフェログラムを得ることができないという問題がある。
【0007】
本発明が解決しようとする課題は、光路長差を伸縮させるために低価格の駆動装置を用いながらも、高精度なインターフェログラムを得ることができる分光特性測定装置及び分光特性測定方法を提供することである。
【課題を解決するための手段】
【0008】
上記課題を解決するために成された本発明は、
被測定物の測定点から発せられた光を第1反射部と第2反射部に導く分割光学系と、
前記第1反射部によって反射された第1反射光及び前記第2反射部によって反射された第2反射光を同一点に導く結像光学系と、
前記第1反射部を繰り返し移動、停止させることにより前記第1反射光と前記第2反射光の光路長差を間欠的に伸縮する光路長差伸縮手段と、
前記結像光学系によって同一点に導かれた光の強度を検出する光検出部と、
前記光路長差伸縮手段によって前記光路長差を伸縮させつつ前記第1反射部が各停止位置にあるときの前記光強度を前記光検出部で検出して前記被測定物の測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部と
を備えた分光特性測定装置において、
さらに、前記第1反射部の各停止位置における前記光路長差を検出する光路長差検出部を備え、
前記処理部が、複数の停止位置における前記光路長差と前記光強度の値から補間して複数の等間隔の光路長差における光強度を求め、これら光強度に基づきインターフェログラムを作成することを特徴とする。
【0009】
また、本発明の分光特性測定方法は、
被測定物の測定点から発せられた光を分割光学系によって第1反射部と第2反射部に導き、
前記第1反射部を繰り返し移動、停止させることにより、該第1反射部によって反射された第1反射光及び前記第2反射部によって反射された第2反射光の間の光路長差を間欠的に伸縮させつつ該第1反射光及び該第2反射光を結像光学系によって同一点に導き、
前記第1反射部が各停止位置にあるときの前記光路長差及びそのとき前記結像光学系によって同一点に導かれた光の強度を求め、
複数の停止位置の前記光路長差及び前記光強度の値から補間して複数の等間隔の光路長差における光強度データを求め、
これら光強度変化データからインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得することを特徴とする。
【発明の効果】
【0010】
本発明では、インパクト駆動アクチュエータのような安価な駆動装置を用いて第1反射部を移動させた場合でも、複数の等間隔の光路長差における光強度を求め、これら光強度に基づき高精度なインターフェログラムを求めることができるので、分光測定精度の向上を図ることができる。
【図面の簡単な説明】
【0011】
【図1】本発明の実施例1に係る分光特性測定装置の概略的な全体構成図。
【図2】位相シフターの可動ミラー部周辺の構成を示す側面図(a)及び背面図(b)。
【図3】分光特性測定装置の光学的作用の説明図。
【図4】光路長差及び光強度のデータ取得処理を示すフローチャート。
【図5】測定した結像光強度をプロットした図。
【図6】補間処理により得られた結像強度変化データに基づき作成したインターフェログラムを示す図。
【発明を実施するための形態】
【0012】
以下、本発明に係る分光特性測定装置の一実施例について説明する。
【実施例】
【0013】
図1は分光特性測定装置の概略構成図である。この分光特性測定装置1は、対物レンズ12と、ビームスプリッタ14と、位相シフター16と、位相シフター16の位置を検出する位置検出部17と、結像レンズ18と、この結像レンズ18の結像面となる位置に受光面を有する光検出部20と、位置検出部17及び光検出部20の検出信号を処理する処理部22と、位相シフター16、位置検出部17、光検出部20を制御する制御部24とを備える。
【0014】
光検出部20及び位置検出部17の検出信号はそれぞれ制御部24に与えられる。位相シフター16は、固定ミラー部161及び可動ミラー部162と、この可動ミラー部162を矢印A方向に移動させる駆動機構163を備える。図2に示すように、駆動機構163は、固定部31及び可動部32からなるクロスローラーテーブルと可動部32に取り付けられたミラー保持部33から構成されている。ミラー保持部33には可動ミラー部162が保持されている。
【0015】
位置検出部17は可動部32に取り付けられたスケール171、及び該スケール171と対向配置された検出器172(MEMSセンサ)から構成されており、該検出器172はスケール171から位置情報を取得する。スケール171には例えば回折格子が用いられる。位置検出部17は可動部32の原点位置を検出する原点センサ173を備えており、該可動部32の絶対位置を検出する。なお、ここでは位置検出部17として可動部32の絶対位置を検出するものを用いたが、相対位置を検出するものでも良い。
【0016】
前記可動部32はインパクト駆動アクチュエータから構成されており、制御部24からパルス電圧が与えられることによりステップ状に移動・停止を繰り返し、以て可動ミラー部162を間欠的に移動させる。
【0017】
制御部24に入力された光検出部20及び位置検出部17からの検出信号はそれぞれ処理部22に与えられ、所定の演算処理が実行されることにより結像強度及び光路長差が求められると共にこれら結像強度及び光路長差からインターフェログラムが作成される。また、このインターフェログラムをフーリエ変換することによって分光スペクトルが算出される。なお、制御部24及び処理部22の実体は、CPUを中心に構成されるパーソナルコンピュータであって、該コンピュータ上で所定のプログラムを実行することにより演算処理が達成される。
【0018】
次に、この分光特性測定装置1の動作について説明する。被測定物Sの一輝点から発せられた光(「物体光」ともいう。)は対物レンズ12、ビームスプリッタ14を経て位相シフター16に到達し、固定ミラー部161及び可動ミラー部162の表面で反射された後、結像レンズ18に入射する。固定ミラー部161及び可動ミラー部162の表面は光学的に平坦で且つ本装置1が測定対象とする光の波長帯域を反射可能な光学鏡面となっている。
【0019】
本実施例では、対物レンズ12が分割光学系を、結像レンズ18及びビームスプリッタ14が結像光学系を構成する。また、可動ミラー部162及び固定ミラー部161がそれぞれ第1及び第2反射部に相当し、位相シフター16に到達する光束のうち可動ミラー部162の反射面に到達して反射される光束が第1反射光に、固定ミラー部161の反射面に到達して反射される光束が第2反射光に相当する。なお、以下の説明では、第1反射光を可動光、第2反射光を固定光ともいう。
【0020】
結像レンズ18に入射した可動光及び固定光は、該結像レンズ18により収束されて光検出部20に入る。光検出部20は受光面を有するCCDカメラから構成されている。CCDカメラの受光面は結像レンズ18の結像面に配置されており、結像レンズ18により収束された固定光及び可動光はCCDカメラの受光面において結像し、その結像強度に応じた出力信号を出力する。なお、光検出部20はCCDカメラの他、CMOSカメラ、赤外線カメラ等から構成することもできる。また、光検出部20が検出する結像強度データは1次元でも2次元でも良い。
【0021】
このとき、可動ミラー部162を移動させて固定光と可動光との光路長差を変化させることにより、図3(a)に示すようなインターフェログラムと呼ばれる結像強度変化(干渉光強度変化)の波形が得られる。図3(a)はCCDカメラの一つの画素におけるインターフェログラムである。なお、図3(a)において、横軸は可動ミラー部162の移動に伴う固定光と可動光間の光路長差を、縦軸は結像面上の一点における結像強度を示す。このインターフェログラムをフーリエ変換することにより、被測定物S上の輝点から発せられた光の波長毎の相対強度である分光特性を取得することができる(図3(b)参照)。
【0022】
前述したように、インパクト駆動アクチュエータはパルス電圧が与えられることによりステップ状に駆動、停止を繰り返し、可動ミラー部162を間欠的に移動させる。従って、処理部22は、可動ミラー部162が停止しているときに光検出部20から入力された検出信号に基づき結像強度を求める。また、これと同時に、位置検出部17の検出信号に基づき固定光と可動光の光路長差を求める。従って、本実施例では、位置検出部17及び処理部22から光路長差検出部が構成される。
【0023】
図4に、可動ミラー部162を移動させつつ該可動ミラー部162の停止位置及び光強度のデータの取得手順を示す。まず、可動ミラー部162を初期位置に移動させた後(S1)、インパクト駆動アクチュエータに駆動指令を与える(S2)。これにより、インパクト駆動アクチュエータにパルス電圧が印加され、1パルスにつき1回ずつ移動、停止の動作を行う。続いて制御部24は、インパクト駆動アクチュエータが停止しているときの位置検出部17の検出信号及び光検出部20の検出信号を取得する(S3,S4)。インパクト駆動アクチュエータが所定回数移動するまでS2からS4までの動作を繰り返す(S5)。
【0024】
インパクト駆動アクチュエータの1パルス当たりの移動量は一定ではないため、可動ミラー部162が各停止位置にあるときの光路長差及び結像強度の値をプロットすると図5に示すようになる。つまり、光路長差間隔が等間隔ではない結像強度変化となる。インターフェログラムをフーリエ変換して高精度のスペクトルを得るためには、光路長差間隔が等間隔となる結像強度変化が必要であることから、処理部22はデータ補間処理を実行して、複数の等間隔の光路長差における結像強度データを求める。データ補間処理は、光路長差の値が前後する2点の結像強度のデータを利用するのみならず、前後する複数のデータを利用した高次のデータ補間処理を実行することが好ましい。
尚、複数の等間隔の光路長差における結像強度データの全てを補間処理によって求めても良いが、一部を実測データとし、残りのデータを補間処理によって求めても良い。
このようなデータ補間処理によって得られた、複数の等間隔の光路長差における結像強度データから作成されるインターフェログラムを図6に示す。
【0025】
以上のようにして、本実施例の分光特性測定装置1では、補間処理によって結像強度の実測値から複数の等間隔の光路長差における結像強度データを得ることができるため、光路長差間隔が等間隔の結像強度変化に基づきインターフェログラムを作成することができる。従って、このようなインターフェログラムをフーリエ変換することにより高精度のスペクトルを求めることができる。
【0026】
なお、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、修正、追加
を行っても本願特許請求の範囲に包含される。
【符号の説明】
【0027】
1…分光特性測定装置
12…対物レンズ
14…ビームスプリッタ
16…位相シフター
161…固定ミラー部
162…可動ミラー部
163…駆動機構
17…位置検出部
18…結像レンズ
20…光検出部
22…処理部
24…制御部

【特許請求の範囲】
【請求項1】
被測定物の測定点から発せられた光を第1反射部と第2反射部に導く分割光学系と、
前記第1反射部によって反射された第1反射光及び前記第2反射部によって反射された第2反射光を同一点に導く結像光学系と、
前記第1反射部を繰り返し移動、停止させることにより前記第1反射光と前記第2反射光の光路長差を間欠的に伸縮する光路長差伸縮手段と、
前記結像光学系によって同一点に導かれた光の強度を検出する光検出部と、
前記光路長差伸縮手段によって光路長差を伸縮させつつ前記第1反射部が各停止位置にあるときの前記光強度を前記光検出部で検出して前記被測定物の測定点のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部と
を備えた分光特性測定装置において、
さらに前記第1反射部の各停止位置における前記第1反射光と前記第2反射光の光路長差を検出する光路長差検出部を備え、
前記処理部が、複数の停止位置における前記光路長差と前記光強度の値から補間して複数の等間隔の光路長差における光強度を求め、これら光強度に基づきインターフェログラムを作成することを特徴とする分光特性測定装置。
【請求項2】
前記光路長差伸縮手段が、インパクト駆動アクチュエータを用いて第1反射部を繰り返し移動、停止させるように構成されていることを特徴とする請求項1に記載の分光特性測定装置。
【請求項3】
被測定物の測定点から発せられた光を分割光学系によって第1反射部と第2反射部に導き、
前記第1反射部を繰り返し移動、停止させることにより、該第1反射部によって反射された第1反射光及び前記第2反射部によって反射された第2反射光の間の光路長差を間欠的に伸縮させつつ該第1反射光及び該第2反射光を結像光学系によって同一点に導き、
前記第1反射部が各停止位置にあるときの前記光路長差及びそのとき前記結像光学系によって同一点に導かれた光の強度を求め、
複数の停止位置の光路長差及び光強度の値から補間して複数の等間隔の光路長差における光強度データを求め、
これら光強度変化データからインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得することを特徴とする分光特性測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−184962(P2012−184962A)
【公開日】平成24年9月27日(2012.9.27)
【国際特許分類】
【出願番号】特願2011−46873(P2011−46873)
【出願日】平成23年3月3日(2011.3.3)
【出願人】(304028346)国立大学法人 香川大学 (285)
【出願人】(000166247)古野電気株式会社 (441)
【Fターム(参考)】