説明

分子イメージング

撮像システムは、検査領域を横断する放射線を放射する放射線源(110)と、検査領域及びその中に配置された被検体を横断した放射線を検出し、検出された放射線のエネルギーを表す信号を生成する検出器(116)とを含む。データ選択部(122)が、被検体に投与される造影剤の第1及び第2のスペクトル特性に対応するエネルギースペクトル設定に基づいて、前記信号をエネルギー弁別する。ここで、造影剤は、標的に付着したときの第1の減衰スペクトル特性と、標的に付着していないときの第2の異なる減衰スペクトル特性とを有する。再構成部(134)が、第1及び第2のスペクトル特性に基づいて前記信号を再構成し、標的を表すボリューム画像データを生成する。

【発明の詳細な説明】
【技術分野】
【0001】
以下は概して分子イメージングに関する。以下は、特にコンピュータ断層撮影(CT)への適用を用いて説明されるが、その他の医用撮像及び非医用撮像への適用にも関係する。
【背景技術】
【0002】
コンピュータ断層撮影(CT)スキャナは、検査対象のx線減衰を表す画像を生成する。CTスキャナで使用されるx線管は典型的に、単一の比較的広いエネルギースペクトルを有するx線を作り出す。同様に、そのようなシステムで使用される検出器は典型的に、たとえあったとしても、検出された放射線のエネルギースペクトルについての限られた情報を提供する。これらのスキャナは、検査対象の内部構造についての価値ある情報を提供するものの、特に相異なる化合物が同等の放射線減衰を有する場合に、対象物の物質組成についての情報を提供する能力は限られたものである。
【0003】
相異なる化合物は、減衰された放射線のスペクトルを相異なるように変化させ得るので、物質弁別能力を向上させる技術としてスペクトルCTスキャンが提案されている。この着想は、2つ以上の異なるx線スペクトルを用いてスキャンする、あるいはスペクトル情報を提供する検出器を用いてデータを収集するものである。検査対象の物質組成を決定する能力は、様々な用途を有し得る。ここで説明する新たな方法に特に関連して、2つ以上の重い造影剤の種類が、たとえ体内で同時に存在せしめられる場合であっても、良好に互いに区別され得る。
【0004】
複数のエネルギーチャネル又はエネルギーウィンドウを有するデータを取得する一技術は、連続したフレーム群においてx線管電圧を複数の値(例えば、140kV及び80kV)間で切り替えるものである。他の一技術は、連続したフレーム群の間で交互に、x線管の後に放射線フィルタを設けるものである。他の一技術は、例えば複数のシンチレータ層に基づく検出器などの、マルチエネルギー検出器を使用する。他の一技術は、同一のスキャナ上で2つの独立したx線管と2つの検出アレイとを使用する。更なる他の一技術は、例えば直接変換検出器に基づくもの、又は高利得感光検出器に結合された高速シンチレータに基づくものなどの、光子計数検出器を使用する。
【0005】
スペクトルCTデータを処理する1つの方策は、再構成ステップの前に投影測定値上で物質分解を実行するものである。第2の方策は、複数のエネルギーウィンドウの各々から再構成された画像上で後処理操作を実行するものである。
【0006】
同様の類似例が磁気共鳴撮像(MRI)の分野にも存在する。それは、一般的に、(大抵は)体内の水の水素原子の核磁化、又はその他の適当な元素の核磁化を整列させるために、強力な磁場を使用する。この磁化の整列を体系的に変化させるために無線周波数場が用いられ、それにより、水素(又はその他の元素)の原子核が、スキャナによって検出可能な回転磁場を作り出す。この信号は、体内及び特別な造影剤の画像を構成するのに十分な情報を構築するように、更なる磁場によって操作されることができる。MRIはまた、高磁場に対する核スピンの緩和の特有の特徴を感知することができる。磁場の方向でのスピン−格子緩和を感知する撮像プロトコルはT1強調と呼ばれており、磁場に垂直なスピン−スピン緩和を感知するプロトコルはT2強調と呼ばれている。T1及びT2の双方の特徴を測定することは、体内に同時に存在せしめられた相異なる造影剤種類を良好に区別することの助けとなり得る。
【0007】
同様の類似例が核医学及び単光子放出型断層撮影(SPECT)の分野にも存在する。一般的に、放射性同位体物質が、被検体に投与されて、特徴付けられたエネルギースペクトルを有するガンマ光子を放出する。放射線検出器がこれらの格子を検出し、そのエネルギーを測定する。体内に同時に存在せしめられた2つ以上の異なる種類の放射性トレーサ(追跡子)は、各々が異なるエネルギースペクトルを有する格子を放出する場合に区別されることができる。
【0008】
CTを参照するに、得られる画像内で他の生体構造(例えば、周囲組織)に対する特定の生体構造(例えば、血管)を、あるいは機能情報(例えば、血流)を視覚的に強調するために、スキャンに先立って、例えば静脈ヨード造影剤などの造影剤が患者に投与されてきた。CTにおける造影剤は通常、生体組織の減衰より遙かに高い減衰を有する重元素に基づいている。しばしば使用されるその他の造影剤の例には、バリウム、硫酸バリウム、ガストログラフィン、及びガドリニウムに基づく造影剤が含まれる。例えば金及びビスマスなどの重元素に基づくその他の造影剤も提案されている。例えば腫瘍、溶菌斑又は血栓症などのより具体的な構造に関して、より最近の傾向は標的造影剤を用いるものとなっている。そのような造影剤は、特定の機能的、解剖学的あるいは医学的な状態を指し示すことが可能な所望の生物学的標的に蓄積するように設計される。スペクトルCTが使用されるとき、同一スキャン中に、同一の被検体内で共に使用される相異なる造影剤種類を互いに区別することができ、それらが相異なる生理的機能を指し示すことができることが示されている。
【0009】
残念ながら、造影剤の一部は、標的が存在しないその他の人体領域にも分布且つ/或いは蓄積する。例えば、重元素のナノ粒子を含む標的造影剤を用いるとき、それら粒子は、標的に関係しないマクロファージによって捕捉される傾向にある。結果として、得られる画像は、高コントラストの背景雑音及び/又は偽陽性の蓄積サイトを含むことがある。このような造影剤の別の欠点は、それらを洗い流して、実質的に標的位置のみに造影剤を残すまで、循環時間が長くなり得ることである。他の1つの考えられる問題は、標的位置の濃度又は標的位置に付着される造影物質単位の濃度が、医用撮像装置の実際的な制限のために、機能的分子イメージングに十分なほど高くならないことがあり得ることである。
【発明の概要】
【発明が解決しようとする課題】
【0010】
本出願に係る態様は、これらの問題及びその他の問題を解決するものである。
【課題を解決するための手段】
【0011】
一態様によれば、撮像システムは、検査領域を横断する放射線を放射する放射線源と、検査領域及びその中に配置された被検体を横断した放射線を検出し、検出された放射線のエネルギーを表す信号を生成する検出器とを含む。データ選択部が、被検体に投与される造影剤の第1及び第2のスペクトル特性に対応するエネルギースペクトル設定に基づいて、前記信号をエネルギー弁別する。ここで、造影剤は、標的に付着したときの第1の減衰スペクトル特性と、標的に付着していないときの第2の異なる減衰スペクトル特性とを有する。再構成部が、第1及び第2のスペクトル特性に基づいて前記信号を再構成し、標的を表すボリューム画像データを生成する。
【0012】
他の一態様において、方法は、生物学的標本内の生化学成分を、相異なるx線減衰スペクトル応答を有する少なくとも2つの異なるナノ粒子を含むオリゴヌクレオチド構造のハイブリッド形成連鎖反応を介して、該生化学成分又はそれに付着した合成成分の減衰x線のスペクトルを変化させることによって検出するステップを含む。
【0013】
他の一態様において、方法は、生物学的標本内の生化学成分を、相異なる核磁気共鳴応答を有する少なくとも2つの異なるナノ粒子を含むオリゴヌクレオチド構造のハイブリッド形成連鎖反応を介して、該生化学成分又はそれに付着した合成成分の核磁気共鳴信号を変化させることによって検出するステップを含む。
【0014】
他の一態様において、方法は、少なくとも2つの異なる放射性粒子を含むオリゴヌクレオチド構造のハイブリッド形成連鎖反応を介して、放射性崩壊によって放出される平均ガンマ光子エネルギーを変化させることによって、生物学的標本内の生化学成分を検出するステップを含む。
【0015】
他の一態様において、方法は、撮像モダリティによって検出可能な造影剤を含み、該造影剤は、特定の生物学的標的に結合するとき、少なくとも1つの検出可能な特性を自発的に変化させるものである。
【0016】
他の一態様において、方法は、スキャン対象の被検体に、標的とする領域を有するプローブを投与するステップを含み、該プローブは、該プローブが特定の標的に結合するときに、選択された生物学的標的及びハイブリダイゼーションに使用可能なイニシエータ領域にのみ結合する。さらに、イニシエータ領域が露出されているときに連鎖反応によってイニシエータに重合する少なくとも2つのHCRモノマー成分が被検体に投与され、各々が異なる物質からなる2つの共役の異なる粒子を有する少なくとも1つの成分が被検体に投与される。粒子の各々はスキャンデータにおいて異なる応答を示し、第1の粒子のみが重合HCR錯体にハイブリダイゼーションされたままとなり、第2の粒子は重合HCR錯体から分離する。当該方法は更に、前記2つの異なる粒子の濃度の空間特性及び時間特性を検出する撮像装置を用いて、スキャンを実行するステップと、スキャンデータに基づいて、2つの異なる物質の凝集を反映した情報を生成するステップとを含む。本明細書において、用語‘オリゴヌクレオチド構造’は用語‘HCRモノマー’又は単純に‘モノマー’と同一の意味を有する。
【0017】
他の一態様において、方法は、少なくとも2つの異なる種類の準安定HCRモノマーの複数の分子単位を含む造影剤を投与するステップを含み、少なくとも1つのモノマー種類は2つの異なるナノ粒子に結合されており、HCRプロセスの結果として、第1のナノ粒子は、生成されるHCR重合錯体に付着したままとなり、第2のナノ粒子は前記錯体から分離し、前記2つのナノ粒子の相対濃度が、減衰されたx線のスペクトル特性に基づいて検出される。
【0018】
他の一態様において、方法は、少なくとも2つの異なる種類の準安定HCRモノマーの複数の分子単位を含む造影剤を投与するステップを含み、少なくとも1つのモノマー種類は2つの異なるナノ粒子に結合されており、HCRプロセスの結果として、第1のナノ粒子は、生成されるHCR重合錯体に付着したままとなり、第2のナノ粒子は前記錯体から分離し、前記2つのナノ粒子の相対濃度が核磁気共鳴特性に基づいて検出される。
【0019】
他の一態様において、方法は、少なくとも2つの異なる種類の準安定HCRモノマーの複数の分子単位を含む造影剤を投与するステップを含み、少なくとも1つのモノマー種類は2つの異なる放射性粒子に結合されており、HCRプロセスの結果として、第1の粒子は、生成されるHCR重合錯体に付着したままとなり、第2の粒子は前記錯体から分離し、前記2つの粒子の相対濃度が、ガンマカメラによって、放射されるガンマ光子エネルギーに基づいて検出される。
【0020】
本発明の更なる態様が、以下の詳細な説明を読んで理解した当業者に認識されるであろう。
【図面の簡単な説明】
【0021】
本発明は、様々な構成要素及びその配置、並びに様々なステップ及びその編成の形態を取り得る。図面は、単に好適実施形態を例示するためのものであり、本発明を限定するものとして解釈されるべきではない。
【図1】撮像システムを例示する図である。
【図2】標的に付着したときにスペクトル特性を変化させる造影剤の一例を示す図である。
【図3】図2の造影剤のx線減衰曲線を例示する図である。
【図4】方法の例を示す図である。
【図5】方法の例を示す図である。
【図6】方法の例を示す図である。
【図7】その他の造影剤の例を示す図である。
【図8】その他の造影剤の例を示す図である。
【図9】その他の造影剤の例を示す図である。
【図10】その他の造影剤の例を示す図である。
【図11】その他の造影剤の例を示す図である。
【図12】その他の造影剤の例を示す図である。
【図13】その他の造影剤の例を示す図である。
【図14】その他の造影剤の例を示す図である。
【発明を実施するための形態】
【0022】
図1は、静止ガントリー102と、静止ガントリー102によって回転可能に支持された回転ガントリー104とを含む撮像システム100を示している。回転ガントリー104は、検査領域106の周りを、長手方向軸すなわちz軸108を中心にして回転する。例えばx線管などのx線源110が、回転ガントリー104によって支持され、放射線を放射する。該放射線ビームはコリメータ112によって平行にされ、検査領域106を横断する概して円錐状、扇状、ウェッジ状又はその他の形状の放射線ビームが作り出される。放射線感知検出器アレイ116が、検査領域106を横断した光子を検出する。図示した検出器116は、例えば直接変換検出器(例えば、Si、Ge、GaAs、CdTe、CdZnTeなど)、又は光センサと光学的に結合したシンチレータを含む、あるいは多層シンチレータに基づく検出器とし得る、シンチレータベースの検出器などの、エネルギー分解式検出器である。他の例では、検出器は非エネルギー分解式の検出器とし、x線源が相異なる放射線スペクトル間で切り替えられてもよい。検出器116は、検出したx線光子の各々に対して、あるいは所定の離散的な読み出し内で受信した全x線光子に対して、例えば電流又は電圧などの電気信号を生成する。
【0023】
インジェクタ118が、スキャン対象又は被検体内に造影剤を注入あるいは投与するように構成される。造影剤は、代替的に、臨床医などによって手作業で投与されてもよい。好適な造影剤は、標的に付着したときに自身のx線減衰スペクトル応答を変化させる造影剤を含む。そのような造影剤は、標的における造影剤蓄積、背景造影剤、及び標的以外の領域での造影剤蓄積の間での区別を可能にする。さらに詳細に後述するように、そのような造影剤の一例は、ハイブリッド形成(ハイブリダイゼーション)連鎖反応(hybridization chain reaction;HCR)バイオセンサ技術及びナノ粒子との相互作用に基づく造影剤を含む。好適なナノ粒子の例は、以下に限られないが、ヨウ素及びビスマスを含む。一例において、そのような造影剤は、特定の標的に結合するときにのみ連鎖反応的に重合される合成分子(DNAモノマー)に基づく。そのような造影剤は、検出特異性を向上させることを容易にするとともに、標的での検出増幅を可能にし、感度を向上させる。
【0024】
収集部120が、電気信号を収集し、検出された放射線の強度及びエネルギースペクトルを表すデータストリームを生成する。データ選択部122が、受信したデータを選択して、それを、更なる処理のために、例えば所定のエネルギーウィンドウなど、必要とされるエネルギースペクトルセットにて表す。エネルギースペクトルコントローラ126が、検出システム又は放射線源の何れかにおいて、必要とされるエネルギースペクトルの調整可能な特性を設定する。エネルギースペクトルコントローラ126は、2つ以上のエネルギーウィンドウを設定するため、あるいは放射される放射線を造影剤内のナノ粒子の減衰特性に従って設定するために使用されてもよく、それにより、エネルギースペクトルがその他の方法で設定される構成に対して感度を高め得る。データは、必要に応じて、再構成前に、データプロセッサ128によって更に処理される。画像再構成部134が、検出された信号をスペクトル特性に基づいて選択的に再構成し、スキャンされた対象物を表す画像又はその他の情報を作り出す。
【0025】
例えばカウチなどの対象物支持台136が、検査領域106内の患者又はその他の対象物を支持する。対象物支持台136は、スキャン手順を実行するために対象物を検査領域106に対して導くように移動可能である。汎用コンピュータがオペレータコンソール138として機能する。コンソール138は、例えばモニタ又はディスプレイなどのヒトが読み取り可能な出力装置と、例えばキーボード及びマウスなどの入力装置とを含んでいる。コンソール138に常駐するソフトウェアが、オペレータがグラフィカルユーザインタフェースを介して、あるいはその他の方法でスキャナ100と相互作用することを可能にする。そのような相互作用には、投与された造影剤に基づいて、例えば造影剤に含まれるナノ粒子に基づいて、好適なスキャンプロトコルを選択することや、造影剤に対応するエネルギー弁別閾値を設定することなどが含まれ得る。
【0026】
スキャナ100によって生成された投影データ及び/又は画像データが、処理部140によって処理されることができる。この例において、処理部140はスキャナ100とは別々に示されており、ワークステーション又はコンピュータなどの部分とし得る。処理部140は、(図示されるように)スキャナ100にローカルであってもよいし、スキャナから遠隔に配置されて、分散処理システムなどの一部を含んでいてもよい。他の一実施形態においては、処理部140はコンソールの部分である。図示した処理部140は、投影データ及び/又は画像データを処理するための1つ以上のツール144を含むツールバンク142を含んでいる。続いて、好適な処理の幾つかの例を提示する。認識されるように、以下の例は例示目的で提示されるものであり、限定的なものではない。
【0027】
ツール144のうちの少なくとも1つは、造影剤内の2つ以上のナノ粒子をスペクトル特性に基づいて区別することができる。さらに、ツール144のうちの少なくとも1つは、それら2つ以上のナノ粒子の間の減衰比、及び/又は例えば患者や生体標本などのスキャン対象又は被検体内の少なくとも2つの異なる位置におけるそれらナノ粒子のうちの少なくとも一方の絶対値を計算することができる。この結果は、ハウンスフィールド値及び/又はその他の予め校正されたスケールで提示されることが可能である。有限樹枝状成長HCRを用いるとき、標的サイトの定量的な評価を決定するために、多数の成分生成に関する既知の因子が用いられ得る。ツール144のうちの少なくとも1つは、HCRプロセスが検出された最初の時間を指し示すことができる。
【0028】
ツール144のうちの少なくとも1つは、異なる複数の元素の評価に関する信頼度の推定及び提示を行うことが可能である。これは、生体標的サイトの局所的及び広域的な濃度又は量を評価することを含み得る。ツール144のうちの少なくとも1つは、標的物質ひいては生体標的サイトを自動的に評価することができる。これは、解剖学的な先験的情報を用いることを含み得る。例えば、標的物質が特定の器官内には見られるがその他の器官には見られないことが予期される場合、信頼度を計算する際にこの情報を重み付けることが可能である。ツール144のうちの少なくとも1つは、連続した複数のスキャン又は血流スキャンにおけるナノ粒子の存在の相対的及び/又は絶対的な変化速度を計算することができる。このような情報は、例えば数値的に、あるいは、グレースケール、色のオーバーレイ及び/又は半透明に色を付けるオーバーレイの変形によって視覚的になど、様々に提示され得る。
【0029】
変形例及びその他の実施形態
一例において、造影剤は少なくとも2つのKエッジ物質を含む。ここでは、Kエッジ物質は、CT撮像にて用いられる放射線エネルギースペクトル帯域内のKエッジエネルギーを持つ重元素を有する物質を意味する。例として、ナノ粒子の1つは、例えば銀、インジウム、ヨウ素、バリウム、ガドリニウムなど、25−55keVの範囲内のエネルギーを有するKエッジ物質を含むことができ、他の1つのナノ粒子は、例えばタングステン、白金、金、タリウム、ビスマスなど、65−95keVの範囲内のエネルギーを有するKエッジ物質を含むことができる。このような例において、エネルギースペクトルコントローラ126は、放射される関連エネルギースペクトル又は検出される関連エネルギースペクトルの何れかをKエッジエネルギーに従って設定且つ最適化するために使用され得る。好適な物質の例には、以下に限られないが、銀、インジウム、ヨウ素、バリウム、ガドリニウム、タングステン、白金、金、タリウム及びビスマスが含まれる。
【0030】
認識されるように、その他の撮像モダリティが追加的あるいは代替的に用いられてもよい。異なるモダリティを使用するとき、造影剤は、その特定の撮像モダリティに関連するナノ粒子又はその他の粒子を含む。
【0031】
非限定的な例として、MRI撮像を用いるとき、粒子の1つは、T1効果が支配的なガドリニウムに基づくものとすることができ、第2の粒子は、T2効果が支配的な酸化鉄に基づくものとすることができる。これら2つの異なる粒子は、T1及びT2双方の特性を感知して重み付ける好適なMRI技術を用いて区別されることが可能である。例えば、一例において、粒子の区別は、T1撮像が1つの既知の磁気共鳴特性を示し且つT2撮像が異なる既知の特性を示すような、T1及びT2の検知の組み合わせによって行われ得る。T1特性及び/又はT2特性を強調するために様々なシーケンスが使用され得る。組み合わされたシーケンスも同様に実行され得る。別の1つの選択肢は、共にT1特性を示す、あるいは代替的に共にT2特性を示す2つの異なる造影元素であって、好ましく相異なり且つ区別可能なT1応答又はT2応答を有する2つの異なる造影元素、を用いるものである。好適な物質の例には、以下に限られないが、ガドリニウム及び酸化鉄が含まれる。
【0032】
核医学では、粒子は、ガンマカメラ及びSPECTによる検出に好適な2つの異なる放射性同位体から作成されることができる。例えば、一方の粒子は、主に140keVのガンマ光子を放出する放射性Tc99mに基づくことができ、第2の粒子は、主に70keVのガンマ光子を放出するT1−201に基づくことができる。これら2つの成分は、既知のデュアルアイソトープ核医学技術を用いて区別されることが可能である。例えば、デュアルアイソトープスキャンは、Tc99m及びT1−201双方の放射性同位体を用いることによってレスト機能及びストレス機能を評価する心臓核医学の実用的な方法として実証されている。単光子放出核医学でよく用いられる幾つかのその他の同位体も同様に使用され得る。
【0033】
蛍光分光やラマン分光、及び/又はその他の光撮像技術に関し、粒子は異なる光応答を有することができ、各々が異なるスペクトルにあり得る。スペクトルの相対的な強度は光学手段によって検出されることができる。
【0034】
簡単に上述したように、好適な造影剤は、ハイブリダイゼーション連鎖反応(HCR)に基づく造影剤を含め、標的に付着したときに自身のx線減衰スペクトル応答を変化させる造影剤を含む。HCRは、(生物学的なDNA又はRNAの構成要素と同様の)合成核酸分子の連鎖反応的な誘発ハイブリダイゼーションの方法である。その処理は、特有の核酸開始剤(イニシエータ)ストランド(鎖)によって初めにトリガーされるときにのみ連鎖反応イベントにて形態変化して互いに結合することが可能な、特別な準安定核酸構造から開始する。イニシエータストランドは、通常は別のプローブ分子に仲介されて、特定の生物学的標的に結び付くときにのみ、ハイブリダイゼーションに使用可能になる。
【0035】
先述の造影剤は、当初は2つの異なる生化学成分又はナノ粒子が互いに付着し、特定の標的への連鎖反応結合が起こるときにのみナノ粒子の一方がハイブリッド成分から周囲に解放されるような造影剤を含んでもよい。結果として、造影剤のx線減衰スペクトル応答が変化し、解放されたナノ粒子は標的領域のx線減衰スペクトル応答に影響を及ぼさない。これを、図2及び3に関して示す。
【0036】
先ず図2を参照するに、造影剤が含む構造200は、第1のHCR成分202と、それに付着した第1及び第2のナノ粒子204、206とを有している。第1のナノ粒子204は第1のx線減衰スペクトル応答を有し、第2のナノ粒子206は第2のx線減衰スペクトル応答を有し、HCR成分202に付着したナノ粒子204、206の組み合わせは第3のx線減衰スペクトル応答を有する。これを、図3に関連して示す。図3において、y軸は低エネルギーウィンドウ画像の(ハウンスフィールド値(HU)での)減衰を表しており、x軸は高エネルギーウィンドウ画像の(HUでの)減衰を表している。第1のカーブ302は第1のナノ粒子204のスペクトル応答を示し、第1のカーブ304は第2のナノ粒子206のスペクトル応答を示し、第3のカーブ306はナノ粒子204、206の組み合わせのスペクトル応答を示している。
【0037】
図2及び3を共に参照するに、構造200の一部は、212で示すように、特定の標的210に付着したイニシエータ208に付着している。その他の一部の構造200は、標的210に既に付着した構造200に、214で示すように直接的に、あるいは216で示すように間接的にの何れかで付着している。構造200がこのように付着するとき、例えばナノ粒子206であるナノ粒子の一方は解放され、x線減衰スペクトル応答は308で示されるように第1のカーブ302を辿る。図示した例において、比較的高い濃度の構造200がマクロファージ218によって捕捉されており、比較的低い濃度の構造200が血液200内を循環している。解放されたナノ粒子206も、マクロファージ218によって捕捉され、あるいは血液200内を循環し得る。切り離されたナノ粒子206のスペクトル応答はカーブ304を辿り、310で示すマクロファージ218内の構造200及び312で示す血液200内を循環する構造200を含む未反応の構造200のスペクトル応答はカーブ306を辿る。
【0038】
斯くして、検出特異性が向上され得る。さらに、原理的に、新たな構造200の供給が得られる限り、あるいはクエンチング(抑制)成分が導入されるまで、重合が線形あるいは指数関数的に進み得る。斯くして、検出感度が向上され得る。
【0039】
続いて、様々な方法を例示する。認識されるように、ここで説明する行為は限定的なものではない。従って、他の実施形態において、行為の順序は異なってもよい。また、他の実施形態は、より多くの、あるいはより少ない行為を含んでいてもよい。
【0040】
図4は第1の方法を示している。ステップ402にて、分子プローブが対象物又は被検体に投与される。一例において、分子プローブは、選択された生物学的標的に特異的に結合するように適応された標的領域と、プローブが特定の標的に結合するときにハイブリダイゼーションに使用可能なHCRイニシエータ領域との双方を含む。プローブは、特定の標的を検出し且つそれに結合することが可能な分子とし得る。例えば、プローブは、当該プローブが所望の標的に付着するときに付着して露出されるHCRイニシエータDNA鎖を備えた、ペプチド、アプタマー、抗体若しくはそのフラグメント、核酸ストランド又は小分子とし得る。ステップ404にて、HCRモノマー成分が対象物又は被検体に投与される。一例において、HCRモノマー成分は、露出されたイニシエータストランドによってトリガーされた後に連鎖反応的に重合され得る。
【0041】
ステップ406にて、相異なるスペクトル特性を有する少なくとも2つの粒子を持つ構造を含む造影剤が、対象物又は被検体に投与される。このような造影剤は、上述のように自身のスペクトル特性を変化させることができ、例えば、イニシエータに付着したときに1つのスペクトル特性を有し、イニシエータに付着していないときに別の1つのスペクトル特性を有する。認識されるように、この造影剤は、HCRモノマーの1つと組み合わされてもよいし、HCRモノマーとは無関係の更なる成分であってもよい。ステップ408にて、対象物又は被検体がスキャンされ、得られた投影データが再構成されて、画像データが生成される。必要に応じて、ステップ410にて、更なるHCR反応を抑止するために患者に抑制剤が投与され得る。抑制剤は、画像データからの、あるいはその他の方法での特定の示唆後、所定の期間が経過した後に投与される。ステップ412にて、画像データに基づいて画像が生成される。この方法は検出特異性及び感度を更に向上させ得る。
【0042】
図5は別の一手法を示している。ステップ502にて、プローブイニシエータが対象物又は被検体に投与される。ステップ504にて、イニシエータが標的サイトに付着することを可能にするのに好適な時間遅延の後、上述のナノ粒子を有するHCR成分を含む造影剤が対象物又は被検体に投与される。一例において、この時間遅延は分、時間などのオーダーである。例えばプローブが標的サイトに付着されるときにのみイニシエータが露出されることが可能な他の一例において、イニシエータ及び造影剤は同時に投与されてもよい。ステップ506にて、造影剤が標的サイトに集まることを可能にするのに好適な時間遅延の後、対象物又は被検体がスキャンされる。必要に応じて、ステップ508にて、反応抑制剤が投与され得る。ステップ510にて、得られた画像データが処理される。これは、手動分析、及び/又はアルゴリズム的且つ/或いはソフトウェアのツールを用いた自動分析を含むことができ、その結果が臨床医に、対象物又は被検体に関する生理学情報及び/又は機能情報を提供する。このような情報は格納され、且つ/或いは臨床医に様々に提示され得る。この方法は検出特異性及び感度を向上させ得る。
【0043】
図6は別の一手法を示している。ステップ602にて、プローブイニシエータが対象物又は被検体に投与される。ステップ604にて、好適な時間遅延の後、上述のナノ粒子を有するHCR成分を含む造影剤が対象物又は被検体に投与される。ステップ606にて、好適な時間遅延の後、対象物又は被検体がスキャンされる。ステップ608にて、更なるスキャンが実行されるべきか決定される。そうであれば、ステップ610にて、より多くの造影剤が投与されるべきか決定される。そうであれば、ステップ604−608が繰り返される。そうでなければ、ステップ606−608が繰り返される。更なるスキャンが実行されない場合、ステップ612にて、必要に応じての抑制剤が投与され得る。各スキャン後及び/又は手順後、得られた画像データが、個々のスキャン情報及び/又は組み合わされたスキャン情報として、処理されて提示される。非限定的な一例において、この方法は、例えばいつ抑制剤を投与すべきかを決定するために、時間的な変化を追跡すること、及び/又はHCRプロセスが始まった時点を特定することを可能にする。
【0044】
認識されるように、例えば治療薬(例えば、化学療法薬など)及び/又はその他の薬物の活性化及び/又は機能を追跡することなどの薬剤追跡に関連して、その他の方法も使用され得る。その場合、薬剤が活性になるとき、又は薬剤がその所望の生理学的反応を果たすとき、薬剤の成分がHCRイニシエータストランドを露出させ得る。望ましい場合、患者への治療薬の投与は、臨床ワークフローの最初のステップにて行われ得る。イニシエータストランドは、治療薬の一部であってもよいし、あるいは、薬剤成分を標的とする異なる成分に接続される場合には、後続ステップにて投与されてもよい。連続した複数のスキャンを実行するとき、例えば撮像スキャン又はその他からの示唆に基づいて、1つ以上の更なる薬剤を患者に投与することができる。これは、制御された手法での薬剤の投与を可能にし得る。この手法は、光力学治療及び/又はその他の用途と組み合わされ得る。光力学治療を用いる場合、光増感剤は、局部的に投与される特定の外部光を吸収するときにのみ転移されて細胞に対して毒性になる。この薬物の配座転移は、特定のHCRイニシエータ露出を設計するために使用され得る。
【0045】
続いて、好適な造影剤を更に詳細に説明する。
【0046】
一般に、標的210への構造200の付着は、核酸分子の誘発連鎖ハイブリダイゼーションが、安定なモノマーヘアピン又はその他の一層複雑な核酸構造から開始することを伴う。一例において、安定なモノマーヘアピンは、核酸イニシエータストランドによりトリガーされるとき、ハイブリダイゼーションイベントの連鎖反応を受け、ギザギザのへリックス(螺旋)を形成する。短いループは、相補一本鎖核酸による侵入に対して耐性を有し、ループの形態での位置エネルギーの貯蔵を可能にする。位置エネルギーは、誘発配座変化によってループ内の一本鎖塩基が相補鎖とハイブリッド形成することが可能にされるときに解放される。
【0047】
この変化をトリガーするイニシエータ208は、標的210によって活性化されたときにのみ、ハイブリダイゼーションに使用可能となり得る。例えば、イニシエータ208は、標的210を検出し且つそのときにのみイニシエータ208を露出させる別の分子成分に結合されることができる。HCR成分は、特定のDNAモノマーを介して共に付着された少なくとも2つの重元素ナノ粒子種を含む。一方の種類のナノ粒子単位が、所望の生物学的標的に結合する連鎖反応を受けて、ハイブリッド成分から周囲に解放されるのみである。重合HCR錯体に付着するように設計される第1のナノ粒子単位と、解放されるように設計される第2のナノ粒子単位との間の当初の接続は、準安定的な弱いリンクを介するものとし得る。HCR重合中の一方のナノ粒子種の解放を促進するため、上記の弱いリンクは、HCRが起こったときにのみ露出される一層強い競合リンクを有していてもよい。一例において、これは、1つのハイブリッドDNA構成を、エネルギー的あるいはエントロピー的に更に好ましい別のハイブリッド構成で置換することを含む。
【0048】
次に、様々な準安定的な弱いリンクを説明する。一例において、開鎖(オープンストランド)は、ヘアピンモノマーの一部である相補閉ループ鎖に対して弱くハイブリッド化される。この構成は、ヘアピンモノマーの第1のループセグメントと第2の相補自由鎖セグメントとの間の比較的弱いハイブリダイゼーションに基づく。ループセグメントに弱く引き付けられる現象は、“キッシング・ヘアピン・ループ(kissing hairpin loops)”と呼ばれている。2つのセグメント内の相補的ヌクレオチドは相互に引き付けられる。しかしながら、ループトポロジーは、エネルギー的に好ましいものであるハイブリッド構造の通常の二重螺旋巻きを妨げる。ループセグメントと相等しいヌクレオチド配列を有する競合自由鎖セグメントが利用可能になるとき、ループにハイブリダイゼーションされている第2の自由セグメントは、ループから分離して相等しい相補自由鎖にハイブリダイゼーションすることを好むことになる。後者の2つのハイブリッド鎖は、エネルギー的に好ましい二重螺旋を作り出す。この手法により、2つの異なるナノ粒子単位は何れも、先ず第1の種類の基本HCR成分に属するモノマーに付着される。第2の種類の基本HCR成分に属するモノマーは、付着したナノ粒子を有しない。HCRプロセスが生じるとき、2つのナノ粒子の一方は重合HCR錯体に接続されたままであり、他方のナノ粒子は錯体から分離されて周囲に解放される。
【0049】
他の一例において、3つの接続鎖によるエネルギー貯蔵は‘T’字状のジャンクション形状を形成する。この構成は、Tジャンクション形状にエネルギーを蓄えることに基づく。この場合、当初の構造は、完全にはハイブリダイゼーションされない、あるいは巻かれない領域を中央に残すように共にハイブリダイゼーションされた3つのストランドを有する。3つのストランドのうちの1つに相補的な適切な開鎖がHCRプロセス中に露出されるとき、‘T’字に代えて二重螺旋の2つの別々の単位を有する新たなエネルギー的に好ましい構成が利用可能になる。このような結果を達成するには、3つのストランドのうちの1つは、新たな露出鎖に相補的であるべきであり、他の2つのストランドは相互に相補的であるべきである。この手法では、基本HCR成分は当初、付着したナノ粒子を有しない。別個のモノマー成分が、2つの異なるナノ粒子を一緒に保持する。これら2つのナノ粒子種は、HCRプロセスの発生後に一方のナノ粒子が重合HCR錯体に接続され、且つ他方のナノ粒子が錯体から分離されて周囲に解放されるように接続されている。この選択肢は、ナノ粒子成分を基本HCR成分とは独立に投与することができるので、一部のシナリオにおいて利点を有し得る。基本HCRモノマーとは異なる単位としての2つのナノ粒子の結合は、上述のループ鎖に接続される自由鎖の弱いリンクを用いることによっても為され得る。これは、後述する鎖交換に基づく弱いリンクを用いることでも同様に為され得る。
【0050】
他の一例は、より長いストランド内の相補的な部分に短いストランドが接続される鎖交換を伴い、HCR中にのみ、該より長いストランドに合致する別の完全に相補的なストランドが露出される。この構成は、第1の長いセグメントの、完全に相補的なセグメントへの完全なハイブリダイゼーションと比較して、第1の、より長い鎖セグメントと、HCR中に利用可能になる該第1のセグメントのヌクレオチド配列の一部のみに相補的な、第2の、より短いセグメントとの間の、比較的弱いハイブリダイゼーションに基づく。鎖交換は、ランダムウォーク(random walk)のブランチマイグレーションによって行われる。このプロセスの終わりの時点で二重螺旋の大きな安定性が達成されるので、エネルギーの利得が達成される。一部の研究において、この鎖交換はエントロピー駆動プロセスとして解釈されることもある。第2の短い方のストランドは、第1の長い方のストランド(これはこの時、相補的な長いストランドに完全にハイブリダイゼーションされる)内の相補部分から分離された後、第1の長い方のストランドに再び付着する機会を殆ど有しない。何故なら、ブランチマイグレーションプロセスを開始するための自由な付着末端(toehold;足掛かり)が存在しないからである。この状況により、最後のハイブリダイゼーション状態の安定性が更に高められる。
【0051】
簡単に上述したように、HCR重合は所定の条件下で選択的に終了されることができる。例えば、HCR成分の供給を停止し、残存成分を除去することによって、重合を終了させることが可能である。他の一例において、また上述したように、適切な抑制剤を供給することによって、重合を終了させることが可能である。例えば、基本的な2成分のHCR形態において、イニシエータストランドに相補的な単純なストランドの突然の供給は、成長プロセスを終了させることができる。その場合、HCRプロセス中に露出されるものを含む全ての自由なイニシエータストランドが、新たなストランドとハイブリダイゼーションされることになる。更なる他の一例において、重合は有限の指数関数的樹枝状成長を有し、例えば全てのモノマー生成がハイブリダイゼーションされた後に自己終了し得る。
【0052】
幾つかの例を提示する。
【0053】
先ず、図7を参照するに、造影剤は、第1のHCR成分の第1の分子単位又はモノマー702と、それに付着した第1及び第2のナノ粒子704、706とを含む構造700を含んでいる。造影剤はまた、ナノ粒子に付着されていない第2の異なるHCR成分の第2の分子単位又はモノマー708を含んでいる。第1のモノマー702は、標的712に付着したイニシエータ710に付着する。結果として、一方のナノ粒子706は構造700から分離して周囲に解放され、他方のナノ粒子704は重合HCR錯体714に付着したままとなる。第2のモノマー708は、イニシエータ710に付着した第1のモノマー702に付着する。これが、次の第1のモノマー702はイニシエータ710に代えて第2のモノマー708に付着することを別として、繰り返される。
【0054】
図8は、構造700に関連するこのような重合の第1の例を示している。図示のように、第1のナノ粒子(N1)704は強い安定な接続を介して第1のモノマー(H1)702に付着しており、第2のナノ粒子(N2)706は、準安定な弱いリンク707を介して第1のモノマー702に接続されたヘアピン部分に、強い安定な接続を介して接合されている。この説明において、文字は異なるDNAモノマーセグメントを指し示す。アスタリスク(‘’)を付された文字は、対応するマークなしの文字に対して相補関係にある。成分702及び708は、702の付着末端(‘足掛かり’とも呼ばれる)の位置で核となるイニシエータ(i)710が存在しないとき安定であり、ヘアピンを開くように不偏の鎖置換相互作用を受ける。702の新たに露出される付着末端は、708の付着末端の位置で核となり、イニシエータ710に対して順序通りに相等しい708上の付着末端を露出させるようにヘアピンを開く。斯くして、イニシエータ710の各複製が、ギザギザの二重螺旋を形成するように、代わる代わるモノマー702及び708のヘアピンとの間でハイブリダイゼーションイベントの連鎖反応を伝搬することができ、イニシエータ結合の信号が増幅される。
【0055】
以上のことは、代替的に、以下のように記述することができる。イニシエータdの存在により、H1のdセグメントがイニシエータのdに付着する。イニシエータのeは、H1のループf内に蓄えられたエネルギーにより、H1の対eeを開く。H2の付着末端fは、ループfが開いているときにのみH1のセグメントfに付着することができる。そして、H1のセグメントeが、H2のループd及びc内に蓄えられたエネルギーにより、H2のセグメントebを開く。ループcが開いているとき、それは(当初においてN2に共役のヘアピンモノマーのループcに付着していた)H1のセグメントcに付着する。2つの相補的なオープンセグメントの間の接続は、ループに対するオープンセグメントの接続より強いので、置換が生じる。このプロセスの後、N2はもはやHCR錯体に付着していない。H2が開いているとき、そのセグメントdは新たなイニシエータを形成する。なお、セグメントc及びcは(ヘアピン内の共通のループセグメントに対して)比較的長く、ループへのオープンセグメントの準安定接続を可能にする。セグメントd及びfは比較的短いため、それらが閉ループ形態にあるとき、相補的なオープンセグメントはそれらに付着することができない。
【0056】
図9は、構造700に関連する上述のような重合の第2の例を示している。この例と図8の例との間の主な相違は、第2のナノ粒子N2の準安定な弱い接続が、鎖交換プロセスによって置換可能な短いセグメントのハイブリダイゼーションによって為されていることである。N2は、H1のcにハイブリダイゼーションされる短いセグメントcによってH1に接続されている。H2は、cセグメントとkセグメントとからなるループを含んでいる。HCRプロセス中、H2のループkcは開いている。kが先ずH1のkにハイブリダイゼーションされる。H2の開ループの、続くcセグメントが、鎖交換プロセスによって、N2に共役のcセグメントを置換することになる。N2がHCR錯体から分離された新たな構成は、熱力学的に一層好ましいものである。
【0057】
図10は、ナノ粒子704、706が第1のHCR成分708に付着していない構造1000を造影剤が含む一変形例を示している。代わりに、ナノ粒子704、706はモノマー1002を介して結合されている。2つのナノ粒子704、706は、一方のナノ粒子706が分離して周囲に解放され、且つナノ粒子704が重合HCR錯体714に接続されたままとなるように、モノマー1002に接続されている。この実施形態は、ナノ粒子704、706とHCR成分702、708との別々の投与を可能にする。
【0058】
図11は、構造1000に関連する第1の例を示している。イニシエータdの存在により、H1のdセグメントがイニシエータのdに付着する。イニシエータのeは、H1のループf内に蓄えられたエネルギーにより、H1の対eeを開く。H2の付着末端fは、ループfが開いているときにのみH1のセグメントfに付着することができる。そして、H1のセグメントeが、H2のループd及びc内に蓄えられたエネルギーにより、H2のセグメントebを開く。H2のセグメントdは開いており、新たなイニシエータを形成する。H2のaと呼ばれるループは依然として閉じている。2つのナノ粒子を備えた成分が存在するとき、N1に共役なc成分が、HCR錯体へのハイブリダイゼーションの前にH2内の閉ループであったcセグメントに付着する。ナノ粒子成分内のgセグメントが、aループ内に蓄えられたエネルギーにより、HCR錯体内のggセグメントを開く。そして、H2のaセグメントが、N2に共役なヘアピンのaループに代えて、ナノ粒子成分のaに付着する。この置換は、2つの相補的なオープンセグメントの間の接続はループに対するオープンセグメントの接続より強いために起こる。このプロセスの後、N1のみがHCR錯体に付着している。なお、この例において、セグメントa及びaは(ヘアピン内の共通のループセグメントに対して)比較的長く、ループへのオープンセグメントの接続を可能にする。セグメントc、d及びfは比較的短いため、それらが閉ループ形態にあるとき、相補的なオープンセグメントはそれらに付着することができない。
【0059】
図12は、構造1000に関連する他の一例を示している。この例と図11の例との間の主な相違は、N2の準安定な弱い接続が、鎖交換プロセスによって置換可能な短いセグメントのハイブリダイゼーションによって為されていることである。N2は、N1に共役のaにハイブリダイゼーションされる短いセグメントaによってN1に接続されている。H2は、aセグメントとkセグメントとからなるループを含んでいる。HCRプロセス中、且つナノ粒子成分の存在下で、H2のループkaは開いている。kが先ずN1に共役のkにハイブリダイゼーションされる。H2の開ループの、続くaセグメントが、鎖交換プロセスによって、N2に共役のaセグメントを置換することになる。N2がHCR錯体から分離された新たな構成は、熱力学的に一層好ましいものである。
【0060】
図13は、Tジャンクションに基づく準安定接続の一例を示している。セグメントa、a及びaは厳密に同じヌクレオチド配列を有しており、これらのインデックスは単に説明の助けとするものである(相補的なセグメントについても同じ表現法を用いる)。N1及びN2は当初、T字状のハイブリッド構造を介して接続されている。ループaは、HCR成分の1つの一部である。ループが閉じているとき、該ループを構築する2つの相補セグメントは相互に引き付け合う傾向にある。しかしながら、ループトポロジーのために、それらは完全にハイブリダイゼーションされることができない。HCRプロセス中にループが開いているとき、gがgに、aがaに、aがaに、そしてaがaに付着することになる。このプロセスの終了時、N1はHCR錯体に付着し、N2は分離されている。この新たな構成は、完全に巻かれることのできないT字に代えて2つの二重螺旋部分を含むので、より好ましいものである。
【0061】
図14は、指数関数的成長重合を受けるHCR成分の一例と示している。指数関数的成長は、標的増幅及び検出感度を高め得る。図示のように、4つのHCR成分Q1、Q2、E1及びE2が存在している。N1なるナノ粒子種類はQ2及びE2の双方の末端に不変的に付着しており、N2なるナノ粒子種類は、短鎖によって、Q2及びE2の双方の付着末端の部分に弱く付着している。Q2及びE2において、付着末端の部分は当初において露出されている。イニシエータの存在下で、Q1及びQ2は1つのHCR分岐を形成する。Q1内のfループが開いているとき、それはQ2のfに付着し、部分的に相補的な(N2に共役な)ストランドが切断される。置換は、より多くのヌクレオチド部位と相補関係にある別の新たな、より長いセグメントとの、短いセグメントの鎖交換によって起こる。Q2のオープンなcループが、E1及びE2の別のHCR分岐を起こし、再びN2ナノ粒子を解放する。E2のオープンなdループが、Q1及びQ2の新たな分岐を起こす。
【0062】
好適な実施形態を参照しながら本発明を説明した。以上の詳細な説明を読んで理解した者は改良及び改変に想到し得るであろう。本発明は、添付の請求項の範囲又はその均等範囲に入る限りにおいて、そのような全ての改良及び改変を含むとして解釈されるものである。

【特許請求の範囲】
【請求項1】
検査領域を横断する放射線を放射する放射線源;
前記検査領域及びその中に配置された被検体を横断した放射線を検出し、検出された放射線のエネルギーを表す信号を生成する検出器;
前記被検体に投与される造影剤の第1及び第2のスペクトル特性に対応するエネルギースペクトル設定に基づいて、前記信号をエネルギー弁別するデータ選択部であり、前記造影剤は、標的に付着したときの第1の減衰スペクトル特性と、前記標的に付着していないときの第2の異なる減衰スペクトル特性とを有する、データ選択部;及び
前記第1及び第2のスペクトル特性に基づいて前記信号を再構成し、前記標的を表すボリューム画像データを生成する再構成部;
を有する撮像システム。
【請求項2】
前記造影剤は少なくとも2つのKエッジ物質を含み、放射されて検出される放射線のエネルギースペクトルは前記2つのKエッジ物質に基づく、請求項1に記載の撮像システム。
【請求項3】
前記造影剤は、相異なるスペクトル特性を持つ少なくとも2つの物質を有する構造を含み、前記少なくとも2つの物質のうちの1つは、前記構造が前記標的に付着するときに、前記構造から分離することにより、前記構造のスペクトル特性を前記第1のスペクトル特性から前記第2の異なるスペクトル特性へと変化させる、請求項1に記載の撮像システム。
【請求項4】
前記信号又は前記画像データを処理し、前記第1及び第2のスペクトル特性に基づいて前記物質を区別する処理部、を更に含む請求項3に記載の撮像システム。
【請求項5】
前記信号又は前記画像データを処理し、前記2つの物質の放射線減衰値の比を決定する処理部、を更に含む請求項3に記載の撮像システム。
【請求項6】
前記信号又は前記画像データを処理し、前記被検体内の異なる複数の位置で、前記物質のうちの少なくとも1つの減衰値を表す値を決定する処理部、を更に含む請求項3に記載の撮像システム。
【請求項7】
前記信号又は前記画像データを処理し、前記造影剤が前記標的に付着した時を決定する処理部、を更に含む請求項3に記載の撮像システム。
【請求項8】
前記信号又は前記画像データを処理し、前記被検体の1つ以上の領域内で、前記造影剤の局所的濃度又は広域的濃度のうちの少なくとも一方を決定する処理部、を更に含む請求項3に記載の撮像システム。
【請求項9】
前記信号又は前記画像データを処理し、前記被検体内の前記造影剤の存在の変化速度を決定する処理部、を更に含む請求項3に記載の撮像システム。
【請求項10】
前記信号又は前記画像データを処理し、標的サイトの定量的評価を提供する処理部、を更に含む請求項3に記載の撮像システム。
【請求項11】
生物学的標本内の生化学成分を、相異なるスペクトル応答を有する少なくとも2つの異なるナノ粒子を用いたハイブリッド形成連鎖反応(HCR)を介して、該生化学成分又はそれに付着した合成成分の減衰x線のスペクトルを変化させることによって検出するステップ、を有する方法。
【請求項12】
生物学的標本内の生化学成分を、相異なる磁気共鳴応答を有する少なくとも2つの異なるナノ粒子を用いたハイブリッド形成連鎖反応を介して、該生化学成分又はそれに付着した合成成分の核磁気共鳴信号を変化させることによって検出するステップ、を有する方法。
【請求項13】
少なくとも2つの異なる放射性粒子を用いたハイブリッド形成連鎖反応を介して、放射性崩壊によって放出される平均ガンマ光子エネルギーを変化させることによって、生物学的標本内の生化学成分を検出するステップ、を有する方法。
【請求項14】
スキャン対象の被検体に、標的とする領域を有するプローブを投与するステップであり、該プローブは、該プローブが特定の標的に結合するときに、選択された生物学的標的及びハイブリダイゼーションのためのイニシエータ領域にのみ結合する、ステップ;
前記イニシエータ領域が露出されているときに連鎖反応によって前記イニシエータに重合する少なくとも2つのHCRモノマー成分を、前記被検体に投与するステップ;
各々が異なる物質からなる2つの共役の異なる粒子を有する少なくとも1つの成分を、前記被検体に投与するステップであり、前記粒子の各々はスキャンデータにおいて異なる応答を示し、第1の粒子のみが重合HCR錯体にハイブリダイゼーションされたままとなり且つ第2の粒子が重合HCR錯体から分離する、ステップ;
前記2つの異なる粒子の濃度の空間特性及び時間特性を検出する撮像装置を用いて、前記スキャンを実行するステップ;及び
前記スキャンデータに基づいて、前記2つの異なる物質の凝集を反映した情報を生成するステップ;
を有する方法。
【請求項15】
少なくとも2つの異なる種類の準安定HCRモノマーの複数の分子単位を含む造影剤を投与するステップを有し、
少なくとも1つのモノマー種類は2つの異なるナノ粒子に結合されており、第1のナノ粒子は、生成されるHCR重合錯体に付着したままとなり、第2のナノ粒子は前記錯体から分離し、前記2つのナノ粒子の相対濃度が、減衰されたx線のスペクトル特性に基づいて検出される、
方法。
【請求項16】
前記重合はイニシエータ成分の存在によって開始される、請求項15に記載の方法。
【請求項17】
前記第2の物質に共役な相補部分に当初はハイブリダイゼーションされるストランド部分が、重合中に再ハイブリダイゼーションする、請求項15又は16に記載の方法。
【請求項18】
前記第2のナノ粒子は、当初、第2の競合ハイブリダイゼーション状態と比較して熱力学的に準安定な第1のハイブリダイゼーション状態によって、HCRモノマーに接続されている、請求項15乃至17の何れかに記載の方法。
【請求項19】
前記第2のハイブリダイゼーション状態の形成はHCR中にのみ利用可能である、請求項18に記載の方法。
【請求項20】
前記第1の準安定なハイブリダイゼーション状態は、ヘアピンモノマーの一部である第2の相補的な閉ループ鎖に付着した第1の開鎖を含む、請求項19に記載の方法。
【請求項21】
前記重合は前記第1の開鎖に、相補的な領域を露出する、請求項20に記載の方法。
【請求項22】
前記第1の準安定なハイブリダイゼーション状態は、‘T’字状に共にハイブリダイゼーションされた第1、第2及び第3のストランドを含む、請求項19に記載の方法。
【請求項23】
前記重合は前記第1のストランドに、完全に相補的な領域を露出し、前記第2及び第3のストランドは互いに相補関係にある、請求項22に記載の方法。
【請求項24】
前記第1の準安定なハイブリダイゼーション状態は、部分的に相補的な第2のより短いストランドに付着した第1のストランドを含む、請求項19に記載の方法。
【請求項25】
前記重合は前記第1のストランドに、完全に相補的な領域を露出する、請求項24に記載の方法。
【請求項26】
前記第1及び第2のナノ粒子は、当初、前記HCRモノマーの基本セットとは異なるモノマーによって相互に接続されている、請求項15乃至25の何れかに記載の方法。
【請求項27】
前記第1のナノ粒子に共役なモノマーが重合錯体にハイブリダイゼーションされる、請求項26に記載の方法。
【請求項28】
前記ナノ粒子のうちの一方は、銀、インジウム、ヨウ素、バリウム又はガドリニウムからなる第1の群からの元素を含み、他方のナノ粒子は、タングステン、白金、金、タリウム又はビスマスからなる第2の群からの元素を含む、請求項15乃至27の何れかに記載の方法。
【請求項29】
少なくとも2つの異なる種類の準安定HCRモノマーの複数の分子単位を含む造影剤を投与するステップを有し、
少なくとも1つのモノマー種類は2つの異なるナノ粒子に結合されており、第1のナノ粒子は、生成されるHCR重合錯体に付着したままとなり、第2のナノ粒子は前記錯体から分離し、前記2つのナノ粒子の相対濃度が核磁気共鳴特性に基づいて検出される、
方法。
【請求項30】
前記重合はイニシエータ成分の存在によって開始される、請求項29に記載の方法。
【請求項31】
前記第2の物質に共役な相補部分に当初はハイブリダイゼーションされるストランド部分が、重合中に再ハイブリダイゼーションする、請求項29又は30に記載の方法。
【請求項32】
前記核磁気共鳴特性に基づいて前記2つのナノ粒子間の相対濃度を決定するステップ、を更に含む請求項29乃至31の何れかに記載の方法。
【請求項33】
前記ナノ粒子のうちの少なくとも1つはガドリニウムを含み、前記ナノ粒子のうちの他の1つは酸化鉄を含む、請求項29乃至32の何れかに記載の方法。
【請求項34】
少なくとも2つの異なる種類の準安定HCRモノマーの複数の分子単位を含む造影剤を投与するステップを有し、
少なくとも1つのモノマー種類は2つの異なる粒子に結合されており、第1の粒子は、生成されるHCR重合錯体に付着したままとなり、第2の粒子は前記錯体から分離し、前記2つの粒子の相対濃度が、ガンマカメラによって、放射光子エネルギーに基づいて検出される、
方法。
【請求項35】
前記重合はイニシエータ成分の存在によって開始される、請求項34に記載の方法。
【請求項36】
前記第2の物質に共役な相補部分に当初はハイブリダイゼーションされるストランド部分が、重合中に再ハイブリダイゼーションする、請求項34又は35に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公表番号】特表2012−506281(P2012−506281A)
【公表日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2011−532742(P2011−532742)
【出願日】平成21年10月6日(2009.10.6)
【国際出願番号】PCT/IB2009/054370
【国際公開番号】WO2010/046796
【国際公開日】平成22年4月29日(2010.4.29)
【出願人】(590000248)コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ (12,071)
【Fターム(参考)】