説明

分散電源用パワーコンディショナ及び分散電源システム

【課題】連系運転時には単相交流電力を出力し、自立運転時には三相交流電力を出力することが可能な分散電源用パワーコンディショナを提供する。
【解決手段】本発明の分散電源用パワーコンディショナ20は、系統電源に分散電源10を連系させるものであり、分散電源用パワーコンディショナ20内の直流母線に接続された第1及び第2のスイッチング素子と、第3及び第4のスイッチング素子と、第1及び第2の容量素子とを有するインバータ22を備え、連系運転時と自立運転時とで、第1〜第4のスイッチング素子の駆動信号の位相を切り替えることで、連系運転時には単相交流電力を出力し、自立運転時には三相交流電力を出力する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池や燃料電池などの分散電源を系統電源に連系させるパワーコンディショナと、このパワーコンディショナを用いた分散電源システムに関するものである。
【背景技術】
【0002】
近年、電力消費家(需要家)の場所において、分散電源装置として太陽電池、燃料電池、風力発電装置などを配備し、これらの分散電源からの電力と電気事業者の系統電源(商用電源)からの電力とを組み合わせてその電力消費家における電力消費を賄うようにした分散型の電源システムが注目を集めている。
【0003】
電力消費家の宅内において、分散電源からの電力を系統電源からの交流電力に重畳して負荷に配電するためには、分散電源を系統電源に連系させる必要ある。分散電源からの電力は、多くの場合、直流電力であり、また、交流電力であるとしても周波数や電圧が系統電源とは適合していないから、分散電源からの所定の交流電力に変換し、その周波数や電圧を系統電源からの電力に適合させるパワーコンディショナ(PCS)が用いられる。パワーコンディショナからの交流電力の出力線は、一般に、電力消費家の宅内に設けられる分電盤において、系統電源側からの配電線に接続され、これによって、電力消費家の宅内にある負荷に対して、分散電源からの交流電力と系統電源からの交流電力とが一緒に供給されるようになる。パワーコンディショナは、チョッパ回路、インバータ回路、連系リアクトルやノイズフィルタなどを備え、チョッパ回路によって入力電圧を必要電圧に昇圧した後に、インバータ回路におけるスイッチング素子を用いて直流電力を交流電力に変換し、連系リアクトルやノイズフィルタを介して出力する。
【0004】
ところで、電力事業者の電力系統は、送電効率などの観点から、一般に、三相発電機からの三相交流電力を送電線や変電所を介して消費地まで送電し、単相交流電力が必要な場合には、その単相交流電力の消費場所の直前の位置で三相電力を単相電力に変換するように構成されている。そのため、電力単価は単相電力の方が三相電力よりも高く、分散電源を系統電源に連系させて使用する場合には、三相電力側で使用するよりも単相電力側で使用するほうが、コストメリットが大きくなる。したがって、現在、分散電源を系統電源に連系させるパワーコンディショナとしては、単相交流電力を出力するものが一般的である。
【0005】
ところで、太陽電池や燃料電池などの分散電源は、独立して電力を供給できるものであるから、地震等の災害が発生して系統電源における停電が持続することが想定される場合における非常用電源として有望なものである。しかしながら、現状では、分散電源を系統電源に連系させるシステムは単相交流電力を出力するものが一般的なので、系統電源の停電時に三相交流電力を負荷に供給する目的には使用することができない。その一方で、系統電源が停電したときに、三相交流電力で駆動される負荷、すなわち三相負荷を駆動したいという要求がある。例えば、トラック、バス、乗用車などの道路運送車両に対してガソリンや軽油などの燃料を供給する燃料供給ステーション(ガソリンスタンド)では、地震等の災害時にあっても各種の緊急車両等に給油を行う必要があるから、燃料供給ステーションにおいては、通常時には分散電源からの電力を単相交流電力で駆動される負荷すなわち単相負荷に供給しているとしても、系統電源の停電時には、分散電源からの電力で三相交流電力を発生させて三相負荷に供給できることが望まれる。また、消防施設、病院、集合住宅においても、通常時には平常時需要の多い単相交流電力を出力することが有効であるが、系統電源が停電し自立運転に移行した場合には、生命維持に必須な装置である揚水ポンプや、重要性の高い給水装置などへの電力供給のために、三相交流電力を出力することが望まれる。
【0006】
なお、特許第3289418号明細書(特許文献1)には、三相交流電力の非常用自家発電設備が備えられている場合などに、系統電源の停電時に三相交流電力を単相交流電力に変換して負荷に供給する構成が開示されている。しかしながらこの構成は、非常時においても三相交流電力が入手可能であってそれから単相交流電力を発生させるものであり、太陽電池や燃料電池といった典型的には直流電力を出力する分散電源から三相交流電力を発生する場合には使用できない。
【0007】
また、特許第3553180号明細書(特許文献2)には、直流電源から三相交流電力を生じる構成が開示されている。しかしながら、この構成は、単相交流電力を発生させるものではないので、通常時には系統電源と連系させて単相交流電力を発生させ、系統電源の停電時には三相交流電力を発生させる、という使い方をすることができない。
【特許文献1】特許第3289418号明細書
【特許文献2】特許第3553180号明細書
【発明の開示】
【発明が解決しようとする課題】
【0008】
上述したように、電力消費家の場所において太陽電池や燃料電池などの分散電源を配備し、これらの分散電源を系統電源に連系させた連系運転を行って、その電力需要家の宅内の負荷に対して単相交流電力を供給する電源システムが実用化されているが、系統電源の停電時に分散電源を系統電源から切り離した自立運転を行ってその電源システムから三相交流電力を得ることができなかった。
【0009】
そこで、本発明は、連系運転時には単相交流電力を出力し、自立運転時には三相交流電力を出力することが可能な分散電源用パワーコンディショナと、この分散電源用パワーコンディショナを用いた分散電源システムを提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明では、単相系統電源と三相系統電源とを含む系統電源に分散電源を連系させる分散電源用パワーコンディショナにおいて、分散電源用パワーコンディショナ内のインバータの直流母線に接続された第1及び第2のスイッチング素子を直列接続した第1のレグと、直流母線に接続された第3及び第4のスイッチング素子を直列接続した第2のレグと、直流母線に接続された第1及び第2の容量素子を直列接続した容量分圧手段とを備え、分散電源を単相系統電源に連系させた連系運転時には、第1のレグと第2のレグの出力する商用周波交流電圧の位相を180度反転させて運転し、分散電源を単相系統電源から切り離した自立運転時には、第1のレグと第2のレグの出力する商用周波交流電圧の位相を60度シフトして運転するとともに、第1のレグと第2のレグと容量分圧手段とから三相交流電圧を出力するようにした。
【0011】
この分散電源用パワーコンディショナによれば、連系運転時と自立運転時とでインバータにおける2つのレグの出力電圧位相を切り替えることで、連系運転時には単相交流電力を出力し、自立運転時には三相交流電力を出力することができる。
【0012】
ところで、直流電力から単相交流電力と三相交流電力との2つの電力を得るためには、異なる2つの回路を備えることが考えられる。例えば、直流電力から単相交流電力を得るための回路としては、2つのレグを用いたフルブリッジ型のインバータが考えられ、直流電力から三相交流電力を得るための回路としては、3つのレグを用いた三相ブリッジ型のインバータが考えられる。しかしながら、これらの2つの回路を備えると、装置が大型、複雑、高価となってしまう。
【0013】
ところが、この分散電源用パワーコンディショナによれば、2つのレグを用いたフルブリッジ型のインバータ相当のインバータを1つ備えるだけであるので、大型化、複雑化、高価格化を抑制することができる。
【0014】
上記した分散電源用パワーコンディショナは、系統電源の停電を検出する停電検出手段と、停電検出手段によって系統電源の停電が検出された場合に、連系運転から自立運転に切り替える切替制御手段とを更に備えることが好ましい。この構成によれば、系統電源が停電した場合に、連系運転から自立運転への切り替えを自立的に行うことができる。
【0015】
上記した分散電源用パワーコンディショナは、分散電源とインバータとの間に接続された蓄電手段を更に備えることが好ましい。この構成によれば、自立運転時には出力電力に対する分散電源の電力の過不足を補償することができ、連系運転時には連系点における潮流変動を抑制することができる。
【0016】
本発明の分散電源システムは、単相系統電源と三相系統電源とを含む系統電源に連系する分散電源システムにおいて、分散電源と、分散電源を系統電源に連係させる上記した分散電源用パワーコンディショナとを備える。
【0017】
この分散電源システムによれば、上記した分散電源用パワーコンディショナを備えているので、連系運転時には単相交流電力を出力し、自立運転時には三相交流電力を出力することができ、大型化、複雑化、高価格化を抑制することができる。
【発明の効果】
【0018】
本発明によれば、通常時には分散電源を系統電源に連系させて単相交流電力を出力でき、系統電源の停電時には分散電源を系統電源から切り離して自立運転させて三相交流電力を供給できる。
【発明を実施するための最良の形態】
【0019】
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
【0020】
[第1の実施形態]
図1及び図2は、本発明の第1の実施形態に係る分散電源システム及び分散電源用パワーコンディショナの構成を示す回路図である。図1には分散電源を系統電源に連系させた連系運転時の状態が示されており、図2には分散電源を系統電源から切り離した自立運転時の状態が示されている。図1及び図2に示す分散電源システム1は、分散電源10と、分散電源用パワーコンディショナ20とを備えている。なお、図1及び図2には分散電源システム1と共に単相系統電源及び単相負荷5と三相負荷6とが示されている。
【0021】
分散電源10は、直流電源であり、分散電源10には、例えば、太陽電池や燃料電池が好適に適用可能である。また、分散電源10には、風力発電機やエンジン発電機、タービン発電機等の出力をコンバータで直流に整流したものも適用可能である。分散電源10は、パワーコンディショナ20に接続されている。
【0022】
パワーコンディショナ20は、分散電源10を系統電源に連系させると共に、分散電源10からの直流電力を交流電力に変換する。例えば、パワーコンディショナ20は、系統電源が正常に稼動している通常時には、分散電源10を単相系統電源に連系させ(連系運転)、直流電力を単相交流電力に変換して単相系統電源及び単相負荷5へ出力する。一方、系統電源の停電時には、パワーコンディショナ20は、分散電源10を単相系統電源から切り離し(自立運転)、直流電力を三相交流電力に変換して三相負荷6へ出力する。パワーコンディショナ20は、昇圧チョッパ部21と、電圧制御部21aと、ドライバ部21bと、インバータ部22と、連系リアクトル/ノイズフィルタ部23と、遮断器24,25と、電圧監視部26と、電流指令値演算部27と、ドライバ部28とを備えている。
【0023】
昇圧チョッパ部21は、分散電源10からの直流電力を昇圧した昇圧直流電力を生成する。昇圧チョッパ部21はスイッチング素子を有しており、このスイッチング素子が電圧制御部21a及びドライバ部21bによってフィードバック制御されて、昇圧直流電圧が系統電源電圧のピーク値以上で略一定に保持される。なお、分散電源10の出力電圧が系統電源電圧のピーク値以上であれば、これらの昇圧チョッパ部21、電圧制御部21a及びドライバ部21bは用いられなくてもよい。昇圧チョッパ部21は、この昇圧直流電力をインバータ部22へ出力する。
【0024】
インバータ部22は、昇圧チョッパ部21からの昇圧直流電力を単相交流電力又は三相交流電力に変換する。図3は、インバータ部22の構成を示す回路図である。図3に示すインバータ部22は、第1〜第4のスイッチング素子31〜34と第1及び第2の容量素子35,36とを有している。本実施形態では、第1〜第4のスイッチング素子31〜34としてIPM(Intelligent Power Module)を用いているので、第1〜第4のスイッチング素子31〜34はバイポーラトランジスタとリカバリーダイオードとを有している。
【0025】
第1及び第2のスイッチング素子31,32は、一対の直流母線間に直列に接続されてu/rレグ(第1のレグ)37を構成し、第3及び第4のスイッチング素子33,34は、一対の直流母線間に直列に接続されてv/tレグ(第2のレグ)38を構成する。また、第1及び第2の容量素子35,36は、一対の直流母線間に直列に接続されて容量分圧手段39を構成する。一対の直流母線は、昇圧チョッパ部21に接続されており、u/rレグ37、v/tレグ38、第1及び第2の容量素子35,36間の分圧点o/sは、連系リアクトル/ノイズフィルタ部23に接続されている。
【0026】
第1〜第4のスイッチング素子31〜34は、ドライバ部28からの駆動信号によって駆動される。これにより、インバータ部22は、連系運転時には、直流電力を単相交流電力に変換して、u/rレグ37、v/tレグ38からそれぞれu相交流電力、v相交流電力を出力する。一方、自立運転時には、インバータ部22は、直流電力を三相交流電力に変換して、u/rレグ37、v/tレグ38及び分圧点o/sからそれぞれr相交流電力、t相交流電力、s相交流電力を出力する。なお、u相交流電力、v相交流電力、r相交流電力、t相交流電力及びs相交流電力の周波数は商用周波数である。第1〜第4のスイッチング素子31〜34を駆動する駆動信号の詳細は後述する。
【0027】
なお、インバータ部22の大きさとしては、100VA以上であることが好ましい。これにより、現在存在する分散電源10の出力電力に適合しやすい。また、インバータ部22の大きさとしては、100kVA以下であることが好ましい。これにより、現在存在する安価なスイッチング素子を用いることができる。
【0028】
連系リアクトル/ノイズフィルタ部23は、系統電源及び負荷とインバータ部22との連系のためのリアクトルと、インダクタや容量素子などから構成されるノイズフィルタとを有している。なお、ノイズフィルタにおけるインダクタと連系リアクトルとは共用されてもよい。連系リアクトル/ノイズフィルタ部23は、遮断器24,25に接続されている。
【0029】
遮断器24は、連系運転時にはインバータ部22と単相系統電源及び単相負荷5とを接続し、自立運転時には切り離す。例えば、遮断器24は、電圧監視部(停電検出手段)26からの停電検出信号に基づいて開閉を行う。
【0030】
遮断器25は、連系運転時にはインバータ部22と三相負荷6とを切り離し、自立運転時には接続する。例えば、遮断器25は、電圧監視部(停電検出手段)26からの停電検出信号に基づいて開閉を行う。
【0031】
電圧監視部26は、系統電源からの電圧及びインバータ部22からの電圧を監視する。電圧監視部26は、連系運転時には、主に系統電源からの電圧を監視することを目的とし、自立運転時には、主にインバータ部22からの電圧を監視することを目的とする。電圧監視部26は、検出した電圧波形情報を電流指令値演算部27へ出力する。
【0032】
電流指令値演算部27は、連系運転時には、電圧監視部26からの電圧波形情報に基づいて、高力率となるように系統電源電圧波形に応じた電流波形を求め、この電流波形に基づく電流指令値であって、単相交流電力を得るための第1〜第4のスイッチング素子31〜34各々の電流指令値をドライバ部28へ出力する。
【0033】
一方、自立運転時には、電流指令値演算部27は、内部発振器からの基準信号(周波数50Hz又は60Hz)と電圧監視部26からの電圧波形情報に応じた指令値であって、三相交流電力を得るための第1〜第4のスイッチング素子31〜34各々の指令値をドライバ部28へ出力する。すなわち、電流指令値演算部27は、自立運転時には、インバータ部22の出力電圧が基準信号に応じた周波数値及び電圧値となるように、駆動信号のデューティ制御(PWM(Pulse Width Modulation)制御)のための指令値を求める。
【0034】
なお、電流指令値演算部27は、演算を行うPU(Processing Unit)と、PUに各処理を実行させるためのプログラムや、単相交流電力を得るための第1〜第4のスイッチング素子31〜34各々の電流指令値データ、三相交流電力を得るための第1〜第4のスイッチング素子31〜34各々の指令値データ等を記憶するROM(Read Only Memory)とを有している。このような構成により、電流指令値演算部27では、上記した機能が実現される。
【0035】
また、電圧監視部26及び電流指令値演算部27は、停電検出手段として機能して系統電源の停電を検出する。例えば、電圧監視部26及び電流指令値演算部27は、単独運転検出機能を有し、定期的に電流位相を変化させて、電圧位相の変化を検出した場合に系統電源が停電したと判断する。具体的には、電流指令値演算部27が定期的に電流位相を変化させ、電圧監視部26が電圧位相の変化を監視する。系統電源が稼動しているときには、インバータ部22の電流位相が変化しても系統電源からの電力によって電圧位相は変化しないが、系統電源が停電しているときには、電流位相の変化に応じて電圧位相が変化する。これにより、系統電源の停電を検出することができる。電圧監視部26は、系統電源の停電を検出した場合に、停電検出信号を電流指令値演算部27及び遮断器24,25へ出力する。
【0036】
また、電流指令値演算部27は、切替制御手段として機能し、電圧監視部26からの停電検出信号に基づいて、上記した系統連系時の単相交流電力生成制御から自立運転時の三相交流電力生成制御へ自立的に切り替える。
【0037】
ドライバ部28は、電流指令値演算部27からの指令値に基づいて、インバータ部22における第1〜第4のスイッチング素子31〜34へ駆動信号を供給する。図4は、連系運転時における二つのレグが出力する交流電圧位相の関係を示すベクトル図であり、図5は、自立運転時における二つのレグが出力する交流電圧位相の関係を示すベクトル図である。
【0038】
図4に示すように、ドライバ部28は、連系運転時には、電流指令値演算部27からの電流指令値に応じて、スイッチング素子31,32で構成されるu/rレグ37と、スイッチング素子33,34で構成されるv/tレグ38の交流出力電圧を、互いに180°の位相差をつけて駆動する。このようにして、u/rレグ37とv/tレグ38との間に単相交流電力が生成されることとなる。なお、容量素子35,36の分圧点o/sは中性線として用いられることとなるが、必ずしも系統に接続する必要はない。
【0039】
一方、自立運転時には、図5に示すように、ドライバ部28は、電流指令値演算部27からの指令値に応じて、スイッチング素子31,32で構成されるu/rレグ37と、スイッチング素子33,34で構成されるv/tレグ38とを、互いに60°の位相差をつけて駆動する。その結果、u/rレグ37、v/tレグ38及び容量素子35,36の分圧点o/sの間に三相交流電力が生成されることとなる。
【0040】
このように、第1の実施形態の分散電源用パワーコンディショナ20によれば、連系運転時と自立運転時とでインバータ部22における4つのスイッチング素子31〜34の駆動信号の位相を切り替えることで、連系運転時には単相交流電力を出力し、自立運転時には三相交流電力を出力することができる。また、第1の実施形態の分散電源用パワーコンディショナ20によれば、系統電源が停電した場合に、連系運転から自立運転への切り替えを自立的に行うことができる。
【0041】
したがって、第1の実施形態の分散電源用パワーコンディショナ20によれば、4つのスイッチング素子を用いたフルブリッジ型のインバータ相当のインバータ部22を1つ備えるだけであるので、大型化、複雑化、高価格化を抑制することができる。
【0042】
また、第1の実施形態の分散電源システム1によれば、上記した分散電源用パワーコンディショナ20を備えているので、連系運転時には単相交流電力を出力し、自立運転時には三相交流電力を出力することができ、系統電源が停電した場合に、連系運転から自立運転への切り替えを自立的に行うことができる。また、大型化、複雑化、高価格化を抑制することができる。
【0043】
[第2の実施形態]
図6及び図7は、本発明の第2の実施形態に係る分散電源システム及び分散電源用パワーコンディショナの構成を示す回路図である。図6には分散電源を系統電源に連系させた連系運転時の状態が示されており、図7には分散電源を系統電源から切り離した自立運転時の状態が示されている。図6及び図7に示す分散電源システム1Aは、分散電源システム1において分散電源用パワーコンディショナ20に代えて分散電源用パワーコンディショナ20Aを備えている構成で第1の実施形態と異なっている。分散電源システム1Aの他の構成は、分散電源システム1と同一である。
【0044】
パワーコンディショナ20Aは、パワーコンディショナ20において更に蓄電デバイス(蓄電手段)41と、双方向コンバータ42と、充放電制御部43とを備えている。パワーコンディショナ20Aの他の構成は、パワーコンディショナ20と同一である。
【0045】
蓄電デバイス41は、パワーコンディショナ20Aの出力電力に対する分散電源10の電力の過不足を補償する。例えば、蓄電デバイス41は、分散電源10の出力電力が必要な電力より小さい場合には不足分の電力を供給し、分散電源10の出力電力が必要な電力より大きい場合には過剰分の電力を蓄える。蓄電デバイス41としては、2次電池、電気二重層キャパシタ等が好適に用いられる。また、鉛蓄電池、ニッケル水素電池、ニッケルカドミウム電池、リチウムイオン電池、亜鉛空気電池、レドックスフロー電池、ナトリウム硫黄電池、電気二重層キャパシタなども蓄電デバイス41として適用可能である。
【0046】
蓄電デバイス41の出力パワーは、分散電源10の定格出力パワーの0.1倍以上であることが好ましい。これにより、蓄電デバイス41による出力電力補償効果を十分に得ることができる。また、蓄電デバイス41の出力パワーは、10倍以下であることが好ましい。これにより、大型化、高価格化を抑制することができる。
【0047】
また、蓄電デバイス41のエネルギーは、自身の定格パワーに対して10分以上保持できるエネルギーであることが好ましい。これにより、十分なバックアップ効果をえることができる。蓄電デバイス41のエネルギーは、自身の定格パワーに対して10時間以下保持できるエネルギーであることが好ましい。これにより、大型化、高価格化を抑制することができる。
【0048】
双方向コンバータ42は、昇圧チョッパ部21とインバータ部22との間のノードと蓄電デバイス41との間に設けられている。双方向コンバータ42は、昇圧チョッパ部21の出力電圧が蓄電デバイス41の電圧より低下した場合に、蓄電デバイス41からの電力をインバータ部22に供給し、昇圧チョッパ部21の出力電圧が蓄電デバイス41の電圧より上昇した場合に、昇圧チョッパ部21からの電力を蓄電デバイス41に供給する。双方向コンバータ42は充放電制御部43によって制御される。
【0049】
充放電制御部43は、蓄電デバイス41の急激な及び過大な充放電を抑制するように機能する。
【0050】
この第2の実施形態の分散電源用パワーコンディショナ20Aでも、第1の実施形態の分散電源用パワーコンディショナ20と同様の利点を得ることができる。更に、第2の実施形態の分散電源用パワーコンディショナ20Aによれば、蓄電デバイスを併用することにより、自立運転時には出力電力に対する分散電源の電力の過不足を補償することができ、連系運転時には連系点における潮流変動を抑制することができる。
【0051】
また、第2の実施形態の分散電源システム1Aでも、上記した分散電源用パワーコンディショナ20Aを備えているので、第1の実施形態の分散電源システム1と同様の利点を得ることができる。更に、第2の実施形態の分散電源システム1Aによれば、自立運転時には出力電力に対する分散電源の電力の過不足を補償することができ、連系運転時には連系点における潮流変動を抑制することができる。
【0052】
なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。例えば、分散電源用パワーコンディショナ20は、連系運転と自立運転とを自立的に行ったが、手動で行うようにしてもよい。この場合、電圧監視部26及び電流指令値演算部27は停電検出機能を備える必要がない。
【0053】
また、電圧監視部26及び電流指令値演算部27による停電検出手段は、単独運転検出機能を用いて系統電源の停電を検出したが、過電圧検出機能や、低電圧検出機能、高周波数検出機能、低周波数検出機能などの様々な機能を用いても系統電源の停電を検出することが可能である。
【0054】
また、電圧監視部26は、停電検出手段としての単独運転検出機能、過電圧検出機能、低電圧検出機能、高周波数検出機能、低周波数検出機能とは別に、更に、保護手段としての単独運転検出機能、過電圧検出機能、低電圧検出機能、高周波数検出機能、低周波数検出機能などを備えていてもよい。例えば、これらの保護手段は、遮断器24の後段の電圧を監視し、系統電源が停電した後に系統電源からの切り離しが行われない場合に、ドライバ部28に駆動信号の生成を強制的に停止させる。
【0055】
また、電圧監視部26は、更に、電圧上昇抑制機能やRPR(逆潮流防止)機能を備えていてもよい。電圧上昇抑制機能は、例えば、遮断器24の前段の電圧を監視し、電圧が上昇した場合に、電流指令値演算部27に電流を低下させることによって電圧上昇を抑制する。RPR機能は、逆潮流、すなわち分散電源システムから系統電源への電力供給を防止するためのものである。現在、太陽電池以外の分散電源を用いた分散電源システムでは、電気事業者へ電力を売ることが許可されていない。したがって、太陽電池以外の分散電源を用いた分散電源システムでは、RPR機能を備える必要がある。
【0056】
また、遮断器24,25に代えてリレースイッチが用いられてもよい。この場合、リレースイッチの開閉を制御するためのリレーコントローラを備える必要がある。
【0057】
また、本実施形態では、インバータ部22における第1〜第4のスイッチング素子31〜34としてIPMが用いられたが、第1〜第4のスイッチング素子には様々なものが適用可能である。例えば、第1〜第4のスイッチング素子には、バイポーラトランジスタ単独が適用されてもよいし、FET、IGBT(Insulated Gate Bipolar Transistor)などが適用されてもよい。
【図面の簡単な説明】
【0058】
【図1】本発明の第1の実施形態に係る分散電源システム及び分散電源用パワーコンディショナの構成を示す回路図であって、連系運転時の状態を示す回路図である。
【図2】本発明の第1の実施形態に係る分散電源システム及び分散電源用パワーコンディショナの構成を示す回路図であって、自立運転時の状態を示す回路図である。
【図3】図1及び図2に示すインバータ部の構成を示す回路図である。
【図4】図1及び図2に示す二つのレグが出力する交流電圧位相の関係を示すベクトル図であって、連系運転時の関係を示すベクトル図である。
【図5】図1及び図2に示す二つのレグが出力する交流電圧位相の関係を示すベクトル図であって、自立運転時の関係を示すベクトル図である。
【図6】本発明の第2の実施形態に係る分散電源システム及び分散電源用パワーコンディショナの構成を示す回路図であって、連系運転時の状態を示す回路図である。
【図7】本発明の第2の実施形態に係る分散電源システム及び分散電源用パワーコンディショナの構成を示す回路図であって、自立運転時の状態を示す回路図である。
【符号の説明】
【0059】
1,1A…分散電源システム、5…単相系統電源及び単相負荷、6…三相負荷、10…分散電源、20,20A…分散電源用パワーコンディショナ、21…昇圧チョッパ部、21a…電圧制御部、21b…ドライバ部、22…インバータ部、23…連系リアクトル/ノイズフィルタ部、24,25…遮断器、26…電圧監視部(停電検出手段、切替制御手段)、27…電流指令値演算部(停電検出手段、切替制御手段)、28…ドライバ部、31〜34…第1〜第4のスイッチング素子、35,36…第1及び第2の容量素子、37…u/rレグ(第1のレグ)、38…v/tレグ(第2のレグ)、39…容量分圧手段、41…蓄電デバイス(蓄電手段)、42…双方向コンバータ、43…充放電制御部。


【特許請求の範囲】
【請求項1】
単相系統電源と三相系統電源とを含む系統電源に分散電源を連系させる分散電源用パワーコンディショナにおいて、
前記分散電源用パワーコンディショナ内のインバータの直流母線に接続された第1及び第2のスイッチング素子を直列接続した第1のレグと、前記直流母線に接続された第3及び第4のスイッチング素子を直列接続した第2のレグと、前記直流母線に接続された第1及び第2の容量素子を直列接続した容量分圧手段とを備え、
前記分散電源を前記単相系統電源に連系させた連系運転時には、前記第1のレグと前記第2のレグの出力する商用周波交流電圧の位相を180度反転させて運転し、
前記分散電源を前記単相系統電源から切り離した自立運転時には、前記第1のレグと前記第2のレグの出力する商用周波交流電圧の位相を60度シフトして運転するとともに、前記第1のレグと前記第2のレグと前記容量分圧手段とから三相交流電圧を出力するようにしたことを特徴とする、分散電源用パワーコンディショナ。
【請求項2】
前記系統電源の停電を検出する停電検出手段と、
前記停電検出手段によって前記系統電源の停電が検出された場合に、前記連系運転から前記自立運転に切り替える切替制御手段と、
を更に備える、請求項1に記載の分散電源用パワーコンディショナ。
【請求項3】
前記分散電源と前記インバータとの間に接続された蓄電手段を更に備える、請求項1又は2に記載の分散電源用パワーコンディショナ。
【請求項4】
単相系統電源と三相系統電源とを含む系統電源に連系する分散電源システムにおいて、
分散電源と、
前記分散電源を前記系統電源に連係させる請求項1〜3の何れか1項に記載の分散電源用パワーコンディショナと、
を備える、分散電源システム。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2008−283764(P2008−283764A)
【公開日】平成20年11月20日(2008.11.20)
【国際特許分類】
【出願番号】特願2007−124740(P2007−124740)
【出願日】平成19年5月9日(2007.5.9)
【出願人】(000004444)新日本石油株式会社 (1,898)
【出願人】(507151526)株式会社ジーエス・ユアサ パワーサプライ (375)
【Fターム(参考)】