説明

分析装置および分析方法

【課題】屋外、屋内に拘わらずかびの有無の確認や種類の特定を現場で連続的に行うことを極めて容易とし、さらにはその分析結果の信頼性が大いに向上する分析装置および分析方法を提供すること。
【解決手段】サンプル採取部1と、このサンプル採取部1において採取したサンプル中の物質をイオン化するイオン化部2と、前記サンプル中のイオンを下流側に向かうイオン風とするイオン風発生部3と、サンプル中のイオンをイオン移動度に応じて分別する分別部4と、この分別部4により分別したイオンを検出する検出部5とを備え、検出部5の検出対象がイオン化したかび臭物質である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、土壌中や室内等に発生したかびが生成する特定の化学物質(かび臭物質)をその場で連続測定するのに好適な分析装置および分析方法に関する。
【背景技術】
【0002】
土壌中や室内等におけるかびの有無の調査に関しては、土壌や壁の一部をサンプルとして採取し、このサンプルを適宜の環境下に置いてかびの培養を図った後、かびを検出するという手法が一般的に用いられる。
【0003】
【非特許文献1】G.A.Eiceman,Z.Karpas“Ion Mobility Spectrometry −Second Edition”,T&F informa 2005.
【非特許文献2】I.A.Buryakov.et al.,“A new method of separation of multi−atomic ions by mobility at atmospheric pressure using a high−frequency amplitude−asymmetric strong electric field”,Int.J.Mass Spectrom.Ion Processes 128(1993)143−148.
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、調査対象とする場所が、例えば、文化遺産の内部であるなど、土壌や壁の一部をサンプルとして採取することが禁じられている場合、上記調査手法をとることができない。
【0005】
ところで、かびはその成長過程で特定の臭気を放つ2−メチルイソボルネオールやジェオスミン等の揮発性物質(以下、かび臭物質という)を産出することが知られている。そして、かび臭物質を手掛かりにすればかびの存在の確認や種類の特定が可能であると考えられ、この方法によれば、土壌や壁の一部の採取は不要となるので、上記のような場所であってもかびの調査を実行することができる。
【0006】
すなわち、上記の方法を用いる場合、調査対象とする現場にあるガス(空気)をサンプルとして採取すればよく、採取したガスを質量分析にかけてかび臭物質が検出されれば、そのガスの採取場所(現場)付近におけるかびの存在を肯定することができ、その種類の特定も可能となる。
【0007】
ここで、従来、ガスの質量分析には一般的に、ガスクロマトグラフィ、飛行時間法(time−of−flight method)等の信頼性の高い普及技術が用いられている。そして、これらの分析を実行する装置は大規模で必然的に据え付け(据え置き)型となっているものが主流であり、現場で採取されたサンプルは当該装置のある研究室等に搬送後、分析されることが殆どである。
【0008】
しかし、かび臭物質の分析を上記据え付け型の質量分析装置で行う場合、以下の点で問題がある。すなわち、かびはその成長に伴って形態や活動が大きく変化するため、現場にかびが発生している場合であっても、その現場で採取したサンプルにかび臭物質が含まれずサンプルの分析が空振りに終わることも考えられ、サンプルの採取を定期的に行ったとしてもモニター結果はかびの発生状況等に対応したものとはならない可能性がある。
【0009】
そこで、本発明者は、鋭意研究の結果、近年開発されたIMS(Ion Mobility Spectrometry)法(非特許文献1、2参照)を改良すれば小型軽量で信頼性の高い分析器を実現化できるとの知見を得て、準大気圧下で作動する高効率イオン化チャンバと非対称電場印加型高感度イオン分別部を使用した小型で省エネルギタイプのガス質量分析器を構成することに想到し、本発明を完成させるに至った。
【0010】
本発明は上述の実情に鑑みてなされたもので、その目的は、屋外、屋内に拘わらずかびの有無の確認や種類の特定を現場で連続的に行うことを極めて容易とし、さらにはその分析結果の信頼性が大いに向上する分析装置および分析方法を提供することにある。
【課題を解決するための手段】
【0011】
上記目的を達成するために、本発明に係る分析装置は、サンプル採取部と、このサンプル採取部において採取したサンプル中の物質をイオン化するイオン化部と、前記サンプル中のイオンを下流側に向かうイオン風とするイオン風発生部と、サンプル中のイオンをイオン移動度に応じて分別する分別部と、この分別部により分別したイオンを検出する検出部とを備え、検出部の検出対象がイオン化したかび臭物質であることを特徴としている(請求項1)。
【0012】
上記分析装置において、前記イオン化部およびイオン風発生部を、コロナ放電電極部と、当該コロナ放電電極部に電圧を印加する電圧印加部と、前記コロナ放電電極部が内部に配置された円筒磁石とによって構成してあってもよい(請求項2)。
【0013】
また、上記分析装置において、前記コロナ放電電極部が、複数の針状部を有する第1円筒型電極と、この第1円筒型電極の下流側に設けた第2円筒型電極とを備え、前記電圧印加部が前記コロナ放電電極部に印加する前記電圧が直流電圧であってもよい(請求項3)。
【0014】
また、上記分析装置において、前記分別部が同軸状に配置した内外の電極を備え、非対称交流電場によって前記分別を行うように構成してあってもよい(請求項4)。
【0015】
上記分析装置において、前記サンプル採取部が、サンプル中の揮発性成分を吸蔵し、通電により昇温するワイヤ部材を備えていてもよい(請求項5)。
【0016】
また、上記分析装置において、駆動用電源が電池であることが望ましい(請求項6)。
【0017】
一方、上記目的を達成するために、本発明の分析方法は、サンプル中の物質をイオン化するステップと、サンプル中のイオンを下流側に向かうイオン風とするステップと、サンプル中のイオンをイオン移動度に応じて分別するステップと、分別したイオンを検出するステップとを有し、その検出対象がイオン化したかび臭物質であることを特徴としている(請求項7)。
【発明の効果】
【0018】
請求項1〜7に係る発明では、屋外、屋内に拘わらずかびの有無の確認や種類の特定を現場で連続的に行うことを極めて容易とし、さらにはその分析結果の信頼性が大いに向上する分析装置および分析方法が得られる。
【0019】
すなわち、請求項1に係る発明では、現場にあるガス(空気)をサンプルとして採取し、これを直ちに分析することによってかび臭物質の有無の確認と種類の特定とが可能となり、この分析の前準備としてのかびの培養等は不要である。従って、請求項1に係る分析装置では、屋外、屋内に拘わらず現場での連続分析も容易に実現することができ、かびの培養等を行うために連続分析が不可能な従来の分析装置(方法)では、分析が空振りに終わることもあったが、本発明の分析装置ではそのような問題は生じず、より信頼性の高い分析を実施することができる。
【0020】
また、上記サンプル(キャリアガス)の搬送にイオン風を用いる本発明の分析装置では、サンプル(キャリアガス)の搬送に関して省エネを図ることができるのであり、電動ファンを使用してサンプル(キャリアガス)を搬送する場合に比べて、その消費電力は約1/5以下となる。
【0021】
請求項2に係る発明では、前記イオン化チャンバにより、放射線フリーでなおかつ高効率小型のイオンソースを構成することができ、ひいては装置全体の構成をコンパクト化することができる。
【0022】
請求項3に係る発明では、サンプルの搬送を行うイオン風を発生させるための部材が小さくてよく、装置の小型化を図れると共に、高効率省エネルギ化を図る点でファンモータ等を使用するよりも優れ、電池による長時間駆動に貢献する構成となるので、現場への携帯のための労力が非常に少ない可搬タイプの分析装置を提供することができる。
【0023】
請求項4に係る発明では、非対称交流電場による質量分析技術(非特許文献2)を用いるのであり、高効率で高精度な質量分析を実現することができる。
【0024】
請求項5に係る発明では、ワイヤ部材にサンプル中から拡散してきた揮発性成分を吸蔵することができ、十分にサンプリングを行った後にワイヤ部材に通電加熱することにより吸蔵した前記揮発性成分をワイヤ部材から放出することができる。よって、この濃縮機構により、測定対象が極希薄な場合でもその検出(分析)が可能となる。
【0025】
請求項6に係る発明では、電池駆動としてあるので、可搬型とするのにより適した分析装置が得られる。
【0026】
請求項7に係る発明では、請求項1に係る発明と同様の効果を奏する分析方法が得られる。
【発明を実施するための最良の形態】
【0027】
以下、図面を参照しながら本発明の実施形態について説明する。図1は、本発明の一実施の形態に係る分析装置および分析方法の構成を概略的に示す説明図である。
【0028】
この実施の形態に係る分析装置は、図1に示すように、サンプル採取部1と、このサンプル採取部1において採取したサンプル中の物質を高効率にイオン化する高効率イオン化部(以下、単にイオン化部という)2と、前記サンプル中のイオンを下流側に向かうイオン風とするイオン風発生部3と、サンプル中のイオンをイオン移動度(または質量)に応じて分別する分別部4と、この分別部4により分別したイオン(の一部)を検出する検出部5とを備えている。
【0029】
前記サンプル採取部1は、ガス状のサンプルを導入(採取)するためのサンプリングカップ1aを備え、図1にはサンプリングカップ1aの一部を切り欠いて示してある。そして、図1に示すように、サンプリングカップ1aはワイヤ部材1bを内蔵し、このワイヤ部材1bは、ほぼ渦巻き状(フィラメント状)で、例えばヒータワイヤにポリジメチルシロキサンを塗布することにより作成され、サンプル中の揮発性成分を吸蔵(吸着)し、通電によって昇温すると吸蔵した揮発性成分を(一度に)放出する性状を有している。
【0030】
また、図1に示すように、ワイヤ部材1bに通電して加熱するための電源1cと、ワイヤ部材1bを通電状態と非通電状態とに切り換えるための切換手段としてのスイッチ1dとを設けてある。そして、前記ワイヤ部材1bが通電により昇温し、吸蔵したサンプル中の揮発性成分を一度に放出したときには、サンプル(ガス)の濃縮効果が得られ、これにより、前記検出部5を用いた高感度分析が可能となる。
【0031】
前記イオン化部2およびイオン風発生部3は、コロナ放電電極部を構成する第1円筒型電極6および第2円筒型電極7と、前記コロナ放電電極部(第1、第2円筒型電極6,7)に高電圧を印加する電圧印加部8と、前記コロナ放電電極部が内部に設置された円筒磁石(エレクトロントラップ)9とを備えたイオン化チャンバによって構成してある。
【0032】
すなわち、第1円筒型電極6と第2円筒型電極7とにより生じるコロナ放電により、サンプル採取部1から送られてきたサンプル中の物質がイオン化される。
【0033】
また、上記コロナ放電時には、下流側の第1円筒型電極7に数十kV程度の直流高電圧が印加され、この第2円筒型電極7の高電圧とその下流部との電位差によりその軸方向にイオン風が発生する。そして、かかるイオン風の発生により、サンプル中のイオン(イオン化チャンバ9においてイオン化されたものとサンプル採取部1による採取時点でイオンとして存在していたものの両方を含む)が一定の流速で流れることになり、これに伴ってイオンのみならずサンプル全体が一定の流速でサンプル採取部1から検出部5に向かって流れ、最終的に外部に適宜に排出されることになる。
【0034】
ここで、上流側の第1円筒型電極6は複数(多数)の針状部(先尖部)6aを有する王冠状をしており、前記電圧印加部8が第1、第2円筒型電極6、7に印加する前記電圧は直流電圧である。
【0035】
前記分別部4は、同軸状に配置した内外の電極10,11と、これらの電極10,11に交流電圧を印加する印加部12とを備え、この印加部12は、図2に示すように周期的に増減する交流電圧を印加する。すなわち、図2は、横軸が時間を、縦軸が印加部12により印加する電圧値をそれぞれ示すグラフであり、このグラフに示すように、印加部12の印加電圧は時間軸に対して矩形波となっている。従って、分別部4においては、非対称交流電場によってサンプル中のイオンがそのイオン移動度(質量と電化数の比に基づくイオン移動度)に応じて分別されることになる。
【0036】
すなわち、内側の電極10と外側の筒状の電極(ドリフトチューブ)11とにわたって図2に示す交流電圧を印加することにより、分別部4内を通過するサンプル中のイオンは、そのイオン移動度に応じた方向に進行することになる。具体的には、一定範囲のイオン移動度を有するイオンのみが分別部4内をその軸方向とほぼ平行に(真っ直ぐ)進行し、一定範囲外のイオン移動度を有するイオンは内外の電極10,11のいずれかに近接する方向に(斜め向きに)進行する。
【0037】
そして、印加部12により印加する電圧の大小や周期の長短を調整すれば、分別部4を真っ直ぐ進行することになるイオンのイオン移動度の範囲を変更することができ、本実施形態では、前記調整を行って、イオン化したかび臭物質が分別部4を真っ直ぐ進行するように構成してある。
【0038】
前記検出部5は、上記のように分別部4を真っ直ぐ進行したイオンのみを検出(捕捉)するように構成してあり、上述の記載および図1から明らかなように、検出部5では、検出対象である「イオン化したかび臭物質」を電流信号として検出する。すなわち、分別部4と検出部5とによってかび臭物質を分析対象とする質量分析部を構成している。そして、検出部5による検出結果は電流として出力され、この値に基づいて、図示しない演算処理部や記憶部、表示部等において、かび臭物質の存在の有無の判定やかび臭物質を産出したかびの種類の特定やその記録、表示等が行われる。
【0039】
また、上記構成の分析装置は、図示しない電池(例えば乾電池)を駆動用電源として作動するのであり、当該電池によって前記電源1c、電圧印加部8、印加部12による通電・印加や、検出部5からの出力、さらには演算処理部や記憶部、表示部における種々の処理が行われることになる。
【0040】
次に、上記分析装置を用いた本実施形態に係る分析方法について説明する。まず、前記電圧印加部8をオンにして、イオン風を発生させ、上述したようにサンプルがサンプル採取部1からイオン化部2、イオン風発生部3、分別部4、検出部5をこの順に経るように流れるようにする。尚、サンプルは最終的に分析装置の外部に排出される。
【0041】
そして、サンプルはサンプル採取部1のサンプリングカップ1aにより採取された後、サンプル中のかび臭物質を含む揮発性物質がワイヤ部材1bに吸蔵される。そして、一定時間のサンプリング後に、電源1cをオンにしてワイヤ部材1bに通電し昇温すると、ワイヤ部材1bに吸蔵されていた揮発性物質が一度に放出され、サンプル採取部1内のサンプルは高濃度の揮発性物質を含むことになる。
【0042】
上記のようにサンプル採取部1において濃縮されたサンプルは、イオン化部2およびイオン風発生部3を兼用するイオン化チャンバに向かい、このイオン化チャンバ内において電圧印加部8により高電圧が印加された第1、第2円筒型電極6,7間に発生するコロナ放電によってサンプル中の物質がイオン化されると共に、サンプル中のイオンは第2円筒型電極7とその下流部との電位差により下流側に向かうイオン風となる。
【0043】
その後、サンプルは分別部4に至り、この分別部4においてイオン移動度に応じて分別され、イオン化したかび臭物質が検出部5で検出された後に外部に排出され、他の物質は検出されずにそのまま外部に排出される。
【0044】
そして、検出部5による検出に基づいて演算処理がなされた後、かびの存在の有無やその種類などが分析結果として表示部に表示される。
【0045】
なお、上記実施の形態は、種々変形して実施することができる。例を挙げて説明すると、まず、上記実施の形態ではワイヤ部材1bを渦巻き状としてあるが、この形状に限らず種々の形状とすることができ、また、ワイヤ部材1bを複数設けて多層構造としてあってもよい。
【0046】
また、上記実施の形態では、サンプル中の揮発性成分を吸収し濃縮するポリマー状物質であるポリジメチルシロキサン等の吸収材料を骨材としてのヒータワイヤに塗布した前記ワイヤ部材1bを用いているが、このようなワイヤ部材1bに限らず、ヒータ加熱により一度に揮発性成分を放出する種々の濃縮機構をサンプル採取部1に設けることができる。
【0047】
さらに、検出対象のかび臭物質の濃度が高い場合には、前記ワイヤ部材1bを省略することができる。
【0048】
また、イオン化部2とイオン風発生部3とを、上記のように一つのイオン化チャンバ9内に一体的に設けてもよいが、両者2,3を個別に設けてあってもよい。
【0049】
また、前記イオン化部2として、例えば、グロー放電、バリア放電等の放電技術を用いてもよい。すなわち、前記イオン化部2は、サンプル中の物質をイオン化するように構成してあればよく、上記の構成に限らない。
【0050】
また、前記イオン風発生部3も、国際公開番号WO2004/076061の国際公開公報に記載されているイオン風発生技術を用いたものであるが、イオン風を発生するように構成してあればよく、上記の構成に限らない。
【0051】
また、上記実施の形態では、質量分析部を構成する分別部4と検出部5とを一つずつ設けてあるが、前記質量分析部を例えば直列に複数段設け、各質量分析部で互いに異なるかび臭物質を検出するように構成すれば複数種のかび臭物質の検出が可能となる。加えて、質量分析部を複数段設け、その一以上の質量分析部においてかび臭物質以外の物質を検出するように構成してもよい。
【図面の簡単な説明】
【0052】
【図1】本発明の一実施の形態に係る分析装置および分析方法の構成を概略的に示す説明図である。
【図2】横軸に時間を、縦軸に印加部により印加する電圧値をそれぞれとって示すグラフである。
【符号の説明】
【0053】
1 サンプル採取部
2 イオン化部
3 イオン風発生部
4 分別部
5 検出部

【特許請求の範囲】
【請求項1】
サンプル採取部と、このサンプル採取部において採取したサンプル中の物質をイオン化するイオン化部と、前記サンプル中のイオンを下流側に向かうイオン風とするイオン風発生部と、サンプル中のイオンをイオン移動度に応じて分別する分別部と、この分別部により分別したイオンを検出する検出部とを備え、検出部の検出対象がイオン化したかび臭物質であることを特徴とする分析装置。
【請求項2】
前記イオン化部およびイオン風発生部を、コロナ放電電極部と、当該コロナ放電電極部に電圧を印加する電圧印加部と、前記コロナ放電電極部が内部に配置された円筒磁石とによって構成してある請求項1に記載の分析装置。
【請求項3】
前記コロナ放電電極部が、複数の針状部を有する第1円筒型電極と、この第1円筒型電極の下流側に設けた第2円筒型電極とを備え、前記電圧印加部が前記コロナ放電電極部に印加する前記電圧が直流電圧である請求項2に記載の分析装置。
【請求項4】
前記分別部が同軸状に配置した内外の電極を備え、非対称交流電場によって前記分別を行うように構成してある請求項1〜3のいずれかに記載の分析装置。
【請求項5】
前記サンプル採取部は、サンプル中の揮発性成分を吸蔵し、通電により昇温するワイヤ部材を備えている請求項1〜4のいずれかに記載の分析装置。
【請求項6】
駆動用電源が電池である請求項1〜5のいずれかに記載の分析装置。
【請求項7】
サンプル中の物質をイオン化するステップと、サンプル中のイオンを下流側に向かうイオン風とするステップと、サンプル中のイオンをイオン移動度に応じて分別するステップと、分別したイオンを検出するステップとを有し、その検出対象がイオン化したかび臭物質であることを特徴とする分析方法。

【図1】
image rotate

【図2】
image rotate