説明

分析装置

【課題】熱影響を低減し測定精度の低下を防止することができる分析装置を提供する。
【解決手段】分析装置は、マイクロチップ20、検出部30および分析測定部40を備える。マイクロチップ20は、測光部である分離流路21が形成された光透過性部材を有する。検出部30は、分離流路21に光を照射する照射用導光部31、および、分離流路21を介した光を受光する受光用導光部32を備える。マイクロチップ20を挟んでマイクロチップ支持台41に対向する位置に配設された照射用導光部31または受光用導光部32は、マイクロチップ20に当接し、マイクロチップ20をマイクロチップ支持台41の方向へ付勢する。分析測定部40は、検出部30、照射用導光部31および受光用導光部32を備え、分離流路21に注入された試料の成分を光学的手法により検出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分析装置に関する。より詳しくは、流路に注入された試料の成分を光学的手法により検出する分析装置に関する。
【背景技術】
【0002】
近年、マイクロチップデバイス(マイクロ流体デバイス)を用いて、遺伝子解析、臨床診断、薬物スクリーニングなどの化学、生化学、薬学、医学、獣医学の分野における分析が行われている。
【0003】
試料に含まれる特定成分の濃度もしくは量を分析する分析方法には、試料から特定成分を分離する分離工程と、分離された特定成分を検出する検出工程とを有する方法がある。例えば、キャピラリ電気泳動法を用いた分析方法においては、マイクロチップデバイスの分離流路に泳動液を充填し、さらに分離流路の一端寄りに試料を導入する。分離流路の両端に電圧を加えると、電気泳動により泳動液が正極側から負極側へと移動する電気浸透流が生じる。また、上記電圧が印加されることにより特定成分は、それぞれの電気泳動移動度に応じて移動しようとする。したがって、特定成分は、電気浸透流の速度ベクトルと電気泳動による移動の速度ベクトルとを合成した速度ベクトルにしたがって移動する。この移動によって、特定成分が他の成分から分離される。この分離された特定成分を例えば光学的手法によって検出することにより、特定成分の量や濃度を分析することができる。
【0004】
特許文献1には、光軸合わせを不要とすると共に、測定感度の高い小型のマイクロ化学システムが記載されている。マイクロ化学システムは、流路内に液中試料が満たされた流路付き板状部材と、レンズ付き光ファイバと、励起光を照射すると共に検出光を照射する光源ユニットと、検出装置とを備え、レンズ付き光ファイバは、屈折率分布型ロッドレンズと、一端が屈折率分布型ロッドレンズに接続され、他端が光源ユニットに接続され、その中間にFCコネクターを有する光ファイバとから成る。FCコネクターは、FCプラグと、FCプラグを夫々固定するアダプタとから成り、アダプタにFCプラグを夫々ねじ込むことで接合される。
【0005】
特許文献2には、外部環境変化により熱レンズ信号強度が変化しても試料を正確に測定することができる熱レンズ分光分析システム及び熱レンズ信号補正方法が記載されている。熱レンズ分光分析システムは、中に液中試料が注入された溝を有するマイクロ化学チップと、液体試料に光ファイバを介して光源ユニットから伝播された励起光及び検出光を集光して熱レンズ信号を生成する屈折率分布型ロッドレンズと、励起光及び検出光の光量と熱レンズ信号強度を検出する光電変換器と、を備える。そして、熱レンズ信号強度の測定値、(励起光の所定光量/励起光の測定光量)、及び/又は第2の比(検出光の所定光量/検出光の測定光量)を積算することにより熱レンズ信号強度の測定値を補正する。
【0006】
特許文献3には、光源からの光をマイクロチップに導く光ファイバを備えた分析装置が記載されている。その分析装置は、光源からの光をマイクロチップに導くための光ファイバの端部を保持するフェルールは、ホルダにおいてコイルバネに付勢された状態で上下方向に移動可能に保持され、マイクロチップに当接させられるに構成されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2004−117302号公報
【特許文献2】特開2006−300721号公報
【特許文献3】国際公開第2010/010904号
【発明の概要】
【発明が解決しようとする課題】
【0008】
上述する従来技術のように、光学的手法により分析を行う方法として、光照射位置や光の集光など、検出の精度を向上するための努力が多くなされてきた。しかしながら、光照射側の制御時における熱影響について考慮されているが、受光側の制御時における熱影響について考慮されていない。
【0009】
電気泳動法による分離においては、光照射による熱影響だけでなく、マイクロチップ(分離流路の両端)へ電圧を印加することによる発熱があり、マイクロチップデバイスが熱により変形し、分析の精度が低下する問題があった。特に樹脂製のマイクロチップデバイスの場合は変形が大きく問題となりやすい。
【0010】
また、分析対象となる試料が血液やタンパク質などの場合、熱による変性が生じるおそれがあった。さらに、熱の影響により、マイクロチップデバイスの分離流路内で気泡が発生するなどして、分析の精度が低下するおそれもあった。
【0011】
これらの熱の影響を抑制するため、マイクロチップデバイスを冷却制御することがあるが、この場合、その冷却制御によってマイクロチップデバイスの内部と外面との温度勾配が大きくなり、その結果、マイクロチップデバイスの変形が助長されることもあった。
【0012】
また、試薬反応の過程で発熱することもあり、これを冷却する必要がある場合もある。試薬反応の発熱自体でマイクロチップデバイスの変形が生じ、さらに、マイクロチップを冷却制御する場合、内部の発熱部と冷却部との温度勾配により、マイクロチップデバイスの変形が助長されていた。
【0013】
試薬反応による測定法においては、マイクロチップデバイスの温度を調節しながら光学的手法による分析を行うことがある。例えば、酵素試薬を用いる場合は、マイクロチップデバイスの温度を反応性の高い摂氏37度前後に調節することが望ましい。この場合、マイクロチップの初期温度(例えば室温、気温摂氏20度前後)から摂氏37度に昇温する過程で、マイクロチップデバイスの変形が生じていた。
【0014】
以上のように、冷却、加熱を問わず、マイクロチップデバイスの内部から、または、外部から温度変化が生じると、その影響によりマイクロチップデバイスが変形するという問題があった。
【0015】
本発明は、上記事情に鑑みてなされたものであり、熱影響を低減し測定精度の低下を防止することができる分析装置を提供することを目的とする。
【課題を解決するための手段】
【0016】
本発明の観点に係る分析装置は、
測光部を有するマイクロチップと、
前記マイクロチップを支持する支持部材と、
前記測光部に光を照射する光照射手段と、
前記測光部を介した光を受光する受光手段と、
前記マイクロチップを挟んで前記支持部材に対向する位置に配設される前記光照射手段または前記受光手段を、該マイクロチップに当接させ、該マイクロチップを前記支持部材へ支持する方向へ付勢する第1の付勢手段と、
を備えることを特徴とする。
【0017】
好ましくは、前記光照射手段は、光源を有する光照射制御手段と、該光照射制御手段から前記測光部に光を導く第1の導光手段を備えることを特徴とする。
【0018】
好ましくは、前記受光手段は、受光制御手段と、前記測光部を介した光を該受光制御手段に導く第2の導光手段を備えることを特徴とする。
【0019】
好ましくは、前記光照射手段は、光源を有する光照射制御手段と、該光照射制御手段から前記測光部に光を導く第1の導光手段を備え、
前記受光手段は、受光制御手段と、前記測光部を介した光を該受光制御手段に導く第2の導光手段を備え、
前記光照射制御手段と前記受光制御手段とが一体に形成される制御ユニットを備えることを特徴とする。
【0020】
好ましくは、前記第1の導光手段および/または前記第2の導光手段は、光ファイバを含むことを特徴とする。
【0021】
好ましくは、前記第1の導光手段および/または前記第2の導光手段は、レンズ、フィルタ、ハウジングのいずれかを含み構成されることを特徴とする。
【0022】
好ましくは、前記第1の付勢手段を有さない前記光照射手段または前記受光手段は、前記マイクロチップに当接して設置されることを特徴とする。
【0023】
好ましくは、前記第1の付勢手段を有さない光照射手段または受光手段は、前記マイクロチップへ付勢する第2の付勢手段を備えることを特徴とする。
【0024】
さらに好ましくは、前記第2の付勢手段を有する光照射手段または受光手段は、前記マイクロチップの前記支持部材側に配設され、
前記第2の付勢手段は、前記第1の付勢手段で付勢する力と反対の方向に、該第1の付勢手段で付勢する力より小さい力で前記マイクロチップを付勢する、
ことを特徴とする。
【0025】
好ましくは、前記第1の付勢手段および/または前記第2の付勢手段は、弾性部材を有することを特徴とする。
【0026】
さらに好ましくは、前記弾性部材は、バネ機構を備えることを特徴とする。
【0027】
好ましくは、前記受光手段は、フォトダイオードを含むことを特徴とする。
【0028】
好ましくは、前記マイクロチップは、流路が形成された光透過性部材を有し、前記測光部は該流路であることを特徴とする。
【0029】
さらに好ましくは、前記マイクロチップは、樹脂で形成されることを特徴とする。
【0030】
好ましくは、光学分析の反射率、透過率、吸光度、蛍光または発光のうち、少なくともいずれか1つの指標を用いて分析を行うことを特徴とする。
【発明の効果】
【0031】
本発明によれば、熱影響を低減し測定精度の低下を防止することができる。
【図面の簡単な説明】
【0032】
【図1】本発明の実施の形態に係る分析装置の一例を示す概略構成図である。
【図2A】実施の形態に係るマイクロチップの一例を示す平面図である。
【図2B】図2AのY−Y線断面図である。
【図3】実施の形態に係る分析装置の、分析測定部の一例を示す部分拡大図である。
【図4A】実施の形態に係る検出部の、導光手段の一例を示す概略構成図である。
【図4B】実施の形態に係る導光手段の他の一例を示す概略構成図である。
【図5】実施の形態に係る分析装置の、分析測定部の一例を示す概略構成図である。
【図6】実施の形態の変形例1に係る分析装置の、分析測定部の一例を示す概略構成図である。
【図7A】実施の形態の変形例2に係る分析装置の、分析測定部の一例を示す概略構成図である。
【図7B】実施の形態の変形例2に係る分析装置の、分析測定部の一例を示す概略構成図である。
【図8】実施の形態の変形例3に係る分析装置の、分析測定部の一例を示す概略構成図である。
【図9A】実施の形態に係る分析装置の、マイクロチップの一例を示す概略構成図である。
【図9B】図9AのZ−Z線断面図である。
【発明を実施するための形態】
【0033】
(実施の形態)
図1は、本発明の実施の形態に係る分析装置の概略構成図である。本実施の形態においては、分析装置1は、キャピラリ電気泳動法を用いて分析を行い、光学的手法により検出する。
【0034】
分析装置1は、貯液槽11、試料槽12、廃液槽13、分注部14、マイクロチップ20、電極24、25、検出部30を有する分析測定部40、流路51ないし流路53、三方バルブ55、56、制御部61および電源部62を備える。マイクロチップ20には、分離流路21、導入孔22および排出孔23(図2A参照)が形成されている。
【0035】
貯液槽11は、貯液L、例えば泳動液、精製水、洗浄液などが貯められる。泳動液は、バッファとして機能する液体であり、例えば、100mMりんご酸−アルギニンバッファ(pH5.0)+1.5%コンドロイチン硫酸Cナトリウムの水溶液がある。
【0036】
試料槽12は、試料液Kが貯められる。試料液Kは、分析装置1で分析を行うための特定成分を含むサンプルである。試料液Kは、測定に適した処理、例えば、希釈や混合などが行われた状態に処理された液体である。
【0037】
廃液槽13は、使用済みの液体を貯蔵するためのものである。分注部14は、試料槽12の試料液Kをマイクロチップ20の分離流路21へ注入することができる。
【0038】
図2Aは、図1に示すマイクロチップの一例を示す平面図である。図2Bは図2AのY−Y線断面図である。
【0039】
マイクロチップ20は、微細な流路からなる分離流路21と、分離流路21へ溶液の導入・排出を行うための導入孔22および排出孔23を備える。マイクロチップ20は2枚の光透過性部材である樹脂基板を接合して形成される。マイクロチップ20は、例えば、シリコン樹脂、メタクリル酸メチル樹脂などのアクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂などの樹脂を材料とする。
【0040】
マイクロチップ20の分離流路21は、キャピラリ電気泳動法を用いた分析が行われる場である。分離流路21の断面は、直径が25ないし100μmの円形、または辺の長さが25ないし100μmの矩形であることが好ましい。キャピラリ電気泳動法を行うのに適した形状および寸法であればこれに限定されない。本実施の形態においては、分離流路21の長さは、30mm程度であるが、これに限定されるものではない。
【0041】
分離流路21は、導入孔22および排出孔23に通じている。導入孔22は、分離流路21の一端に設けられており、分注部14より試料液Kが導入される部分である。本実施の形態においては、導入孔22から試料液Kの他に、泳動液、精製水、洗浄液などの貯液Lの導入が可能である。排出孔23は、分離流路21の他端に設けられており、分離流路21に充填された試料液Kや貯液Lが排出される部分である。
【0042】
また、分離流路21には、その両端に電極24と電極25が設けられている。本実施の形態においては、電極24は、導入孔22内に露出しており、電極25は、排出孔23内に露出している。
【0043】
図3は、実施の形態に係る分析装置の、分析測定部の一例を示す部分拡大図である。図3は、図1のM−M線断面の概略を示す。
【0044】
分析測定部40は、マイクロチップ20、検出部30、マイクロチップ支持台41および遮蔽壁42を備える。検出部30の一部である照射用制御ユニット35および受光用制御ユニット36は、マイクロチップ20と所定の距離を設けて、かつ光を遮る部材で隔てられた異なる空間に配置されることが好ましい。照射用制御ユニット35および受光用制御ユニット36は、図3に示すように別個に備えてもよいし、一体に形成し、照射・受光用制御ユニットとして備えてもよい。
【0045】
具体的には、例えばマイクロチップ20を遮蔽壁42の内部に配置し、照射用制御ユニット35および受光用制御ユニット36を遮蔽壁42の外部に配置するように設計する。照射用制御ユニット35は光ファイバ33を介して照射用導光部31と接続し、受光用導光部32は光ファイバ34を介して受光用制御ユニット36と接続する。光ファイバ33、34は例えば石英ガラス光ファイバなどが用いられる。
【0046】
図4Aは、実施の形態に係る検出部の、導光手段の一例を示す概略構成図である。照射用導光部31は、フェルール31a、ホルダ31b、コイルバネ31cおよびストッパ31dを備える。フェルール31aは、光ファイバ33の導光を妨げないように、その端部に固着されている。フェルール31aは、例えば、ジルコニアなどのセラミックで形成される。照射用導光部31のフェルール31aと光ファイバ33とを合わせて、光照射手段という。
【0047】
照射用導光部31のストッパ31dは光ファイバ33に固定されることなく、コイルバネ31cの伸縮に合わせてスライドする。ストッパ31dを固定することで照射用導光部31のフェルール31aを、ストッパ31dに対してスライドさせることができる。
【0048】
例えば、照射用導光部31がマイクロチップ20に接する際に、照射用導光部31の先端(フェルール31a)でマイクロチップ20に押し付ける力(力F1:図5参照)を付勢することができる位置に、照射用導光部31のストッパ31dを遮蔽壁42の一部に固定しておく。マイクロチップ20を分析装置1に配置したときに、コイルバネ31cは収縮する方向に力を受け、その復元力(力F1)をマイクロチップ20へ付勢することができる。
【0049】
図4Bは、実施の形態に係る導光手段の他の一例を示す概略構成図である。図4Bの導光手段では、図4Aに示す照射用導光部31のホルダ31bがストッパ31dを兼ねた構成となっている。
【0050】
照射用導光部31のホルダ31bは、フェルール31aおよび光ファイバ33に固定されることなく、コイルバネ31cの伸縮に合わせて光ファイバ33に対してスライドする。ホルダ31bを固定することで照射用導光部31のフェルール31aをスライドさせることができる。
【0051】
例えば、照射用導光部31がマイクロチップ20に接する際に、照射用導光部31の先端(フェルール31a)でマイクロチップ20に押し付ける力(力F1)を付勢することができる位置に、照射用導光部31のホルダ31bを遮蔽壁42の一部に固定しておく。マイクロチップ20を分析装置1に配置したときに、コイルバネ31cは収縮する方向に力を受け、その復元力(力F1)をマイクロチップ20へ付勢することができる。
【0052】
照射用導光部31はフェルール31aの先端にレンズを備えていてもよい。照射用導光部31はレンズの他に、フィルタ、ハウジングのいずれかを含んで構成されていてもよい。
【0053】
図4Aおよび図4Bはまた、受光用導光部32の構成を示す。受光用導光部32のフェルール32aと光ファイバ34を合わせて受光手段が構成される。
【0054】
受光用導光部32は、マイクロチップ20へ圧力を加えない場合は、付勢手段を備える必要はなく、フェルール32aのみで形成されていてもよい。
【0055】
受光用導光部32は、マイクロチップ20へ圧力を加える場合は、付勢手段を備える。付勢手段である弾性構造に関しては基本的に照射用導光部31と同じ構造となり、コイルバネ32cを有するバネ機構を備える。受光用導光部32はフェルール32aの先端にレンズを備えていてもよい。また、受光用導光部32はレンズの他に、フィルタ、ハウジングのいずれかを含んで構成されていてもよい。
【0056】
図3、図4Aおよび図4Bにおいて、照射用導光部31は、マイクロチップ20を挟み、マイクロチップ支持台41に対向する位置に備える場合を例に挙げて説明している。この場合、本実施の形態では照射用導光部31に付勢手段を備え、受光用導光部32においては照射用導光部31に備えた付勢手段より弱い力を有する付勢手段を備えることが好ましい。
【0057】
照射用導光部31と受光用導光部32が反対の位置にある場合、すなわち受光用導光部32が、マイクロチップ20を挟み、マイクロチップ支持台41に対向する位置に備える場合は、マイクロチップ支持台41に対向する受光用導光部32に付勢手段を備える。より好ましくは照射用導光部31は受光用導光部32より弱い力を有する付勢手段を備える。いずれの場合においても、マイクロチップ支持台41に対向する位置の導光手段を用いて、マイクロチップ20をマイクロチップ支持台41へ押し付ける方向へ力を付勢できればよい。
【0058】
分析装置1で分析する際に、分離流路21の両端の電極24、25に電圧を印加して電気泳動を行うため、マイクロチップ20そのものの温度が上昇する。マイクロチップ20の温度が上昇すると、分離流路21内の温度上昇により、緩衝液が所定の温度を超えて曇点が発生したり、測定対象が血液などの場合にタンパク質凝固などの変性が発生するなど、測定に悪影響を及ぼすため測定精度が低下する。また、マイクロチップ20そのものに微小な変形が生じて、受発光素子の相対位置、すなわち照射用導光部31と受光用導光部32との距離、が変動して測定精度が低下する。
【0059】
したがって、できるだけマイクロチップ20の温度上昇を緩やかにし、できるだけ所定の温度を超えないようにすることが望ましく、マイクロチップ支持台41は熱伝導率の高いアルミなどの部材で形成して放熱しやすいよう構成する。さらに、例えばペルチェ素子を備えて冷却制御を実施するよう構成したり、あるいはファンモータによる空冷によって冷却制御を実施してもよい。
【0060】
電気泳動法以外の、例えば酵素反応試薬を適用した測定法であれば、試薬反応が環境温度影響を受けることを排除するため摂氏37度近辺に温調制御を実施するよう構成する場合がある。また、試薬反応の過程における発熱を抑制するために冷却制御を施す場合もある。
【0061】
つまり、マイクロチップ20を測定する際には、測定セルまたはキャピラリ自体が温度変化し、その温度変化が測定精度に影響する場合や、また、その温度変化の抑制等の目的において所望の温度に制御する場合がある。これらの場合おいて、マイクロチップ20の内外部は温度変化の影響を受けて変形する。
【0062】
分析装置1で分析および測定する際には、照射用制御ユニット35および受光用制御ユニット36を作動させ検出部30で検出を行う。このとき、照射用制御ユニット35および受光用制御ユニット36は熱を発生するため、マイクロチップ20への熱影響がある。
【0063】
その一方、照射用制御ユニット35および受光用制御ユニット36は熱影響を受けやすい。マイクロチップ自体から、または、マイクロチップを温度制御するための要素からの熱影響によって、受光素子もしくは発光素子の特性、また、それらを駆動する制御回路の特性が変動することで、受光量または発光量の変動が生じ、測定値の誤差を引き起こす。一般的に、照射する光量は参照光のモニタリングによって補正可能だが、測定光そのものの受光量自体は直接的に補正できないため測定精度に影響する。
【0064】
また、温度制御するための要素や、マイクロチップ自体から発せられる電気的ノイズの影響を受けることもある。さらに、照射用制御ユニット35および受光用制御ユニット36の相互間でノイズの影響を受けることもある。
【0065】
したがって、照射用制御ユニット35および受光用制御ユニット36とマイクロチップ20とを隔離し、照射用制御ユニット35および受光用制御ユニット36からマイクロチップ20への熱による影響や、マイクロチップ20から照射用制御ユニット35および受光用制御ユニット36への熱による影響を減らすことが好ましい。
【0066】
例えば、外部からの温度影響を受けにくい環境として、遮蔽壁42で囲む空間を設けておき、その遮蔽壁42内の空間にマイクロチップ20を備える。遮蔽壁42の外部に置かれた照射用制御ユニット35および受光用制御ユニット36からの熱は、遮蔽壁42の内部に置かれたマイクロチップ20へ伝わりにくく、マイクロチップ20への熱による影響を防止することができる。さらに、遮蔽壁42は光照射・受光の際の迷光を除去できる。遮蔽壁42は、マイクロチップ20の温度上昇を抑制し、測定への影響を低減させるだけでなく、迷光除去による測定精度が向上する効果もある。
【0067】
さらに、例えば、光ファイバ33、34を介して照射用制御ユニット35および受光用制御ユニット36を照射用導光部31および受光用導光部32と接続する。光ファイバ33、34などの導光手段を用いることで、照射用制御ユニット35および受光用制御ユニット36と照射用導光部31および受光用導光部32とを距離をあけて配設することができ、熱による影響を低減させることができる。また、光ファイバ33、34を用いることで、マイクロチップ20を分析測定箇所へ配置する際の作業性が良くなる。
【0068】
照射側だけでなく受光側についても光ファイバ34を備えることができる。例えば、受光用制御ユニット36の受光素子はフォトダイオードを用いる場合に、フォトダイオードの受光感度は温度特性を有するため、できるだけ受光用導光部32は熱の変化が少ないことが好ましい。受光側の光ファイバ34が備えられていない場合、受光用導光部32は受光用制御ユニット36で発生した熱を受け温度変化が生じ、受光する測定の精度が低下する。光ファイバ34を備えることで、受光用制御ユニット36が受光用導光部32へ与える熱による影響を少なくできるので、測定精度が低下するのを防止することができる。
【0069】
分析測定部40は、遮蔽壁42の外部に、分離流路21の両端に形成された電極24、25を配置するように構成することが好ましい。照射用制御ユニット35および受光用制御ユニット36を遮蔽壁42の外部に配置することに加えて、電極24、25についても遮蔽壁42の外部に配置することで、より遮蔽壁42内の温度上昇を防止し、マイクロチップ20の温度上昇を低減させるので、結果として測定精度の低下を防止することができる。
【0070】
検出部30は、照射用導光部31、受光用導光部32、光ファイバ33、34、照射用制御ユニット35および受光用制御ユニット36を備える。検出部30は、分離流路21において試料液Kから分離された特定成分を分析するためのものである。検出部30の照射用導光部31および受光用導光部32は、分離流路21のうち、導入孔22よりも排出孔23に近い側の部分に設けられている。
【0071】
照射用導光部31は、光を照射するための光源を備えた照射用制御ユニット35と光ファイバ33を介して接続する。例えば光源は、LEDなどを用いる。
【0072】
受光用導光部32は、光を受光するための受光部を備えた受光用制御ユニット36と光ファイバ34を介して接続する。例えば受光部は、フォトダイオードなどを用いる。受光用導光部32は、さらに、レンズなどの集光機能を先端に備えていてもよい。
【0073】
照射用導光部31と受光用導光部32は、マイクロチップ20を介して対向し、各々の光ファイバ33、34は同軸上となるように配設される。測定精度を向上させるために、照射用導光部31と受光用導光部32の光軸の中心のずれはできるだけ小さいことが好ましい。
【0074】
照射用制御ユニット35は照射用導光部31を、受光用制御ユニット36は受光用導光部32を、それぞれ制御することにより、検出部30は、照射用導光部31からの光を試料液Kに照射し、透過光を受光用導光部32によって受光することにより吸光度を測定する。そして、制御部61の演算部(図示せず)で、吸光度から特定成分の抽出や特定成分の濃度が算出され、分析処理が完了する。以下、本実施の形態の分析測定における作用を説明する。
【0075】
図5は、実施の形態に係る分析装置の、分析測定部の一例を示す概略構成図である。分析測定部40のマイクロチップ支持台41に、予め、マイクロチップ20を配設しておく。また、マイクロチップ20の分離流路21を挟むように、照射用導光部31および受光用導光部32は配設しておく。このとき照射用導光部31は、マイクロチップ20へ向けて所定の力の復元力(力F1)を付加し、マイクロチップ20をマイクロチップ支持台41へ押し付ける力(力F1)が働く。
【0076】
照射用導光部31は、流路の流れる方向で見たときに、導入孔22と排出孔23の間であって、中間よりやや排出孔23よりの位置に配設される。照射用導光部31は、マイクロチップ20の、特に分離流路21を押さえるように、付勢する力(力F1)を付加する。
【0077】
分析装置1での分析・測定および検出の工程では、マイクロチップ20に以下のような影響がある。分析・測定の工程は、電気泳動により行うため、分離流路21の両端の電極24、25に電圧を印加する必要がある。その電圧で生じる電流によって、マイクロチップ20に温度上昇が起こる。検出の工程では、照射用導光部31から照射した光を受光用導光部32で受光し、演算処理により行うため、分離流路21へ光を照射する。このとき、光照射により熱が発生し、マイクロチップ20に温度上昇が起こる。
【0078】
電圧の印加および光照射により、マイクロチップ20の分離流路21は温度上昇し、特に測光箇所近傍は温度上昇がより著しく発生する。マイクロチップ支持台41は熱伝導率の高いアルミなどの部材で形成して放熱しやすいよう構成されているので、マイクロチップ20の、マイクロチップ支持台41と対向しない側の面と比較して、マイクロチップ支持台41に接する側の面は、温度上昇が抑制される。その結果、マイクロチップ20の、マイクロチップ支持台41と対向しない側の面は温度上昇の影響を受けやすく、マイクロチップ20に熱膨張が発生し、マイクロチップ20は照射用導光部31側に向けて凸状に変形を生じる。
【0079】
このとき、照射用導光部31はマイクロチップ20に当接し、かつ、コイルバネ31cの復元力によりマイクロチップ20へ所定の力(力F1)で付勢しており、マイクロチップ20が凸状へ変形しようとするのを防止する。マイクロチップ20が凸状に変形するのを防止することで分離流路21の変形を抑制する。分離流路の変形を防止し、流動特性の変化や、光透過方向の変化を防止することができ、結果として、測定精度の低下を防ぐことができる。また、照射用導光部31とマイクロチップ20は接したままの状態を維持でき、光の照射位置が一定となり、測定における光学距離が一定となるので、測定精度の低下を抑制することができる。
【0080】
照射用導光部31でマイクロチップ20に付勢する力を与えて、マイクロチップ20の変形を防止することができるので、熱による変形が起こりやすい素材のマイクロチップ20を用いることができる。マイクロチップ20は、ガラス製だけでなく、例えば、シリコン樹脂、メタクリル酸メチル樹脂などのアクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂などの樹脂製のものを用いてもよい。また、素材の強度が小さく変形しやすい素材に対しても、照射用導光部31でマイクロチップ20に所定の付勢する力を与え、マイクロチップ20の変形を防止できるので、マイクロチップ20の素材として用いることができる。
【0081】
以下に、図1ないし図5を参照して、分析装置1を用いて分析する動作を説明する。
【0082】
分析装置1の上述の各部の動作は、制御部61により制御される。一連の制御により、分析装置1による分析が行われる。制御部61は、例えばCPU、メモリ、入出力インターフェースなどによって構成される。
【0083】
分析装置1には、三方バルブ55、56が設けられている。三方バルブ55、56は、それぞれ3つの接続口を有しており、これらの接続口どうしの連通状態および遮断状態が、制御部61によって独立に制御される。
【0084】
貯液槽11および試料槽12は、三方バルブ55、56を介して流路51または流路53と接続している。制御部61によって開閉が制御されており、分離流路21との連通状態および遮断状態が独立に制御される。流路51はマイクロチップ20、すなわち分離流路21へ繋がり、流路53は廃液槽13に繋がる。
【0085】
電源部62は、分離流路21においてキャピラリ電気泳動法による分析を行うための電圧を印加するためのものであり、正極である電極24および負極である電極25に接続されている。印加される電圧は、例えば、1.5kV程度であり、正極と負極は反対の極性を印加する機能を備えていてもよい。
【0086】
電気泳動による分離は、具体的には、制御部61の指示により、正極である電極24および負極である電極25に電源部62から電圧を印加し、泳動液に電極24から電極25へと向かう電気浸透流を発生させる。このとき、特定成分には、固有の電気泳動移動度に応じて電極24から電極25に向かって移動が生じる。
【0087】
制御部61の指示により、分析測定部40は、分離流路21の特定の位置において、例えば照射用導光部31からの光源から光を照射し、その透過光を受光用導光部32によって受光する。より詳しくは、照射用制御ユニット35に備えられたLEDなどの光源から光ファイバ33を介して照射用導光部31より波長が415nm近傍の光を照射し、その透過光を受光用導光部32から光ファイバ34を介して受光用制御ユニット36に備えられたフォトダイオードなどの受光部で受光する。分離流路21の特定の位置を特定成分が通過すると、受光部で受光する光(吸光度)が変化し、その変化より特定成分の濃度や量を検出することができる。
【0088】
マイクロチップ20は、電気泳動のために分離流路21へ電圧を印加すること、および測定のために光を照射することによる熱が付加され、温度上昇により変形が生じる。マイクロチップ支持台41は熱伝導率の高いアルミなどの部材で形成して放熱しやすいよう構成されているので、マイクロチップ20の、マイクロチップ支持台41と対向しない側の面と比較して、マイクロチップ支持台41に接する側の面は、温度上昇が抑制される。その結果、マイクロチップ20の、マイクロチップ支持台41と対向しない側の面は温度上昇の影響を受けやすく、マイクロチップ20に熱膨張が発生し、マイクロチップ20は照射用導光部31側に向けて凸状に変形を生じる。
【0089】
照射用導光部31で測定のために光を照射する際に、照射用導光部31はマイクロチップ20に当接し、かつ、マイクロチップ20を押し付けるように、照射用導光部31は力F1でマイクロチップ20へ付勢しながら光を照射する。より詳しくは、遮蔽壁42に固定されたストッパ31dでコイルバネ31cが押し縮められる。その復元力により、照射用導光部31の先端にあるフェルール31aはマイクロチップ20へ力F1で付勢し、マイクロチップ20の測定箇所上部の分離流路21を、マイクロチップ支持台41の方向へ押し付けることができる。
【0090】
マイクロチップ20は、凸状に変形した箇所を元に戻す方向に付勢力(力F1)を受け、マイクロチップ20の変形を防止することができる。分離流路21が変形せずに済むので、変形が原因となって発生する分離流路21内の流動特性の変化や照射などの光の透過方向の変化を防止し、結果として、測定精度の低下を防止することができる。また、照射用導光部31とマイクロチップ20は接したままの状態を維持でき、光の照射位置が一定となり、測定における光学距離が一定となるので、測定精度の低下を抑制することができる。
【0091】
また、マイクロチップ20は遮蔽壁42の内部に置かれ、照射用制御ユニット35および受光用制御ユニット36からの熱による影響を受けずに済む。その結果、マイクロチップ20の温度上昇を低減させることができ、測定精度の低下を防止する。また、遮蔽壁42があることで、分析測定部40での迷光除去効果が向上し、測定精度の向上に寄与する。
【0092】
さらに、受光用導光部32と受光用制御ユニット36を光ファイバ34で連結し、受光用導光部32と受光用制御ユニット36との間に距離を設けることで、受光用導光部32は受光用制御ユニット36からの熱による影響を受けずに済む。その結果、受光用導光部32がフォトダイオードなどの温度により受光感度が変化する部材の場合であっても、測定精度の低下を防止することができる。
【0093】
この分析結果を、例えば記憶部(図示せず)に記憶するなどして、分析を終える。以上の工程により、分析装置1を用いた分析が完了する。
【0094】
図6は、実施の形態の変形例1に係る分析装置の、分析測定部の一例を示す概略構成図である。基本的な構造は実施の形態に係る分析装置1と同じであり、受光用導光部32は照射用導光部31の様に、付勢することが可能なものであって、照射用導光部31より付勢する力が小さいものを用いる。
【0095】
電圧の印加および光照射により、マイクロチップ20の分離流路21は温度上昇し、特に測光箇所近傍は温度上昇がより著しく発生する。マイクロチップ支持台41は熱伝導率の高いアルミなどの部材で形成して放熱しやすいよう構成されているので、マイクロチップ20の、マイクロチップ支持台41と対向しない側の面と比較して、マイクロチップ支持台41に接する側の面は、温度上昇が抑制される。その結果、マイクロチップ20の、マイクロチップ支持台41と対向しない側の面は温度上昇の影響を受けやすく、マイクロチップ20に熱膨張が発生し、マイクロチップ20は照射用導光部31側に向けて凸状に変形を生じる。
【0096】
このとき、照射用導光部31は所定の力(力F1)でマイクロチップ20へ付勢し、マイクロチップ20をマイクロチップ支持台41へ押し付けるように付勢し、凸状に変形するのを防止する。それと同時に受光用導光部32は、照射用導光部31の方向へ、すなわち受光用導光部32からマイクロチップ20へ向けて、所定の力(力F2)を付勢する。
【0097】
受光用導光部32にバネなどの付勢する機能を備えることで、マイクロチップ20の分離流路21を挟み込むように押し付けることができる。その結果、照射用導光部31とマイクロチップ20は密着するように当接し、かつ、照射用導光部31に対向する受光用導光部32とマイクロチップ20は密着するように当接し、照射用導光部31と受光用導光部32とマイクロチップ20は一体となるような形となり、位置関係(光学距離)が一定となるため、測定精度の低下を抑制することができる。
【0098】
仮に、マイクロチップ20に生じた凸状変形を照射用導光部31で付勢する力(力F1)で抑制できずに、マイクロチップ20に若干の凸状変形が生じる場合であっても、受光用導光部32からマイクロチップ20へ所定の力(力F2)が付勢されるため、照射用導光部31と受光用導光部32とマイクロチップ20は一体のまま、それぞれが接した状態を維持することができる。その結果、位置関係(光学距離)が一定となるため、測定精度の低下を抑制することができる。
【0099】
なお、受光用導光部32で付勢する力(力F2)が付勢されていない場合については、上述の実施の形態の場合(図5参照のこと)に等しくなる。
【0100】
図7Aおよび図7Bは、実施の形態の変形例2に係る分析装置の、分析測定部の一例を示す概略構成図である。基本的な構造は実施の形態に係る分析装置1と同じであり、照射用導光部31と受光用導光部32の位置が、上下に反転した場合である。具体的には、受光用導光部32は、マイクロチップ20を挟み、マイクロチップ支持台41に対向する位置に備えられ、照射用導光部31は、マイクロチップ支持台41側の位置に備えられる。図7Aは図5に対応し、図7Bは図6に対応する。
【0101】
本実施の形態では、図7Aのように、マイクロチップ支持台41へマイクロチップ20を付勢する付勢手段を備える必要がある。少なくとも受光用導光部32は所定の力(力F2)でマイクロチップ20を付勢する付勢手段を備える。
【0102】
また、図7Bのように、受光用導光部32だけでなく照射用導光部31にも付勢手段を備える場合、照射用導光部31の付勢する力(力F1)は受光用導光部32の付勢する力(力F2)より小さくなるように付勢手段を備える。受光用導光部32の付勢する力(力F2)を、照射用導光部31の付勢する力(力F1)より大きくすることで、マイクロチップ支持台41へマイクロチップ20を付勢することができる。
【0103】
図8は、実施の形態の変形例3に係る分析装置の、分析測定部の一例を示す概略構成図である。基本的な構造は実施の形態に係る分析装置1と同じであり、マイクロチップ押さえ43を追加して備えた場合である。
【0104】
マイクロチップ押さえ43は、マイクロチップ20のマイクロチップ支持台41への固定が不充分となる場合など、例えば、マイクロチップ20が樹脂などの軽量な部材で形成されマイクロチップ支持台41へ固持されにくい場合に備える。本発明においては、マイクロチップ押さえ43は、所定の力(力F3)で、マイクロチップ20をマイクロチップ支持台41へ押さえ付けることができるものを用いる。
【0105】
照射用導光部31はマイクロチップ20に当接し、マイクロチップ20へ所定の力(力F1)でマイクロチップ支持台41へ向けて付勢し、マイクロチップ押さえ43も所定の力(力F3)でマイクロチップ支持台41へ向けて付勢する。その結果、分析時においてマイクロチップ20に凸状の変形が生じる場合であっても、照射用導光部31とマイクロチップ押さえ43とで付勢され、変形が生じるのを抑制する。このとき、照射用導光部31で付勢する際の所定の力(力F1)は、照射用導光部31のみで付勢する場合よりも、小さくてよい。
【0106】
また、受光用導光部32でも所定の力(力F2)で付勢する場合について、マイクロチップ押さえ43を備えない場合は、照射用導光部31で付勢する所定の力(力F1)は受光用導光部32で付勢する所定の力(力F2)より大きくなければならなかったが、同等であってもよい。マイクロチップ押さえ43があることで、マイクロチップ20をマイクロチップ支持台41へ向けて付勢し、マイクロチップ20に凸状変形が生じるのを抑制することが可能となる。その結果、マイクロチップ20の変形を押さえ、測定精度が低下するのを防止できる。さらに、照射用導光部31と受光用導光部32で、間にあるマイクロチップ20(測光箇所の分離流路21を含む)を挟み込むように固持し、光学距離を一定に保つことができ、より精度の高い測定をすることができる。
【0107】
図9Aは、本実施の形態に係る分析装置の、マイクロチップの一例を示す概略構成図である。マイクロチップ20は、検出部30を備える箇所の分離流路21の上部に、ガイド(凹部)26を備える。ガイド26は、間隙を有して、照射用導光部31を嵌合することができる。
【0108】
図9Bは、図9AのZ−Z線断面図である。ガイド26は、分離流路21上の、所定の位置に形成されており、照射用導光部31から分離流路21へ決まった位置へ光を照射することができる。その結果、ガイド26へ照射用導光部31を嵌合するだけで、位置あわせをすることなく所定の位置に光を照射でき、容易にマイクロチップ20をマイクロチップ支持台41へ配設することが可能となる。また、光を照射する位置が固定するため、測定における光学距離が一定となり、安定して測定をすることができる。
【0109】
また、ガイド26を備えたマイクロチップ20を用いることで、照射用導光部31でマイクロチップ20へ向けて付勢する力を加えるときに、接圧位置が固定されるので、安定して力を付加することが可能となる。所定の検出箇所に、ある一定の力で、マイクロチップ20に付加を加えることで、安定した測定、ここでは光の照射および受光を行うことができる。
【0110】
以上説明したように、実施の形態に係る分析装置によれば、熱影響を低減し測定精度の低下を防止することができる。
【0111】
特定成分の検出において、マイクロチップの分離流路に光を照射する際に、光照射手段を用いて直接マイクロチップに付勢する力を加えることで、熱によるマイクロチップおよび分離流路の変形を防止することができ、分離流路内における流動特性の変化や照射などの光の透過方向の変化を防止し、測定精度の低下を防止することができる。また、光照射手段を用いて直接マイクロチップに付勢する力を加えることで、マイクロチップを挟み両側にある導光手段の間の距離を一定に保つことができ、光学距離が一定となり測定精度の低下を抑制する。
【0112】
さらに、マイクロチップ(分離流路)に当接するもしくは近接する導光手段と、受光用制御ユニットを光ファイバを用いて距離を遠ざけて配置することにより、フォトダイオードなどの受光部と受光用制御ユニットを遠ざけることができる。その結果、温度によるフォトダイオードの受光感度の変化を少なくし、測定精度の低下を防止することができる。
【0113】
また、マイクロチップ(分離流路)に当接するもしくは近接する導光手段と、導光手段の光照射・受光用制御ユニットを隔離して備えることで、マイクロチップへの熱影響を低減し、緩衝液の曇点による測定精度の低下を防止できる。また、所定の温度以上で発生する試料の変性、例えば高温下でのタンパク質凝固が発生するのを低減させ、測定精度の低下を防止することができる。
【0114】
本実施の形態に係る分析装置において、上述した例に限定されるものではない。本発明に係る分析装置の具体的な構成は、種々に設計変更自在である。例えば、流路の構成や貯槽部の数、各機能部を配置する位置、各機能部の形状などを、分析装置の用途に合わせて設計することができる。分析装置での分析については、光学分析の反射率、透過率、吸光度、蛍光または発光のうち、少なくともいずれか1つの指標を用いる分析に適用することができる。
【0115】
本実施の形態で説明したマイクロチップへ生じる変形の例は一例である。分析装置の種類、分析方法、分析対象、用いるマイクロチップなど様々な要因により、マイクロチップの変形する形状、変形度合いや変形する向きなどは異なる。本実施の形態では、光照射手段および/または受光手段を用いて、マイクロチップを支持部材へ向けて押さえ付けるように付勢し、マイクロチップの変形を抑制することができればよく、上述の例に限定されない。また、付勢する力の大きさについても、マイクロチップの材質や分析温度、光照射手段で付勢する力と受光手段で付勢する力の差、および付勢する力の方向などを考慮して、任意に設定することができる。
【0116】
分析に用いる導光手段で付勢する力は、コイルバネに限らず、板バネやその他弾性体を用いてよい。また、マイクロチップ(分離流路)に導光手段を配置する箇所は、上述した例に限定されない。配置する際に、光照射と受光の、光軸の同心度ができるだけ小さくなるように配置されることが好ましい。
【0117】
マイクロチップは、樹脂製に限らず、ガラス製などであってもよい。また、マイクロチップに備える分離流路の本数は、1本に限らず複数であってもよい。分離流路の構成は、いわゆるストレート形状に限定されず、2つの流路が公差したクロスインジェクション形状であってもよい。
【符号の説明】
【0118】
1 分析装置
11 貯液槽
12 試料槽
13 廃液槽
14 分注部
20 マイクロチップ
21 分離流路
22 導入孔
23 排出孔
24、25 電極
26 ガイド(凹部)
30 検出部
31 照射用導光部
31a、32a フェルール
31b、32b ホルダ
31c、32c コイルバネ
31d、32d ストッパ
32 受光用導光部
33、34 光ファイバ
35 照射用制御ユニット
36 受光用制御ユニット
40 分析測定部
41 マイクロチップ支持台
42 遮蔽壁
43 マイクロチップ押さえ
51〜53 流路
55、56 三方バルブ
61 制御部
62 電源部
L 貯液
K 試料液

【特許請求の範囲】
【請求項1】
測光部を有するマイクロチップと、
前記マイクロチップを支持する支持部材と、
前記測光部に光を照射する光照射手段と、
前記測光部を介した光を受光する受光手段と、
前記マイクロチップを挟んで前記支持部材に対向する位置に配設される前記光照射手段または前記受光手段を、該マイクロチップに当接させ、該マイクロチップを前記支持部材へ支持する方向へ付勢する第1の付勢手段と、
を備えることを特徴とする分析装置。
【請求項2】
前記光照射手段は、光源を有する光照射制御手段と、該光照射制御手段から前記測光部に光を導く第1の導光手段を備えることを特徴とする請求項1に記載の分析装置。
【請求項3】
前記受光手段は、受光制御手段と、前記測光部を介した光を該受光制御手段に導く第2の導光手段を備えることを特徴とする請求項1または2に記載の分析装置。
【請求項4】
前記光照射手段は、光源を有する光照射制御手段と、該光照射制御手段から前記測光部に光を導く第1の導光手段を備え、
前記受光手段は、受光制御手段と、前記測光部を介した光を該受光制御手段に導く第2の導光手段を備え、
前記光照射制御手段と前記受光制御手段とが一体に形成される制御ユニットを備えることを特徴とする請求項1に記載の分析装置。
【請求項5】
前記第1の導光手段および/または前記第2の導光手段は、光ファイバを含むことを特徴とする請求項2ないし4のいずれか1項に記載の分析装置。
【請求項6】
前記第1の導光手段および/または前記第2の導光手段は、レンズ、フィルタ、ハウジングのいずれかを含み構成されることを特徴とする請求項2ないし5のいずれか1項に記載の分析装置。
【請求項7】
前記第1の付勢手段を有さない前記光照射手段または前記受光手段は、前記マイクロチップに当接して設置されることを特徴とする請求項1ないし6のいずれか1項に記載の分析装置。
【請求項8】
前記第1の付勢手段を有さない光照射手段または受光手段は、前記マイクロチップへ付勢する第2の付勢手段を備えることを特徴とする請求項1ないし7のいずれか1項に記載の分析装置。
【請求項9】
前記第2の付勢手段を有する光照射手段または受光手段は、前記マイクロチップの前記支持部材側に配設され、
前記第2の付勢手段は、前記第1の付勢手段で付勢する力と反対の方向に、該第1の付勢手段で付勢する力より小さい力で前記マイクロチップへ付勢する、
ことを特徴とする請求項8に記載の分析装置。
【請求項10】
前記第1の付勢手段および/または前記第2の付勢手段は、弾性部材を有することを特徴とする請求項1ないし9のいずれか1項に記載の分析装置。
【請求項11】
前記弾性部材は、バネ機構を備えることを特徴とする請求項10に記載の分析装置。
【請求項12】
前記受光手段は、フォトダイオードを含むことを特徴とする請求項1ないし11のいずれか1項に記載の分析装置。
【請求項13】
前記マイクロチップは、流路が形成された光透過性部材を有し、前記測光部は該流路であることを特徴とする請求項1ないし12のいずれか1項に記載の分析装置。
【請求項14】
前記マイクロチップは、樹脂で形成されることを特徴とする請求項13に記載の分析装置。
【請求項15】
光学分析の反射率、透過率、吸光度、蛍光または発光のうち、少なくともいずれか1つの指標を用いて分析を行うことを特徴とする請求項1ないし14のいずれか1項に記載の分析装置。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8】
image rotate

【図9A】
image rotate

【図9B】
image rotate


【公開番号】特開2012−93350(P2012−93350A)
【公開日】平成24年5月17日(2012.5.17)
【国際特許分類】
【出願番号】特願2011−209158(P2011−209158)
【出願日】平成23年9月26日(2011.9.26)
【出願人】(000141897)アークレイ株式会社 (288)
【Fターム(参考)】