説明

動力伝達機構の耐久試験機

【課題】実機の複雑な運転状態に即したベルト張力変動を任意に従動プーリに与えることが可能な動力伝達機構の耐久試験機を提供することである。
【解決手段】動力伝達機構の耐久試験機1は、駆動プーリ2及び従動プーリ3と、駆動プーリ2と従動プーリ3とに亙って懸架された伝動ベルト4と、伝動ベルト4の張り側部分4aの背面に当接するとともに、その外周の回転中心C3、C4からの距離が連続的に変化する偏心プーリ5と、偏心プーリ5と同形状であり、伝動ベルト4の弛み側部分4bの背面に当接するとともに、偏心プーリ5に対して位相差θを付けて配置された偏心プーリ6と、偏心プーリ5と偏心プーリ6とを同期的に回転させる歯付ベルト19とを備えている。そして、試験プーリとなる従動プーリ3に、従来より実機の運転時に近い状態の軸荷重を与えて耐久試験を行うことができるようになる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自動車用エンジン等に連結される動力伝達機構の耐久試験機に関する。
【背景技術】
【0002】
従来から、自動車用エンジン等に連結されてその動力を伝達する、ベルトやプーリ等からなる動力伝達機構の耐久試験には、一般的に実機のエンジンを使用せず、電動機(モータ)を動力源とする模擬的な試験機が用いられることが多い。
しかし、電動機が一般に回転角速度変動のない滑らかな回転を発生させるのに対し、内燃機関エンジンは往復運動機関により出力軸に回転角速度変動を発生させる。そのため、実機の運転時に近い状態で耐久試験を行うには、回転角速度変動(以下、単に回転変動又は軸荷重の変動という)を与えることが可能な試験機が必要となる。
【0003】
そのような試験機として、従来から、インバータで電動機の駆動電流を制御することにより、回転変動(軸荷重の変動)を生じさせるものがある。しかし、このような試験機は設備が大型化し、また、コストもかなり大きなものとなっていた。
【0004】
この点に関して、本願出願人は、前述の試験機よりもコストを低減できる回転変動試験機(動力伝達機構の耐久試験機)を提案している(特許文献1参照)。この特許文献1の回転変動試験機は、インバータによりモータの駆動電流を制御する従来の試験機に比べると安価ではあるものの、決まった回転変動(例えば、モータ回転数の2倍の回転変動)しか発生させることができないため、様々な実機の運転状態に対応した試験を行うことが困難である。
【0005】
そこで、本願出願人は、より一層のコスト低減及び小型化を実現することができ、さらに、実機の運転状態に即した回転変動を発生させることが可能な、回転変動試験機(動力伝達機構の耐久試験機)を提案している(特許文献2参照)。この特許文献2の回転変動試験機は、第3プーリとしての偏心プーリ5及び第4プーリとしての偏心プーリ6の外周の回転中心C3、C4からの距離はそれぞれ連続的に変化している。また、当該偏心プーリ5、6は互いに同形状(同径の円形状)に形成されており、さらに、第1プーリとしての駆動プーリ2と偏心プーリ5と偏心プーリ6とを歯付ベルト19によって縣架することにより互いに同期的に回転させている。
【0006】
このため、例えば、偏心プーリ5、6の右方偏心状態(特許文献2の図1参照)の場合には、伝動ベルト4の弛み側部分4bに、右方に偏った偏心プーリ6によって押し当てられることにより、張力24が増大する(図3参照)。一方、伝動ベルト4の張り側部分4aには、右方に偏った偏心プーリ5によって押し当てられることにより、張力25が増大する(図3参照)。ここで、偏心プーリ5、6が右方偏心状態にあるため、偏心プーリ6によって押し当てられることにより弛み側部分4bのベルトの長さが長くなる。一方、偏心プーリ5は、張り側部分4aから遠ざかるので張り側部分4aのベルトの長さは短くなる。その結果、従動プーリ3は、弛み側部分4b及び張り側部分4aのベルトの長さの変化分(弛み側部分4b>張り側部分4a)、逆回転方向へ回転することになる。また、偏心プーリ5、6の左方偏心状態(特許文献2の図2参照)の場合には、偏心プーリ5、6が左方偏心状態にあるため、偏心プーリ5によって押し当てられることにより張り側部分4aのベルトの長さが長くなる。一方、偏心プーリ6は、弛み側部分4bから遠ざかるので弛み側部分4bのベルトの長さは短くなる。その結果、従動プーリ3は、弛み側部分4b及び張り側部分4aのベルトの長さの変化分(弛み側部分4b<張り側部分4a)、回転方向へ回転することになる。このように、偏心プーリ5、6の回転に伴って、伝動ベルト4の従動プーリ3の位置における位置が変動する。すなわち、従動プーリ3の回転変動となる。
【発明の概要】
【発明が解決しようとする課題】
【0007】
もっとも、従来の偏心プーリ5及び偏心プーリ6は、互いに重ね合わせた時に、偏心プーリ5の回転中心C3から中心C1を通る線分が、偏心プーリ6の回転中心C4から中心C2を通る線分に対してズレ(以下、位相差)がないように配置されている(回転角が同じく同位相となっている)。そのため、伝動ベルト4の張り側部分4aが、偏心プーリ5によって押し当てられることにより増大する張力21が最も弱く(強く)なるタイミングと、伝動ベルト4の弛み側部分4bが、偏心プーリ6によって押し当てられることにより増大する張力20が最も強く(弱く)なるタイミングとが一致し、伝動ベルト4にかかる張力変動が単調なものとなるに伴い従動プーリ3にかかる軸荷重も単調なものとなっている。このため、実機のような複雑なベルトの張力変動を任意に従動プーリ3に与えることは出来なかった。従って、実機の運転時のように従動プーリ3に軸荷重の変動を任意に与えて耐久試験を行うには、不十分であった。
【0008】
そこで、本発明の目的は、実機の複雑な運転状態に即したベルト張力変動を任意に従動プーリに与えることが可能な動力伝達機構の耐久試験機を提供することである。
【課題を解決するための手段】
【0009】
第1の発明の動力伝達機構の耐久試験機は、駆動側の第1プーリ及び従動側の第2プーリと、前記第1プーリと前記第2プーリとに亙って懸架された伝動ベルトと、前記伝動ベルトの張り側部分の内面と背面の一方に当接するとともに、その外周の回転中心からの距離が連続的に変化する第3プーリと、前記第3プーリと同形状であり、前記伝動ベルトの弛み側部分の内面と背面の一方に当接するとともに、前記第3プーリに対して所定の位相差を付けて配置された第4プーリと、前記第3プーリと前記第4プーリとを同期的に回転させる回転連動手段とを備えていることを特徴とするものである。
【0010】
この構成によれば、例えば、伝動ベルトの張り側部分が、第3プーリによって押し当てられることにより増大する張力が最も弱く(強く)なるタイミングと、伝動ベルトの弛み側部分が、第3プーリに対して所定の位相差を有する第4プーリによって押し当てられることにより増大する張力が最も強く(弱く)なるタイミングとがずれることになる。即ち、伝動ベルトの弛み側部分が第4プーリにより内側に押圧される量が増え(減り)、弛み側部分の張力が強く(弱く)なるのに伴い、伝動ベルトの張り側部分が第3プーリにより内側に押圧される量が増え(減り)、張り側部分の張力が強く(弱く)なる場合が生じる。そのため、従来よりも第2プーリにかかる軸荷重の強弱を複雑なものとすることができ、実機の運転のような耐久試験機を与えることができる。
【0011】
また、第2プーリにかかる軸荷重の強弱は、位相差を任意に設定することによって調節することができ、もって、第2プーリの軸荷重の強弱を任意に与えることができる。そして、上述の位相差を調整することにより、試験プーリとなる第2プーリに、従来より実機の運転時に近い状態の軸荷重の変動を与えて耐久試験を行うことができるようになる。
【0012】
第2の発明の動力伝達機構の耐久試験機は、前記第1の発明において、前記第3プーリ及び前記第4プーリは、円形状のプーリであって、その中心と回転中心がずれるように配置された偏心プーリであることを特徴とするものである。
【0013】
この構成によれば、第3プーリ及び第4プーリが円形状の偏心プーリであることから、第3プーリ及び第4プーリの連動した回転に伴って、これらに当接する伝動ベルトへの張力の増減が周期的に滑らかに変動し、第2プーリに滑らかに軸荷重の変動(回転変動)を与えることができる。
【0014】
第3の発明の動力伝達機構の耐久試験機は、前記第1の発明において、前記第3プーリ及び前記第4プーリは、円形の形状から一部を切り欠いた形状のプーリであることを特徴とするものである。
【0015】
この構成によれば、第3プーリ及び第4プーリが円形の形状から一部を切り欠いた形状であることから、第3プーリ及び第4プーリの連動した回転に伴って、第3プーリ及び第4プーリの円形の形状から一部を切り欠いた形状部と伝動ベルトとが当接した場合に、伝動ベルトへの張力の増減が周期的に変動し、第2プーリに軸荷重の変動を与えることができる。
【0016】
第4の発明の動力伝達機構の耐久試験機は、前記第1の発明において、前記第3プーリ及び前記第4プーリは、玉子型形状のプーリであることを特徴とするものである。
【0017】
この構成によれば、第3プーリ及び第4プーリが玉子型形状であることから、第3プーリ及び第4プーリの連動した回転に伴って、これらに当接する伝動ベルトへの張力の増減が周期的に変動し、第2プーリに軸荷重の変動を与えることができる。
【0018】
第5の発明の動力伝達機構の耐久試験機は、前記第1〜第4の何れかの発明において、前記第1プーリと前記第3プーリと前記第4プーリとを同期的に回転させる同期回転手段を備えていることを特徴とするものである。
【0019】
この構成によれば、第1プーリと第3プーリ及び第4プーリの回転数比を任意の値に設定して、第1プーリの回転数の任意倍の軸荷重の変動を第2プーリに生じさせることができる。
【発明の効果】
【0020】
本発明によれば、第3プーリ及び第4プーリに位相差(任意の位相差)を付けることにより、従来よりも、第2プーリにかかる軸荷重の強弱を複雑なものとすることができる。また、第2プーリにかかる軸荷重の強弱は、位相差を任意に設定することにより調整することができ、もって、第2プーリの軸荷重の強弱を任意に発生させることができる。そして、上述の位相差を調整することにより、試験プーリとなる第2プーリに、従来より実機の運転時に近い状態の耐久試験を行うことができるようになる。
【図面の簡単な説明】
【0021】
【図1】本実施形態に係る動力伝達機構の耐久試験機1(偏心プーリの右方偏心状態)の概略構成図である。
【図2】本実施形態に係る動力伝達機構の耐久試験機1(偏心プーリの左方偏心状態)の概略構成図である。
【図3】従来の回転変動試験機(特許文献2)の概略構成図である。
【図4】変更形態1に係る動力伝達機構の耐久試験機の概略構成図である。
【図5】変更形態2に係る動力伝達機構の耐久試験機の概略構成図である。
【図6】変更形態3に係る動力伝達機構の耐久試験機の概略構成図である。
【図7】従動プーリ3の回転(回転角度)に伴う従動プーリ3の軸荷重の変化を示す説明図である。
【発明を実施するための形態】
【0022】
次に、本発明の実施の形態について説明する。図1及び図2に示すように、本実施形態の動力伝達機構の耐久試験機1は、駆動プーリ2(第1プーリ)と、従動プーリ3(第2プーリ)と、駆動プーリ2と従動プーリ3に亙って懸架された伝動ベルト4と、伝動ベルト4の背面(外面)にそれぞれ当接する偏心プーリ5(第3プーリ)及び偏心プーリ6(第4プーリ)と、駆動プーリ2と偏心プーリ5と偏心プーリ6とを同期的に回転させる歯付ベルト19(同期回転手段)とを備えている。
【0023】
駆動プーリ2は、図示しない駆動モータにより回転駆動される駆動軸10に取り付けられており、図1の矢印方向(時計回りの方向)に回転する。駆動軸10には2つの偏心プーリ5、6を回転駆動するためのプーリ12が同軸状に設けられている。また、従動プーリ3は、所望の軸荷重(回転変動)を受けた状態で行われる耐久試験等の対象となるプーリであり、従動軸11に回転自在に支持されている。尚、駆動プーリ2は従動プーリ3よりも径が大きくなっている。
【0024】
伝動ベルト4は、駆動プーリ2の回転を従動プーリ3に伝達できるものであればどのような種類のベルトでもよいが、その中でも、Vリブドベルトや平ベルトなどが好適に用いられる。そして、駆動プーリ2が駆動モータにより回転駆動されると、その回転により伝動ベルト4が駆動されるとともに、従動プーリ3が伝動ベルト4の走行に伴って図1の矢印方向(時計回りの方向)に従動回転する。
【0025】
2つの偏心プーリ5、6は、それぞれ、回転軸15、16に連結された円形のプーリである。また、偏心プーリ5の中心C1はその回転中心C3(回転軸15の軸心)から距離e(以下、偏心量e)だけずれており、また、偏心プーリ6の中心C2もその回転中心C4(回転軸16の軸心)から偏心量eだけずれている。従って、2つの偏心プーリ5、6の外周の回転中心C3、C4からの距離はそれぞれ連続的に変化している。また、2つの偏心プーリ5、6は同じ形状(同径の円形状)に形成されており、さらに、それらの回転中心からの偏心量eも等しくなっている。また、図1及び図2に示すように、偏心プーリ5は、偏心プーリ6に対して所定の位相差θを付けて配置されている(偏心プーリ5及び偏心プーリ6を重ね合わせた時に、偏心プーリ5の回転中心C3から中心C1を通る線分が、偏心プーリ6の回転中心C4から中心C2を通る線分に対して、位相差θだけズレるように配置されている。)。なお、位相差θを、10°〜30°に調整して設定するとより実機の運転時に近い軸荷重を従動プーリ3に与えることができる。もちろん、位相差θは、0°〜360°に調整して設定してもよい。
【0026】
一方の偏心プーリ5は、伝動ベルト4の張り側部分4a(駆動プーリ2よりもベルト走行方向上流側に位置する部分)の背面(外側の面)に外側から当接している。また、他方の偏心プーリ6は、伝動ベルト4の弛み側部分4b(駆動プーリ2よりもベルト走行方向下流側に位置する部分)の背面に外側から当接している。
【0027】
2つの偏心プーリ5、6の回転軸15、16にはこれら回転軸15、16を同期的に回転駆動するための2つのプーリ17、18がそれぞれ同軸状に設けられている。また、駆動軸10に設けられたプーリ12と2つの回転軸15、16にそれぞれ設けられた2つのプーリ17,18に亙って歯付ベルト19が懸架されており、駆動軸10と2つの回転軸15、16が歯付ベルト19で連結されている。従って、駆動軸10の回転が、歯付ベルト19を介して、2つの偏心プーリ5、6に伝達されることになり、駆動プーリ2と2つの偏心プーリ5、6が同期的に回転する。即ち、偏心プーリ5と偏心プーリ6とが、位相差θを維持したまま同期的に回転することになる。尚、駆動プーリ2と2つの偏心プーリ5、6を同期的に回転させる同期回転手段として、前述の歯付ベルトの代わりに、摩擦係数の高いベルトや、あるいは、チェーンを用いることもできる。また、駆動プーリ2の駆動軸10と2つの偏心プーリ5、6の回転軸15、16が、ベルトやチェーン等により連結されていなくてもよい。つまり、2つの偏心プーリ5、6が個別に接続された回転連動手段としての駆動モータ等により、駆動プーリ2とは別個に同期的に回転駆動されてもよい。
【0028】
以上説明した動力伝達機構の耐久試験機1によれば、従来の回転変動試験機(特許文献2参照)に比べて次のような動作に伴った効果が得られる。
【0029】
図3に示すように、従来の回転変動試験機(特許文献2参照)においては、第3プーリとしての偏心プーリ5及び第4プーリとしての偏心プーリ6の外周の回転中心C3、C4からの距離はそれぞれ連続的に変化している。また、当該偏心プーリ5、6は互いに同形状(同径の円形状)に形成されており、さらに、第1プーリとしての駆動プーリ2と偏心プーリ5と偏心プーリ6とを歯付ベルト19によって縣架することにより互いに同期的に回転させている。
【0030】
このため、例えば、偏心プーリ5、6の右方偏心状態(特許文献2の図1参照)の場合には、伝動ベルト4の弛み側部分4bに、右方に偏った偏心プーリ6によって押し当てられることにより、張力24が増大する(図3参照)。一方、伝動ベルト4の張り側部分4aには、右方に偏った偏心プーリ5によって押し当てられることにより、張力25が増大する(図3参照)。ここで、偏心プーリ5、6が右方偏心状態にあるため、偏心プーリ6によって押し当てられることにより増大した張力24は、偏心プーリ5によって押し当てられることにより増大した張力25よりも大きくなる。その結果、従動プーリ3は、逆回転方向へのベルト荷重が作用して回転することになる。
【0031】
また、偏心プーリ5、6の左方偏心状態(特許文献2の図2参照)の場合には、偏心プーリ5、6が左方偏心状態にあるため、偏心プーリ5によって押し当てられることにより増大した張り側部分4aへの張力は、偏心プーリ6によって押し当てられることにより増大した弛み側部分4bへの張力よりも大きくなる。その結果、従動プーリ3は、回転方向へのベルト荷重が作用して回転することになる。このように、偏心プーリ5、6の回転に伴って、伝動ベルト4に張力変動を与え、従動プーリ3に軸荷重の変動を与えている。
【0032】
もっとも、従来の偏心プーリ5及び偏心プーリ6は、互いに重ね合わせた時に、偏心プーリ5の回転中心C3から中心C1を通る線分が、偏心プーリ6の回転中心C4から中心C2を通る線分に対してズレ(位相差)がないように配置されている(回転角が同じく同位相となっている)。そのため、伝動ベルト4の張り側部分4aが、偏心プーリ5によって押し当てられることにより増大する張力21が最も弱く(強く)なるタイミングと、伝動ベルト4の弛み側部分4bが、偏心プーリ6によって押し当てられることにより増大する張力20が最も強く(弱く)なるタイミングとが一致し、伝動ベルト4にかかる張力変動が単調なものとなるに伴い従動プーリ3にかかる軸荷重も単調なものとなっている。このため、実機のような複雑なベルトの張力変動を任意に従動プーリ3に与えることは出来なかった。従って、実機の運転時のように従動プーリ3に軸荷重の変動を任意に与えて耐久試験を行うには、不十分であった。
【0033】
そこで、偏心プーリ5と偏心プーリ6との間に所定の位相差θを付けた本実施形態の動力伝達機構の耐久試験機1によれば、例えば、図1に示すように、伝動ベルト4の張り側部分4aが、偏心プーリ5によって押し当てられることにより増大する張力21が最も弱くなるタイミングと、伝動ベルト4の弛み側部分4bが、偏心プーリ5に対して位相差θを有する偏心プーリ6によって押し当てられることにより増大する張力20が最も強くなるタイミングとが位相差θ分だけずれることになる。即ち、伝動ベルト4の弛み側部分4bが偏心プーリ6により内側に押圧される量が増え、弛み側部分4bの張力が強くなるのに伴い、伝動ベルト4の張り側部分4aが偏心プーリ5により内側に押圧される量が増え、張り側部分4aの張力が強くなる場合が生じる。そのため、従来よりも従動プーリ3にかかる軸荷重の強弱を複雑なものとすることができ、実機の運転のような複雑な回転条件を与えることができる。
【0034】
また、図2に示すように、伝動ベルト4の張り側部分4aが、偏心プーリ5によって押し当てられることによりに増大する張力21が最も強くなるタイミングと、伝動ベルト4の弛み側部分4bが、偏心プーリ5に対して位相差θを有する偏心プーリ6によって押し当てられることにより増大する張力20が最も弱くなるタイミングとが位相差θ分だけずれることになる。即ち、伝動ベルト4の弛み側部分4bが偏心プーリ6により内側に押圧される量が減り、弛み側部分4bの張力が弱くなるのに伴い、伝動ベルト4の張り側部分4aが偏心プーリ5により内側に押圧される量が減り、張り側部分4aの張力が弱くなる場合が生じる。そのため、従来よりも、従動プーリ3にかかる軸荷重の強弱を複雑なものとすることができ、実機のような複雑な回転条件を与えることができる。
【0035】
このように、偏心プーリ5及び偏心プーリ6に位相差θ(任意の位相差)を付けることにより、従来よりも、従動プーリ3にかかる軸荷重の強弱を複雑なものとすることができ、実機の運転のような複雑な回転条件を与えることができる。また、従動プーリ3にかかる軸荷重の強弱は、位相差θを任意に設定することにより調整することができ、もって、従動プーリ3の軸荷重の強弱を任意に付けることができる。そして、上述の位相差θを調整することにより、試験プーリとなる従動プーリ3に、従来より実機の運転時に近い状態の回転条件を与えて耐久試験を行うことができるようになる。
【0036】
尚、伝動ベルト4の張力が変動したときには、従動プーリ3だけでなく、駆動プーリ2にも軸荷重(回転変動)が生じる。ここで、駆動プーリ2と従動プーリ3の軸荷重(回転変動)は、駆動軸10と従動軸11の回転慣性力の逆比で発生する。そのため、従動プーリ3に主体的に軸荷重を生じさせるためには、駆動軸10の回転慣性モーメントを従動軸11の回転慣性モーメントに対して十分に大きくすることが好ましい(例えば、10倍以上)。本実施形態の動力伝達機構の耐久試験機1においては、駆動プーリ2の径が従動プーリ3の径よりも大きいことから、駆動軸10の回転慣性モーメントは従動軸11の回転慣性モーメントよりも大きくなっているが、さらに、駆動軸10にフライホイールを取り付けるなどして、駆動軸10の回転慣性モーメントをさらに大きくしてもよい。
【0037】
また、偏心プーリ5及び偏心プーリ6は、円形状のプーリであって、その中心と回転中心がずれるように配置された偏心プーリであることから、偏心プーリ5及び偏心プーリ6の連動した回転に伴って、これらに当接する伝動ベルト4への張力の増減が周期的に滑らかに変動し、従動プーリ3に滑らかに軸荷重の変動(回転変動)を与えることができる。
【0038】
また、偏心プーリ5の径や偏心量eを変更することにより、従動プーリ3により実機の運転時に近い状態の大きさの回転条件をつけることが可能となる。
【0039】
さらに、駆動軸10に設けられたプーリ12と、偏心プーリ5、6の回転軸15、16に設けられたプーリ17、18とが歯付ベルト19等により連結されており、駆動プーリ2と偏心プーリ5、6とが同期的に回転するように構成されている。そのため、3つのプーリ12、17、18の径の比を適切に設定することにより、駆動軸10の回転数の任意倍の軸荷重(回転変動)を従動プーリ3に与えることができる。つまり、実機の運転状態に即した軸荷重を従動プーリ3に与えることができるようになる。
【0040】
次に、上記で説明した従動プーリ3の軸荷重の変化の一例を図7に基づいて説明する。図7は、従動プーリ3の回転(回転角度)に伴う従動プーリ3の軸荷重の変化を示す説明図である。なお、横軸は、従動プーリ3の回転角度を示している。また、縦軸は、従動プーリ3の軸荷重を示している。なお、本実施形態では、位相差θを18.7°としたものを使用している。
【0041】
図7に示すように、位相差θを付けた従動プーリ3の軸荷重の変化(実線34)は、従来の位相差θがない場合の軸荷重の変化(破線33)に比べて、ピーク時の軸荷重が小さくなるとともに、ピーク時付近の軸荷重の変化が滑らかになる。即ち、従動プーリ3に、従来よりも、ピーク時の軸荷重が弱く、ピーク時付近の軸荷重の変化が滑らかにするような軸荷重を与えることができる。なお、ピーク時の軸荷重の強弱及びピーク時付近の軸荷重の変化の滑らかさは、位相差θを任意に設定することで調整することができる。
【0042】
このように、偏心プーリ5及び偏心プーリ6に位相差θ(実施例では、18.7°)を付けることにより、従来よりも、従動プーリ3にかかる軸荷重の強弱を複雑なものとすることができ、従動プーリ3に実機の運転のような複雑な強弱を付けた軸荷重を与えることができる。また、従動プーリ3にかかる軸荷重の強弱は、位相差θを任意に設定することにより調整することができ、もって、従動プーリ3の軸荷重の強弱を任意に付けることができる。そして、上述の位相差θを調整することにより(例えば、10°〜30°)、試験プーリとなる従動プーリ3に、従来より実機の運転時に近い状態の回転条件を与えて耐久試験を行うことができるようになる。
【0043】
次に、前記実施形態に種々の変更を加えた変更形態について説明する。但し、前記実施形態と同様の構成を有するものについては、同じ符号を付して適宜その説明を省略する。
【0044】
軸荷重を付与するための第3プーリと第4プーリは、ともに円形状の偏心プーリである必要は必ずしもなく、その外周の回転中心からの距離が連続的に変化しているものであれば、種々の構成のものを採用することができる。例えば、図4に示すように、第3プーリ及び第4プーリを、円形の形状から一部を切り欠いた形状の切り欠きプーリ55及び切り欠きプーリ56としてもよい(変更形態1)。
【0045】
これによれば、切り欠きプーリ55(第3プーリ)及び切り欠きプーリ56(第4プーリ)が円形の形状から一部を切り欠いた形状であることから、切り欠きプーリ55及び切り欠きプーリ56の連動した回転に伴って、切り欠きプーリ55及び切り欠きプーリ56の円形の形状から一部を切り欠いた形状部と伝動ベルト4とが当接した場合に、伝動ベルト4への張力の増減が周期的に変動し、従動プーリ3に軸荷重の変動を与えることができる。
【0046】
また、例えば、図5に示すように、第3プーリ及び第4プーリを、玉子型形状の玉子型プーリ65及び玉子型プーリ66としてもよい(変更形態2)。
【0047】
これによれば、玉子型プーリ65(第3プーリ)及び玉子型プーリ66(第4プーリ)が玉子型形状であることから、玉子型プーリ65及び玉子型プーリ66の連動した回転に伴って、これらに当接する伝動ベルト4への張力の増減が周期的に変動し、従動プーリ3に軸荷重の変動を与えることができる。
【0048】
あるいは、図示しないが、第3プーリ及び第4プーリを円形や玉子型よりも急峻な立ち上がり面を有するプーリとしてもよい。これによれば、従動プーリ3に急激な軸荷重の変動(例えば、のこぎり状波形の軸荷重)を与えることが可能となる。
【0049】
また、図6に示すように、偏心プーリ5、6は、伝動ベルト4の内面に当接するように配置されていてもよい(変更形態3)。この構成でも、偏心プーリ5及び偏心プーリ6に位相差θ(任意の位相差)を付けることにより、従来よりも、従動プーリ3にかかる軸荷重の強弱を複雑なものとすることができ、実機の運転のような複雑な回転条件を与えることができる。また、従動プーリ3にかかる軸荷重の強弱は、位相差θを任意に設定することにより調整することができ、もって、従動プーリ3の軸荷重の強弱を任意に与えることができる。そして、上述の位相差θを調整することにより、試験プーリとなる従動プーリ3に、従来より実機の運転時に近い状態の回転条件を与えて耐久試験を行うことができるようになる。
【0050】
また、本実施形態では、駆動軸10の回転が、同期回転手段としての歯付ベルト19を介して、2つの偏心プーリ5、6に伝達されることになり、駆動プーリ2と2つの偏心プーリ5、6が同期的に回転するようにしているが、駆動プーリ2の駆動軸10と2つの偏心プーリ5、6の回転軸15、16が、歯付ベルト19等により連結されていなくてもよい。つまり、偏心プーリ5と偏心プーリ6とを同期的に回転させるものであればよい。例えば、2つの偏心プーリ5、6が個別に接続された回転連動手段としての駆動モータ等により、駆動プーリ2とは別個に同期的に回転駆動されてもよい。また、2つの偏心プーリ5、6に亙ってベルト等を懸架して一方の偏心プーリ(例えば、偏心プーリ5)の回転軸に設けた駆動モータ等により、他方の偏心プーリ(例えば、偏心プーリ6)を同期的に回転駆動させてもよい。
【符号の説明】
【0051】
1 動力伝達機構の耐久試験機
2 駆動プーリ(第1プーリ)
3 従動プーリ(第2プーリ)
4 伝動ベルト
4a 張り側部分
4b 弛み側部分
5 偏心プーリ(第3プーリ)
6 偏心プーリ(第4プーリ)
10 駆動軸
15 回転軸
16 回転軸
17 プーリ
18 プーリ
19 歯付ベルト
【先行技術文献】
【特許文献】
【0052】
【特許文献1】特公平4−73737号公報
【特許文献2】特開2007−285836号公報

【特許請求の範囲】
【請求項1】
駆動側の第1プーリ及び従動側の第2プーリと、
前記第1プーリと前記第2プーリとに亙って懸架された伝動ベルトと、
前記伝動ベルトの張り側部分の内面と背面の一方に当接するとともに、その外周の回転中心からの距離が連続的に変化する第3プーリと、
前記第3プーリと同形状であり、前記伝動ベルトの弛み側部分の内面と背面の一方に当接するとともに、前記第3プーリに対して所定の位相差を付けて配置された第4プーリと、
前記第3プーリと前記第4プーリとを同期的に回転させる回転連動手段と
を備えていることを特徴とする動力伝達機構の耐久試験機。
【請求項2】
前記第3プーリ及び前記第4プーリは、円形状のプーリであって、その中心と回転中心がずれるように配置された偏心プーリであることを特徴とする請求項1に記載の動力伝達機構の耐久試験機。
【請求項3】
前記第3プーリ及び前記第4プーリは、円形の形状から一部を切り欠いた形状のプーリであることを特徴とする請求項1に記載の動力伝達機構の耐久試験機。
【請求項4】
前記第3プーリ及び前記第4プーリは、玉子型形状のプーリであることを特徴とする請求項1に記載の動力伝達機構の耐久試験機。
【請求項5】
前記第1プーリと前記第3プーリと前記第4プーリとを同期的に回転させる同期回転手段を備えていることを特徴とする請求項1〜4の何れかに記載の動力伝達機構の耐久試験機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−169606(P2010−169606A)
【公開日】平成22年8月5日(2010.8.5)
【国際特許分類】
【出願番号】特願2009−13821(P2009−13821)
【出願日】平成21年1月26日(2009.1.26)
【出願人】(000006068)三ツ星ベルト株式会社 (730)
【Fターム(参考)】