説明

動脈瘤診断支援装置及び制御プログラム

【課題】動脈瘤の診断/治療に有効な診断支援データの生成及び表示
【解決手段】動脈瘤診断支援装置100は、患者から予め収集されたボリュームデータを記憶するボリュームデータ記憶部1と、前記ボリュームデータに基づいて、動脈瘤の表面の凹凸状態に応じた破裂リスク領域を求めるリスク領域検出部2と、前記ボリュームデータ及び前記破裂リスク領域の領域情報とに基づいて診断支援データを生成する診断支援データ生成部3と、前記診断支援データを表示する表示部5とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、動脈瘤に対する破裂リスクの判定を可能にする動脈瘤診断支援装置及び制御プログラムに関する。
【背景技術】
【0002】
医用画像診断は、近年のコンピュータ技術の発展に伴って実用化されたX線CT装置やMRI装置等によって急速な進歩を遂げ、今日の医療において必要不可欠なものとなっている。特に、X線CT装置やMRI装置では、生体情報の検出ユニットや演算処理ユニットの高速化、高性能化により画像データのリアルタイム表示が可能となり、更に、3次元的な画像情報(ボリュームデータ)の収集やこのボリュームデータを用いた3次元画像データの生成/表示が容易となったため、例えば、血管壁に発生した狭窄部や動脈瘤等の計測も正確に行なわれるようになった。
【0003】
ところで、我が国において比較的高い発生頻度を有する蜘蛛膜下出血(SAH)は、脳卒中の約8%を占め、突然死の6.6%を占めている。特に、蜘蛛膜下出血は、一旦発生すると現在の最先端医療技術を適用してもその約2/3が死亡あるいは重度の障害を残した状態での生活を余儀なくされている。このような蜘蛛膜下出血の原因として最も高い割合を示しているのが脳動脈瘤の破裂であり、一般成人の約4〜6%が未破裂動脈瘤を有していると云われている。そして、1998年の国際報告では、脳動脈瘤の大きさや形状(壁の不整)、更には、喫煙の有無、高血圧、家族病歴等が脳動脈瘤破裂の危険因子になり得るとされ、例えば、1cm以下の直径を有する脳動脈瘤の破裂率は年間0.05%であるのに対し、1cm以上の脳動脈瘤における破裂率は年間0.5%に増大するとの報告がなされている。
【0004】
又、一度破裂した脳動脈瘤からの出血は、緊急治療により一旦止めることは可能であるが、再度破裂した場合の死亡率はきわめて高く、従って、破裂リスクの高い未破裂脳動脈瘤を早期に検出することは極めて重要とされている。
【0005】
このような状況下において、従来は、脳動脈瘤の大きさやアスペクト比等の形状を計測することにより破裂リスクを予測する方法が行なわれ、サイズが大きく不整形な形状を有する脳動脈瘤に対し高い破裂リスクが設定されてきた。
【0006】
一方、計算機シミュレーション等によって算出した脳動脈瘤内の血流情報や壁圧分布情報等に基づいて破裂リスクを予測する方法も検討されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2006−048247号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
脳動脈瘤を破裂させる壁圧は、その内部を流れる血流特性に大きく依存している。このため、脳動脈瘤内の血流情報や壁圧分布情報の把握は、治療等において重要となる局所的な破裂リスクの判定に有効な手段となり得る。しかしながら、計算機シミュレーションによって上述の血流情報や壁圧分布情報を求める際の算出精度はシミュレーションに用いる数学モデルの規模に依存し、従って、簡単な数学モデルを用いた場合の予測精度は低く、又、複雑な数学モデルを用いた場合にはデータ処理に多大の時間を要する。このため現状では、計算機シミュレーションを臨床の場に適用することは極めて困難である。一方、大きさや形状を計測する従来の方法では、脳動脈瘤において破裂の危険性がある局所的な領域(以下では、破裂リスク領域と呼ぶ、)を正確に把握することはできないという問題点を有していた。
【0009】
本開示は、上述の問題点に鑑みてなされたものであり、その目的は、動脈瘤における局所的な破裂リスク領域を正確かつ容易に判定することが可能な動脈瘤診断支援装置及び制御プログラムを提供することにある。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本開示の実施形態における動脈瘤診断支援装置は、患者から予め収集されたボリュームデータを記憶するボリュームデータ記憶手段と、前記ボリュームデータに基づいて、動脈瘤の表面の凹凸状態に応じた破裂リスク領域を求めるリスク領域検出手段と、前記ボリュームデータ及び前記破裂リスク領域の領域情報とに基づいて診断支援データを生成する診断支援データ生成手段と、前記診断支援データを表示する表示手段とを備えたことを特徴としている。
【図面の簡単な説明】
【0011】
【図1】本実施形態における動脈瘤診断支援装置の全体構成を示すブロック図。
【図2】本実施形態における正常脳動脈領域と脳動脈瘤領域との分離を説明するための図。
【図3】本実施形態における表面データの生成方法を説明するための図。
【図4】本実施形態の動脈瘤診断支援装置が備える不規則領域検出部の具体的な構成を示すブロック図。
【図5】本実施形態の動脈瘤診断支援装置が備える3次元画像データ生成部の具体的な構成を示すブロック図。
【図6】本実施形態において生成される診断支援データの具体例を示す図。
【図7】本実施形態における診断支援データの生成/表示手順を示すフローチャート。
【発明を実施するための形態】
【0012】
以下、図面を参照して本発明の実施形態を説明する。
【0013】
(実施形態)
既に述べたように、脳動脈瘤の破裂に関与する壁圧は脳動脈瘤の内部を流れる複雑な血流特性に依存し、この血流特性に伴って発生する不均一な壁圧により微細な凹凸形状を有した破裂リスク領域が脳動脈瘤の表面に生ずることが知られている。本開示の実施形態は、このような現象に基づいたものである。
【0014】
即ち、本実施形態の動脈瘤診断支援装置は、先ず、別途設置された医用画像診断装置によって予め収集された患者の頭部領域における3次元画像情報(以下では、ボリュームデータと呼ぶ。)に対し領域拡張処理を行なって脳動脈の血管領域を抽出し、更に、検出した血管領域の連続性に基づいて脳動脈瘤の領域を抽出する。次いで、抽出した脳動脈瘤の表面形状を示す表面データに対してウェーブレット変換処理を適用し、脳動脈瘤において破裂の危険性が高い破裂リスク領域を検出する。そして、上述のボリュームデータをレンダリング処理して生成した脳動脈の3次元画像データに破裂リスク領域の領域情報を重畳し、更に、当該患者の患者情報や過去の画像診断結果等に基づいて設定した破裂リスクレベルの情報を付加することにより脳動脈瘤の診断/治療に有効な診断支援データを生成する。
【0015】
尚、以下の実施形態では、頭部領域の脳動脈を診断対象部位とし、この脳動脈に発生した脳動脈瘤の破裂リスク領域を検出する場合について述べるが、他の領域に発生した動脈瘤に対する破裂リスク領域の検出であっても構わない。
【0016】
(装置の構成)
本発明の実施形態における動脈瘤診断支援装置の構成につき図1乃至図6を用いて説明する。尚、図1は、本実施形態における動脈瘤診断支援装置の全体構成を示すブロック図であり、図4及び図5は、この動脈瘤診断支援装置が備える不規則領域検出部及び3次元画像データ生成部の具体的な構成を示すブロック図である。
【0017】
図1に示す動脈瘤診断支援装置100は、別途設置されたX線CT装置やMRI装置等の医用画像診断装置から図示しないネットワークあるいは記憶媒体を介して供給された当該患者の頭部領域におけるボリュームデータを保存するボリュームデータ記憶部1と、このボリュームデータに基づいて脳動脈に発生した脳動脈瘤を検出し、更に、この脳動脈瘤における破裂の危険性が高い破裂リスク領域を検出するリスク領域検出部2と、ボリュームデータをレンダリング処理して得られた脳動脈及び脳動脈瘤を含む頭部領域の3次元画像データに上述の破裂リスク領域の領域情報を重畳し、更に、後述の破裂リスクレベルを付加して診断支援データを生成する診断支援データ生成部3と、予め収集された当該患者の患者情報や過去の画像診断結果等に基づいて当該脳動脈瘤に対する上述の破裂リスクレベルを設定するリスクレベル設定部4と、診断支援データ生成部3によって生成された診断支援データを表示する表示部5を備え、更に、患者情報の入力、過去の画像診断結果の入力、破裂リスク領域検出条件の設定、診断支援データ生成条件の設定、各種指示信号の入力等を行なう入力部6と、上述の各ユニットを統括的に制御するシステム制御部7を備えている。
【0018】
ボリュームデータ記憶部1には、別途設置されたX線CT装置やMRI装置等の医用画像診断装置によって予め収集された当該患者の頭部領域におけるボリュームデータが保存される。尚、脳動脈の血管壁に生じた脳動脈瘤等の診断を行なう場合、血管内を流れている血液を画像化することによって血管の形状を観測する方法が一般に行なわれ、例えば、MRI装置を用いた場合では、Gd-DTPA等の造影剤を注入することにより血液からのMR信号を高いコントラスト比で収集する造影MRA撮影やTOF(time of flight)法等のパルスシーケンスを適用した非造影MRA(magnetic resonance angiography)撮影、更には、血管内を流れる血液が発生したMR信号の位相変化量を計測することによりその速度情報を画像化するPC(phase contrast)撮影等を行なうことにより脳動脈瘤の観察を目的としたボリュームデータの収集が行なわれる。又、上述のボリュームデータは、造影剤が投与された当該患者の頭部領域に対しマルチスライス方式のX線CT撮影等を適用して収集されたものであっても構わない。
【0019】
次に、リスク領域検出部2は、図1に示すようにボリュームデータにおける脳動脈領域を抽出する血管領域抽出部21と、脳動脈領域に発生した脳動脈瘤を抽出する動脈瘤抽出部22と、脳動脈瘤の表面を検出し、その検出結果に基づいて表面データを生成する表面データ生成部23と、表面データにおいて微細な凹凸を有する領域(以下では、不規則領域と呼ぶ。)を破裂リスク領域として検出する不規則領域検出部24を備えている。
【0020】
リスク領域検出部2の血管領域抽出部21は、図示しない2値化処理部と領域拡張処理部を備え、2値化処理部は、ボリュームデータ記憶部1から読み出した当該患者の頭部領域におけるボリュームデータのボクセル値と入力部6において予め設定された閾値αとを比較することにより2値化処理を行なう。次いで、領域拡張処理部は、2値化処理された脳動脈領域内の任意のボクセルに対し基準点(第1の基準点)を設定し、この基準点に隣接あるいは近接した所定のボクセル値を有する前記ボリュームデータのボクセルを順次連結する、所謂、領域拡張処理(リージョングローイング)を行なうことにより脳動脈瘤を含む3次元の脳動脈領域を抽出する。
【0021】
一方、リスク領域検出部2の動脈瘤抽出部22は、血管領域抽出部21によって抽出された脳動脈領域における正常な脳動脈の領域と脳動脈瘤の領域を分離する機能を有し、例えば、図示しない芯線データ生成部と領域判定部を備えている。
【0022】
芯線データ生成部は、血管領域抽出部21によって抽出された脳動脈領域の内部に基準点(第2の基準点)を設定し、この基準点を始点として芯線データを生成する。例えば、脳動脈瘤を含む脳動脈領域に対して任意に配置された上述の基準点から3次元の全角度方向へ複数の単位ベクトルを発生させ、これらの単位ベクトルの中から探索ベクトルとして選定した脳動脈領域の境界面までの距離が最大となる方向の単位ベクトルに直交する血管横断面の中心位置座標を算出する。
【0023】
次いで、上述の探索ベクトルと血管横断面との交差位置が血管横断面の中心と一致するようにその方向が補正された探索ベクトルを前記血管横断面の中心において新たに設定し、補正後の探索ベクトルを用いて上述の手順を繰り返すことにより得られた血管走行方向における複数の中心位置座標に基づいて脳動脈領域における正常脳動脈の芯線データと脳動脈瘤の芯線データを生成する。
【0024】
一方、領域判定部は、芯線データ生成部によって生成された芯線データの連続性に基づき、脳動脈領域に含まれる正常脳動脈の領域(正常脳動脈領域)と脳動脈瘤の領域(脳動脈瘤領域)を分離する。図2は、正常脳動脈領域と脳動脈瘤領域との分離を説明するための図であり、上述の芯線データ生成部により正常脳動脈領域Raの中心軸を示す連続的な芯線データCaと脳動脈瘤領域Rbの中心軸を示す先端部が途絶した芯線データCbが生成される。
【0025】
このとき、上述の領域判定部は、連続的な芯線データCaを有する領域Raを正常脳動脈として判定し、先端部が途絶した芯線データCbを有する領域Rbを脳動脈瘤として判定する。尚、図2において破線で示した脳動脈瘤領域Rbと正常脳動脈領域Raとの境界面は、脳動脈瘤領域Rbに隣接して存在する正常脳動脈領域Raを用いた補間処理により容易に設定することが可能である。
【0026】
図1へ戻って、リスク領域検出部2の表面データ生成部23は、領域判定部によって判定された脳動脈瘤の中心点を設定する中心点設定部とこの中心点から脳動脈瘤の表面までの距離を計測する距離計測部(何れも図示せず)を備えている。
【0027】
上述の中心点設定部及び距離計測部の機能につき図3を用いて更に詳しく説明する。動脈瘤抽出部22から供給される脳動脈瘤の輪郭データTcを受信した上述の中心点設定部は、この輪郭データTcに対し長軸A−A’を設定し、更に、長軸A−A’に直交する短軸B−B’との交点に中心点Cpを設定する。
【0028】
一方、距離計測部は、先ず、中心点設定部によって設定された中心点Cpから全角度方向(θm、φn)(m=1〜M、n=1〜N)に対し複数の補助線を所定角度間隔(Δθ、Δφ)で設定する。次いで、これら補助線の各々と輪郭データTcとの交点を検出し、検出した交点と中心点Cpとの距離L(θm、φn)を計測する。そして、全角度方向(θm、φn)に対して計測した距離L(θm、φn)をθ−φの直交座標系へプロットすることにより脳動脈瘤表面の形状を示す表面データを生成する。
【0029】
次に、図1に示したリスク領域検出部2の不規則領域検出部24は、図4に示すようにウェーブレット分解部241、不規則成分除去部242、ウェーブレット合成部243及び差分データ生成部244を備えている。
【0030】
ウェーブレット分解部241は、表面データ生成部23から供給される脳動脈瘤の表面データ(第1の表面データ)に対しウェーブレット変換を行なってウェーブレット係数を算出する。次いで、不規則成分除去部242は、ウェーブレット分解部241において算出されたウェーブレット係数を分解能レベル単位で予め設定された空間領域において積分し、その最大係数の変化を測定する。そして、分解能レベルの増加と共に前記最大係数が減少する不規則成分を除去して新しいウェーブレット係数を求める。
【0031】
この場合、表面データの形状が規則的ならば最大係数の変化は分解能レベルの増加に伴って増大するが、不規則な場合(即ち、破裂リスク領域のように微細な凹凸部を有している場合)には分解能レベルの増加に伴って減少する。このような特性を判定基準として表面データの凹凸に対応した不規則成分を除去することが可能となる。尚、同様の手順により、MRI撮影のRFコイルにおいて発生する熱雑音やX線CT撮影において発生する量子ノイズ等に起因したノイズ成分を除去することも可能である。
【0032】
一方、ウェーブレット合成部243は、不規則成分が除かれたウェーブレット係数に対し逆ウェーブレット変換を行なうことにより上述の凹凸部が平滑化された表面データ(第2の表面データ)を生成し、差分データ生成部244は、ウェーブレット変換前の第1の表面データとウェーブレット逆変換後の第2の表面データとの減算処理により第1の表面データにおける不規則領域を検出する。例えば、差分データ生成部244は、第1の表面データと第2の表面データとの減算処理を行なう減算処理部と、減算処理後の表面データが有する画素値の中から予め設定された閾値βより大きな画素値を有する画素を抽出することにより上述の不規則領域を検出する閾値処理部(何れも図示せず)を有している。
【0033】
次に、図1の診断支援データ生成部3は、3次元画像データ生成部31とデータ合成部32を備え、3次元画像データ生成部31は、図5に示すようにボリュームデータ補正部311、不透明度・色調設定部312及びレンダリング処理部313を有している。
【0034】
ボリュームデータ補正部311は、ボリュームデータ記憶部1から供給されるボリュームデータのボクセル値を予め設定された3次元表示用の視線ベクトルと臓器や血管の境界面に対する法線ベクトルとの内積値に基づいて補正し、不透明度・色調設定部312は、補正されたボクセル値に基づいて不透明度や色調を設定する。そして、レンダリング処理部313は、不透明度・色調設定部312によって設定された不透明度及び色調に基づいて上述のボリュームデータをレンダリング処理し頭部領域の3次元画像データを生成する。
【0035】
一方、データ合成部32は、3次元画像データ生成部31において生成された頭部領域の3次元画像データに示されている脳動脈瘤にリスク領域検出部2の不規則領域検出部24において検出された不規則領域(即ち、破裂リスク領域)の領域情報を重畳し、更に、リスクレベル設定部4において設定された破裂リスクレベルの数値を破裂リスク領域の近傍に付加して診断支援データを生成する。
【0036】
データ合成部32によって生成される診断支援データの具体例を図6に示す。即ち、図6のImaは、当該患者の頭部領域から収集されたボリュームデータをレンダリング処理して得られた3次元画像データであり、Bxは、この3次元画像データImaに示された脳動脈瘤Rbに対しリスク領域検出部2が検出した破裂リスク領域(不規則領域)を示している。又、破裂リスク領域Bxの近傍には、リスクレベル設定部4によって設定された破裂リスクレベルの数値Dxが付加されている。
【0037】
次に、図1のリスクレベル設定部4は、診断支援データの生成に先行して行なわれる当該患者のMRI撮影やX線CT撮影等によって得られた脳動脈瘤の画像診断結果(例えば、脳動脈瘤の大きさ、形状、発生部位(後頭蓋窩、内頚動脈・後交通動脈分岐部等)及び発生数)、患者情報に含まれている患者の生活習慣(喫煙、高血圧、多量飲酒等)及び患者の愁訴(自覚症状)等に基づいて破裂リスクレベルを設定する。
【0038】
具体的には、上述した項目の各々に対して所定の数値を予め設定し、当該患者あるいは当該脳動脈瘤に該当する項目の数値を加算することにより上述の破裂リスクレベルを設定する。この場合、サイズが大きく形状が不整形な脳動脈瘤、脳神経の圧迫により神経症状を呈する脳動脈瘤、多発性脳動脈瘤、破裂済みの脳動脈瘤に合併した脳動脈瘤、経過観察中に増大している脳動脈瘤等に対して高い数値が設定される。
【0039】
次に、図1の表示部5は、図示しない表示データ生成部、データ変換部及びモニタを備え、表示データ生成部は、診断支援データ生成部3において生成される診断支援データに入力部6からシステム制御部7を介して供給される当該患者の患者情報等を付加して表示データを生成する。そして、データ変換部は、得られた表示データを所定の表示フォーマットに変換しモニタに表示する。
【0040】
次に、入力部6は、操作パネル上に表示パネルやキーボード、トラックボール、マウス、選択ボタン、入力ボタン等の入力デバイスを備え、例えば、図1に示すように、患者情報を入力する患者情報入力部61と、当該脳動脈瘤に対する過去の画像診断結果(検査結果)を入力する検査結果入力部62を備えている。又、閾値α及び閾値βの設定、3次元画像データ生成条件の設定、破裂リスク領域検出条件の設定、診断支援データ生成条件の設定、各種指示信号の入力等も上述の入力デバイスや表示パネルを用いて行なわれる。
【0041】
システム制御部7は、図示しないCPUと記憶部を備え、前記記憶部には、入力部6において入力あるいは設定された各種情報が保存される。そして、前記CPUは、前記記憶部に保存された上述の情報に基づいて動脈瘤診断支援装置100の各ユニットを統括的に制御し、脳動脈瘤における破裂リスク領域の検出とこの脳動脈瘤の診断あるいは治療に有効な診断支援データの生成/表示を行なう。
【0042】
(診断支援データの生成/表示手順)
次に、本実施形態における診断支援データの生成/表示手順につき図7のフローチャートに沿って説明する。
【0043】
診断支援データの生成に先立ち、別途設置された医用画像診断装置によって予め収集され、ネットワーク等を介して供給された当該患者の頭部領域におけるボリュームデータは動脈瘤診断支援装置100に設けられたボリュームデータ記憶部1に保存される(図7のステップS1)。
【0044】
次いで、動脈瘤診断支援装置100の操作者は、入力部6の入力デバイスを用いて患者情報の入力、当該患者の脳動脈瘤に対する過去の画像診断結果の入力、閾値α及び閾値βの設定、3次元画像データ生成条件の設定、破裂リスク領域検出条件の設定、診断支援データ生成条件の設定等を行なった後(図7のステップS2)、診断支援データの生成開始指示信号を入力する(図7のステップS3)。
【0045】
システム制御部7を介して上述の指示信号を受信した3次元画像データ生成部31のボリュームデータ補正部311は、ボリュームデータ記憶部1から読み出したボリュームデータのボクセル値を予め設定された3次元表示用の視線ベクトルと臓器や脳動脈の境界面に対する法線ベクトルとの内積値に基づいて補正し、不透明度・色調設定部312は、補正されたボクセル値に基づいて不透明度や色調を設定する。そして、レンダリング処理部313は、不透明度・色調設定部312によって設定された不透明度及び色調に基づいて上述のボリュームデータをレンダリング処理し3次元画像データを生成する(図7のステップS4)。
【0046】
一方、システム制御部7を介して上述の指示信号を受信したリスク領域検出部2の血管領域抽出部21は、ボリュームデータ記憶部1から読み出したボリュームデータのボクセル値と上述のステップS2において初期設定された閾値αとを比較することにより2値化処理を行ない、2値化処理された脳動脈領域内の任意のボクセルに対して設定された基準点(第1の基準点)を基準とした領域拡張処理を行なって脳動脈瘤を含む3次元の脳動脈領域を抽出する(図7のステップS5)。
【0047】
次に、リスク領域検出部2の動脈瘤抽出部22が備える芯線データ生成部は、血管領域抽出部21によって抽出された脳動脈領域の内部に基準点(第2の基準点)を設定し、この基準点を始点として芯線データを生成する。一方、動脈瘤抽出部22の領域判定部は、芯線データ生成部によって生成された芯線データの連続性に基づいて脳動脈領域に含まれる正常脳動脈領域と脳動脈瘤領域を分離することにより脳動脈瘤を抽出する(図7のステップS6)。
【0048】
次いで、リスク領域検出部2の表面データ生成部23は、動脈瘤抽出部22によって抽出された脳動脈瘤の輪郭データに対して中心点を設定し、この中心点から全角度方向に対して所定角度間隔で設定した補助線の各々と前記輪郭データとの交点を検出する。そして、検出した交点と中心点との距離を計測し、その計測結果に基づいて脳動脈瘤表面の形状を示す表面データを生成する(図7のステップS7)。
【0049】
一方、リスク領域検出部2の不規則領域検出部24が備えるウェーブレット分解部241は、表面データ生成部23から供給された脳動脈瘤の表面データ(第1の表面データ)に対しウェーブレット変換を行なってウェーブレット係数を算出し、不規則成分除去部242は、算出されたウェーブレット係数を分解能レベル単位で予め設定された空間領域において積分し、その最大係数の変化を測定する。そして、分解能レベルの増加に伴って前記最大係数が減少する不規則成分を除去して新しいウェーブレット係数を求める。
【0050】
次いで、不規則領域検出部24のウェーブレット合成部243は、不規則成分が除かれたウェーブレット係数を用いて逆ウェーブレット変換を行なうことにより微細な凹凸形状が平滑化された表面データ(第2の表面データ)を生成し、差分データ生成部244は、ウェーブレット変換前の第1の表面データとウェーブレット逆変換後の第2の表面データとの減算処理により第1の表面データに存在する不規則領域(即ち、破裂リスク領域)を検出する(図7のステップS8)。
【0051】
一方、リスクレベル設定部4は、当該患者に対する過去の画像診断において得られた脳動脈瘤の大きさ、形状、発生部位及び発生数等の検査結果や患者情報等に基づいて当該脳動脈瘤に対する破裂リスクレベルを設定し(図7のステップS9)、診断支援データ生成部3のデータ合成部32は、3次元画像データ生成部31において生成された頭部領域の3次元画像データに示されている脳動脈瘤にリスク領域検出部2の不規則領域検出部24において検出された破裂リスク領域(不規則領域)の領域情報を重畳し、更に、リスクレベル設定部4において設定された破裂リスクレベルの数値を破裂リスク領域の近傍に付加して診断支援データを生成する(図7のステップS10)。
【0052】
そして、表示部5は、診断支援データ生成部3のデータ合成部32において生成された診断支援データに入力部6からシステム制御部7を介して供給された当該患者の患者情報等を付加して自己のモニタに表示する(図7のステップS11)。
【0053】
以上述べた本実施形態によれば、脳動脈瘤の表面において微小な凹凸を示す不規則領域を検出することにより、高い破裂リスクを有する局所的な破裂リスク領域の有無やその大きさを早期に診断することができる。特に、脳動脈瘤の表面形状を示す表面データに対してウェーブレット変換を適用することにより破裂リスク領域を高い精度で検出することが可能となる。
【0054】
又、頭部領域のボリュームデータに基づいて生成された3次元画像データの脳動脈瘤に対し上述の表面データに基づいて検出した局所的な破裂リスク領域の領域情報を重畳表示することにより脳動脈領域及びこの脳動脈領域に発生した脳動脈瘤に対する破裂リスク領域の位置関係を正確に把握することができる。
【0055】
更に、予め収集された当該患者の患者情報や過去の画像診断結果に基づいて設定した破裂リスクレベルを3次元画像データに重畳された破裂リスク領域の近傍に付加することにより脳動脈瘤の診断/治療に有効な診断支援データを生成することが可能となる。
【0056】
以上、本開示の実施形態について述べてきたが、本開示は、上述の実施形態に限定されるものではなく変形して実施することが可能である。例えば、上述の実施形態では、頭部領域の脳動脈を診断対象部位とし、この脳動脈に発生した脳動脈瘤の破裂リスク領域を検出する場合について述べたが、他の領域に発生した動脈瘤に対する破裂リスク領域の検出であっても構わない。
【0057】
又、脳動脈瘤の輪郭データに対して設定した互いに直交する長軸と短軸との交点に対して表面データの生成に必要な中心点を配置する場合について述べたが、中心点の設定方法は上述の方法に限定されるものではなく、例えば、脳動脈瘤の輪郭データに囲まれた領域内の任意の位置に入力部6の入力デバイスを用いて設定しても構わない。この場合、3次元画像データ生成部31は、動脈瘤抽出部22によって抽出された脳動脈瘤のボリュームデータに基づいて3次元画像データを生成し、動脈瘤診断支援装置100の操作者は、表示部5に表示された上述の3次元画像データの観察下にて中心点の設定を行なうことにより脳動脈瘤内の好適な位置に中心点を設定することができる。
【0058】
更に、領域拡張法の適用によりボリュームデータの中から脳動脈の血管領域を抽出する場合について述べたが、パタン認識法やトラッキング法の適用, 数学モデルや人工知能、更には、ニューロネットワーク技術の導入等によって血管領域を抽出しても構わない。
【0059】
更に、上述の実施形態では、頭部領域のボリュームデータをレンダリング処理して生成した3次元画像データの脳動脈瘤に対し破裂リスク領域の領域情報を重畳し、更に、破裂リスク領域の近傍に破裂リスクレベルの情報を付加することによって診断支援データを生成する場合について述べたが、これに限定されるものではなく、例えば、破裂リスクレベルを付加せずに診断支援データを生成してもよい。又、破裂リスク領域の領域情報が重畳されたボリュームデータをレンダリング処理することによって診断支援データを生成してもよい。
【0060】
又、上述の実施形態では、別途設置されたX線CT装置やMRI装置等の医用画像診断装置からネットワークあるいは記憶媒体を介して供給されたボリュームデータを用いて脳動脈瘤の診断/治療に有効な診断支援データを生成する動脈瘤診断支援装置100について述べたが、上述のボリュームデータは、医用画像診断装置から動脈瘤診断支援装置100へ直接供給されてもよく、又、動脈瘤診断支援装置100は、医用画像診断装置の一部として構成されていても構わない。
【0061】
尚、本開示の実施形態に係る動脈瘤診断支援装置100の一部は、例えば、コンピュータをハードウェアとして用いることでも実現することができる。例えば、リスク領域検出部2の各ユニットやリスクレベル設定部4、更には、システム制御部7等は、上述のコンピュータに搭載されたCPU等のプロセッサに所定の制御プログラムを実行させることにより各種機能を実現することができる。この場合リスク領域検出部2等は、上述の制御プログラムをコンピュータに予めインストールしてもよく、又、コンピュータによる読み取りが可能な記憶媒体への保存あるいはネットワークを介して配布された制御プログラムのコンピュータへのインストールであっても構わない。
【0062】
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行なうことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0063】
1…ボリュームデータ記憶部
2…リスク領域検出部
21…血管領域抽出部
22…動脈瘤抽出部
23…表面データ生成部
24…不規則領域検出部
241…ウェーブレット分解部
242…不規則成分除去部
243…ウェーブレット合成部
244…差分データ生成部
3…診断支援データ生成部
31…3次元画像データ生成部
311…ボリュームデータ補正部
312…不透明度・色調設定部
313…レンダリング処理部
32…データ合成部
4…リスクレベル設定部
5…表示部
6…入力部
61…患者情報入力部
62…検査結果入力部
7…システム制御部
100…動脈瘤診断支援装置

【特許請求の範囲】
【請求項1】
患者から予め収集されたボリュームデータを記憶するボリュームデータ記憶手段と、
前記ボリュームデータに基づいて動脈瘤の表面の凹凸状態に応じた破裂リスク領域を求めるリスク領域検出手段と、
前記ボリュームデータ及び前記破裂リスク領域の領域情報とに基づいて診断支援データを生成する診断支援データ生成手段と、
前記診断支援データを表示する表示手段とを
備えたことを特徴とする動脈瘤診断支援装置。
【請求項2】
前記診断支援データ生成手段は、前記ボリュームデータに基づいて前記動脈瘤を含む領域の3次元画像データを生成する3次元画像データ生成手段と、前記破裂リスク領域の領域情報を前記3次元画像データの対応する位置に重畳して前記診断支援データを生成するデータ合成手段とを備えることを特徴とする請求項1記載の動脈瘤診断支援装置。
【請求項3】
前記リスク領域検出手段は、前記ボリュームデータにおける血管領域を抽出する血管領域抽出手段と、前記血管領域に発生した動脈瘤の領域を抽出する動脈瘤抽出手段と、前記動脈瘤の表面形状を示す表面データを生成する表面データ生成手段と、前記表面データの微小な凹凸形状を呈する不規則領域を前記破裂リスク領域として検出する不規則領域検出手段とを備えたことを特徴とする請求項1記載の動脈瘤診断支援装置。
【請求項4】
前記血管領域抽出手段は、前記ボリュームデータのボクセルに対して領域拡張処理を行なうことにより前記血管領域を抽出することを特徴とする請求項3記載の動脈瘤診断支援装置。
【請求項5】
前記表面データ生成手段は、前記動脈瘤の内部に設定された中心点から前記動脈瘤の表面までの距離を所定領域において計測することにより前記表面データを生成することを特徴とする請求項3記載の動脈瘤診断支援装置。
【請求項6】
前記不規則領域検出手段は、前記表面データに対しウェーブレット変換処理を行なうことにより前記不規則領域を検出することを特徴とする請求項3記載の動脈瘤診断支援装置。
【請求項7】
前記不規則領域検出手段は、前記表面データに対するウェーブレット変換によりウェーブレット係数を算出するウェーブレット分解手段と、前記ウェーブレット係数の中から不規則成分を除去する不規則成分除去手段と、不規則成分が除去されたウェーブレット係数を逆ウェーブレット変換して新たな表面データを生成するウェーブレット合成手段と、ウェーブレット変換前の表面データとウェーブレット逆変換後の表面データとの減算処理によりウェーブレット変換前の表面データに存在していた前記不規則領域を検出する差分データ生成手段とを備えたことを特徴とする請求項6記載の動脈瘤診断支援装置。
【請求項8】
前記患者の患者情報あるいは前記患者に対する過去の画像診断によって得られた検査結果の少なくとも何れかに基づいて前記動脈瘤の破裂リスクレベルを設定するリスクレベル設定手段を備え、前記データ合成手段は、前記3次元画像データに重畳した前記破裂リスク領域の近傍に前記破裂リスクレベルの情報を付加することにより前記診断支援データを生成することを特徴とする請求項2記載の動脈瘤診断支援装置。
【請求項9】
動脈瘤の診断支援データを生成する動脈瘤診断支援装置に対し、
患者から予め収集されたボリュームデータに基づいて、動脈瘤の表面の凹凸状態に応じた破裂リスク領域を求めるリスク領域検出機能と、
前記ボリュームデータ及び前記破裂リスク領域の領域情報とに基づいて診断支援データを生成する診断支援データ生成機能と、
前記診断支援データを表示する表示機能を
実行させることを特徴とする制御プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−110444(P2012−110444A)
【公開日】平成24年6月14日(2012.6.14)
【国際特許分類】
【出願番号】特願2010−260540(P2010−260540)
【出願日】平成22年11月22日(2010.11.22)
【出願人】(000003078)株式会社東芝 (54,554)
【出願人】(594164542)東芝メディカルシステムズ株式会社 (4,066)
【出願人】(594164531)東芝医用システムエンジニアリング株式会社 (892)
【Fターム(参考)】