説明

化合物

【課題】発光素子の輸送層やホスト材料、発光材料として用いることが可能であり、高い
性能を有する発光素子を作製することが可能な新規化合物を提供する。
【解決手段】ジベンゾ[c,g]カルバゾール誘導体の窒素に少なくともアントラセンを
含む炭素数14乃至30のアリール基が結合したジベンゾ[c,g]カルバゾール化合物
を合成した。当該ジベンゾ[c,g]カルバゾール化合物を用いることで容易に特性の非
常に良好な発光素子を得ることが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ジベンゾ[c,g]カルバゾール化合物に関する。また、それを用いた発光
素子、発光装置、表示装置、照明装置、及び電子機器に関する。
【背景技術】
【0002】
薄型軽量に作製できること、入力信号に対する高速な応答性を有すること、低消費電力
などのメリットから、次世代の照明装置や表示装置として有機化合物を発光物質とする発
光素子(有機EL素子)を用いた表示装置の開発が加速している。
【0003】
有機EL素子は、電極間に発光層を挟んで電圧を印加することにより、電極から発光層
に電子及びホールが注入される。そして、注入された電子およびホールが再結合すること
で発光層に含まれる発光物質が励起状態となり、その励起状態が基底状態に戻る際に発光
が得られる。発光物質が発する光の波長はその発光物質固有のものであり、異なる種類の
有機化合物を発光物質として用いることによって、様々な波長すなわち様々な色の発光を
呈する発光素子を得ることができる。
【0004】
発光物質が発する光は、その物質固有のものであることを先に述べた。しかし、寿命や
消費電力など、発光素子としての重要な性能は、発光を呈する物質のみに依存する訳では
なく、発光層以外の層や、素子構造、そして、発光物質とホストの性質や相性なども大き
く影響する。そのため、この分野の成熟をみるためには多くの種類の発光素子用材料が必
要となることに間違いはない。このような理由により、様々な分子構造を有する発光素子
用材料が提案されている(例えば特許文献1乃至特許文献3参照)。
【0005】
発光素子の輸送材料や発光層におけるホスト材料に用いることが可能な材料として、9
−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:
CzPA)という物質がある。CzPAをホスト材料や電子輸送材料として用いることで
、発光効率、駆動電圧、寿命の点で非常に優れた特性を有する青色蛍光発光素子を作製す
ることが可能である。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許出願公開第2008/0122344号明細書
【特許文献2】国際公開第2010/114264号
【特許文献3】国際公開第2011/010842号
【発明の概要】
【発明が解決しようとする課題】
【0007】
これまで数多くの発光素子用材料の提案がなされているが、上述のCzPAのように、
発光効率、駆動電圧、寿命の発光素子における重要な特性が共にバランス良く優れた青色
蛍光発光素子を作製することが可能な材料を開発するのは非常に困難である。
【0008】
そこで、本発明の一態様では、発光素子の輸送層やホスト材料、発光材料として用いる
ことができ、高性能な発光素子を容易に実現可能な新規化合物を提供することを課題とす
る。
【0009】
また、本発明の一態様では、上記新規化合物を用いた、発光効率の高い発光素子を提供
することを課題とする。また、本発明の一態様では、上記新規化合物を用いた、駆動電圧
の小さい発光素子を提供することを課題とする。また、本発明の一態様では、上記新規化
合物を用いた、寿命の長い発光素子を提供することを課題とする。また、本発明の一態様
では、上記新規化合物を用いた、発光効率、駆動電圧、寿命がいずれも良好な発光素子を
提供することを課題とする。
【0010】
また、本発明の一態様では、上記新規化合物を用いた発光素子を備えた消費電力の小さ
い発光装置を提供することを課題とする。また、本発明の一態様では、上記新規化合物を
用いた発光素子を備えた信頼性が良好な発光装置を提供することを課題とする。
【0011】
また、本発明の一態様では、上記新規化合物を用いた発光素子を備えた消費電力の小さ
い表示装置を提供することを課題とする。また、本発明の一態様では、上記新規化合物を
用いた発光素子を備えた信頼性が良好な表示装置を提供することを課題とする。
【0012】
また、本発明の一態様では、上記新規化合物を用いた発光素子を備えた消費電力の小さ
い照明装置を提供することを課題とする。また、本発明の一態様では、上記新規化合物を
用いた発光素子を備えた信頼性が良好な照明装置を提供することを課題とする。
【0013】
また、本発明の一態様では、上記新規化合物を用いた発光素子を備えた消費電力の小さ
い電子機器を提供することを課題とする。また、本発明の一態様では、上記新規化合物を
用いた発光素子を備えた信頼性が良好な電子機器を提供することを課題とする。
【0014】
なお、本発明の一態様では上記課題のいずれか一を解決すればよい。
【課題を解決するための手段】
【0015】
本発明者らは、ジベンゾ[c,g]カルバゾール誘導体の7位の窒素に少なくともアン
トラセン骨格を含むアリール基が結合したジベンゾ[c,g]カルバゾール化合物を合成
し、当該ジベンゾ[c,g]カルバゾール化合物を用いることで容易に特性の非常に良好
な発光素子を提供することが可能であることを見出した。
【0016】
すなわち、本発明の構成は、ジベンゾ[c,g]カルバゾール骨格の7位にアリール基
が結合しており、当該アリール基が、少なくともアントラセン骨格を含む炭素数14乃至
炭素数30のアリール基であるジベンゾ[c,g]カルバゾール化合物を含む発光素子で
ある。なお、当該アリール基の炭素数が14乃至30である場合、当該ジベンゾ[c,g
]カルバゾール化合物は比較的低分子量の低分子化合物となるため、真空蒸着に適した(
比較的低温で真空蒸着できる)構成となる。また、一般には分子量が低いと成膜後の耐熱
性が乏しくなることが多いが、当該ジベンゾ[c,g]カルバゾール化合物は、ジベンゾ
[c,g]カルバゾール骨格の剛直な骨格の影響により、分子量が低くても十分な耐熱性
を確保することができるメリットがある。
【0017】
また、本発明者らは、アントラセン骨格が、フェニレン基を介してジベンゾ[c,g]
カルバゾール骨格に結合したジベンゾ[c,g]カルバゾール化合物を用いた発光素子が
、特に寿命の点で有利であることを見いだした。また、当該ジベンゾ[c,g]カルバゾ
ール化合物がキャリア輸送性に優れるため、これを用いた発光素子は非常に低い電圧で駆
動できることを見出した。
【0018】
すなわち、本発明の他の構成は、ジベンゾ[c,g]カルバゾール骨格の7位に、フェ
ニレン基を介してアントラセン骨格が結合したジベンゾ[c,g]カルバゾール化合物を
含む発光素子である。
【0019】
また、本発明者らは、ジベンゾ[c,g]カルバゾール骨格の7位と、アントラセン骨
格の9位とが、フェニレン基を介して結合したジベンゾ[c,g]カルバゾール化合物が
特にバンドギャップが広く、有用であることを見出した。
【0020】
すなわち、本発明の他の構成は、ジベンゾ[c,g]カルバゾール骨格の7位と、アン
トラセン骨格の9位とが、フェニレン基を介して結合したジベンゾ[c,g]カルバゾー
ル化合物を含む発光素子である。
【0021】
また、本発明者らは、ジベンゾ[c,g]カルバゾール骨格に結合するアントリルフェ
ニル基の炭素数が20乃至30であるジベンゾ[c,g]カルバゾール化合物を用いた発
光素子が素子特性の安定性及び信頼性が良好であることを見出した。また、駆動電圧にも
優れることを見出した。これは、当該ジベンゾ[c,g]カルバゾール化合物は、上述し
たように比較的低温で真空蒸着できるため、蒸着時の熱分解等の劣化が起こりにくいこと
に起因すると考えられる。また、当該ジベンゾ[c,g]カルバゾール化合物は、ジベン
ゾ[c,g]カルバゾール骨格の7位にフェニレン基を介してアントラセン骨格が結合し
た分子構造を有するため、電気化学的な安定性や高いキャリア輸送性が得られていること
にも起因すると考えられる。
【0022】
すなわち、本発明の他の構成は、ジベンゾ[c,g]カルバゾール骨格の7位に、置換
または無置換のアントリルフェニル基が結合しており、当該置換または無置換のアントリ
ルフェニル基の炭素数が20乃至30であるジベンゾ[c,g]カルバゾール化合物を含
む発光素子である。
【0023】
また、本発明者らは、ジベンゾ[c,g]カルバゾール骨格に結合する(9−アントリ
ル)フェニル基の炭素数が20乃至30であるジベンゾ[c,g]カルバゾール化合物を
用いた発光素子が素子特性の安定性及び信頼性が良好であることを見出した。また、駆動
電圧にも優れることを見出した。また、特にバンドギャップが広く、有用であることを見
出した。すなわち、当該ジベンゾ[c,g]カルバゾール化合物は、上述した蒸着の容易
性、電気化学的安定性、キャリア輸送性に加え、9−アントリル基の骨格の影響によりバ
ンドギャップが広いという特性をも有する。したがって、発光素子における発光層のホス
ト材料として当該ジベンゾ[c,g]カルバゾール化合物を用い、ゲスト材料として発光
材料を発光層に添加する構成において有利に働く。
【0024】
すなわち、本発明の他の構成は、ジベンゾ[c,g]カルバゾール骨格の7位に、置換
または無置換の(9−アントリル)フェニル基が結合しており、当該置換または無置換の
(9−アントリル)フェニル基の炭素数が20乃至30であるジベンゾ[c,g]カルバ
ゾール化合物を含む発光素子である。
【0025】
また、本発明の他の構成は上記のような特性の良好な発光素子を容易に実現することがで
きる、下記一般式(G1)で表されるジベンゾ[c,g]カルバゾール化合物である。
【0026】
【化1】

【0027】
一般式(G1)において、Arは少なくともアントラセン骨格を含む炭素数14乃至炭
素数30のアリール基を表す。また、R11乃至R22はそれぞれ独立に水素、炭素数1
乃至炭素数4のアルキル基又は炭素数6乃至炭素数12のアリール基のいずれかを表す。
【0028】
上記一般式(G1)で表されるジベンゾ[c,g]カルバゾール化合物において、当該
アントラセン骨格がフェニレン基を介してジベンゾ[c,g]カルバゾール骨格に結合し
たジベンゾ[c,g]カルバゾール化合物が、純度良く合成することが可能であり、また
、キャリア輸送性に優れる。
【0029】
すなわち、本発明の他の構成は、下記一般式(G2)で表されるジベンゾ[c,g]カ
ルバゾール化合物である。
【0030】
【化2】

【0031】
一般式(G2)において、R11乃至R22はそれぞれ独立に水素、炭素数1乃至炭素
数4のアルキル基又は炭素数6乃至炭素数12のアリール基のいずれかを表し、αは置換
又は無置換のフェニレン基を表し、βは置換又は無置換のアントリル基を表す。
【0032】
一般式(G2)で表されるジベンゾ[c,g]カルバゾール化合物のうち、ジベンゾ[
c,g]カルバゾール骨格の7位がアントラセン骨格の9位に結合したジベンゾ[c,g
]カルバゾール化合物が特にバンドギャップが広く、有用である。
【0033】
すなわち、本発明の他の構成は下記一般式(G3)で表されるジベンゾ[c,g]カル
バゾール化合物である。
【0034】
【化3】

【0035】
一般式(G3)において、Rは水素、又は炭素数1乃至炭素数4のアルキル基又は炭
素数6乃至炭素数10のアリール基のいずれか一を表し、R乃至R及びR乃至R
はそれぞれ独立に水素、炭素数1乃至炭素数4のアルキル基のいずれか一を表し、R11
乃至R22はそれぞれ独立に水素、又は炭素数1乃至炭素数4のアルキル基又は炭素数6
乃至炭素数12のアリール基のいずれかを表し、αは置換又は無置換のフェニレン基を表
す。
【0036】
発光素子を形成する際の蒸着の観点から、ジベンゾ[c,g]カルバゾール骨格に結合
するアントリルフェニル基の炭素数が20乃至30のジベンゾ[c,g]カルバゾール化
合物を用いた発光素子が素子特性の安定性及び信頼性が良好であるため、好ましい構成で
ある。
【0037】
すなわち、本発明の他の構成は、下記一般式(G4)で表されるジベンゾ[c,g]カ
ルバゾール化合物である。
【0038】
【化4】

【0039】
一般式(G4)において、R11乃至R22はそれぞれ独立に水素、炭素数1乃至炭素
数4のアルキル基又は炭素数6乃至炭素数12のアリール基のいずれかを表し、αは置換
又は無置換のフェニレン基を表し、βは置換又は無置換のアントリル基を表す。但し、α
を構成する炭素数と、βを構成する炭素数の合計は20乃至30であるとする。
【0040】
また、本発明の他の構成は、下記一般式(G5)で表されるジベンゾ[c,g]カルバ
ゾール化合物である。
【0041】
【化5】

【0042】
一般式(G5)において、Rは水素、又は炭素数1乃至炭素数4のアルキル基又は炭
素数6乃至炭素数10のアリール基のいずれか一を表し、R乃至R及びR乃至R
はそれぞれ独立に水素、炭素数1乃至炭素数4のアルキル基のいずれか一を表し、R11
乃至R22はそれぞれ独立に水素、又は炭素数1乃至炭素数4のアルキル基、又は炭素数
6乃至炭素数12のアリール基のいずれかを表し、αは置換又は無置換のフェニレン基を
表す。但し、R〜Rを構成する炭素数と、αを構成する炭素数の合計は6以上16以
下であるとする。
【0043】
また、R乃至R及びR乃至Rはすべて水素であることが、合成の容易さや原料
の価格の面で有利である。
【0044】
すなわち、本発明の他の構成は、下記一般式(G6)で表されるジベンゾ[c,g]カ
ルバゾール化合物である。
【0045】
【化6】

【0046】
一般式(G6)において、αは置換又は無置換のフェニレン基を表し、Rは水素、又
は炭素数1乃至炭素数4のアルキル基又は炭素数6乃至炭素数10のアリール基のいずれ
か一を表し、R11乃至R22はそれぞれ独立に水素、又は炭素数1乃至炭素数4のアル
キル基、又は炭素数6乃至炭素数12のアリール基のいずれかを表す。但し、Rを構成
する炭素数と、αを構成する炭素数の合計は6以上16以下であるとする。
【0047】
上記同様、R11乃至R22はすべて水素であることが有利である。
【0048】
すなわち、本発明の他の構成は、下記一般式(G7)で表されるジベンゾ[c,g]カ
ルバゾール化合物である。
【0049】
【化7】

【0050】
一般式(G7)において、αは置換又は無置換のフェニレン基を表し、Rは水素、又
は炭素数1乃至炭素数4のアルキル基又は炭素数6乃至炭素数10のアリール基のいずれ
か一を表す。但し、Rを構成する炭素数と、αを構成する炭素数の合計は6以上16以
下であるとする。
【0051】
本発明の他の構成は、下記構造式(100)で表されるジベンゾ[c,g]カルバゾー
ル化合物である。
【0052】
【化8】

【0053】
また、本発明の他の構成は、下記構造式(127)で表されるジベンゾ[c,g]カル
バゾール化合物である。
【化9】

【発明の効果】
【0054】
上記構成を有するジベンゾ[c,g]カルバゾール化合物は広いエネルギーギャップを
有する発光素子用材料であり、青色蛍光素子などにおける輸送層やホスト材料、発光物質
として好適に用いることが可能である。また、当該ジベンゾ[c,g]カルバゾール化合
物は良好なキャリア輸送性を有し、当該化合物を用いることによって駆動電圧の小さい発
光素子を提供することが可能となる。また、当該ジベンゾ[c,g]カルバゾール化合物
は酸化や還元に安定であり、当該化合物を用いて作製した発光素子は、劣化の小さい寿命
の長い発光素子とすることが可能となる。また、当該ジベンゾ[c,g]カルバゾール化
合物はこれら特性を併せ持つことによって、発光効率、駆動電圧、寿命が共に優れた高性
能な発光素子を作製することが可能となる。
【0055】
また、ジベンゾ[c,g]カルバゾール化合物を用いた発光素子を用いることで、消費
電力が小さい発光装置、表示装置、照明装置又は電子機器を得ることが可能となる。また
、信頼性の高い発光装置、表示装置、照明装置又は電子機器を得ることが可能となる。
【図面の簡単な説明】
【0056】
【図1】発光素子の概念図。
【図2】有機半導体素子の概念図。
【図3】アクティブマトリクス型発光装置の概念図。
【図4】パッシブマトリクス型発光装置の概念図。
【図5】照明装置の概念図。
【図6】電子機器を表す図。
【図7】表示装置を表す図。
【図8】照明装置を表す図。
【図9】照明装置を表す図。
【図10】車載表示装置及び照明装置を表す図。
【図11】cgDBCzPAのNMRチャート。
【図12】cgDBCzPAの吸収スペクトル及び発光スペクトル。
【図13】cgDBCzPAのCVチャート。
【図14】発光素子1及び比較発光素子1の輝度−電流効率特性。
【図15】発光素子1及び比較発光素子1の電圧−電流特性。
【図16】発光素子1及び比較発光素子1の輝度−パワー効率特性。
【図17】発光素子1及び比較発光素子1の輝度−外部量子効率特性。
【図18】発光素子1及び比較発光素子1の発光スペクトル。
【図19】発光素子1及び比較発光素子1の規格化輝度−時間特性。
【図20】発光素子2及び比較発光素子2の輝度−電流効率特性。
【図21】発光素子2及び比較発光素子2の電圧−電流特性。
【図22】発光素子2及び比較発光素子2の輝度−パワー効率特性。
【図23】発光素子2及び比較発光素子2の輝度−外部量子効率特性。
【図24】発光素子2及び比較発光素子2の発光スペクトル。
【図25】発光素子2及び比較発光素子2の規格化輝度−時間特性。
【図26】発光素子3及び比較発光素子3の輝度−電流効率特性。
【図27】発光素子3及び比較発光素子3の電圧−電流特性。
【図28】発光素子3及び比較発光素子3の発光スペクトル。
【図29】発光素子4、比較発光素子4−1及び比較発光素子4−2の電流密度−輝度特性。
【図30】発光素子4、比較発光素子4−1及び比較発光素子4−2の輝度−電流効率特性。
【図31】発光素子4、比較発光素子4−1及び比較発光素子4−2の電圧−電流特性。
【図32】発光素子4、比較発光素子4−1及び比較発光素子4−2の輝度−パワー効率特性。
【図33】発光素子4、比較発光素子4−1及び比較発光素子4−2の電圧−輝度特性。
【図34】発光素子4、比較発光素子4−1及び比較発光素子4−2の発光スペクトル。
【図35】発光素子4、比較発光素子4−1及び比較発光素子4−2の規格化輝度−時間特性。
【発明を実施するための形態】
【0057】
以下、本発明の実施の形態について説明する。ただし、本発明は多くの異なる態様で実
施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び
詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態
の記載内容に限定して解釈されるものではない。
【0058】
(実施の形態1)
本実施の形態における発光素子は、ジベンゾ[c,g]カルバゾール骨格の7位に、少
なくともアントラセン骨格を含むアリール基が結合したジベンゾ[c,g]カルバゾール
化合物を含む発光素子である。当該発光素子は、当該ジベンゾ[c,g]カルバゾール化
合物がキャリアの輸送性に優れることから、駆動電圧の小さい発光素子とすることができ
る。また、当該ジベンゾ[c,g]カルバゾール化合物が酸化及び還元の繰り返しに良好
な耐性を有することから、寿命の良好な発光素子とすることができる。また、当該ジベン
ゾ[c,g]カルバゾール化合物はバンドギャップが広いことから、発光効率の良好な発
光素子とすることができる。以上のように、本実施の形態の構成を有する発光素子は、特
性のバランスに優れた高性能な発光素子とすることが容易となる。
【0059】
なお、当該アリール基の炭素数が14乃至30である場合、当該ジベンゾ[c,g]カル
バゾール化合物は比較的低分子量の低分子化合物となるため、真空蒸着に適した(比較的
低温で真空蒸着できる)構成となる。また、一般には分子量が低いと成膜後の耐熱性が乏
しくなることが多いが、当該ジベンゾ[c,g]カルバゾール化合物は、ジベンゾ[c,
g]カルバゾール骨格の剛直な骨格の影響により、分子量が低くても十分な耐熱性を確保
することができるメリットがある。なお、上記アントラセン骨格とジベンゾ[c,g]カ
ルバゾール骨格は間にフェニレン基やナフチレン基などのアリーレン基を介して結合して
いても良い。
【0060】
また、アントラセン骨格が、フェニレン基を介してジベンゾ[c,g]カルバゾール骨
格の7位に結合したジベンゾ[c,g]カルバゾール化合物を用いた発光素子が特に寿命
の点で有利である。また、当該ジベンゾ[c,g]カルバゾール化合物がキャリア輸送性
に優れるため、これを用いた発光素子は非常に低い電圧で駆動できる。
【0061】
また、上記発光素子は、換言すると、ジベンゾ[c,g]カルバゾール骨格にアントリ
ルフェニル基が結合したジベンゾ[c,g]カルバゾール化合物を含む発光素子というこ
ともできる。当該ジベンゾ[c,g]カルバゾール化合物は合成する際、純度良く合成す
ることが容易であることから、不純物による劣化を抑制することが可能である。なお、素
子特性の安定性及び信頼性の観点から、ジベンゾ[c,g]カルバゾール骨格に結合する
アントリルフェニル基の炭素数は20乃至30であることが好ましい。この場合、当該ジ
ベンゾ[c,g]カルバゾール化合物は、上述したように比較的低温で真空蒸着できるた
め、蒸着時の熱分解等の劣化が起こりにくい。また、当該発光素子は、信頼性だけでなく
駆動電圧にも優れる。これは、当該ジベンゾ[c,g]カルバゾール化合物が、ジベンゾ
[c,g]カルバゾール骨格の7位にフェニレン基を介してアントラセン骨格が結合した
分子構造を有するため、電気化学的な安定性や高いキャリア輸送性が得られていることに
も起因する。
【0062】
また、アントラセン骨格が9位においてジベンゾ[c,g]カルバゾール骨格の7位に
結合したジベンゾ[c,g]カルバゾール化合物を用いた発光素子が、特に青色蛍光など
エネルギーの高い発光を呈する発光素子に好適である。なお、上記アントラセン骨格とジ
ベンゾ[c,g]カルバゾール骨格は間にフェニレン基やナフチレン基などのアリーレン
基を介して結合していても良い。
【0063】
また、上述の理由により、フェニレン基を介してアントラセン骨格の9位とジベンゾ[
c,g]カルバゾール骨格が結合したジベンゾ[c,g]カルバゾール化合物を含む発光
素子がより好ましい。これは、ジベンゾ[c,g]カルバゾール骨格の7位に(9−アン
トリル)フェニル基が結合したジベンゾ[c,g]カルバゾール化合物を含む発光素子が
より好ましいということができる。なお、素子特性の安定性及び信頼性の観点から、ジベ
ンゾ[c,g]カルバゾール骨格に結合する(9−アントリル)フェニル基の炭素数は2
0乃至30であることが好ましい。すなわち、当該ジベンゾ[c,g]カルバゾール化合
物は、上述した蒸着の容易性、電気化学的安定性、キャリア輸送性に加え、9−アントリ
ル基の骨格の影響によりバンドギャップが広いという特性をも有する。したがって、発光
素子における発光層のホスト材料として当該ジベンゾ[c,g]カルバゾール化合物を用
い、ゲスト材料として発光材料を発光層に添加する構成において有利に働く。
【0064】
(実施の形態2)
本実施の形態では、実施の形態1で説明した発光素子を実現するために用いるジベンゾ
[c,g]カルバゾール化合物について説明する。
【0065】
本実施の形態のジベンゾ[c,g]カルバゾール化合物は、ジベンゾ[c,g]カルバ
ゾール骨格の7位に、少なくともアントラセン骨格を含むアリール基が結合したジベンゾ
[c,g]カルバゾール化合物である。当該ジベンゾ[c,g]カルバゾール化合物は、
キャリアの輸送性に優れる。また、当該ジベンゾ[c,g]カルバゾール化合物は酸化及
び還元の繰り返しに良好な耐性を有する。また、当該ジベンゾ[c,g]カルバゾール化
合物はバンドギャップが広い。以上のように、本実施の形態のジベンゾ[c,g]カルバ
ゾール化合物を含むことで、高性能の発光素子を作製することが容易となる。
【0066】
なお、作製する素子の特性の安定性及び信頼性の観点から、ジベンゾ[c,g]カルバゾ
ール骨格に結合するアリール基の炭素数は14乃至30であることが好ましい。当該アリ
ール基の炭素数が14乃至30である場合、当該ジベンゾ[c,g]カルバゾール化合物
は比較的低分子量の低分子化合物となるため、真空蒸着に適した(比較的低温で真空蒸着
できる)構成となる。また、一般には分子量が低いと成膜後の耐熱性が乏しくなることが
多いが、当該ジベンゾ[c,g]カルバゾール化合物は、ジベンゾ[c,g]カルバゾー
ル骨格の剛直な骨格の影響により、分子量が低くても十分な耐熱性を確保することができ
るメリットがある。なお、本明細書中において、炭素数を規定した場合、規定された基、
又は化合物等の置換基の炭素数も含む、全ての炭素数の合計を示すものとする。
【0067】
上記ジベンゾ[c,g]カルバゾール化合物は下記一般式(G1)で表すことができる

【0068】
【化10】

【0069】
上記一般式(G1)において、Arは少なくともアントラセン骨格を含む置換又は無置
換の炭素数14乃至炭素数30のアリール基を表す。当該アントラセン骨格が置換基を有
する場合、当該置換基としては、炭素数1乃至炭素数4のアルキル基が挙げられる。また
、アントラセン骨格の10位には、これらの置換基のほか、炭素数6乃至炭素数12のア
リール基も置換基として選択することができる。炭素数1乃至炭素数4のアルキル基とし
ては具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブ
チル基、tert−ブチル基などを挙げることができる。また、炭素数6乃至炭素数12
のアリール基としては、フェニル基、ナフチル基、ビフェニル基などを具体例としてあげ
ることができる。
【0070】
また、R11乃至R22はそれぞれ独立に水素、炭素数1乃至炭素数4のアルキル基又
は炭素数6乃至炭素数12のアリール基のいずれかを表す。炭素数1乃至炭素数4のアル
キル基としては具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル
基、イソブチル基、tert−ブチル基などを挙げることができる。また、炭素数6乃至
炭素数12のアリール基としては、フェニル基、ナフチル基、ビフェニル基などを具体例
としてあげることができる。
【0071】
また、本実施の形態におけるジベンゾ[c,g]カルバゾール化合物においては、アン
トラセン骨格がフェニレン基を介してジベンゾ[c,g]カルバゾール骨格と結合した構
成を有するジベンゾ[c,g]カルバゾール化合物が、安定性が向上し、また、純度良く
合成することが可能であるため、好ましい構成である。また、当該ジベンゾ[c,g]カ
ルバゾール化合物がキャリア輸送性に優れるため、これを用いた発光素子は非常に低い電
圧で駆動できる。
【0072】
上記ジベンゾ[c,g]カルバゾール化合物は下記一般式(G2)で表すことができる

【0073】
【化11】

【0074】
一般式(G2)において、R11乃至R22はそれぞれ独立に水素、炭素数1乃至炭素
数4のアルキル基又は炭素数6乃至炭素数12のアリール基のいずれかを表す。炭素数1
乃至炭素数4のアルキル基としては具体的には、メチル基、エチル基、プロピル基、イソ
プロピル基、ブチル基、イソブチル基、tert−ブチル基などを挙げることができる。
また、炭素数6乃至炭素数12のアリール基としては、フェニル基、ナフチル基、ビフェ
ニル基などを具体例としてあげることができる。
【0075】
また、一般式(G2)において、αは置換又は無置換のフェニレン基を表し、βは置換
又は無置換のアントリル基を表す。αが置換基を有する場合、当該置換基としては、炭素
数1乃至炭素数4のアルキル基を選択することができる。炭素数1乃至炭素数4のアルキ
ル基としては具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基
、イソブチル基、tert−ブチル基などを挙げることができる。また、βが置換基を有
する場合、当該置換基としては、炭素数1乃至炭素数4のアルキル基が挙げられる。また
、アントラセン骨格の10位には、これらの置換基のほか、炭素数6乃至炭素数12のア
リール基も置換基として選択することができる。炭素数1乃至炭素数4のアルキル基とし
ては具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブ
チル基、tert−ブチル基などを挙げることができる。また、炭素数6乃至炭素数12
のアリール基としては、フェニル基、ナフチル基、ビフェニル基などを具体例としてあげ
ることができる。
【0076】
なお、上記ジベンゾ[c,g]カルバゾール化合物においては、ジベンゾ[c,g]カ
ルバゾール骨格の7位がアントラセン骨格の9位に結合したジベンゾ[c,g]カルバゾ
ール化合物が特にバンドギャップが広く、有用である。このことは特に、発光素子におけ
る発光層のホスト材料として当該ジベンゾ[c,g]カルバゾール化合物を用い、ゲスト
材料として発光材料を発光層に添加する構成において有利に働く。上記ジベンゾ[c,g
]カルバゾール化合物は下記一般式(G3)で表すことができる。
【0077】
【化12】

【0078】
一般式(G3)において、Rは水素、又は炭素数1乃至炭素数4のアルキル基又は炭
素数6乃至炭素数10のアリール基のいずれか一を表す。炭素数1乃至炭素数4のアルキ
ル基としては具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基
、イソブチル基、tert−ブチル基などを挙げることができる。また、炭素数6乃至炭
素数10のアリール基としては、フェニル基、ナフチル基などを具体例としてあげること
ができる。また、R乃至R及びR乃至Rはそれぞれ独立に水素、炭素数1乃至炭
素数4のアルキル基のいずれか一を表す。炭素数1乃至炭素数4のアルキル基としては具
体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基
、tert−ブチル基などを挙げることができる。また、R11乃至R22はそれぞれ独
立に水素、又は炭素数1乃至炭素数4のアルキル基又は炭素数6乃至炭素数12のアリー
ル基のいずれかを表す。炭素数1乃至炭素数4のアルキル基としては具体的には、メチル
基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチ
ル基などを挙げることができる。また、炭素数6乃至炭素数12のアリール基としては、
フェニル基、ナフチル基、ビフェニル基などを具体例としてあげることができる。αは置
換又は無置換のフェニレン基を表す。αが置換基を有する場合、当該置換基としては、炭
素数1乃至炭素数4のアルキル基のいずれか一を表す。炭素数1乃至炭素数4のアルキル
基としては具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、
イソブチル基、tert−ブチル基などを挙げることができる。
【0079】
なお、一般式(G2)で表されるジベンゾ[c,g]カルバゾール化合物は、ジベンゾ
[c,g]カルバゾール骨格にフェニルアントリル基が結合している、ジベンゾ[c,g
]カルバゾール化合物、一般式(G3)で表される、ジベンゾ[c,g]カルバゾール化
合物は、ジベンゾ[c,g]カルバゾール骨格に(9−フェニル)アントリル基が結合し
ている、ジベンゾ[c,g]カルバゾール化合物と言い換えることもできる。これを踏ま
え、作製する素子の特性の安定性及び信頼性の観点から、ジベンゾ[c,g]カルバゾー
ル骨格に結合するフェニルアントリル基又は(9−フェニル)アントリル基の炭素数は2
0乃至30であることが好ましい。これは、当該ジベンゾ[c,g]カルバゾール化合物
は、上述したように比較的低温で真空蒸着できるため、蒸着時の熱分解等の劣化が起こり
にくいことに起因すると考えられる。なお、特に(9−フェニル)アントリル基を有する
ジベンゾ[c,g]カルバゾール化合物は、バンドギャップが広く、発光素子における発
光層のホスト材料として好適に用いることができる。
【0080】
また、当該ジベンゾ[c,g]カルバゾール化合物は、ジベンゾ[c,g]カルバゾー
ル骨格の7位にフェニレン基を介してアントラセン骨格が結合した分子構造を有するため
、電気化学的な安定性や高いキャリア輸送性が得られている。
【0081】
上述のジベンゾ[c,g]カルバゾール化合物は下記一般式(G4)又は下記一般式(
G5)で表すことができる。
【0082】
【化13】

【0083】
一般式(G4)において、R11乃至R22はそれぞれ独立に水素、炭素数1乃至炭素
数4のアルキル基又は炭素数6乃至炭素数12のアリール基のいずれかを表す。炭素数1
乃至炭素数4のアルキル基としては具体的には、メチル基、エチル基、プロピル基、イソ
プロピル基、ブチル基、イソブチル基、tert−ブチル基などを挙げることができる。
また、炭素数6乃至炭素数12のアリール基としては、フェニル基、ナフチル基、ビフェ
ニル基などを具体例としてあげることができる。また、αは置換又は無置換のフェニレン
基を表す。αが置換基を有する場合、当該置換基としては、炭素数1乃至炭素数4のアル
キル基を選択することができる。炭素数1乃至炭素数4のアルキル基としては具体的には
、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ter
t−ブチル基などを挙げることができる。また、βは置換又は無置換のアントリル基を表
す。βが置換基を有する場合、当該置換基としては、炭素数1乃至炭素数4のアルキル基
が挙げられる。また、アントラセン骨格の10位には、これらの置換基のほか、炭素数6
乃至炭素数12のアリール基も置換基として選択することができる。炭素数1乃至炭素数
4のアルキル基としては具体的には、メチル基、エチル基、プロピル基、イソプロピル基
、ブチル基、イソブチル基、tert−ブチル基などを挙げることができる。また、炭素
数6乃至炭素数12のアリール基としては、フェニル基、ナフチル基、ビフェニル基など
を具体例としてあげることができる。但し、αを構成する炭素数と、βを構成する炭素数
の合計は20乃至30であるとする。
【0084】
【化14】

【0085】
一般式(G5)において、Rは水素、又は炭素数1乃至炭素数4のアルキル基又は炭
素数6乃至炭素数10のアリール基のいずれか一を表す。炭素数1乃至炭素数4のアルキ
ル基としては具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基
、イソブチル基、tert−ブチル基などを挙げることができる。また、炭素数6乃至炭
素数10のアリール基としては、フェニル基、ナフチル基などを具体例としてあげること
ができる。また、R乃至R及びR乃至Rはそれぞれ独立に水素、炭素数1乃至炭
素数4のアルキル基のいずれか一を表す。炭素数1乃至炭素数4のアルキル基としては具
体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基
、tert−ブチル基などを挙げることができる。また、R11乃至R22はそれぞれ独
立に水素、又は炭素数1乃至炭素数4のアルキル基又は炭素数6乃至炭素数12のアリー
ル基のいずれかを表す。炭素数1乃至炭素数4のアルキル基としては具体的には、メチル
基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチ
ル基などを挙げることができる。また、炭素数6乃至炭素数12のアリール基としては、
フェニル基、ナフチル基、ビフェニル基などを具体例としてあげることができる。αは置
換又は無置換のフェニレン基を表す。αが置換基を有する場合、当該置換基としては、炭
素数1乃至炭素数4のアルキル基のいずれか一を表す。炭素数1乃至炭素数4のアルキル
基としては具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、
イソブチル基、tert−ブチル基などを挙げることができる。但し、R〜Rを構成
する炭素数と、αを構成する炭素数の合計は6以上16以下であるとする。
【0086】
また、R乃至R及びR乃至Rはすべて水素であることが、合成の容易さや原料
の価格の面で有利である。
【0087】
すなわち、本発明の他の構成は、下記一般式(G6)で表されるジベンゾ[c,g]カ
ルバゾール化合物である。
【0088】
【化15】

【0089】
一般式(G6)において、αは置換又は無置換のフェニレン基を表す。αが置換基を有
する場合、当該置換基としては、炭素数1乃至炭素数4のアルキル基のいずれか一を表す
。炭素数1乃至炭素数4のアルキル基としては具体的には、メチル基、エチル基、プロピ
ル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基などを挙げること
ができる。また、Rは水素、又は炭素数1乃至炭素数4のアルキル基又は炭素数6乃至
炭素数10のアリール基のいずれか一を表す。炭素数1乃至炭素数4のアルキル基として
は具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチ
ル基、tert−ブチル基などを挙げることができる。また、R11乃至R22はそれぞ
れ独立に水素、又は炭素数1乃至炭素数4のアルキル基、又は炭素数6乃至炭素数12の
アリール基のいずれかを表す。炭素数1乃至炭素数4のアルキル基としては具体的には、
メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert
−ブチル基などを挙げることができる。但し、Rを構成する炭素数と、αを構成する炭
素数の合計は6以上16以下であるとする。
【0090】
上記同様、R11乃至R22はすべて水素であることが有利である。
【0091】
すなわち、本発明の他の構成は、下記一般式(G7)で表されるジベンゾ[c,g]カ
ルバゾール化合物である。
【0092】
【化16】

【0093】
一般式(G7)において、αは置換又は無置換のフェニレン基を表す。αが置換基を有
する場合、当該置換基としては、炭素数1乃至炭素数4のアルキル基のいずれか一を表す
。炭素数1乃至炭素数4のアルキル基としては具体的には、メチル基、エチル基、プロピ
ル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基などを挙げること
ができる。また、Rは水素、又は炭素数1乃至炭素数4のアルキル基又は炭素数6乃至
炭素数10のアリール基のいずれか一を表す。炭素数1乃至炭素数4のアルキル基として
は具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチ
ル基、tert−ブチル基などを挙げることができる。但し、Rを構成する炭素数と、
αを構成する炭素数の合計は6以上16以下であるとする。
【0094】
上記一般式(G1)において、Arとして表されるアリール基としては、例えば下記構
造式(Ar−1)乃至(Ar−51)で表される基を適用することができる。なお、Ar
として用いることのできる基はこれらに限られない。
【0095】
【化17】

【0096】
【化18】

【0097】
【化19】

【0098】
【化20】

【0099】
上記一般式(G1)乃至(G6)において、R11乃至R22として表されるアリール
基としては、例えば下記構造式(Rc−1)乃至(Rc−17)であらわされる基を適用
することができる。なお、R11乃至R22として用いることのできる基はこれらに限ら
れない。
【0100】
【化21】

【0101】
上記一般式(G2)乃至(G7)において、αとして表されるアリーレン基としては、
例えば下記構造式(α−1)乃至(α−11)であらわされる基を適用することができる
。なお、αとして用いることのできる基はこれらに限られない。
【0102】
【化22】

【0103】
上記一般式(G2)及び(G4)において、βとして表されるアリール基としては、例
えば下記構造式(β−1)乃至(β−37)であらわされる基を適用することができる。
なお、βとして用いることのできる基はこれらに限られない。
【0104】
【化23】

【0105】
【化24】

【0106】
上記一般式(G3)及び(G5)において、R乃至R及びR乃至Rとして表さ
れるアリール基としては、例えば下記構造式(Ra−1)乃至(Ra−9)で表される基
を適用することができる。なお、R乃至R及びR乃至Rとして用いることのでき
る基はこれらに限られない。
【0107】
【化25】

【0108】
上記一般式(G3)及び(G5)乃至(G7)において、Rとして表されるアリール
基としては、例えば下記構造式(R−1)乃至(R−17)であらわされる基を適用
することができる。なお、Rとして用いることのできる基はこれらに限られない。
【0109】
【化26】

【0110】
上記一般式(G1)乃至(G7)として表されるジベンゾ[c,g]カルバゾール化合
物の具体的な構造としては、下記構造式(100)乃至(136)で表される物質などが
挙げられる。なお、一般式(G1)乃至(G7)として表されるジベンゾ[c,g]カル
バゾール化合物は下記例示に限られない。
【0111】
【化27】

【0112】
【化28】

【0113】
【化29】

【0114】
【化30】

【0115】
【化31】

【0116】
以上のようなジベンゾ[c,g]カルバゾール化合物は、キャリアの輸送性に優れてい
ることからキャリア輸送材料やホスト材料として好適である。これにより、駆動電圧の小
さい発光素子を提供することもできる。また、本実施の形態におけるジベンゾ[c,g]
カルバゾール化合物は、酸化や還元に対する安定性に優れる。このことから、このような
ジベンゾ[c,g]カルバゾール化合物を用いた発光素子は、寿命の長い発光素子とする
ことができる。また、充分に広いバンドギャップを有するため、青色蛍光材料のホスト材
料として用いても、発光効率の高い発光素子を得ることができる。
【0117】
(実施の形態3)
本実施の形態では、一般式(G1)で表されるジベンゾ[c,g]カルバゾール化合物の
合成方法について説明する。ジベンゾ[c,g]カルバゾール化合物の合成方法としては
種々の反応を適用することができる。例えば、以下に示す合成反応を行うことによって、
一般式(G1)で表されるジベンゾ[c,g]カルバゾール化合物を合成することができ
る。なお、本発明の一態様であるジベンゾ[c,g]カルバゾール化合物の合成方法は、
以下の合成方法に限定されない。
【0118】
<一般式(G1)で表されるジベンゾ[c,g]カルバゾール化合物の合成方法1>
本発明のジベンゾ[c,g]カルバゾール化合物(G1)は、下記合成スキーム(A−
1)のように合成することができる。すなわち、アントラセン化合物(化合物1)と、ジ
ベンゾ[c,g]カルバゾール化合物(化合物2)とを、カップリングさせることにより
、本発明のジベンゾ[c,g]カルバゾール化合物(G1)を得る。
【0119】
【化32】

【0120】
合成スキーム(A−1)において、Arは、少なくともアントラセン骨格を含む置換又
は無置換の炭素数14乃至炭素数30のアリール基を表す。また、R11乃至R22はそ
れぞれ独立に水素、炭素数1乃至炭素数4のアルキル基又は炭素数6乃至炭素数12のア
リール基のいずれかを表す。
【0121】
合成スキーム(A−1)において、パラジウム触媒を用いたハートウィック・ブッフバ
ルト反応を行う場合、Xはハロゲン又はトリフラート基を表す。ハロゲンとしては、ヨウ
素、臭素又は塩素が好ましい。当該反応では、ビス(ジベンジリデンアセトン)パラジウ
ム(0)、酢酸パラジウム(II)等のパラジウム化合物と、それに配位するトリ(te
rt−ブチル)ホスフィンや、トリ(n−ヘキシル)ホスフィンや、トリシクロヘキシル
ホスフィン等の配位子を用いるパラジウム触媒を利用する。当該反応では、塩基としてナ
トリウム tert−ブトキシド等の有機塩基や、炭酸カリウム等の無機塩基等を用いる
ことができる。また、溶媒を使用する場合、トルエン、キシレン、ベンゼン、テトラヒド
ロフラン等を用いることができる。なお、当該反応に用いることができる試薬類は、前記
試薬類に限られるものではない。
【0122】
また、合成スキーム(A−1)において、銅、又は銅化合物を用いたウルマン反応を行
う場合、Xはハロゲンを表す。ハロゲンとしては、ヨウ素、臭素又は塩素が好ましい。当
該反応では、触媒としては銅もしくは銅化合物を用いることができる。用いる塩基として
は、炭酸カリウム等の無機塩基が挙げられる。当該反応において、用いることができる溶
媒としては、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)ピリミジノ
ン(DMPU)、トルエン、キシレン、ベンゼン等が挙げられる。ウルマン反応では、反
応温度が100℃以上の方がより短時間かつ高収率で目的物が得られるため、溶媒として
は沸点の高いDMPU、キシレンを用いることが好ましい。また、反応温度は150℃以
上のより高温が更に好ましいため、より好ましくはDMPUを用いることとする。なお、
当該反応において、用いることができる試薬類は、前記試薬類に限られるものではない。
【0123】
以上のように、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を合成す
ることができる。
【0124】
(実施の形態4)
本実施の形態では、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を有
機半導体素子の一種である縦型トランジスタ(静電誘導トランジスタ:SIT)の活性層
として用いる形態を例示する。
【0125】
素子の構造としては、図2に示すように、実施の形態2に記載のジベンゾ[c,g]カ
ルバゾール化合物を含む薄膜状の活性層1202をソース電極1201およびドレイン電
極1203で挟み、ゲート電極1204が活性層1202に埋め込まれた構造を有する。
ゲート電極1204は、ゲート電圧を印加するための手段に電気的に接続されており、ソ
ース電極1201およびドレイン電極1203は、ソース電極−ドレイン電極間の電圧を
制御するための手段に電気的に接続されている。
【0126】
このような素子構造において、ゲート電極に電圧を印加しない状態においてソース電極
−ドレイン電極間に電圧を印加すると、電流が流れる(ON状態となる)。そして、その
状態でゲート電極に電圧を印加するとゲート電極1204周辺に空乏層が発生し、電流が
流れなくなる(OFF状態となる)。以上の機構により、トランジスタとして動作する。
【0127】
縦型トランジスタにおいては、発光素子と同様、キャリア輸送性と良好な膜質を兼ね備
えた材料が活性層に求められるが、実施の形態2に記載のジベンゾ[c,g]カルバゾー
ル化合物はその条件を十分に満たしており、好適に用いることができる。
【0128】
(実施の形態5)
本実施の形態では実施の形態1で説明した発光素子の詳細な構造の例について図1(A
)を用いて以下に説明する。
【0129】
本実施の形態における発光素子は、一対の電極間に複数の層を有する。本形態において
、発光素子は、第1の電極101と、第2の電極102と、第1の電極101と第2の電
極との間に設けられたEL層103とから構成されている。なお、本形態では第1の電極
101は陽極として機能し、第2の電極102は陰極として機能するものとして、以下説
明をする。つまり、第1の電極101の方が第2の電極102よりも電位が高くなるよう
に、第1の電極101と第2の電極102に電圧を印加したときに、発光が得られる構成
となっている。本実施の形態における発光素子はEL層103中のいずれかの層にジベン
ゾ[c,g]カルバゾール化合物が用いられている発光素子である。
【0130】
第1の電極101としては、仕事関数の大きい(具体的には4.0eV以上)金属、合
金、導電性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例
えば、酸化インジウム−酸化スズ(ITO:Indium Tin Oxide)、ケイ
素若しくは酸化ケイ素を含有した酸化インジウム−酸化スズ、酸化インジウム−酸化亜鉛
(Indium Zinc Oxide)、酸化タングステン及び酸化亜鉛を含有した酸
化インジウム(IWZO)等が挙げられる。これらの導電性金属酸化物膜は、通常スパッ
タにより成膜されるが、ゾル−ゲル法などを応用して作製しても構わない。例えば、酸化
インジウム−酸化亜鉛は、酸化インジウムに対し1〜20wt%の酸化亜鉛を加えたター
ゲットを用いてスパッタリング法により形成することができる。また、酸化タングステン
及び酸化亜鉛を含有した酸化インジウム(IWZO)は、酸化インジウムに対し酸化タン
グステンを0.5〜5wt%、酸化亜鉛を0.1〜1wt%含有したターゲットを用いて
スパッタリング法により形成することができる。この他、金(Au)、白金(Pt)、ニ
ッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe
)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、グラフェン、または金属材料
の窒化物(例えば、窒化チタン)等が挙げられる。
【0131】
EL層103の積層構造については特に限定されず、電子輸送性の高い物質を含む層ま
たは正孔輸送性の高い物質を含む層、電子注入性の高い物質を含む層、正孔注入性の高い
物質を含む層、バイポーラ性(電子及び正孔の輸送性の高い物質)の物質を含む層等を適
宜組み合わせて構成すればよい。例えば、正孔注入層、正孔輸送層、発光層、電子輸送層
、電子注入層等を適宜組み合わせて構成することができる。本実施の形態では、EL層1
03は、第1の電極101の上に順に積層した正孔注入層111、正孔輸送層112、発
光層113、電子輸送層114、電子注入層115を有する構成について説明する。各層
を構成する材料について以下に具体的に示す。
【0132】
正孔注入層111は、正孔注入性の高い物質を含む層である。モリブデン酸化物やバナ
ジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等を用いること
ができる。この他、フタロシアニン(略称:HPc)や銅フタロシアニン(CuPC)
等のフタロシアニン系の化合物、4,4’−ビス[N−(4−ジフェニルアミノフェニル
)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス
(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフ
ェニル)−4,4’−ジアミン(略称:DNTPD)等の芳香族アミン化合物、或いはポ
リ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS
)等の高分子等によっても正孔注入層111を形成することができる。
【0133】
また、正孔注入層111として、正孔輸送性の高い物質にアクセプター性物質を含有さ
せた複合材料を用いることができる。なお、正孔輸送性の高い物質にアクセプター性物質
を含有させたものを用いることにより、電極の仕事関数に依らず電極を形成する材料を選
ぶことができる。つまり、第1の電極101として仕事関数の大きい材料だけでなく、仕
事関数の小さい材料も用いることができるようになる。アクセプター性物質としては、7
,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F
−TCNQ)、クロラニル等を挙げることができる。また、遷移金属酸化物を挙げるこ
とができる。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げるこ
とができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸
化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムは電子受容性が高いため
好ましい。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いや
すいため好ましい。
【0134】
複合材料に用いる正孔輸送性の高い物質としては、芳香族アミン化合物、カルバゾール
誘導体、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など
、種々の有機化合物を用いることができる。なお、複合材料に用いる有機化合物としては
、正孔輸送性の高い有機化合物であることが好ましい。具体的には、10−6cm/V
s以上の正孔移動度を有する物質であることが好ましい。ただし、電子よりも正孔の輸送
性の高い物質であれば、これら以外のものを用いてもよい。以下では、複合材料における
正孔輸送性の高い物質として用いることのできる有機化合物を具体的に列挙する。
【0135】
例えば、芳香族アミン化合物としては、N,N’−ジ(p−トリル)−N,N’−ジフ
ェニル−p−フェニレンジアミン(略称:DTDPPA)、4,4’−ビス[N−(4−
ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N
,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフ
ェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)、1,3
,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン
(略称:DPA3B)等を挙げることができる。
【0136】
複合材料に用いることのできるカルバゾール誘導体としては、具体的には、3−[N−
(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバ
ゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3
−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)
、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]
−9−フェニルカルバゾール(略称:PCzPCN1)等を挙げることができる。
【0137】
また、複合材料に用いることのできるカルバゾール誘導体としては、他に、4,4’−
ジ(N−カルバゾリル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−
カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(10−フェニル−
9−アントリル)フェニル]−9H−カルバゾール(略称:CzPA)、1,4−ビス[
4−(N−カルバゾリル)フェニル]−2,3,5,6−テトラフェニルベンゼン等を用
いることができる。
【0138】
また、複合材料に用いることのできる芳香族炭化水素としては、例えば、2−tert
−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、2−
tert−ブチル−9,10−ジ(1−ナフチル)アントラセン、9,10−ビス(3,
5−ジフェニルフェニル)アントラセン(略称:DPPA)、2−tert−ブチル−9
,10−ビス(4−フェニルフェニル)アントラセン(略称:t−BuDBA)、9,1
0−ジ(2−ナフチル)アントラセン(略称:DNA)、9,10−ジフェニルアントラ
セン(略称:DPAnth)、2−tert−ブチルアントラセン(略称:t−BuAn
th)、9,10−ビス(4−メチル−1−ナフチル)アントラセン(略称:DMNA)
、2−tert−ブチル−9,10−ビス[2−(1−ナフチル)フェニル]アントラセ
ン、9,10−ビス[2−(1−ナフチル)フェニル]アントラセン、2,3,6,7−
テトラメチル−9,10−ジ(1−ナフチル)アントラセン、2,3,6,7−テトラメ
チル−9,10−ジ(2−ナフチル)アントラセン、9,9’−ビアントリル、10,1
0’−ジフェニル−9,9’−ビアントリル、10,10’−ビス(2−フェニルフェニ
ル)−9,9’−ビアントリル、10,10’−ビス[(2,3,4,5,6−ペンタフ
ェニル)フェニル]−9,9’−ビアントリル、アントラセン、テトラセン、ルブレン、
ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン等が挙げられる。ま
た、この他、ペンタセン、コロネン等も用いることができる。このように、1×10−6
cm/Vs以上の正孔移動度を有し、炭素数14〜42である芳香族炭化水素を用いる
ことがより好ましい。
【0139】
なお、複合材料に用いることのできる芳香族炭化水素は、ビニル骨格を有していてもよ
い。ビニル基を有している芳香族炭化水素としては、例えば、4,4’−ビス(2,2−
ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10−ビス[4−(2,2−
ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等が挙げられる。
【0140】
また、ポリ(N−ビニルカルバゾール)(略称:PVK)やポリ(4−ビニルトリフェ
ニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニル
アミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](
略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス
(フェニル)ベンジジン](略称:Poly−TPD)等の高分子化合物を用いることも
できる。
【0141】
正孔輸送層112は、正孔輸送性の高い物質を含む層である。正孔輸送性の高い物質と
しては、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェ
ニル(略称:NPB)やN,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル
−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’,4’’
−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,
4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニ
ルアミン(略称:MTDATA)、4,4’−ビス[N−(スピロ−9,9’−ビフルオ
レン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル
−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFL
P)などの芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10
−6cm/Vs以上の正孔移動度を有する物質である。また、上述の複合材料における
正孔輸送性の高い物質として挙げた有機化合物も正孔輸送層112に用いることができる
。また、ポリ(N−ビニルカルバゾール)(略称:PVK)やポリ(4−ビニルトリフェ
ニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。但し、電子
よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔
輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積
層したものとしてもよい。
【0142】
また、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を正孔輸送層11
2を構成する材料として用いても良い。
【0143】
発光層113は、発光性の物質を含む層である。発光層113は、発光物質単独の膜で
構成されていても、ホスト材料中に発光中心物質を分散された膜で構成されていても良い

【0144】
発光層113において、上記発光物質、若しくは発光中心物質として用いることが可能
な材料としては特に限定は無く、これら材料が発する光は蛍光であっても燐光であっても
良い。上記発光物質又は発光中心物質としては例えば、以下のようなものが挙げられる。
蛍光発光性の物質としては、N,N’−ビス[4−(9H−カルバゾール−9−イル)フ
ェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)
、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)
トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4
’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAP
PA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル
]−9H−カルバゾール−3−アミン(略称:PCAPA)、ペリレン、2,5,8,1
1−テトラ−tert−ブチルペリレン(略称:TBP)、4−(10−フェニル−9−
アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルア
ミン(略称:PCBAPA)、N,N’’−(2−tert−ブチルアントラセン−9,
10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−
フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,
10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略
称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル
]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPP
A)、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベ
ンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、クマ
リン30、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H
−カルバゾール−3−アミン(略称:2PCAPA)、N−[9,10−ビス(1,1’
−ビフェニル−2−イル)−2−アントリル]−N,9−ジフェニル−9H−カルバゾー
ル−3−アミン(略称:2PCABPhA)、N−(9,10−ジフェニル−2−アント
リル)−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPA
PA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]
−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPABPh
A)、9,10−ビス(1,1’−ビフェニル−2−イル)−N−[4−(9H−カルバ
ゾール−9−イル)フェニル]−N−フェニルアントラセン−2−アミン(略称:2YG
ABPhA)、N,N,9−トリフェニルアントラセン−9−アミン(略称:DPhAP
hA)クマリン545T、N,N’−ジフェニルキナクリドン、(略称:DPQd)、ル
ブレン、5,12−ビス(1,1’−ビフェニル−4−イル)−6,11−ジフェニルテ
トラセン(略称:BPT)、2−(2−{2−[4−(ジメチルアミノ)フェニル]エテ
ニル}−6−メチル−4H−ピラン−4−イリデン)プロパンジニトリル(略称:DCM
1)、2−{2−メチル−6−[2−(2,3,6,7−テトラヒドロ−1H,5H−ベ
ンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパ
ンジニトリル(略称:DCM2)、N,N,N’,N’−テトラキス(4−メチルフェニ
ル)テトラセン−5,11−ジアミン(略称:p−mPhTD)、7,14−ジフェニル
−N,N,N’,N’−テトラキス(4−メチルフェニル)アセナフト[1,2−a]フ
ルオランテン−3,10−ジアミン(略称:p−mPhAFD)、2−{2−イソプロピ
ル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H
,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデ
ン}プロパンジニトリル(略称:DCJTI)、2−{2−tert−ブチル−6−[2
−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベン
ゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパン
ジニトリル(略称:DCJTB)、2−(2,6−ビス{2−[4−(ジメチルアミノ)
フェニル]エテニル}−4H−ピラン−4−イリデン)プロパンジニトリル(略称:Bi
sDCM)、2−{2,6−ビス[2−(8−メトキシ−1,1,7,7−テトラメチル
−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)
エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:BisDCJT
M)などが挙げられる。りん光発光性の物質としては、ビス[2−(3’,5’−ビスト
リフルオロメチルフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナー
ト(略称:Ir(CFppy)(pic))、ビス[2−(4’,6’−ジフルオロ
フェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称
:FIracac)、トリス(2−フェニルピリジナト)イリジウム(III)(略称:
Ir(ppy))、ビス(2−フェニルピリジナト)イリジウム(III)アセチルア
セトナート(略称:Ir(ppy)(acac))、トリス(アセチルアセトナト)(
モノフェナントロリン)テルビウム(III)(略称:Tb(acac)(Phen)
)、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称
:Ir(bzq)(acac))、ビス(2,4−ジフェニル−1,3−オキサゾラト
−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(dpo)
acac))、ビス[2−(4’−パーフルオロフェニルフェニル)ピリジナト]イリジ
ウム(III)アセチルアセトナート(略称:Ir(p−PF−ph)(acac))
、ビス(2−フェニルベンゾチアゾラト−N,C2’)イリジウム(III)アセチルア
セトナート(略称:Ir(bt)(acac))、ビス[2−(2’−ベンゾ[4,5
−α]チエニル)ピリジナト−N,C3’]イリジウム(III)アセチルアセトナート
(略称:Ir(btp)(acac))、ビス(1−フェニルイソキノリナト−N,C
2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)(acac
))、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリ
ナト]イリジウム(III)(略称:Ir(Fdpq)(acac))、(アセチルア
セトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:
Ir(tppr)(acac))、2,3,7,8,12,13,17,18−オクタ
エチル−21H,23H−ポルフィリン白金(II)(略称:PtOEP)、トリス(1
,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム
(III)(略称:Eu(DBM)(Phen))、トリス[1−(2−テノイル)−
3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III
)(略称:Eu(TTA)(Phen))などが挙げられる。なお、実施の形態2に記
載のジベンゾ[c,g]カルバゾール化合物も発光材料もしくは発光中心材料として用い
ることができる。当該ジベンゾ[c,g]カルバゾール化合物は紫色から青色の範囲にス
ペクトルを有する光を発する発光中心物質である。
【0145】
また、上記ホスト材料として用いることが可能な材料としては、特に限定はないが、例
えば、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(
4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(
10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、
ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(II
I)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)、ビ
ス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、
ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)な
どの金属錯体、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1
,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブ
チルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−
7)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル
)−1,2,4−トリアゾール(略称:TAZ)、2,2’,2’’−(1,3,5−ベ
ンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI
)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、
9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9
H−カルバゾール(略称:CO11)などの複素環化合物、4,4’−ビス[N−(1−
ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)、N,
N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]
−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビ
フルオレン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳
香族アミン化合物が挙げられる。また、アントラセン誘導体、フェナントレン誘導体、ピ
レン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化
合物が挙げられ、具体的には、9,10−ジフェニルアントラセン(略称:DPAnth
)、N,N−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−
9H−カルバゾール−3−アミン(略称:CzA1PA)、4−(10−フェニル−9−
アントリル)トリフェニルアミン(略称:DPhPA)、4−(9H−カルバゾール−9
−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YG
APA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニ
ル]−9H−カルバゾール−3−アミン(略称:PCAPA)、N,9−ジフェニル−N
−{4−[4−(10−フェニル−9−アントリル)フェニル]フェニル}−9H−カル
バゾール−3−アミン(略称:PCAPBA)、N,9−ジフェニル−N−(9,10−
ジフェニル−2−アントリル)−9H−カルバゾール−3−アミン(略称:2PCAPA
)、6,12−ジメトキシ−5,11−ジフェニルクリセン、N,N,N’,N’,N’
’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7
,10,15−テトラアミン(略称:DBC1)、9−[4−(10−フェニル−9−ア
ントリル)フェニル]−9H−カルバゾール(略称:CzPA)、3,6−ジフェニル−
9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称
:DPCzPA)、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称
:DPPA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、2−te
rt−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、
9,9’−ビアントリル(略称:BANT)、9,9’−(スチルベン−3,3’−ジイ
ル)ジフェナントレン(略称:DPNS)、9,9’−(スチルベン−4,4’−ジイル
)ジフェナントレン(略称:DPNS2)、3,3’,3’’−(ベンゼン−1,3,5
−トリイル)トリピレン(略称:TPB3)などを挙げることができる。また、実施の形
態2に記載のジベンゾ[c,g]カルバゾール化合物もホスト材料として好適に用いるこ
とができる。これら及び公知の物質の中から、上記発光中心物質のエネルギーギャップよ
り大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いればよい
。また、発光中心物質がりん光を発する物質である場合、ホスト材料は該発光中心物質の
三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも大きい三重
項励起エネルギーを有する物質を選択すれば良い。
【0146】
なお、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物は、青色の蛍光を
発する物質を発光中心物質とした発光素子により好適に用いることができる。これは、当
該ジベンゾ[c,g]カルバゾール化合物のバンドギャップが広いことから、有効に青色
蛍光物質を励起することができ、発光効率の高い青色蛍光発光素子を提供することが容易
となるためである。また、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物
は、キャリア輸送性に優れるため、駆動電圧の小さい発光素子とすることができる。
【0147】
なお、発光層113は2層以上の複数層でもって構成することもできる。例えば、第1
の発光層と第2の発光層を正孔輸送層側から順に積層して発光層113とする場合、第1
の発光層のホスト材料として正孔輸送性を有する物質を用い、第2の発光層のホスト材料
として電子輸送性を有する物質を用いる構成などがある。
【0148】
以上のような構成を有する発光層は、複数の材料で構成されている場合、真空蒸着法で
の共蒸着や、混合溶液としてインクジェット法やスピンコート法やディップコート法など
を用いて作製することができる。
【0149】
電子輸送層114は、電子輸送性の高い物質を含む層である。例えば、トリス(8−キ
ノリノラト)アルミニウム(略称:Alq)、トリス(4−メチル−8−キノリノラト)
アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)
ベリリウム(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニ
ルフェノラト)アルミニウム(略称:BAlq)など、キノリン骨格またはベンゾキノリ
ン骨格を有する金属錯体等からなる層である。また、この他ビス[2−(2−ヒドロキシ
フェニル)ベンズオキサゾラト]亜鉛(略称:Zn(BOX))、ビス[2−(2−ヒ
ドロキシフェニル)ベンゾチアゾラト]亜鉛(略称:Zn(BTZ))などのオキサゾ
ール系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、金属
錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1
,3,4−オキサジアゾール(略称:PBD)や、1,3−ビス[5−(p−tert−
ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD
−7)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニ
ル)−1,2,4−トリアゾール(略称:TAZ)、バソフェナントロリン(略称:BP
hen)、バソキュプロイン(略称:BCP)なども用いることができる。また、実施の
形態2に記載のジベンゾ[c,g]カルバゾール化合物も好適に用いることができる。こ
こに述べた物質は、主に10−6cm/Vs以上の電子移動度を有する物質である。な
お、正孔よりも電子の輸送性の高い物質であれば、上記以外の物質を電子輸送層として用
いても構わない。
【0150】
また、電子輸送層114は、単層のものだけでなく、上記物質からなる層が二層以上積
層したものとしてもよい。
【0151】
また、電子輸送層と発光層との間に電子キャリアの移動を制御する層を設けても良い。
これは上述したような電子輸送性の高い材料に、電子トラップ性の高い物質を少量添加し
た層であって、電子キャリアの移動を抑制することによって、キャリアバランスを調節す
ることが可能となる。このような構成は、発光層を電子が突き抜けてしまうことにより発
生する問題(例えば素子寿命の低下)の抑制に大きな効果を発揮する。
【0152】
実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物はキャリア輸送性に優れ
るため、電子輸送層114の材料として用いることによって、駆動電圧の小さい発光素子
を得ることが容易となる。また、当該ジベンゾ[c,g]カルバゾール化合物はバンドギ
ャップも広いことから、発光層113に隣接する電子輸送層114の材料として用いても
、発光中心物質の励起エネルギーを失活させる恐れが少なく、発光効率の高い発光素子を
得ることが容易となる。
【0153】
また、電子輸送層114と第2の電極102との間に、第2の電極102に接して電子
注入層115を設けてもよい。電子注入層115としては、フッ化リチウム(LiF)、
フッ化セシウム(CsF)、フッ化カルシウム(CaF)等のようなアルカリ金属又は
アルカリ土類金属又はそれらの化合物を用いることができる。例えば、電子輸送性を有す
る物質からなる層中にアルカリ金属又はアルカリ土類金属、マグネシウム(Mg)又はそ
れらの化合物を含有させたもの、例えばAlq中にマグネシウム(Mg)を含有させたも
の等を用いることができる。なお、電子注入層115として、電子輸送性を有する物質か
らなる層中にアルカリ金属又はアルカリ土類金属を含有させたものを用いることにより、
第2の電極102からの電子注入が効率良く行われるためより好ましい。
【0154】
第2の電極102を形成する物質としては、仕事関数の小さい(具体的には3.8eV
以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる
。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素
、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびカルシウム(
Ca)、ストロンチウム(Sr)等のアルカリ土類金属、マグネシウム(Mg)およびこ
れらを含む合金(MgAg、AlLi)、ユウロピウム(Eu)、イッテルビウム(Yb
)等の希土類金属およびこれらを含む合金等が挙げられる。しかしながら、第2の電極1
02と電子輸送層との間に、電子注入層を設けることにより、仕事関数の大小に関わらず
、Al、Ag、ITO、ケイ素若しくは酸化ケイ素を含有した酸化インジウム−酸化スズ
等様々な導電性材料を第2の電極102として用いることができる。これら導電性材料は
、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することが可能
である。
【0155】
また、EL層103の形成方法としては、乾式法、湿式法を問わず、種々の方法を用い
ることができる。例えば、真空蒸着法、インクジェット法またはスピンコート法など用い
ても構わない。また各電極または各層ごとに異なる成膜方法を用いて形成しても構わない

【0156】
電極についても、ゾル−ゲル法を用いて湿式法で形成しても良いし、金属材料のペース
トを用いて湿式法で形成してもよい。また、スパッタリング法や真空蒸着法などの乾式法
を用いて形成しても良い。
【0157】
以上のような構成を有する発光素子は、第1の電極101と第2の電極102との間に
生じた電位差により電流が流れ、発光性の高い物質を含む層である発光層113において
正孔と電子とが再結合し、発光するものである。つまり発光層113に発光領域が形成さ
れるような構成となっている。
【0158】
発光は、第1の電極101または第2の電極102のいずれか一方または両方を通って
外部に取り出される。従って、第1の電極101または第2の電極102のいずれか一方
または両方は、透光性を有する電極で成る。第1の電極101のみが透光性を有する電極
である場合、発光は第1の電極101を通って取り出される。また、第2の電極102の
みが透光性を有する電極である場合、発光は第2の電極102を通って取り出される。第
1の電極101および第2の電極102がいずれも透光性を有する電極である場合、発光
は第1の電極101および第2の電極102を通って、両方から取り出される。
【0159】
なお、第1の電極101と第2の電極102との間に設けられる層の構成は、上記のも
のには限定されない。しかし、発光領域と電極やキャリア注入層に用いられる金属とが近
接することによって生じる消光が抑制されるように、第1の電極101および第2の電極
102から離れた部位に正孔と電子とが再結合する発光領域を設けた構成が好ましい。
【0160】
また、直接発光層に接する正孔輸送層や電子輸送層、特に発光層113における発光領
域に近い方に接するキャリア輸送層は、発光層で生成した励起子からのエネルギー移動を
抑制するため、そのエネルギーギャップが発光層を構成する発光物質もしくは、発光層に
含まれる発光中心物質が有するエネルギーギャップより大きいエネルギーギャップを有す
る物質で構成することが好ましい。
【0161】
本実施の形態における発光素子において、正孔輸送層や電子輸送層に、実施の形態2に
記載のジベンゾ[c,g]カルバゾール化合物を用いる場合、発光物質もしくは発光中心
物質がエネルギーギャップの大きい、青色の蛍光を呈する物質や、三重項励起エネルギー
(基底状態と三重項励起状態とのエネルギー差)の大きい緑色のりん光を呈する物質であ
っても、効率良く発光させることができ、発光効率の良好な発光素子を得ることができる
ようになる。このことで、より発光効率が高く、低消費電力の発光素子を提供することが
可能となる。また、色純度の良い発光を得ることができる発光素子を提供することができ
るようになる。また、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物は、
キャリアの輸送性に優れることから、駆動電圧の小さい発光素子を提供することが可能と
なる。
【0162】
また、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物は、酸化及び還元
の繰り返しに対し安定であるため、当該ジベンゾ[c,g]カルバゾール化合物を用いる
ことによって、寿命の長い発光素子を得ることが容易となる。
【0163】
本実施の形態における発光素子は、ガラス、プラスチックなどからなる基板上に作製す
ればよい。基板上に作製する順番としては、第1の電極101側から順に積層しても、第
2の電極側から順に積層しても良い。発光装置は一基板上に一つの発光素子を形成したも
のでも良いが、複数の発光素子を形成しても良い。一基板上にこのような発光素子を複数
作製することで、素子分割された照明装置やパッシブマトリクス型の発光装置を作製する
ことができる。また、ガラス、プラスチックなどからなる基板上に、例えば薄膜トランジ
スタ(TFT)を形成し、TFTと電気的に接続された電極上に発光素子を作製してもよ
い。これにより、TFTによって発光素子の駆動を制御するアクティブマトリクス型の発
光装置を作製できる。なお、TFTの構造は、特に限定されない。スタガ型のTFTでも
よいし逆スタガ型のTFTでもよい。また、TFTに用いる半導体の結晶性についても特
に限定されず、非晶質半導体を用いてもよいし、結晶性半導体を用いてもよい。また、T
FT基板に形成される駆動用回路についても、N型およびP型のTFTからなるものでも
よいし、若しくはN型のTFTまたはP型のTFTのいずれか一方からのみなるものであ
ってもよい。
【0164】
(実施の形態6)
本実施の形態は、複数の発光ユニットを積層した構成の発光素子(以下、積層型素子と
もいう)の態様について、図1(B)を参照して説明する。この発光素子は、第1の電極
と第2の電極との間に、複数の発光ユニットを有する発光素子である。発光ユニットとし
ては、実施の形態5で示したEL層103と同様な構成を用いることができる。つまり、
実施の形態5で示した発光素子は、1つの発光ユニットを有する発光素子であり、本実施
の形態では、複数の発光ユニットを有する発光素子ということができる。
【0165】
図1(B)において、第1の電極501と第2の電極502との間には、第1の発光ユ
ニット511と第2の発光ユニット512が積層されており、第1の発光ユニット511
と第2の発光ユニット512との間には電荷発生層513が設けられている。第1の電極
501と第2の電極502はそれぞれ実施の形態5における第1の電極101と第2の電
極102に相当し、実施の形態5で説明したものと同様なものを適用することができる。
また、第1の発光ユニット511と第2の発光ユニット512は同じ構成であっても異な
る構成であってもよい。
【0166】
電荷発生層513には、有機化合物と金属酸化物の複合材料が含まれている。この有機
化合物と金属酸化物の複合材料は、実施の形態5で示した複合材料であり、有機化合物と
バナジウム酸化物やモリブデン酸化物やタングステン酸化物等の金属酸化物を含む。有機
化合物としては、芳香族アミン化合物、ジベンゾ[c,g]カルバゾール化合物、芳香族
炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種々の化合物
を用いることができる。なお、有機化合物としては、正孔輸送性有機化合物として正孔移
動度が10−6cm/Vs以上であるものを適用することが好ましい。ただし、電子よ
りも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。有機化合物と
金属酸化物の複合体は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動
、低電流駆動を実現することができる。
【0167】
なお、電荷発生層513は、有機化合物と金属酸化物の複合材料を含む層と他の材料に
より構成される層を組み合わせて形成してもよい。例えば、有機化合物と金属酸化物の複
合材料を含む層と、電子供与性物質の中から選ばれた一の化合物と電子輸送性の高い化合
物とを含む層とを組み合わせて形成してもよい。また、有機化合物と金属酸化物の複合材
料を含む層と、透明導電膜とを組み合わせて形成してもよい。
【0168】
いずれにしても、第1の発光ユニット511と第2の発光ユニット512に挟まれる電
荷発生層513は、第1の電極501と第2の電極502に電圧を印加したときに、一方
の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入するものであれば良い
。例えば、図1(B)において、第1の電極の電位の方が第2の電極の電位よりも高くな
るように電圧を印加した場合、電荷発生層513は、第1の発光ユニット511に電子を
注入し、第2の発光ユニット512に正孔を注入するものであればよい。
【0169】
本実施の形態では、2つの発光ユニットを有する発光素子について説明したが、同様に
、3つ以上の発光ユニットを積層した発光素子についても、同様に適用することが可能で
ある。本実施の形態に係る発光素子のように、一対の電極間に複数の発光ユニットを電荷
発生層で仕切って配置することで、電流密度を低く保ったまま、高輝度領域での発光が可
能である。電流密度を低く保てるため、長寿命素子を実現できる。また、照明を応用例と
した場合は、電極材料の抵抗による電圧降下を小さくできるので、大面積での均一発光が
可能となる。また、低電圧駆動が可能で消費電力が低い発光装置を実現することができる

【0170】
また、それぞれの発光ユニットの発光色を異なるものにすることで、発光素子全体とし
て、所望の色の発光を得ることができる。例えば、2つの発光ユニットを有する発光素子
において、第1の発光ユニットの発光色と第2の発光ユニットの発光色を補色の関係にな
るようにすることで、発光素子全体として白色発光する発光素子を得ることも可能である
。なお、補色とは、混合すると無彩色になる色同士の関係をいう。つまり、補色の関係に
ある色を発光する物質から得られた光を混合すると、白色発光を得ることができる。また
、3つの発光ユニットを有する発光素子の場合でも同様であり、例えば、第1の発光ユニ
ットの発光色が赤色であり、第2の発光ユニットの発光色が緑色であり、第3の発光ユニ
ットの発光色が青色である場合、発光素子全体としては、白色発光を得ることができる。
【0171】
本実施の形態の発光素子は実施の形態2に記載のジベンゾ[c,g]カルバゾール化合
物を含むことから、発光効率の良好な発光素子とすることができる。また、駆動電圧の小
さな発光素子とすることができる。また、寿命の長い発光素子とすることができる。又、
当該ジベンゾ[c,g]カルバゾール化合物が含まれる発光ユニットは発光中心物質由来
の光を色純度良く得られるため、発光素子全体としての色の調製が容易となる。
【0172】
なお、本実施の形態は、他の実施の形態と適宜組み合わせることが可能である。
【0173】
(実施の形態7)
本実施の形態では、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含
む発光素子(すなわち、実施の形態1に記載の発光素子)を用いた発光装置について説明
する。
【0174】
本実施の形態では、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含
む発光素子(すなわち、実施の形態1に記載の発光素子)を用いて作製された発光装置に
ついて図3を用いて説明する。なお、図3(A)は、発光装置を示す上面図、図3(B)
は図3(A)をA−BおよびC−Dで切断した断面図である。この発光装置は、発光素子
の発光を制御するものとして、点線で示された駆動回路部(ソース線駆動回路)601、
画素部602、駆動回路部(ゲート線駆動回路)603を含んでいる。また、604は封
止基板、625は乾燥剤、605はシール材であり、シール材605で囲まれた内側は、
空間607になっている。
【0175】
なお、引き回し配線608はソース線駆動回路601及びゲート線駆動回路603に入
力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプ
リントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号
等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント
配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光
装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものと
する。
【0176】
次に、断面構造について図3(B)を用いて説明する。素子基板610上には駆動回路
部及び画素部が形成されているが、ここでは、駆動回路部であるソース線駆動回路601
と、画素部602中の一つの画素が示されている。
【0177】
なお、ソース線駆動回路601はnチャネル型TFT623とpチャネル型TFT62
4とを組み合わせたCMOS回路が形成される。また、駆動回路は、種々のCMOS回路
、PMOS回路もしくはNMOS回路で形成しても良い。また、本実施の形態では、基板
上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を
基板上ではなく外部に形成することもできる。
【0178】
また、画素部602はスイッチング用TFT611と、電流制御用TFT612とその
ドレインに電気的に接続された第1の電極613とを含む複数の画素により形成される。
なお、第1の電極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ
型の感光性アクリル樹脂膜を用いることにより形成する。
【0179】
また、被覆性を良好なものとするため、絶縁物614の上端部または下端部に曲率を有
する曲面が形成されるようにする。例えば、絶縁物614の材料としてポジ型の感光性ア
クリルを用いた場合、絶縁物614の上端部のみに曲率半径(0.2μm〜3μm)を有
する曲面を持たせることが好ましい。また、絶縁物614として、ネガ型の感光性樹脂、
或いは、ポジ型の感光性樹脂のいずれも使用することができる。
【0180】
第1の電極613上には、EL層616、および第2の電極617がそれぞれ形成され
ている。ここで、陽極として機能する第1の電極613に用いる材料としては、仕事関数
の大きい材料を用いることが望ましい。例えば、ITO膜、またはケイ素を含有したイン
ジウム錫酸化物膜、2〜20wt%の酸化亜鉛を含む酸化インジウム膜、窒化チタン膜、
クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタンとアルミニウ
ムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタ
ン膜との3層構造等を用いることができる。なお、積層構造とすると、配線としての抵抗
も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることができる

【0181】
また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート
法等の種々の方法によって形成される。EL層616は、実施の形態2で示したジベンゾ
[c,g]カルバゾール化合物を含んでいる。また、EL層616を構成する他の材料と
しては、低分子化合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっ
ても良い。
【0182】
さらに、EL層616上に形成され、陰極として機能する第2の電極617に用いる材
料としては、仕事関数の小さい材料(Al、Mg、Li、Ca、またはこれらの合金や化
合物、MgAg、MgIn、AlLi等)を用いることが好ましい。なお、EL層616
で生じた光が第2の電極617を透過させる場合には、第2の電極617として、膜厚を
薄くした金属薄膜と、透明導電膜(ITO、2〜20wt%の酸化亜鉛を含む酸化インジ
ウム、ケイ素を含有したインジウム錫酸化物、酸化亜鉛(ZnO)等)との積層を用いる
のが良い。
【0183】
なお、第1の電極613、EL層616、第2の電極617でもって、発光素子が形成
されている。当該発光素子は実施の形態5の構成を有する発光素子である。なお、画素部
は複数の発光素子が形成されてなっているが、本実施の形態における発光装置では、実施
の形態5又は実施の形態6で説明した構成を有する実施の形態1に記載の発光素子と、そ
れ以外の構成を有する発光素子の両方が含まれていても良い。
【0184】
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、
素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光素
子618が備えられた構造になっている。なお、空間607には、充填材が充填されてお
り、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材605で充填され
る場合もある。
【0185】
なお、シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。ま
た、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また
、封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiberg
lass−Reinforced Plastics)、PVF(ポリビニルフロライド
)、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。
【0186】
以上のようにして、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含
む発光素子(すなわち、実施の形態1に記載の発光素子)を用いて作製された発光装置を
得ることができる。なお、当該発光素子を表示素子として機能させることで、当該発光装
置は表示装置として用いることができる。
【0187】
本実施の形態における発光装置は、実施の形態2に記載のジベンゾ[c,g]カルバゾ
ール化合物を含む発光素子(すなわち、実施の形態1に記載の発光素子)を用いているた
め、良好な特性を備えた発光装置を得ることができる。具体的には、実施の形態2で示し
たジベンゾ[c,g]カルバゾール化合物はエネルギーギャップや三重項励起エネルギー
が大きく、発光物質からのエネルギーの移動を抑制することが可能であることから、発光
効率の良好な発光素子を提供することができ、もって、消費電力の低減された発光装置と
することができる。また、駆動電圧の小さい発光素子を得ることができることから、駆動
電圧の小さい発光装置を得ることができる。また、実施の形態2に記載のジベンゾ[c,
g]カルバゾール化合物を用いた発光素子(すなわち、実施の形態1に記載の発光素子)
は寿命の長い発光素子であることから、信頼性の高い発光装置を提供することができる。
【0188】
以上のように、本実施の形態では、アクティブマトリクス型の発光装置について説明し
たが、この他、パッシブマトリクス型の発光装置であってもよい。図4には本発明を適用
して作製したパッシブマトリクス型の発光装置を示す。なお、図4(A)は、発光装置を
示す斜視図、図4(B)は図4(A)をX−Yで切断した断面図である。図4において、
基板951上には、電極952と電極956との間にはEL層955が設けられている。
電極952の端部は絶縁層953で覆われている。そして、絶縁層953上には隔壁層9
54が設けられている。隔壁層954の側壁は、基板面に近くなるに伴って、一方の側壁
と他方の側壁との間隔が狭くなっていくような傾斜を有する。つまり、隔壁層954の短
辺方向の断面は、台形状であり、底辺(絶縁層953の面方向と同様の方向を向き、絶縁
層953と接する辺)の方が上辺(絶縁層953の面方向と同様の方向を向き、絶縁層9
53と接しない辺)よりも短い。このように、隔壁層954を設けることで、静電気等に
起因した発光素子の不良を防ぐことが出来る。また、パッシブマトリクス型の発光装置に
おいても、低駆動電圧で動作する実施の形態1に記載の、実施の形態2に記載のジベンゾ
[c,g]カルバゾール化合物を含む発光素子を有することによって、低消費電力で駆動
させることができる。また、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合
物を含むために発光効率の高い実施の形態1に記載の発光素子を含むことによって、低消
費電力で駆動させることができる。また、実施の形態2に記載のジベンゾ[c,g]カル
バゾール化合物を含む実施の形態1に記載の発光素子を有することによって信頼性の高い
発光装置とすることが可能となる。これら発光装置は、当該発光素子を表示素子として用
いることで、表示装置としての使用が好適である。
【0189】
(実施の形態8)
本実施の形態では、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を用
いた発光素子(すなわち、実施の形態1に記載の発光素子)を照明装置として用いる例を
図5を参照しながら説明する。図5(B)は照明装置の上面図、図5(A)は図5(B)
におけるE−F断面図である。
【0190】
本実施の形態における照明装置は、支持体である透光性を有する基板400上に、第1
の電極401が形成されている。第1の電極401は実施の形態5における第1の電極1
01に相当する。
【0191】
第1の電極401上には補助電極402が設けられている。本実施の形態では、第1の
電極401側から発光を取り出す例を示したため、第1の電極401は透光性を有する材
料により形成する。補助電極402は透光性を有する材料の導電率の低さを補うために設
けられており、第1の電極401の抵抗が高いことによる電圧降下を起因とする発光面内
の輝度むらを抑制する機能を有する。補助電極402は少なくとも第1の電極401の材
料よりも導電率の大きい材料を用いて形成し、好ましくはアルミニウムなどの導電率の大
きい材料を用いて形成すると良い。なお、補助電極402における第1の電極401と接
する部分以外の表面は絶縁層で覆われていることが好ましい。このような構造をとること
で、取り出すことができない補助電極402上部からの発光を抑制することができ、その
結果無効電流による電力効率の低下を抑制することができる。なお、補助電極402の形
成と同時に第2の電極404に電圧を供給するためのパッド412を形成しても良い。
【0192】
第1の電極401と補助電極402上にはEL層403が形成されている。EL層40
3は実施の形態5におけるEL層103の構成、発光ユニット511、512及び電荷発
生層513を合わせた構成に相当する。なお、これら構成については当該記載を参照され
たい。なお、EL層403は第1の電極401よりも平面的に見て少し大きく形成するこ
とが、第1の電極401と第2の電極404とのショートを抑制する絶縁層の役割も担え
るため好ましい構成である。
【0193】
EL層403を覆って第2の電極404を形成する。第2の電極404は実施の形態5
における第2の電極102に相当し、同様の構成を有する。本実施の形態においては、発
光は第1の電極401側から取り出されるため、第2の電極404は反射率の高い材料に
よって形成されることが好ましい。本実施の形態において、第2の電極404はパッド4
12と接続することによって、電圧が供給されるものとする。
【0194】
以上、第1の電極401、EL層403、及び第2の電極404(及び補助電極402
)を有する発光素子を本実施の形態で示す照明装置は有している。当該発光素子は発光効
率の高い発光素子であるため、本実施の形態における照明装置は消費電力の小さい照明装
置とすることができる。また、当該発光素子は、駆動電圧の小さい発光素子であるため、
消費電力の小さい照明装置とすることができる。また、当該発光素子は信頼性の高い発光
素子であることから、本実施の形態における照明装置は信頼性の高い照明装置とすること
ができる。
【0195】
以上の構成を有する発光素子を、シール材405、406を用いて封止基板407を固
着し、封止することによって照明装置が完成する。シール材405、406はどちらか一
方でもかまわない。また、内側のシール材406には乾燥剤を混ぜることもでき、これに
より、水分を吸着することができ、信頼性の向上につながる。
【0196】
また、パッド412、第1の電極401及び補助電極402の一部をシール材405、
406の外に伸張して設けることによって、外部入力端子とすることができる。また、そ
の上にコンバーターなどを搭載したICチップ420などを設けても良い。
【0197】
以上、本実施の形態に記載の照明装置は、EL素子に実施の形態2に記載のジベンゾ[
c,g]カルバゾール化合物を含む発光素子(すなわち、実施の形態1に記載の発光素子
)を有することから、消費電力の小さい照明装置とすることができる。また、駆動電圧の
低い照明装置とすることができる。また、信頼性の高い照明装置とすることができる。
【0198】
(実施の形態9)
本実施の形態では、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含
む発光素子(すなわち、実施の形態1に記載の発光素子)をその一部に含む電子機器の例
について説明する。実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む
発光素子(すなわち、実施の形態1に記載の発光素子)は発光効率が良好であり、消費電
力が低減された発光素子である。その結果、本実施の形態に記載の電子機器は、消費電力
が低減された発光部を有する電子機器とすることが可能である。また、実施の形態2に記
載のジベンゾ[c,g]カルバゾール化合物を含む発光素子(すなわち、実施の形態1に
記載の発光素子)は、駆動電圧の小さい発光素子であるため、駆動電圧の小さい電子機器
とすることが可能である。また、実施の形態2に記載のジベンゾ[c,g]カルバゾール
化合物を含む発光素子(すなわち、実施の形態1に記載の発光素子)は寿命の長い発光素
子であるため、本実施の形態に記載の電子機器は信頼性の高い電子機器とすることが可能
である。
【0199】
上記発光素子を適用した電子機器として、例えば、テレビジョン装置(テレビ、またはテ
レビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタル
ビデオカメラ等のカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装
置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲ
ーム機などが挙げられる。これらの電子機器の具体例を以下に示す。
【0200】
図6(A)は、テレビジョン装置の一例を示している。テレビジョン装置は、筐体710
1に表示部7103が組み込まれている。また、ここでは、スタンド7105により筐体
7101を支持した構成を示している。表示部7103により、映像を表示することが可
能であり、表示部7103は、実施の形態2に記載のジベンゾ[c,g]カルバゾール化
合物を含む発光素子(すなわち、実施の形態1に記載の発光素子)をマトリクス状に配列
して構成されている。当該発光素子は、発光効率の良好な発光素子とすることが可能であ
る。また、駆動電圧の小さい発光素子とすることが可能である。また、寿命の長い発光素
子とすることが可能である。そのため、当該発光素子で構成される表示部7103を有す
るテレビジョン装置は消費電力の低減されたテレビジョン装置とすることができる。また
、駆動電圧の小さいテレビジョン装置とすることが可能である。また、信頼性の高いテレ
ビジョン装置とすることができる。
【0201】
テレビジョン装置の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作
機7110により行うことができる。リモコン操作機7110が備える操作キー7109
により、チャンネルや音量の操作を行うことができ、表示部7103に表示される映像を
操作することができる。また、リモコン操作機7110に、当該リモコン操作機7110
から出力する情報を表示する表示部7107を設ける構成としてもよい。
【0202】
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般
のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信
ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者
と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
【0203】
図6(B)はコンピュータであり、本体7201、筐体7202、表示部7203、キー
ボード7204、外部接続ポート7205、ポインティングデバイス7206等を含む。
なお、このコンピュータは、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合
物を含む発光素子(すなわち、実施の形態1に記載の発光素子)をマトリクス状に配列し
て表示部7203に用いることにより作製される。当該発光素子は発光効率の良好な発光
素子とすることが可能である。また、駆動電圧の小さい発光素子とすることが可能である
。また、寿命の長い発光素子とすることが可能である。そのため、当該発光素子で構成さ
れる表示部7203を有するコンピュータは消費電力の低減されたコンピュータとするこ
とができる。また、駆動電圧の小さいコンピュータとすることが可能である。また、信頼
性の高いコンピュータとすることが可能である。
【0204】
図6(C)は携帯型遊技機であり、筐体7301と筐体7302の2つの筐体で構成され
ており、連結部7303により、開閉可能に連結されている。筐体7301には、実施の
形態1で説明した発光素子をマトリクス状に配列して作製された表示部7304が組み込
まれ、筐体7302には表示部7305が組み込まれている。また、図6(C)に示す携
帯型遊技機は、その他、スピーカ部7306、記録媒体挿入部7307、LEDランプ7
308、入力手段(操作キー7309、接続端子7310、センサ7311(力、変位、
位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時
間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外
線を測定する機能を含むもの)、マイクロフォン7312)等を備えている。もちろん、
携帯型遊技機の構成は上述のものに限定されず、少なくとも表示部7304および表示部
7305の両方、または一方に実施の形態2に記載のジベンゾ[c,g]カルバゾール化
合物を含む発光素子(すなわち、実施の形態1に記載の発光素子)をマトリクス状に配列
して作製された表示部を用いていればよく、その他付属設備が適宜設けられた構成とする
ことができる。図6(C)に示す携帯型遊技機は、記録媒体に記録されているプログラム
又はデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通信を行って
情報を共有する機能を有する。なお、図6(C)に示す携帯型遊技機が有する機能はこれ
に限定されず、様々な機能を有することができる。上述のような表示部7304を有する
携帯型遊技機は、表示部7304に用いられている発光素子が、良好な発光効率を有する
ことから、消費電力の低減された携帯型遊技機とすることができる。また、表示部730
4に用いられている発光素子が低い駆動電圧で駆動させることができることから、駆動電
圧の小さい携帯型遊技機とすることができる。また、表示部7304に用いられている発
光素子が寿命の長い発光素子であることから、信頼性の高い携帯型遊技機とすることがで
きる。
【0205】
図6(D)は、携帯電話機の一例を示している。携帯電話機7400は、筐体7401に
組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピ
ーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、実施の
形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子(すなわち、実施
の形態1に記載の発光素子)をマトリクス状に配列して作製された表示部7402を有し
ている。当該発光素子は発光効率の良好な発光素子とすることが可能である。また、駆動
電圧の小さい発光素子とすることが可能である。また、寿命の長い発光素子とすることが
可能である。そのため、当該発光素子で構成される表示部7402を有する携帯電話機は
消費電力の低減された携帯電話機とすることができる。また、駆動電圧の小さい携帯電話
機とすることが可能である。また、信頼性の高い携帯電話機とすることが可能である。
【0206】
図6(D)に示す携帯電話機7400は、表示部7402を指などで触れることで、情報
を入力することができる構成とすることもできる。この場合、電話を掛ける、或いはメー
ルを作成するなどの操作は、表示部7402を指などで触れることにより行うことができ
る。
【0207】
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする表
示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示
モードと入力モードの2つのモードが混合した表示+入力モードである。
【0208】
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力を
主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合
、表示部7402の画面のほとんどにキーボードまたは番号ボタンを表示させることが好
ましい。
【0209】
また、携帯電話機内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検
出装置を設けることで、携帯電話機の向き(縦か横か)を判断して、表示部7402の画
面表示を自動的に切り替えるようにすることができる。
【0210】
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操作
ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類に
よって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画の
データであれば表示モード、テキストデータであれば入力モードに切り替える。
【0211】
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表示
部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
【0212】
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部74
02に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。ま
た、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用光
源を用いれば、指静脈、掌静脈などを撮像することもできる。
【0213】
なお、本実施の形態に示す構成は、実施の形態1乃至実施の形態8に示した構成を適宜組
み合わせて用いることができる。
【0214】
以上の様に実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素
子(すなわち、実施の形態1に記載の発光素子)を備えた発光装置の適用範囲は極めて広
く、この発光装置をあらゆる分野の電子機器に適用することが可能である。実施の形態2
に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子を用いることにより、消
費電力の低減された電子機器を得ることができる。また、駆動電圧の小さい電子機器を得
ることができる。
【0215】
図7は、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子
(すなわち、実施の形態1に記載の発光素子)をバックライトに適用した液晶表示装置の
一例である。図7に示した液晶表示装置は、筐体901、液晶層902、バックライト9
03、筐体904を有し、液晶層902は、ドライバIC905と接続されている。また
、バックライト903には、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合
物を含む発光素子(すなわち、実施の形態1に記載の発光素子)が用いられおり、端子9
06により、電流が供給されている。
【0216】
実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子(すなわ
ち、実施の形態1に記載の発光素子)を液晶表示装置のバックライトに適用したことによ
り、消費電力の低減されたバックライトが得られる。また、実施の形態2に記載の発光素
子を用いることで、面発光の照明装置が作製でき、また大面積化も可能である。これによ
り、バックライトの大面積化が可能であり、液晶表示装置の大面積化も可能になる。さら
に、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子を適用
したバックライトは従来と比較し厚みを小さくできるため、表示装置の薄型化も可能とな
る。
【0217】
図8は、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子
(すなわち、実施の形態1に記載の発光素子)を、照明装置である電気スタンドに用いた
例である。図8に示す電気スタンドは、筐体2001と、光源2002を有し、光源20
02として、実施の形態8に記載の発光装置が用いられている。
【0218】
図9は、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子
(すなわち、実施の形態1に記載の発光素子)を、室内の照明装置3001として用いた
例である。実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子
は消費電力の低減された発光素子であるため、消費電力の低減された照明装置とすること
ができる。また、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発
光素子は大面積化が可能であるため、大面積の照明装置として用いることができる。また
、実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子は、薄型
であるため、薄型化した照明装置として用いることが可能となる。
【0219】
実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子(すなわ
ち、実施の形態1に記載の発光素子)は、自動車のフロントガラスやダッシュボードにも
搭載することができる。図10に実施の形態2に記載のジベンゾ[c,g]カルバゾール
化合物を含む発光素子を自動車のフロントガラスやダッシュボードに用いる一態様を示す
。表示領域5000乃至表示領域5005は実施の形態2に記載のジベンゾ[c,g]カ
ルバゾール化合物を含む発光素子を用いて設けられている。
【0220】
表示領域5000と表示領域5001は自動車のフロントガラスに設けられた実施の形
態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子(すなわち、実施の
形態1に記載の発光素子)を搭載した表示装置である。実施の形態2に記載のジベンゾ[
c,g]カルバゾール化合物を含む発光素子は、第1の電極と第2の電極を透光性を有す
る電極で作製することによって、反対側が透けて見える、いわゆるシースルー状態の表示
装置とすることができる。シースルー状態の表示であれば、自動車のフロントガラスに設
置したとしても、視界の妨げになることなく設置することができる。なお、駆動のための
トランジスタなどを設ける場合には、有機半導体材料による有機トランジスタや、酸化物
半導体を用いたトランジスタなど、透光性を有するトランジスタを用いると良い。
【0221】
表示領域5002はピラー部分に設けられた実施の形態2に記載のジベンゾ[c,g]
カルバゾール化合物を含む発光素子(すなわち、実施の形態1に記載の発光素子)を搭載
した表示装置である。表示領域5002には、車体に設けられた撮像素子からの映像を映
し出すことによって、ピラーで遮られた視界を補完することができる。また、同様に、ダ
ッシュボード部分に設けられた表示領域5003は車体によって遮られた視界を、自動車
の外側に設けられた撮像素子からの映像を映し出すことによって、死角を補い、安全性を
高めることができる。見えない部分を補完するように映像を映すことによって、より自然
に違和感なく安全確認を行うことができる。
【0222】
表示領域5004や表示領域5005はナビゲーション情報、スピードメーターやタコ
メーター、走行距離、給油量、ギア状態、エアコンの設定など、その他様々な情報を提供
することができる。表示は使用者の好みに合わせて適宜その表示項目やレイアウトを変更
することができる。なお、これら情報は表示領域5000乃至表示領域5003にも設け
ることができる。また、表示領域5000乃至表示領域5005は照明装置として用いる
ことも可能である。
【0223】
実施の形態2に記載のジベンゾ[c,g]カルバゾール化合物を含む発光素子(すなわ
ち、実施の形態1に記載の発光素子)は駆動電圧の小さい発光素子とすることがでる。ま
た、消費電力の小さい発光素子とすることができる。このことから、表示領域5000乃
至表示領域5005のような大きな画面を数多く設けても、バッテリーに負荷をかけるこ
とが少なく、快適に使用することができることか実施の形態2に記載のジベンゾ[c,g
]カルバゾール化合物を含む発光素子を用いた発光装置または照明装置は、車載用の発光
装置又は照明装置として好適に用いることができる。
【実施例1】
【0224】
本実施例では実施の形態2で説明した一般式(G1)で表されるジベンゾ[c,g]カ
ルバゾール化合物の一つである、7−[4−(10−フェニル−9−アントリル)フェニ
ル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)の合成方法に
ついて詳しく説明する。
【0225】
<ステップ1:5,6,8,9−テトラヒドロ−7H−ジベンゾ[c,g]カルバゾール
の合成>
100mLの三口フラスコに、1.0g(20mmol)のヒドラジン一水和物と、1
4mLのエタノールを入れた。この溶液に氷浴下で2.2mLの1.7Mの酢酸水溶液を
滴下ロートにより滴下して加えた。この溶液に10mLのエタノールに溶解した10g(
68mmol)のβ−テトラロンを滴下ロートにより滴下して加えて、この混合物を80
℃で7時間攪拌したところ、固体が析出した。攪拌後、この混合物を約50mLの水に入
れ、室温で30分攪拌した。攪拌後、この混合物を吸引ろ過し、固体を回収した。回収し
た固体にメタノール/水=1:1を加えて超音波を照射し、固体を洗浄した。洗浄後、こ
の混合物を吸引ろ過して固体を回収したところ、黄色粉末を3.5g、収率63%で得た
。ステップ1の反応スキーム(a−1)を以下に示す。
【0226】
【化33】

【0227】
<ステップ2:7H−ジベンゾ[c,g]カルバゾールの合成>
200mLの三口フラスコに6.2gのクロラニル(25mmol)と、40mLのキ
シレンと、20mLのキシレンに懸濁させた3.5g(12mmol)の5,6,8,9
−テトラヒドロ−7H−ベンゾ[c,g]カルバゾールを入れた。この混合物を窒素気流
下、150℃で4時間還流した。反応後、この混合物を室温まで冷却したところ、固体が
析出した。析出した固体を吸引ろ過により取り除き、ろ液を得た。得られたろ液をシリカ
ゲルカラムクロマトグラフィー(展開溶媒 トルエン:ヘキサン=2:1)により精製し
たところ、赤色固体を得た。得られた固体をトルエン/ヘキサンで再結晶したところ、淡
赤色針状結晶を得た。得られた結晶を再びトルエン/ヘキサンで再結晶したところ、白色
針状結晶を2.5g、収率78%で得た。ステップ2の反応スキーム(b−1)を以下に
示す。
【0228】
【化34】

【0229】
<ステップ3:7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベ
ンゾ[c,g]カルバゾール(cgDBCzPA)の合成>
100mL三口フラスコに、2.3g(5.6mmol)の9−(4−ブロモフェニル
)−10−フェニルアントラセンと、1.5g(5.6mol)の7H−ジベンゾ[c,
g]カルバゾールと、1.2g(12mmol)のナトリウム tert−ブトキシドを
入れた。フラスコ内を窒素置換してから、この混合物へ30mLのトルエンと、2.8m
Lのトリ−tert−ブチル−ホスフィン(10wt%ヘキサン溶液)を加えた。この混
合物を減圧しながら攪拌することで脱気をした。脱気後、この混合物へ0.16g(0.
28mmol)のビス(ジベンジリデンアセトン)パラジウム(0)を加えた。この混合
物を窒素気流下、110℃で17時間攪拌したところ、固体が析出した。析出した固体を
吸引ろ過により回収した。回収した固体を約30mLの熱したトルエンに溶解し、この溶
液をセライト(和光純薬工業株式会社、カタログ番号:531−16855)、アルミナ
、フロリジール(和光純薬工業株式会社、カタログ番号:540−00135)を通して
吸引ろ過した。得られたろ液を濃縮して得た固体をトルエン/ヘキサンで再結晶したとこ
ろ、目的物の淡黄色粉末を2.3g、収率70%で得た。ステップ3の反応スキーム(c
−1)を以下に示す。
【0230】
【化35】

【0231】
得られた淡黄色粉末状固体2.3gをトレインサブリメーション法により昇華精製した
。昇華精製条件は、圧力3.6Pa、アルゴンガスを流量6.0mL/minで流しなが
ら、310℃でcgDBCzPAを加熱した。昇華精製後、cgDBCzPAの淡黄色固
体を2.1g、回収率91%で得た。
【0232】
得られた物質のH NMRを測定した。以下に測定データを示す。
【0233】
H NMR(CDCl,300MHz):δ=7.38−7.67(m,11H),
7.72−7.89(m,12H),7.96(d,J=8.7Hz,2H),8.10
(d,J=7.2Hz,2H),9.31(d,J=8.1Hz,2H)
【0234】
また、H NMRチャートを図11に示す。測定結果から、上述の構造式で表される
7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]
カルバゾール(略称:cgDBCzPA)が得られたことがわかった。
【0235】
次に、トルエン溶液中のcgDBCzPAの吸収スペクトル及び発光スペクトルを図1
2(A)、薄膜状態でのcgDBCzPAの吸収スペクトル及び発光スペクトルを図12
(B)に示す。吸収スペクトルの測定には紫外可視分光光度計(日本分光株式会社製、V
550型)を用いた。トルエン溶液中のcgDBCzPAの吸収スペクトルは、cgDB
CzPAのトルエン溶液を石英セルに入れて測定し、この吸収スペクトルから、石英セル
を用いて測定したトルエンの吸収スペクトルを差し引いた吸収スペクトルを示した。また
、薄膜の吸収スペクトルは、cgDBCzPAを石英基板に蒸着してサンプルを作製し、
このサンプルの吸収スペクトルから石英の吸収スペクトルを差し引いた吸収スペクトルを
示した。発光スペクトルの測定には吸収スペクトルの測定と同様に紫外可視分光光度計(
日本分光株式会社製、V550型)を用いた。トルエン溶液中におけるcgDBCzPA
の発光スペクトルは、cgDBCzPAのトルエン溶液を石英セルに入れて測定し、薄膜
の発光スペクトルは、cgDBCzPAを石英基板に蒸着してサンプルを作製して測定し
た。これにより、cgDBCzPAのトルエン溶液中における極大吸収波長は、396n
m付近、368nm付近、351nm付近、306nm付近及び252nm付近にあり、
極大発光波長は417nm付近及び432nm付近(励起波長369nm)、薄膜におけ
る極大吸収波長は402nm付近、375nm付近、357nm付近、343nm付近、
306nm付近、268nm付近、252nm付近及び221nm付近にあり、最大発光
波長は442nm付近(励起波長402nm)にあることがわかった。
【0236】
また、薄膜状態のcgDBCzPAのイオン化ポテンシャルの値を大気中にて光電子分
光装置(理研計器社製、AC−2)で測定した。得られたイオン化ポテンシャルの値を、
負の値に換算した結果、cgDBCzPAのHOMO準位は−5.72eVであった。図
12の薄膜の吸収スペクトルのデータより、直接遷移を仮定したTaucプロットから求
めたcgDBCzPAの吸収端は2.95eVであった。従って、cgDBCzPAの固
体状態の光学的エネルギーギャップは2.95eVと見積もられ、先に得たHOMO準位
とこのエネルギーギャップの値から、cgDBCzPAのLUMO準位は−2.77eV
と見積もることができる。このように、cgDBCzPAは固体状態において2.95e
Vの広いエネルギーギャップを有している事がわかった。
【0237】
また、cgDBCzPAの酸化反応特性及び還元反応特性を測定した。これらは、サイ
クリックボルタンメトリ(CV)測定によって調べた。なお測定には、電気化学アナライ
ザー(ビー・エー・エス(株)製、型番:ALSモデル600A又は600C)を用いた

【0238】
CV測定における溶液は、溶媒として脱水N,N−ジメチルホルムアミド(DMF)(
Sigma−Aldrich社製、99.8%、カタログ番号;22705−6)を用い
、支持電解質である過塩素酸テトラ−n−ブチルアンモニウム(n−BuNClO
((株)東京化成製、カタログ番号;T0836)を100mmol/Lの濃度となるよ
うに溶解させ、さらに測定対象を2mmol/Lの濃度となるように溶解させて調製した
。また、作用電極としては白金電極(ビー・エー・エス(株)製、PTE白金電極)を、
補助電極としては白金電極(ビー・エー・エス(株)製、VC−3用Ptカウンター電極
(5cm))を、参照電極としてはAg/Ag電極(ビー・エー・エス(株)製、RE
5非水溶媒系参照電極)をそれぞれ用いた。なお、測定は室温(20〜25℃)で行った
。また、CV測定のスキャン速度は0.1V/sに統一した。
【0239】
酸化反応特性の測定は、参照電極に対する作用電極の電位を0.05Vから0.83V
まで変化させた後、0.83Vから0.05Vまで変化させる走査を1サイクルとし、1
00サイクル測定した。測定結果を図13(A)に示す。
【0240】
測定の結果、100サイクル測定後でも、酸化ピークに大きな変化は無くcgDBCz
PAは酸化状態と中性状態との間の酸化還元の繰り返しに良好な特性を示すことがわかっ
た。
【0241】
還元反応特性の測定は、参照電極に対する作用電極の電位を−1.50Vから−2.3
0Vまで変化させた後、−2.30Vから−1.50Vまで変化させる走査を1サイクル
とし、100サイクル測定した。測定結果を図13(B)に示す。
【0242】
測定の結果、100サイクル測定後でも、還元ピークに大きな変化は無くcgDBCz
PAは還元状態と中性状態との間の酸化還元の繰り返しに良好な耐性を示すことがわかっ
た。
【0243】
また、CV測定の結果からも、cgDBCzPAのHOMO準位及びLUMO準位を算
出した。
【0244】
まず、使用する参照電極の真空準位に対するポテンシャルエネルギーは、−4.94e
Vであることがわかっている。cgDBCzPAの酸化反応測定における酸化ピーク電位
paは0.81Vであった。また、還元ピーク電位Epcは0.69Vであった。した
がって、半波電位(EpaとEpcの中間の電位)は0.75Vと算出できる。このこと
は、cgDBCzPAは0.75[V vs.Ag/Ag]の電気エネルギーにより酸
化されることを示しており、このエネルギーはHOMO準位に相当する。ここで、上述し
た通り、本実施例で用いる参照電極の真空準位に対するポテンシャルエネルギーは、−4
.94[eV]であるため、cgDBCzPAのHOMO準位は、−4.94−0.75
=−5.69[eV]であることがわかった。cgDBCzPAの還元反応測定における
還元ピーク電位Epcは−2.25Vであった。また、酸化ピーク電位Epaは−2.1
6Vであった。したがって、半波電位(EpaとEpcの中間の電位)は−2.21Vと
算出できる。このことは、cgDBCzPAは−2.21[V vs.Ag/Ag]の
電気エネルギーにより還元されることを示しており、このエネルギーはLUMO準位に相
当する。ここで、上述した通り、本実施例で用いる参照電極の真空準位に対するポテンシ
ャルエネルギーは、−4.94[eV]であるため、cgDBCzPAのLUMO準位は
、−4.94−(−2.21)=−2.74[eV]であることがわかった。
【0245】
なお、参照電極(Ag/Ag電極)の真空準位に対するポテンシャルエネルギーは、
Ag/Ag電極のフェルミ準位に相当し、その算出は、真空準位からのポテンシャルエ
ネルギーが既知の物質を当該参照電極(Ag/Ag電極)を用いて測定した値から行え
ば良い。
【0246】
本実施例で用いる参照電極(Ag/Ag電極)の真空準位に対するポテンシャルエネ
ルギー(eV)の算出方法を具体的に説明する。メタノール中におけるフェロセンの酸化
還元電位は、標準水素電極に対して+0.610[V vs. SHE]であることが知
られている(参考文献;Christian R.Goldsmith et al.,
「J.Am.Chem.Soc.」, Vol.124, No.1,83−96,
2002)。一方、本実施例で用いる参照電極を用いて、メタノール中におけるフェロセ
ンの酸化還元電位を求めたところ、+0.11V[vs.Ag/Ag]であった。した
がって、この参照電極のポテンシャルエネルギーは、標準水素電極に対して0.50[e
V]低くなっていることがわかった。
【0247】
ここで、標準水素電極の真空準位からのポテンシャルエネルギーは−4.44eVであ
ることが知られている(参考文献;大西敏博・小山珠美著、「高分子EL材料」(共立出
版)、p.64−67)。以上のことから、用いた参照電極の真空準位に対するポテンシ
ャルエネルギーは、−4.44−0.50=−4.94[eV]であると算出できる。
【実施例2】
【0248】
本実施例では、実施の形態1に記載の発光素子である、ジベンゾ[c,g]カルバゾー
ル化合物である、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジ
ベンゾ[c,g]カルバゾール(略称:cgDBCzPA、構造式(100))を、青色
の蛍光を発する発光中心物質を用いた発光層のホスト材料及び電子輸送層の材料として用
いた発光素子について説明する。
【0249】
なお、本実施例で用いた有機化合物の分子構造を下記構造式(i)〜(iv)、(10
0)に示す。素子構造は図1(A)と同様の構造とした。
【0250】
【化36】

【0251】
≪発光素子1の作製≫
まず、第1の電極101として110nmの膜厚でケイ素を含むインジウム錫酸化物(
ITSO)が成膜されたガラス基板を用意した。ITSO表面は、2mm角の大きさで表
面が露出するよう周辺をポリイミド膜で覆い、電極面積は2mm×2mmとした。この基
板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時
間焼成した後、UVオゾン処理を370秒行った。その後、10−4Pa程度まで内部が
減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において170℃で3
0分間の真空焼成を行った後、基板を30分程度放冷した。
【0252】
次に、ITSO膜が形成された面が下方となるように、基板を真空蒸着装置内に設けら
れたホルダーに固定した。
【0253】
真空装置内を10−4Paに減圧した後、上記構造式(i)で表される、9−フェニル
−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略
称:PCzPA)と酸化モリブデン(VI)とを、PCzPA:酸化モリブデン=2:1
(重量比)となるように共蒸着することにより、正孔注入層111を形成した。膜厚は7
0nmとした。なお、共蒸着とは、異なる複数の物質をそれぞれ異なる蒸発源から同時に
蒸発させる蒸着法である。
【0254】
続いて、PCzPAを30nm蒸着することにより正孔輸送層112を形成した。
【0255】
さらに、正孔輸送層112上に、上記構造式(100)で表される7−[4−(10−
フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称
:cgDBCzPA)と上記構造式(iii)で表されるN,N’−ビス(3−メチルフ
ェニル)−N,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−イル)フェニ
ル〕−ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)とを、cgD
BCzPA:1,6mMemFLPAPrn=1:0.03(重量比)となるように25
nm蒸着することによって発光層113を形成した。
【0256】
次に、cgDBCzPAを10nm、続いて上記構造式(iv)で表されるバソフェナ
ントロリン(略称:BPhen)を15nm蒸着することにより、電子輸送層114を形
成した。
【0257】
さらに電子輸送層114上にフッ化リチウムを1nmとなるように蒸着することによっ
て電子注入層を形成した。最後に、陰極として機能する第2の電極102としてアルミニ
ウムを200nm成膜し、発光素子1を完成させた。上述した蒸着過程においては、蒸着
は全て抵抗加熱法を用いた。
【0258】
≪比較発光素子1の作製≫
比較発光素子1は発光層113、電子輸送層114以外は発光素子1と同様に形成した
。発光層113は正孔輸送層112を形成した後、上記構造式(ii)で表される9−[
4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:Cz
PA)、と上記構造式(iii)で表されるN,N’−ビス(3−メチルフェニル)−N
,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−イル)フェニル〕−ピレン
−1,6−ジアミン(略称:1,6mMemFLPAPrn)とを、CzPA:1,6m
MemFLPAPrn=1:0.05(重量比)となるように25nm蒸着することによ
って発光層113を形成した。
【0259】
電子輸送層114は発光層113を形成した後に、CzPAを10nm、続いて上記構
造式(iv)で表されるバソフェナントロリン(略称:BPhen)を15nm蒸着する
ことにより形成した。
【0260】
発光層113、電子輸送層114の構成以外は発光素子1の構成と同様であるため、繰
り返しとなる記載を省略する。発光素子1の作成方法を参照されたい。
【0261】
以上のように、比較発光素子1を完成させた。
【0262】
≪発光素子1及び比較発光素子1の動作特性≫
以上により得られた発光素子1及び比較発光素子1を、窒素雰囲気のグローブボックス
内において、発光素子が大気に曝されないように封止する作業(シール材を素子の周囲に
塗布し、封止時に80℃にて1時間熱処理)を行った後、これらの発光素子の動作特性に
ついて測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
【0263】
発光素子1及び比較発光素子1の輝度−電流効率特性を図14に、電圧−電流特性を図
15に、輝度−パワー効率特性を図16に、輝度−外部量子効率特性を図17に示す。図
14では縦軸が電流効率(cd/A)、横軸が輝度(cd/m)を示す。図15では縦
軸が電流(mA)、横軸が電圧(V)を示す。図16では縦軸がパワー効率(lm/W)
、横軸が輝度(cd/m)を示す。図17では縦軸が外部量子効率(%)、横軸が輝度
(cd/m)を示す。
【0264】
図14から、一般式(G1)で表されるジベンゾ[c,g]カルバゾール化合物である
cgDBCzPAを青色の蛍光を発する発光素子の発光層におけるホスト材料及び電子輸
送層における電子輸送材料に用いた発光素子1は、CzPAを同様に用いた比較発光素子
1と同様、もしくは良好な輝度−電流効率特性を示し、良好な発光効率を示す発光素子で
あることがわかった。
【0265】
また、図15から、発光素子1は比較発光素子1と同様、もしくは良好な電圧−電流特
性を示し、駆動電圧の小さな発光素子であることがわかった。これは、一般式(G1)で
表されるジベンゾ[c,g]カルバゾール化合物が優れたキャリア輸送性を有しているこ
と、を示している。
【0266】
また、図16から、発光素子1は比較発光素子1よりも良好な輝度−パワー効率特性を
示し、消費電力の小さな発光素子であることがわかった。これは、一般式(G1)で表さ
れるジベンゾ[c,g]カルバゾール化合物であるcgDBCzPAを用いた発光素子1
が駆動電圧が低く、且つ発光効率が高い良好な特性を有する発光素子であることを示して
いる。
【0267】
また、図17から、発光素子1は比較発光素子1と同等の良好な輝度−外部量子効率特
性を示し、発光効率の良好な発光素子であることがわかった。
【0268】
また、作製した発光素子1及び比較発光素子1に0.1mAの電流を流したときの発光
スペクトルを図18に示す。図18では縦軸が発光強度(任意単位)、横軸が波長(nm
)を示す。発光強度は最大発光強度を1とした相対的な値として示す。図18より発光素
子1及び比較発光素子1は共に発光中心物質である1,6mMemFLPAPrn起因の
青色の発光を呈することがわかった。
【0269】
次に、初期輝度を5000cd/mに設定し、電流密度一定の条件で発光素子1及び
比較発光素子1を駆動し、輝度の駆動時間に対する変化を調べた。図19に規格化輝度−
時間特性を示す。図19から、CzPAを用いた比較発光素子1は寿命の長い発光素子で
あるが、cgDBCzPAを用いた発光素子1はそれよりもさらに長寿命な非常に良好な
信頼性を有する素子であることがわかった。
【0270】
なお、CzPAと比較すると、cgDBCzPAは蒸着の安定性が良く、品質の安定し
た発光素子を提供しやすいという利点もある。
【0271】
以上のように、cgDBCzPAは、あらゆる特性に優れた、非常にバランスの良い発
光素子の提供を可能とする材料であることがわかった。
【実施例3】
【0272】
本実施例では、実施の形態1に記載の発光素子であるジベンゾ[c,g]カルバゾール
化合物である、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベ
ンゾ[c,g]カルバゾール(略称:cgDBCzPA、構造式(100))を、青色の
蛍光を発する発光中心物質を用いた発光層のホスト材料及び電子輸送層の材料として用い
た発光素子について説明する。
【0273】
なお、本実施例で用いた有機化合物の分子構造を下記構造式(i)〜(v)、(100
)に示す。素子構造は図1(A)と同様の構造とした。
【0274】
【化37】

【0275】
≪発光素子2の作製≫
まず、第1の電極101として110nmの膜厚でケイ素を含むインジウム錫酸化物(
ITSO)が成膜されたガラス基板を用意した。ITSO表面は、2mm角の大きさで表
面が露出するよう周辺をポリイミド膜で覆い、電極面積は2mm×2mmとした。この基
板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時
間焼成した後、UVオゾン処理を370秒行った。その後、10−4Pa程度まで内部が
減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において170℃で3
0分間の真空焼成を行った後、基板を30分程度放冷した。
【0276】
次に、ITSO膜が形成された面が下方となるように、基板を真空蒸着装置内に設けら
れたホルダーに固定した。
【0277】
真空装置内を10−4Paに減圧した後、上記構造式(i)で表される、9−フェニル
−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略
称:PCzPA)と酸化モリブデン(VI)とを、PCzPA:酸化モリブデン=2:1
(重量比)となるように共蒸着することにより、正孔注入層111を形成した。膜厚は7
0nmとした。なお、共蒸着とは、異なる複数の物質をそれぞれ異なる蒸発源から同時に
蒸発させる蒸着法である。
【0278】
続いて、上記構造式(v)で表される3−[4−(9−フェナントリル)−フェニル]
−9−フェニル−9H−カルバゾール(略称:PCPPn)を30nm蒸着することによ
り正孔輸送層112を形成した。
【0279】
さらに、正孔輸送層112上に、上記構造式(100)で表される7−[4−(10−
フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称
:cgDBCzPA)と上記構造式(iii)で表されるN,N’−ビス(3−メチルフ
ェニル)−N,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−イル)フェニ
ル〕−ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)とを、cgD
BCzPA:1,6mMemFLPAPrn=1:0.03(重量比)となるように25
nm蒸着することによって発光層113を形成した。
【0280】
次に、cgDBCzPAを10nm、続いて上記構造式(iv)で表されるバソフェナ
ントロリン(略称:BPhen)を15nm蒸着することにより、電子輸送層114を形
成した。
【0281】
さらに電子輸送層114上にフッ化リチウムを1nmとなるように蒸着することによっ
て電子注入層を形成した。最後に、陰極として機能する第2の電極102としてアルミニ
ウムを200nm成膜し、発光素子2を完成させた。上述した蒸着過程においては、蒸着
は全て抵抗加熱法を用いた。
【0282】
≪比較発光素子2の作製≫
比較発光素子2は発光層113、電子輸送層114以外は発光素子2と同様に形成した
。発光層113は正孔輸送層112を形成した後、上記構造式(ii)で表される9−[
4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:Cz
PA)、と上記構造式(iii)で表されるN,N’−ビス(3−メチルフェニル)−N
,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−イル)フェニル〕−ピレン
−1,6−ジアミン(略称:1,6mMemFLPAPrn)とを、CzPA:1,6m
MemFLPAPrn=1:0.05(重量比)となるように25nm蒸着することによ
って発光層113を形成した。
【0283】
電子輸送層114は発光層113を形成した後に、CzPAを10nm、続いて上記構
造式(iv)で表されるバソフェナントロリン(略称:BPhen)を15nm蒸着する
ことにより形成した。
【0284】
発光層113、電子輸送層114の構成以外は発光素子2の構成と同様であるため、繰
り返しとなる記載を省略する。発光素子2の作成方法を参照されたい。
【0285】
以上のように、比較発光素子2を完成させた。
【0286】
≪発光素子2及び比較発光素子2の動作特性≫
以上により得られた発光素子2及び比較発光素子2を、窒素雰囲気のグローブボックス
内において、発光素子が大気に曝されないように封止する作業(シール材を素子の周囲に
塗布し、封止時に80℃にて1時間熱処理)を行った後、これらの発光素子の動作特性に
ついて測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
【0287】
発光素子2及び比較発光素子2の輝度−電流効率特性を図20に、電圧−電流特性を図
21に、輝度−パワー効率特性を図22に、輝度−外部量子効率特性を図23に示す。図
20では縦軸が電流効率(cd/A)、横軸が輝度(cd/m)を示す。図21では縦
軸が電流(mA)、横軸が電圧(V)を示す。図22では縦軸がパワー効率(lm/W)
、横軸が輝度(cd/m)を示す。図23では縦軸が外部量子効率(%)、横軸が輝度
(cd/m)を示す。
【0288】
図20から、一般式(G1)で表されるジベンゾ[c,g]カルバゾール化合物である
cgDBCzPAを青色の蛍光を発する発光素子の発光層におけるホスト材料及び電子輸
送層における電子輸送材料に用いた発光素子2は、CzPAを同様に用いた比較発光素子
2と同様の輝度−電流効率特性を示し、良好な発光効率を示す発光素子であることがわか
った。
【0289】
また、図21から、発光素子2は比較発光素子2よりも良好な電圧−電流特性を示し、
駆動電圧の小さな発光素子であることがわかった。これは、一般式(G1)で表されるジ
ベンゾ[c,g]カルバゾール化合物が優れたキャリア輸送性を有していること、を示し
ている。
【0290】
また、図22から、発光素子2は比較発光素子2よりも良好な、非常に良好な輝度−パ
ワー効率特性を示し、消費電力の小さな発光素子であることがわかった。これは、一般式
(G1)で表されるジベンゾ[c,g]カルバゾール化合物であるcgDBCzPAを用
いた発光素子2が、駆動電圧が低く、且つ発光効率が高い良好な特性を有する発光素子で
あることを示している。
【0291】
また、図23から、発光素子2は比較発光素子2と同等の良好な輝度−外部量子効率特
性を示し、発光効率の非常に良好な発光素子であることがわかった。
【0292】
また、作製した発光素子2及び比較発光素子2に0.1mAの電流を流したときの発光
スペクトルを図24に示す。図24では縦軸が発光強度(任意単位)、横軸が波長(nm
)を示す。発光強度は最大発光強度を1とした相対的な値として示す。図24より発光素
子2及び比較発光素子2のスペクトルは完全に重なっており、共に発光中心物質である1
,6mMemFLPAPrn起因の青色の発光を呈することがわかった。
【0293】
次に、初期輝度を5000cd/mに設定し、電流密度一定の条件で発光素子2及び
比較発光素子2を駆動し、輝度の駆動時間に対する変化を調べた。図25に規格化輝度−
時間特性を示す。図25から、CzPAを用いた比較発光素子2は寿命の長い発光素子で
あるが、cgDBCzPAを用いた発光素子2はそれよりもさらに長寿命な非常に良好な
信頼性を有する素子であることがわかった。
【0294】
なお、CzPAと比較すると、cgDBCzPAは蒸着の安定性が良く、品質の安定し
た発光素子を提供しやすいという利点もある。
【0295】
以上のように、cgDBCzPAは、あらゆる特性に優れた非常にバランスの良い発光
素子の提供を可能とする材料であることが本実施例でも確認された。
【実施例4】
【0296】
本実施例では、実施の形態1に記載の発光素子であるジベンゾ[c,g]カルバゾール
化合物である、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベ
ンゾ[c,g]カルバゾール(略称:cgDBCzPA、構造式(100))を、青色の
蛍光を発する発光中心物質を用いた発光層のホスト材料及び電子輸送層の材料として用い
た発光素子について説明する。
【0297】
なお、本実施例で用いた有機化合物の分子構造を下記構造式(i)〜(vi)、(10
0)に示す。素子構造は図1(A)と同様の構造とした。
【0298】
【化38】

【0299】
≪発光素子3の作製≫
まず、第1の電極101として110nmの膜厚でケイ素を含むインジウム錫酸化物(
ITSO)が成膜されたガラス基板を用意した。ITSO表面は、2mm角の大きさで表
面が露出するよう周辺をポリイミド膜で覆い、電極面積は2mm×2mmとした。この基
板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時
間焼成した後、UVオゾン処理を370秒行った。その後、10−4Pa程度まで内部が
減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において170℃で3
0分間の真空焼成を行った後、基板を30分程度放冷した。
【0300】
次に、ITSO膜が形成された面が下方となるように、基板を真空蒸着装置内に設けら
れたホルダーに固定した。
【0301】
真空装置内を10−4Paに減圧した後、上記構造式(i)で表される、9−フェニル
−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略
称:PCzPA)と酸化モリブデン(VI)とを、PCzPA:酸化モリブデン=2:1
(重量比)となるように共蒸着することにより、正孔注入層111を形成した。膜厚は5
0nmとした。なお、共蒸着とは、異なる複数の物質をそれぞれ異なる蒸発源から同時に
蒸発させる蒸着法である。
【0302】
続いて、PCzPAを10nm蒸着することにより正孔輸送層112を形成した。
【0303】
さらに、正孔輸送層112上に、上記構造式(100)で表される7−[4−(10−
フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称
:cgDBCzPA)と上記構造式(iii)で表されるN,N’−ビス(3−メチルフ
ェニル)−N,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−イル)フェニ
ル〕−ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)とを、cgD
BCzPA:1,6mMemFLPAPrn=1:0.05(重量比)となるように30
nm蒸着することによって発光層113を形成した。
【0304】
次に、上記構造式(vi)で表されるトリス(8−キノリノラト)アルミニウム(II
I)(略称:Alq)を10nm、続いて上記構造式(iv)で表されるバソフェナント
ロリン(略称:BPhen)を15nm蒸着することにより、電子輸送層114を形成し
た。
【0305】
さらに電子輸送層114上にフッ化リチウムを1nmとなるように蒸着することによっ
て電子注入層を形成した。最後に、陰極として機能する第2の電極102としてアルミニ
ウムを200nm成膜し、発光素子3を完成させた。上述した蒸着過程においては、蒸着
は全て抵抗加熱法を用いた。
【0306】
≪比較発光素子3の作製≫
比較発光素子3は発光層113以外は発光素子3と同様に形成した。比較発光素子3で
は、発光層113は正孔輸送層112を形成した後、上記構造式(ii)で表される9−
[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:C
zPA)、と上記構造式(iii)で表されるN,N’−ビス(3−メチルフェニル)−
N,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−イル)フェニル〕−ピレ
ン−1,6−ジアミン(略称:1,6mMemFLPAPrn)とを、CzPA:1,6
mMemFLPAPrn=1:0.05(重量比)となるように30nm蒸着することに
よって発光層113を形成した。
【0307】
発光層113の構成以外は発光素子3の構成と同様であるため、繰り返しとなる記載を
省略する。発光素子3の作成方法を参照されたい。
【0308】
以上のように、比較発光素子3を完成させた。
【0309】
≪発光素子3及び比較発光素子3の動作特性≫
以上により得られた発光素子3及び比較発光素子3を、窒素雰囲気のグローブボックス
内において、発光素子が大気に曝されないように封止する作業(シール材を素子の周囲に
塗布し、封止時に80℃にて1時間熱処理)を行った後、これらの発光素子の動作特性に
ついて測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
【0310】
発光素子3及び比較発光素子3の輝度−電流効率特性を図26に、電圧−電流特性を図
27に示す。図26では縦軸が電流効率(cd/A)、横軸が輝度(cd/m)を示す
。図27では縦軸が電流(mA)、横軸が電圧(V)を示す。
【0311】
図26から、一般式(G1)で表されるジベンゾ[c,g]カルバゾール化合物である
cgDBCzPAを青色の蛍光を発する発光素子の発光層におけるホスト材料及び電子輸
送層における電子輸送材料に用いた発光素子3は、CzPAを同様に用いた比較発光素子
3と同等の輝度−電流効率特性を示し、良好な発光効率を示す発光素子であることがわか
った。
【0312】
また、図27から、発光素子3は比較発光素子3よりも非常に良好な電圧−電流特性を
示し、駆動電圧の小さな発光素子であることがわかった。これは、一般式(G1)で表さ
れるジベンゾ[c,g]カルバゾール化合物が優れたキャリア輸送性を有していること、
を示している。
【0313】
また、作製した発光素子3及び比較発光素子3に0.1mAの電流を流したときの発光
スペクトルを図28に示す。図28では縦軸が発光強度(任意単位)、横軸が波長(nm
)を示す。発光強度は最大発光強度を1とした相対的な値として示す。図28より発光素
子3及び比較発光素子3のスペクトルに大きな差は無く、共に発光中心物質である1,6
mMemFLPAPrn起因の青色の発光を呈することがわかった。
【0314】
なお、CzPAと比較すると、cgDBCzPAは蒸着の安定性が良く、品質の安定し
た発光素子を提供しやすいという利点もある。
【0315】
以上のように、cgDBCzPAは、あらゆる特性に優れた非常にバランスの良い発光
素子の提供を可能とする材料であることが本実施例でも確認された。
【実施例5】
【0316】
本実施例では、実施の形態1に記載の発光素子であるジベンゾ[c,g]カルバゾール
化合物である、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベ
ンゾ[c,g]カルバゾール(略称:cgDBCzPA、構造式(100))を、青色の
蛍光を発する発光中心物質を用いた発光層のホスト材料及び電子輸送層の材料として用い
た発光素子について説明する。
【0317】
なお、本実施例で用いた有機化合物の分子構造を下記構造式(i)、(iii)、(i
v)、(vi)〜(viii)、(100)に示す。素子構造は図1(A)と同様の構造
とした。
【0318】
【化39】

【0319】
≪発光素子4の作製≫
まず、第1の電極101として110nmの膜厚でケイ素を含むインジウム錫酸化物(
ITSO)が成膜されたガラス基板を用意した。ITSO表面は、2mm角の大きさで表
面が露出するよう周辺をポリイミド膜で覆い、電極面積は2mm×2mmとした。この基
板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時
間焼成した後、UVオゾン処理を370秒行った。その後、10−4Pa程度まで内部が
減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において170℃で3
0分間の真空焼成を行った後、基板を30分程度放冷した。
【0320】
次に、ITSO膜が形成された面が下方となるように、基板を真空蒸着装置内に設けら
れたホルダーに固定した。
【0321】
真空装置内を10−4Paに減圧した後、上記構造式(i)で表される、9−フェニル
−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略
称:PCzPA)と酸化モリブデン(VI)とを、PCzPA:酸化モリブデン=2:1
(重量比)となるように共蒸着することにより、正孔注入層111を形成した。膜厚は5
0nmとした。なお、共蒸着とは、異なる複数の物質をそれぞれ異なる蒸発源から同時に
蒸発させる蒸着法である。
【0322】
続いて、PCzPAを10nm蒸着することにより正孔輸送層112を形成した。
【0323】
さらに、正孔輸送層112上に、上記構造式(100)で表される7−[4−(10−
フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称
:cgDBCzPA)と上記構造式(iii)で表されるN,N’−ビス(3−メチルフ
ェニル)−N,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−イル)フェニ
ル〕−ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)とを、cgD
BCzPA:1,6mMemFLPAPrn=1:0.03(重量比)となるように25
nm蒸着することによって発光層113を形成した。
【0324】
次に、上記構造式(vi)で表されるトリス(8−キノリノラト)アルミニウム(II
I)(略称:Alq)を10nm、続いて上記構造式(iv)で表されるバソフェナント
ロリン(略称:BPhen)を15nm蒸着することにより、電子輸送層114を形成し
た。
【0325】
さらに電子輸送層114上にフッ化リチウムを1nmとなるように蒸着することによっ
て電子注入層を形成した。最後に、陰極として機能する第2の電極102としてアルミニ
ウムを200nm成膜し、発光素子4を完成させた。上述した蒸着過程においては、蒸着
は全て抵抗加熱法を用いた。
【0326】
≪比較発光素子4−1の作製≫
比較発光素子4−1は発光層113以外は発光素子4と同様に形成した。比較発光素子
4−1では、発光層113は正孔輸送層112を形成した後、上記構造式(vii)で表
される公知のアントラセン誘導体、と上記構造式(iii)で表されるN,N’−ビス(
3−メチルフェニル)−N,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−
イル)フェニル〕−ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)
とを、アントラセン誘導体:1,6mMemFLPAPrn=1:0.03(重量比)と
なるように25nm蒸着することによって発光層113を形成した。
【0327】
発光層113の構成以外は発光素子4の構成と同様であるため、繰り返しとなる記載を
省略する。発光素子4の作成方法を参照されたい。
【0328】
以上のように、比較発光素子4−1を完成させた。
【0329】
≪比較発光素子4−2の作製≫
比較発光素子4−2は発光層113以外は発光素子4と同様に形成した。比較発光素子
4−2では、発光層113は正孔輸送層112を形成した後、上記構造式(viii)で
表される公知のアントラセン誘導体、と上記構造式(iii)で表されるN,N’−ビス
(3−メチルフェニル)−N,N’−ビス〔3−(9−フェニル−9H−フルオレン−9
−イル)フェニル〕−ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn
)とを、アントラセン誘導体:1,6mMemFLPAPrn=1:0.03(重量比)
となるように25nm蒸着することによって発光層113を形成した。
【0330】
発光層113の構成以外は発光素子4の構成と同様であるため、繰り返しとなる記載を
省略する。発光素子4の作成方法を参照されたい。
【0331】
以上のように、比較発光素子4−2を完成させた。
【0332】
≪発光素子4、比較発光素子4−1及び比較発光素子4−2の動作特性≫
以上により得られた発光素子4、比較発光素子4−1及び比較発光素子4−2を、窒素
雰囲気のグローブボックス内において、発光素子が大気に曝されないように封止する作業
(シール材を素子の周囲に塗布し、封止時に80℃にて1時間熱処理)を行った後、これ
らの発光素子の動作特性について測定を行った。なお、測定は室温(25℃に保たれた雰
囲気)で行った。
【0333】
発光素子4、比較発光素子4−1及び比較発光素子4−2の電流密度−輝度特性を図2
9に、輝度−電流効率特性を図30に、電圧−電流特性を図31に、輝度−パワー効率特
性を図32に、電圧−輝度特性を図33に示す。図29では縦軸が輝度(cd/m)、
横軸が電流密度(mA/cm)を示す。図30では縦軸が電流効率(cd/A)、横軸
が輝度(cd/m)を示す。図31では縦軸が電流(mA)、横軸が電圧(V)を示す
。図32では縦軸がパワー効率(lm/W)、横軸が輝度(cd/m)を示す。図33
では縦軸が輝度(cd/m)、横軸が電圧(V)を示す。
【0334】
図29から、発光素子4、比較発光素子4−1及び比較発光素子4−2は共に同等の電
流密度−輝度特性を有していることがわかる。また、図30から、発光素子4、比較発光
素子4−1及び比較発光素子4−2は少なくとも実用輝度である1000cd/m以上
の輝度において、同等の輝度−電流効率特性を有していることがわかる。
【0335】
また、図31から、発光素子4は比較発光素子4−1及び比較発光素子4−2と比較し
て飛びぬけて良好な電圧−電流特性を有していることがわかる。これは、cgDBCzP
Aが良好なキャリア輸送性を有していることを示唆している。結果として、図32からも
わかるように発光素子4は非常に良好な輝度−パワー効率特性を有する素子であることが
わかった。なお、図33から比較発光素子4−1と比較発光素子4−2は駆動電圧が高く
、実用輝度である、1000cd/mを得るために、発光素子4では3.3V程度の電
圧をかければよいが、比較発光素子4−1及び比較発光素子4−2では4V以上の電圧を
必要とする。特に比較発光素子4−1は駆動電圧が高い。
【0336】
また、作製した発光素子4、比較発光素子4−1及び比較発光素子4−2に0.1mA
の電流を流したときの発光スペクトルを図34に示す。図34では縦軸が発光強度(任意
単位)、横軸が波長(nm)を示す。発光強度は最大発光強度を1とした相対的な値とし
て示す。図34より発光素子4、比較発光素子4−1及び比較発光素子4−2のスペクト
ルに大きな差は無く、共に発光中心物質である1,6mMemFLPAPrn起因の青色
の発光を呈することがわかった。
【0337】
次に、初期輝度を5000cd/mに設定し、電流密度一定の条件で発光素子4、比
較発光素子4−1及び比較発光素子4−2を駆動し、輝度の駆動時間に対する変化を調べ
た。図35に規格化輝度−時間特性を示す。図35から、上記構造式(viii)で表さ
れる物質を用いた比較発光素子4−2は寿命が他の素子に比べて短いという結果になった
。また上記構造式(vii)で表される物質をcgDBCzPAの代わりに用いた比較発
光素子4−1は発光素子4と同等の寿命を有しているように見えるが、初期輝度上昇があ
る上、途中から劣化率が大きくなっているため、半減期は発光素子4の2分の1程度と見
積もられる。
【0338】
このように、比較発光素子4−1は駆動電圧に、比較発光素子4−2は駆動電圧及び寿
命の両方に難があり、どの特性に関してもバランスの良い素子を得るのは困難であること
がわかる。一方、cgDBCzPAを用いることによって、効率、駆動電圧、寿命のバラ
ンスに非常に優れた高性能な発光素子を作製することができることがわかった。特筆すべ
きは、その駆動電圧であり、結果として非常に良好なパワー効率を有する発光素子を提供
できる。
【0339】
以上のように、cgDBCzPAは、あらゆる特性に優れた非常にバランスの良い発光
素子の提供を可能とする材料であることが本実施例でも確認された。
【実施例6】
【0340】
本実施例では、実施の形態2で説明した一般式(G1)で表されるジベンゾ[c,g]
カルバゾール化合物の一つである、7−[4−(10−フェニル−9−アントリル)フェ
ニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)の実施例1
とは異なる合成方法について説明する。
【0341】
7H−ジベンゾ[c,g]カルバゾールの合成までは、実施例1におけるステップ1及
びステップ2と同様に合成した。
【0342】
<ステップ3:7−(4−ブロモフェニル)−7H−ジベンゾ[c,g]カルバゾールの
合成>
200mL三口フラスコに、5.0g(18mmol)の7H−ジベンゾ[c,g]カ
ルバゾールと、13g(47mol)の4−ブロモヨードベンゼンと、1.9g(20m
mol)のナトリウム tert−ブトキシドを入れた。フラスコ内を窒素置換してから
、この混合物へ100mLのメシチレンと、0.90mLのトリ−tert−ブチル−ホ
スフィン(10wt%ヘキサン溶液)を加えた。この混合物を減圧しながら攪拌すること
で脱気をした。脱気後、この混合物へ0.51g(0.90mmol)のビス(ジベンジ
リデンアセトン)パラジウム(0)を加えた。この混合物を窒素気流下、170℃で17
時間攪拌した。攪拌後、得られた混合物に20mLの水を加え、この混合物の水層をトル
エンで抽出し、抽出溶液と有機層を合わせて、飽和食塩水で洗浄した。有機層を硫酸マグ
ネシウムにより乾燥し、乾燥後、この混合物を自然ろ過した。得られたろ液を濃縮して得
た固体を約30mLの熱したトルエンに溶解し、この溶液をセライト(和光純薬工業株式
会社、カタログ番号:531−16855)、アルミナ、フロリジール(和光純薬工業株
式会社、カタログ番号:540−00135)を通して吸引ろ過した。得られたろ液を濃
縮して得た固体をトルエン/ヘキサンで再結晶したところ、目的物の淡黄色針状結晶を2
.9g、収率38%で得た。ステップ3の合成スキーム(c−2)を以下に示す。
【0343】
【化40】

【0344】
<ステップ4:7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベ
ンゾ[c,g]カルバゾール(cgDBCzPA)の合成>
200mLの三口フラスコに1.7g(4.0mmol)の7−(4−ブロモフェニル
)−7H−ジベンゾ[c,g]カルバゾールと、1.2g(4.0mmol)の10−フ
ェニルアントラセン−9−ボロン酸を入れ、フラスコ内を窒素置換した。この混合物に1
5mLのトルエンと、5.0mLのエタノールと、4.0mLの炭酸ナトリウム水溶液(
2.0mol/L)を加えた。この混合物を減圧しながら攪拌することで脱気した。この
混合物に0.23g(0.20mmol)のテトラキス(トリフェニルホスフィン)パラ
ジウム(0)を加え、窒素気流下、90℃で10時間攪拌したところ、固体が析出した。
析出した固体を吸引ろ過により回収した。回収した固体を約50mLの熱したトルエンに
溶解し、この溶液をセライト(和光純薬工業株式会社、カタログ番号:531−1685
5)、アルミナ、フロリジール(和光純薬工業株式会社、カタログ番号:540−001
35)を通して吸引ろ過した。得られたろ液を濃縮して得た固体を、トルエン/ヘキサン
で洗浄したところ、目的物の淡黄色粉末を1.3g、収率55%で得た。ステップ4の合
成スキーム(d−2)を以下に示す。
【0345】
【化41】

【0346】
得られた淡黄色粉末状固体1.3gをトレインサブリメーション法により昇華精製した
。昇華精製条件は、圧力3.6Pa、アルゴンガス流量5.0mL/min、加熱温度3
00℃であった。昇華精製後、cgDBCzPAの淡黄色固体を1.1g、回収率86%
で得た。
【0347】
(参考例1)
上記実施例で用いたN,N’−ビス(3−メチルフェニル)−N,N’−ビス〔3−(
9−フェニル−9H−フルオレン−9−イル)フェニル〕−ピレン−1,6−ジアミン(
略称:1,6mMemFLPAPrn)の合成方法について説明する。
【0348】
<ステップ1:3−メチルフェニル−3−(9−フェニル−9H−フルオレン−9−イル
)フェニルアミン(略称:mMemFLPA)の合成>
【0349】
9−(3−ブロモフェニル)−9−フェニルフルオレン3.2g(8.1mmol)、ナ
トリウム tert−ブトキシド2.3g(24.1mmol)を200mL三口フラス
コに入れ、フラスコ内を窒素置換した。この混合物にトルエン40.0mL、m−トルイ
ジン0.9mL(8.3mmol)、トリ(tert−ブチル)ホスフィンの10%ヘキ
サン溶液0.2mLを加えた。この混合物を60℃にし、ビス(ジベンジリデンアセトン
)パラジウム(0)44.5mg(0.1mmol)を加え、この混合物を80℃にして
2.0時間攪拌した。攪拌後、フロリジール(和光純薬工業株式会社、カタログ番号:5
40−00135)、セライト(和光純薬工業株式会社、カタログ番号:531−168
55)、アルミナを通して吸引濾過し、濾液を得た。得られた濾液を濃縮し得た固体を、
シリカゲルカラムクロマトグラフィー(展開溶媒はヘキサン:トルエン=1:1)により
精製し、トルエンとヘキサンの混合溶媒で再結晶し、目的の白色固体2.8gを、収率8
2%で得た。上記ステップ1の合成スキームを以下に示す。
【0350】
【化42】

【0351】
<ステップ2:N,N’−ビス(3−メチルフェニル)−N,N’−ビス〔3−(9−フ
ェニル−9H−フルオレン−9−イル)フェニル〕−ピレン−1,6−ジアミン(略称:
1,6mMemFLPAPrn)の合成>
【0352】
1,6−ジブロモピレン0.6g(1.7mmol)、3−メチルフェニル−3−(9−
フェニル−9H−フルオレン−9−イル)フェニルアミン1.4g(3.4mmol)、
ナトリウム tert−ブトキシド0.5g(5.1mmol)を100mL三口フラス
コに入れ、フラスコ内を窒素置換した。この混合物にトルエン21.0mL、トリ(te
rt−ブチル)ホスフィンの10%ヘキサン溶液0.2mLを加えた。この混合物を60
℃にし、ビス(ジベンジリデンアセトン)パラジウム(0)34.9mg(0.1mmo
l)を加え、この混合物を80℃にして3.0時間攪拌した。攪拌後、トルエンを400
mL加えて加熱し、熱いまま、フロリジール(和光純薬工業株式会社、カタログ番号:5
40−00135)、セライト(和光純薬工業株式会社、カタログ番号:531−168
55)、アルミナを通して吸引濾過し、濾液を得た。得られた濾液を濃縮し得た固体を、
シリカゲルカラムクロマトグラフィー(展開溶媒はヘキサン:トルエン=3:2)により
精製し、黄色固体を得た。得られた黄色固体をトルエンとヘキサンの混合溶媒で再結晶し
、目的の黄色固体を1.2g、収率67%で得た。
【0353】
得られた黄色固体1.0gを、トレインサブリメーション法により昇華精製した。昇華精
製条件は、圧力2.2Pa、アルゴンガスを流量5.0mL/minで流しながら、31
7℃で黄色固体を加熱した。昇華精製後、目的物の黄色固体1.0gを、収率93%で得
た。上記ステップ2の合成スキームを以下に示す。
【0354】
【化43】

【0355】
核磁気共鳴法(NMR)によって、この化合物が目的物であるN,N’−ビス(3−メチ
ルフェニル)−N,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−イル)フ
ェニル〕−ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)であるこ
とを確認した。
【0356】
得られた化合物のH NMRデータを以下に示す。H NMR(CDCl,300
MHz):δ=2.21(s,6H)、6.67(d,J=7.2Hz,2H)、6.7
4(d,J=7.2Hz,2H)、7.17−7.23(m,34H)、7.62(d,
J=7.8Hz,4H)、7.74(d,J=7.8Hz,2H)、7.86(d,J=
9.0Hz,2H)、8.04(d,J=8.7Hz,4H)
【0357】
(参考例2)
上記実施例で用いた3−[4−(9−フェナントリル)−フェニル]−9−フェニル−
9H−カルバゾール(略称:PCPPn)を合成する例を示す。
【0358】
【化44】

【0359】
<ステップ1:4−(9−フェニル−9−H−カルバゾール−3−イル)フェニルボロン
酸の合成>
300mL三口フラスコに、3−(4−ブロモフェニル)−9−フェニル−9H−カルバ
ゾールを8.0g(20mmol)入れ、フラスコ内の雰囲気を窒素置換したのち、脱水
テトラヒドロフラン(略称:THF)100mLを加えて−78℃にした。この混合液に
1.65mol/Lのn−ブチルリチウムヘキサン溶液15mL(24mmol)を滴下
し、2時間撹拌した。この混合物にホウ酸トリメチル3.4mL(30mmol)を加え
、−78℃で2時間、室温で18時間撹拌した。反応後、この反応溶液に1M希塩酸を酸
性になるまで加えて7時間撹拌した。これを酢酸エチルで抽出し、得られた有機層を飽和
食塩水で洗浄した。洗浄後、有機層に硫酸マグネシウムを加えて水分を吸着させた。この
懸濁液をろ過し、得られたろ液を濃縮し、ヘキサンを加え超音波をかけたのち、再結晶し
たところ、目的の白色粉末を収量6.4g、収率88%で得た。上記ステップ1の反応ス
キームを以下に示す。
【0360】
【化45】

【0361】
シリカゲル薄層クロマトグラフィー(TLC)でのRf値(展開溶媒 酢酸エチル:ヘキ
サン=1:10)は、目的物は0(原点)であり、3−(4−ブロモフェニル)−9−フ
ェニル−9H−カルバゾールは0.53だった。また、展開溶媒に酢酸エチルを用いたシ
リカゲル薄層クロマトグラフィー(TLC)でのRf値は、目的物は0.72で、3−(
4−ブロモフェニル)−9−フェニル−9H−カルバゾールは0.93だった。
【0362】
<ステップ2:3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−
カルバゾール(略称:PCPPn)の合成>
200mL三口フラスコへ9−フェニル−9H−カルバゾール−3−イル−フェニル−4
−ボロン酸を1.5g(5.0mmol)、9−ブロモフェナントレンを3.2g(11
mmol)、酢酸パラジウム(II)を11mg(0.1mmol)、トリ(o−トリル
)ホスフィンを30mg(0.1mmol)、トルエン30mL、エタノール3mL、2
mol/L炭酸カリウム水溶液5mLの混合物を、減圧下で攪拌しながら脱気した後、窒
素雰囲気下、90℃で6時間加熱撹拌し、反応させた。
【0363】
反応後、この反応混合液にトルエン200mLを加え、この混合液の有機層をフロリジー
ル、アルミナ、セライトを通してろ過した。得られたろ液を水で洗浄し、硫酸マグネシウ
ムを加えて水分を吸着させた。この懸濁液をろ過してろ液を得た。得られたろ液を濃縮し
、シリカゲルカラムクロマトグラフィーによる精製を行った。このとき、クロマトグラフ
ィーの展開溶媒として、トルエンとヘキサンの混合溶媒(トルエン:ヘキサン=1:4)
を用いた。得られたフラクションを濃縮し、アセトンとメタノールを加えて超音波をかけ
たのち、再結晶したところ、目的物であるPCPPnの白色粉末を収量2.2g、収率7
5%で得た。ステップ2の反応スキームを以下に示す。
【0364】
【化46】

【0365】
シリカゲル薄層クロマトグラフィー(TLC)でのRf値(展開溶媒 酢酸エチル:ヘキ
サン=1:10)は、目的物は0.33、9−ブロモフェナントレンは0.70だった。
【0366】
また、得られた化合物を核磁気共鳴法(NMR)により測定した。測定結果よりPCPP
nが得られたことを確認した。以下に測定データを示す。
【0367】
H NMR(CDCl,300MHz):δ(ppm)=7.30−7.35(m,
11H),7.43−7.78(m,16H),7.86−7.93(m,3H),8.
01(dd,J=0.9Hz,7.8Hz,1H),8.23(d,J=7.8Hz,1
H),8.47(d,J=1.5Hz,1H),8.74(d,J=8.1Hz,1H)
,8.80(d,J=7.8Hz,1H)
【符号の説明】
【0368】
101 第1の電極
102 第2の電極
103 EL層
111 正孔注入層
112 正孔輸送層
113 発光層
114 電子輸送層
115 電子注入層
400 基板
401 第1の電極
402 補助電極
403 EL層
404 第2の電極
405 シール材
406 シール材
407 封止基板
408 空間
412 パッド
420 ICチップ
501 第1の電極
502 第2の電極
511 第1の発光ユニット
512 第2の発光ユニット
513 電荷発生層
601 駆動回路部(ソース線駆動回路)
602 画素部
603 駆動回路部(ゲート線駆動回路)
604 封止基板
605 シール材
607 空間
608 配線
609 FPC(フレキシブルプリントサーキット)
610 素子基板
611 スイッチング用TFT
612 電流制御用TFT
613 第1の電極
614 絶縁物
616 EL層
617 第2の電極
618 発光素子
623 nチャネル型TFT
624 pチャネル型TFT
901 筐体
902 液晶層
903 バックライトユニット
904 筐体
905 ドライバIC
906 端子
951 基板
952 電極
953 絶縁層
954 隔壁層
955 EL層
956 電極
1201 ソース電極
1202 活性層
1203 ドレイン電極
1204 ゲート電極
2001 筐体
2002 光源
3001 照明装置
5000 表示領域
5001 表示領域
5002 表示領域
5003 表示領域
5004 表示領域
5005 表示領域
7101 筐体
7103 表示部
7105 スタンド
7107 表示部
7109 操作キー
7110 リモコン操作機
7201 本体
7202 筐体
7203 表示部
7204 キーボード
7205 外部接続ポート
7206 ポインティングデバイス
7301 筐体
7302 筐体
7303 連結部
7304 表示部
7305 表示部
7306 スピーカ部
7307 記録媒体挿入部
7308 LEDランプ
7309 操作キー
7310 接続端子
7311 センサ
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
7400 携帯電話機

【特許請求の範囲】
【請求項1】
下記式(100)で表される化合物。
【化1】


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate


【公開番号】特開2013−47283(P2013−47283A)
【公開日】平成25年3月7日(2013.3.7)
【国際特許分類】
【出願番号】特願2012−265900(P2012−265900)
【出願日】平成24年12月5日(2012.12.5)
【分割の表示】特願2012−160272(P2012−160272)の分割
【原出願日】平成24年7月19日(2012.7.19)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】