説明

半導体光素子

【課題】半導体レーザ素子のレーザ光スペクトルの線幅を抑えること。
【解決手段】複数のレーザ素子と、複数のレーザ素子のそれぞれに導波路を介して接続され、複数のレーザ素子が出力するレーザ光を合流する光合流器と、光合流器から出力されるレーザ光を増幅する半導体光増幅器と、記光合流器及び半導体光増幅器と同一の基板上において、複数のレーザ素子のそれぞれと光合流器との間の経路上にそれぞれ形成された複数の波長選択フィルタとを備える半導体光素子。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体基板に集積した集積型半導体光素子に関する。
【背景技術】
【0002】
半導体レーザ等の各種のレーザ光源が知られている。大容量光伝送機器用のレーザ光源としては、高出力で、狭線幅のスペクトルを有するレーザ光源が求められている。
【0003】
また、半導体レーザ素子、複数のレーザ光を合流させて出力する光合流器、及び半導体光増幅器等の光部品が知られている。これらの光部品を1つの半導体基板に集積させた半導体光素子が知られている。
[特許文献]
特許文献1 特開2005−317695号公報
[非特許文献]
非特許文献1 Geert Morthier、「Intensity Noise And Linewidth Of Laser Diodes With Integrated Semiconductor Optical Amplifier」、IEEE Photonics Tecnology Letters、米国、IEEE、2002年12月、Vol.14、No.12、P.1644−1646
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、光合流器から出射したレーザ光を、半導体光増幅器で増幅して、半導体光素子から出力させようとすると、半導体光増幅器から放出された自然放出光の一部が半導体レーザ素子に入射する。そして、半導体レーザ素子に自然放出光等が入力されると、半導体レーザ素子が出力するレーザ光スペクトルの線幅が広くなる現象が生じた(非特許文献1)。
【課題を解決するための手段】
【0005】
本発明の第1の態様によると、複数のレーザ素子と、複数のレーザ素子のそれぞれに導波路を介して接続され、複数のレーザ素子が出力するレーザ光を合流する光合流器と、光合流器から出力されるレーザ光を増幅する半導体光増幅器と、記光合流器及び半導体光増幅器と同一の基板上において、複数のレーザ素子のそれぞれと光合流器との間の経路上にそれぞれ形成された複数の波長選択フィルタとを備える半導体光素子を提供する。
【0006】
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
【図面の簡単な説明】
【0007】
【図1】本発明の第1の実施形態に係る半導体光素子を上面から見た平面図である。
【図2】第1の実施形態に係る半導体光素子の出力光波長を制御する方法を説明するためのブロック図である。
【図3】本発明の第2の実施形態に係る半導体光素子を上面から見た平面図である。
【図4】第2の実施形態に係る半導体光素子の出力光波長を制御する方法を説明するためのブロック図である。
【図5】第2の実施形態の変形例に係る半導体光素子を上面から見た平面図である。
【発明を実施するための形態】
【0008】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0009】
図1は、本発明の第1の実施形態に係る半導体光素子を上面から見た平面図である。半導体光素子10は、基板100、複数のレーザ素子110、複数の波長選択フィルタ120、光合流器130、及び半導体光増幅器140を有する。半導体光素子10は、複数のレーザ素子110のうち選択された1つから出射する光を半導体光増幅器140の端部から出力する。
【0010】
基板100は、面上に複数のレーザ素子110、複数の波長選択フィルタ120、光合流器130、及び半導体光増幅器140が形成される、半導体基板等である。
【0011】
複数のレーザ素子110のそれぞれは、互いに異なる波長のレーザ光を出力する。レーザ素子110は、第1の実施形態においては、基板100上に形成された半導体レーザ素子である。例えば、レーザ素子110は、分布帰還型レーザ素子又は分布反射型レーザ素子である。レーザ素子110は、その温度によって屈折率が変化するので、出力されるレーザの発振波長を周辺温度により制御することができる。それぞれの半導体レーザ素子110は、周辺温度を変えることにより3nm〜4nmの範囲内で発振波長が変化する波長可変光源とすることができる。
【0012】
例えば、発振帯域の異なる4個の半導体レーザ素子110を、発振波長が3nm〜4nmの間隔で連続して並ぶように設置することで、半導体光素子10は、出力レーザ光の可変波長帯域を12nm〜16nmにすることができる。このような半導体光素子10は、同一制御温度範囲で比較した場合、単体の半導体レーザ素子を用いた場合よりも広帯域に連続した波長帯域のレーザ光を出射することができる。
【0013】
波長選択フィルタ120は、光合流器130及び半導体光増幅器140と同一の基板100上に形成され、予め定められた通過波長帯域の光を通過させる。波長選択フィルタ120は、複数のレーザ素子110のそれぞれと光合流器130との間の経路上にそれぞれ形成され、対応するレーザ素子110が出力するレーザ光の波長を選択的に通過させる。その一方で、複数の波長選択フィルタ120のそれぞれは、対応するレーザ素子110が出力するレーザ光の波長以外の光を減衰させる。複数の波長選択フィルタ120のそれぞれは、通過波長帯域を変えることができる。
【0014】
波長選択フィルタ120は、基板100上に形成されたリングフィルタである。従って、波長選択フィルタ120は、半導体プロセスにより基板100上に形成することができる。これに代えて、波長選択フィルタ120は、多層膜フィルタ又はエタロンフィルタ等のリングフィルタ以外のバンドパスフィルタでもよい。
【0015】
リングフィルタは、入力導波路、リング導波路、及び出力導波路を有する。入力導波路とリング導波路は光結合され、リング導波路と出力導波路は光結合される。入力導波路はリングフィルタの入力端に接続され、出力導波路はリングフィルタの出力端に接続される。リングフィルタの出力導波路と出力端は、リングフィルタの入力導波路と入力端に対して、基板100上において光軸に垂直な方向(+x方向)にリング導波路の直径分オフセットされている。
【0016】
リングフィルタは、複数の通過波長帯域を有する。具体的には、リングフィルタのリング導波路の光路長lと、リングフィルタの通過波長帯域の中心波長λには、λ=l/n(nは整数)の関係式が成立する。この関係式を満たすλは、nが増加又は減少するごとに一定波長間隔ごとに周期的に現れる。リングフィルタは、通過波長帯域の間に、光を遮蔽する遮蔽波長帯域を有する。従って、リングフィルタの波長/透過率特性には、ほとんどの光を透過する通過波長帯域と、ほとんどの光を遮断する遮断波長帯域が、一定波長間隔で交互に繰り返し現れる。
【0017】
波長選択フィルタ120は、マイクロヒータ150が設けられたリングフィルタであってもよい。マイクロヒータ150は、波長選択フィルタ120の温度を調節することによって、波長選択フィルタ120の通過波長帯域を調節する。例えば、半導体光素子10は、マイクロヒータ150によりリングフィルタを加熱することで、リング導波路の光路長を伸長させ、リングフィルタの通過波長帯域を長波長方向へと変える。
【0018】
マイクロヒータ150は、対応するレーザ素子110の出力レーザの波長と通過波長帯域λがほぼ等しくなるように、リング導波路の光路長lを制御する。波長選択フィルタ120は、マイクロヒータ150に供給する電流を制御する目的で、基板100面上に波長調整用の端子を有してもよい。
【0019】
波長選択フィルタ120の通過波長帯域は、対応するレーザ素子110の可変波長帯域の全域を含む。半導体光素子10は、波長選択フィルタ120の通過波長帯域が、対応するレーザ素子110の可変波長帯域の全域を含むように、各マイクロヒータ150に供給する電流を初期調整してもよい。初期調整の後は、半導体光素子10は、波長選択フィルタ120の通過波長帯域を制御しなくてもよい。
【0020】
これに代えて、波長選択フィルタ120の通過波長帯域は、対応するレーザ素子110の可変波長帯域よりも小さくてもよい。この場合、波長選択フィルタ120の通過波長帯域が、対応するレーザ素子110の出力レーザ光の波長を含むように、制御される。
【0021】
光合流器130は、基板100上に形成され、複数のレーザ素子110のそれぞれに導波路を介して接続されている。光合流器130は、複数のレーザ素子110が出力するレーザ光を合流する。光合流器130は、半導体プロセスにより形成できるマルチモード干渉型(MMI)光カプラであってよい。
【0022】
半導体光増幅器140は、基板100上に形成され、光合流器130に接続されて光合流器130から出力されるレーザ光を増幅する。半導体光増幅器140は、外部から電流を注入されることで反転分布を形成し、誘導放出により入力光を増幅する。
【0023】
次に、第1の実施形態における半導体光素子10の動作について説明する。まず、半導体光素子10は、出力すべき波長のレーザ光を出力するレーザ素子110を選択して、当該レーザ素子110を駆動する。選択されたレーザ素子110は、波長選択フィルタ120に向けてレーザ光を出射する。波長選択フィルタ120は、対応するレーザ素子110が出力するレーザ光を選択的に通過させ、それ以外の波長の光を減衰する。
【0024】
従って、波長選択フィルタ120を通過するレーザ光は、ほとんど減衰することなく光合流器130に出力される。光合流器130に入射したレーザ光は、光合流器130を通過して半導体光増幅器140へ出力される。半導体光増幅器140に入射したレーザ光は、半導体光増幅器140で増幅され、半導体光素子10の端部に設けられた出力端から外部に出力される。
【0025】
ここで、半導体光増幅器140は、半導体光素子10の出力端へと出射する増幅光である誘導放出光の他に、数10nmの帯域を持つ自然放出光を発生する。半導体光増幅器140の自然放出光は、略等方的に放出されるので、光合流器130の方向にも出力される。光合流器130に入力された自然放出光は、光合流器130によって分岐されて、各レーザ素子110へと向かう。この自然放出光がレーザ素子110に到達すると、レーザ素子110の出力が不安定になり、出力されるレーザ光の波長スペクトルの線幅が増大していた。
【0026】
これに対して、第1の実施形態に係る半導体光素子10によれば、自然放出光は、レーザ素子110に到達する前に波長選択フィルタ120に入射する。ここで、複数の波長選択フィルタ120のそれぞれは、自然放出光を、当該レーザ素子110が出力するレーザ光の波長以外の遮断波長帯域において減衰させる。このため、波長選択フィルタ120は、レーザ素子110へ向かう自然放出光を減衰させ、レーザ素子110に入射する光パワーを低減することができる。
【0027】
このように、第1の実施形態に係る半導体光素子10は、レーザ素子110に入射する自然放出光をリングフィルタにより減衰させる。このため、第1の実施形態に係る半導体光素子10は、自然放出光の影響を低減させて、線幅の狭いスペクトルのレーザ光を出力することができる。
【0028】
なお、半導体光素子10は、複数のレーザ素子110の代わりに単一のレーザ素子110を備えてもよい。単一のレーザ素子を有する場合には、半導体光素子10は、光合流器を備えなくてもよい。この場合、半導体光素子は、単一のレーザ素子110と、半導体光増幅器140と、レーザ素子110と半導体光増幅器140との間の経路上に形成された波長選択フィルタ120とを備える。
【0029】
図2は、第1の実施形態に係る半導体光素子の出力光の波長を制御する方法を説明するためのブロック図である。図2の例では、制御部160を用いて、半導体光素子の出力光波長を制御する。
【0030】
制御部160は、複数のレーザ素子110と、複数のマイクロヒータ150とにそれぞれ電気的に接続される。制御部160は、レーザ素子110に駆動電流を供給することで、レーザ素子110にレーザ光を出力させる。また、制御部160は、マイクロヒータ150に供給する電流を制御することで、マイクロヒータ150の温度を制御する。制御部160は、マイクロヒータ150の温度を制御することで、マイクロヒータ150に対応する波長選択フィルタ120の通過波長帯域を調節する。制御部160は、基板100上の波長調整用の端子を介してマイクロヒータ150を制御してもよい。
【0031】
制御部160は、複数のレーザ素子110のうち選択した1つに対して駆動電流を供給することによって、半導体光素子10の出力に用いるレーザ素子110を選択する。この場合、制御部160は、選択されたレーザ素子110に接続された波長選択フィルタ120のマイクロヒータ150を制御して、当該レーザ素子110から出力されたレーザ光を半導体光素子10から出力させる。この制御方法によれば、選択されなかったレーザ素子110及び対応するマイクロヒータ150に駆動電流が供給されないので、半導体光素子10の消費電力を低減することができる。
【0032】
これに代えて、制御部160は、複数のレーザ素子110全てにレーザ光を出力させておき、複数の波長選択フィルタ120を制御することにより、出力に用いるレーザ光を選択してもよい。この場合、まず、制御部160は、出力させるべきレーザ素子110に接続された波長選択フィルタ120を選択する。そして、選択された波長選択フィルタ120が対応するレーザ素子110のレーザ光を通過するように、マイクロヒータ150を制御する。
【0033】
同時に、制御部160は、選択されなかった波長選択フィルタ120が、対応するレーザ素子110のレーザ光を通過させないように、マイクロヒータ150をそれぞれ制御する。この制御方法によれば、各レーザ素子が常にオン状態を保つので、安定な光出力を半導体光素子10から出力させることができる。
【0034】
このように、図2において説明した半導体光素子10を制御する方法によれば、半導体光素子10は、制御部160により、複数のレーザ素子110から出力すべき波長のレーザ光を出力するレーザ素子を選択して、当該レーザ光を出力することができる。また、半導体光素子10は、波長選択フィルタ120を用いることで、選択したレーザ素子が出力するレーザ光を通過させつつ、当該レーザ素子110に入射する自然放出光を減少させることができる。
【0035】
図3は、本発明の第2の実施形態に係る半導体光素子を上面から見た平面図である。半導体光素子20は、基板100、複数のレーザ素子110、光合流器130、半導体光増幅器140、及び波長選択フィルタ224を有する。半導体光素子20は、複数のレーザ素子110のうち選択した1つから出射する光を半導体光増幅器140の端部から出力する。
【0036】
第2の実施形態において、基板100、複数のレーザ素子110、光合流器130及び半導体光増幅器140は、第1の実施形態と略同一の構成を採るので、説明を省略する。
【0037】
波長選択フィルタ224は、一部の波長帯域の光を通過させる。波長選択フィルタ224は、光合流器130と半導体光増幅器140との間の経路上に形成される。また、波長選択フィルタ224は、半導体光増幅器140と同一の基板100上に形成される。
【0038】
波長選択フィルタ224は、複数のレーザ素子110のうち選択されたレーザ素子110からのレーザ光の波長を選択的に透過させる可変波長選択フィルタであってよい。波長選択フィルタ224は、選択されたレーザ素子が出力するレーザ光の波長以外の光を減衰する。
【0039】
波長選択フィルタ224は、直列に接続された第1リングフィルタ220及び第2リングフィルタ222を含む。波長選択フィルタ224は、第1リングフィルタ220及び第2リングフィルタ222の通過波長帯域をそれぞれ変えることにより、通過波長帯域及び遮蔽波長域を調節する。波長選択フィルタ224は、直列に接続された3個以上のリングフィルタを有してもよい。
【0040】
第1リングフィルタ220及び第2リングフィルタ222は、第1の実施形態で説明したものと同様のリングフィルタである。第1リングフィルタ220は、第1マイクロヒータ250が設けられたリングフィルタであってもよい。また、第2リングフィルタ222は、第2マイクロヒータ252が設けられたリングフィルタであってもよい。第1マイクロヒータ250及び第2マイクロヒータ252の電流を制御するため、第1リングフィルタ及び第2リングフィルタは、基板100上に波長調整用の端子をそれぞれ有していてもよい。
【0041】
第1リングフィルタ220は、光合流器130の出力端から受けたレーザ光を、光合流器130の出力端に対して基板100上で光軸と垂直な方向(+x方向)にリング導波路の直径分オフセットした出力端からレーザ光を出力する。第1リングフィルタ220の出力端は、第2リングフィルタ222の入力端と接続されている。
【0042】
第2リングフィルタ222は、第1リングフィルタ220の出力端から受けた光を、基板100上において第1リングフィルタ220と反対方向(+x方向)にリング導波路の直径分オフセットした出力端からレーザ光を出力する。つまり、第1リングフィルタの入力端から出力端へのオフセットの方向(+x方向)は、第2リングフィルタの入力端から出力端へのオフセットの方向(+x方向)と同じである。
【0043】
第1リングフィルタ220のリング導波路の光路長lと、第1リングフィルタ220の通過波長帯域の中心波長λ1,nには、λ1,n=l/n(nは整数)の関係式が成立する。半導体光素子20は、選択されたレーザ素子110のレーザ光の波長とλ1,nが等しくなるように、第1リングフィルタ220のリング導波路の光路長lを制御する。
【0044】
同様に、第2リングフィルタ222のリング導波路の光路長lと、第2リングフィルタ222の通過波長帯域の中心波長λ2,mには、λ2,m=l/m(mは整数)の関係式が成立する。半導体光素子20の使用中において、選択されたレーザ素子110のレーザ光の波長とλ2,mが等しくなるように、第2リングフィルタ222のリング導波路の光路長lは制御される。
【0045】
例えば、選択されたレーザ素子110が出力するレーザ光の波長がλである場合は、λ=l/n'=l/m'となるように、リング導波路の光路長l、lが調節される。第1リングフィルタ220は、l/n'の他にも、中心波長がl/n(nは、1以上かつn'以外の整数)となる波長帯域の光を通過させる。従って、自然放出光の出力帯域が、これらの通過波長帯域を含む場合、第1リングフィルタ220を通過した複数の波長帯域を有する光が、第2リングフィルタ222に入射する。
【0046】
第2リングフィルタ222は、l/m'の他に中心波長が、l/m(mは、1以上かつm'以外の整数)となる波長帯域の光を通過させる。従って、第1リングフィルタ220を通過した光のうち、第2リングフィルタ222の通過波長帯域に含まれる光が第2リングフィルタ222を通過する。
【0047】
ここで、第1リングフィルタ220及び第2リングフィルタ222は、互いに波長帯域における間隔が異なる複数の波長においてレーザ光を通過させる。即ち、第1リングフィルタ220のリング導波路の光路長lと、第2リングフィルタ222のリング導波路の光路長lは異なるように設定される。
【0048】
光路長lと光路長lが異なることにより、第1リングフィルタ220と第2リングフィルタ222の通過波長帯域は完全に一致せず、第1リングフィルタ220の通過波長帯域の一部は、第2リングフィルタ222の遮蔽波長帯域に含まれる。従って、第1リングフィルタ220を通過する波長λ以外の波長の光は、第2リングフィルタ222でほとんど遮蔽される。
【0049】
この様に、第2の実施形態によれば、半導体光素子20は、第1リングフィルタ220及び第2リングフィルタ222を制御して、第1リングフィルタ220及び第2リングフィルタ222の両方により、複数のレーザ素子110のうち選択されたレーザ素子110からのレーザ光を通過させる。
【0050】
図3においては、波長選択フィルタ224は、2個リングフィルタを有するものであった。これに代えて、波長選択フィルタ224は、直列に接続され、それぞれのリング導波路の光路長が異なる3個以上のリングフィルタを有してもよい。この場合、半導体光素子20は、2個以下のリングフィルタを用いた場合よりも、レーザ素子110に入射する自然放出光をさらに低減することができる。
【0051】
次に、第2の実施形態における半導体光素子20の動作について説明する。まず、レーザ素子110は、光合流器130に向けてレーザ光を出射する。光合流器130に入射したレーザ光は、光合流器130を通過して第1リングフィルタ220へ出力される。
【0052】
第1リングフィルタ220は、選択されたレーザ素子110が出力するレーザ光を選択的に通過させる。従って、第1リングフィルタ220を通過するレーザ光は、ほとんど減衰することなく第2リングフィルタ222に出力される。
【0053】
第2リングフィルタ222は、選択されたレーザ素子110が出力するレーザ光を選択的に通過させる。従って、第2リングフィルタ222を通過するレーザ光は、ほとんど減衰することなく半導体光増幅器140に出力される。
【0054】
半導体光増幅器140に入射したレーザ光は、半導体光増幅器140で増幅され、半導体光素子20の端部に設けられた出力端から外部に出力される。
【0055】
ここで、半導体光増幅器140は、半導体光素子20の出力端へと出射する増幅光である誘導放出光の他に、数10nmの帯域を持つ自然放出光を発生する。半導体光増幅器140の自然放出光は、略等方的に放出されるので、第2リングフィルタ222の方向にも出力される。
【0056】
自然放出光は、光合流器130に到達する前に第2リングフィルタ222に入射する。ここで、第2リングフィルタ222の遮断波長帯域の波長を有する自然放出光は、第2リングフィルタ222で減衰される。一方で、第2リングフィルタ222の通過波長帯域l/m(mは1以上の整数)の波長を有する自然放出光は、第2リングフィルタ222を通過して第1リングフィルタ220へ入射する。
【0057】
第1リングフィルタ220に入射する自然放出光は、第1リングフィルタ220でほとんど減衰される。即ち、第2リングフィルタ222の通過波長帯域で、かつ第1リングフィルタ220の通過波長帯域l/n(nは1以上の整数)の波長を有する自然放出光が、第1リングフィルタ220を通過する。ここで、第2リングフィルタ222の通過波長帯域のほとんどは、第1リングフィルタ220の遮蔽波長領域に含まれるので、第2リングフィルタ222を通過した自然放出光のほとんどは、第1リングフィルタ220を通過できず減衰される。
【0058】
このように、図3において説明した第2の実施形態によれば、半導体光素子20は、直列に接続した2個のリングフィルタを相補的に用いて、レーザ素子110に入射する自然放出光を効果的に減衰する。従って、第2の実施形態の半導体光素子20は、自然放出光の影響を低減した、線幅の狭いスペクトルのレーザ光を出力することができる。
【0059】
図4は、第2の実施形態に係る半導体光素子の出力光波長を制御する方法を説明するためのブロック図である。半導体光素子20は、制御部260を用いて、出力光の波長を制御する。
【0060】
制御部260は、複数のレーザ素子110と、第1マイクロヒータ250及び第2マイクロヒータ252に電気的に接続されている。制御部260は、複数のレーザ素子110のうち選択した1つに対して駆動電流を供給することによって、半導体光素子10の出力に用いるレーザ素子110を選択する。
【0061】
制御部260は、第1マイクロヒータ250及び第2マイクロヒータ252に供給する電流を制御する。制御部260は、第1マイクロヒータ250及び第2マイクロヒータ252の温度をそれぞれ制御して、選択されたレーザ素子110から出力されたレーザ光を半導体光素子10から出力させる。
【0062】
制御部260は、第1リングフィルタ220の光路長lと第2リングフィルタ222の光路長lが異なり、かつ両方のリングフィルタが選択されたレーザ素子110のレーザ光を通過させるように、第1マイクロヒータ250と第2マイクロヒータ252をそれぞれ制御する。制御部260は、波長調整用の端子を介して、第1マイクロヒータ250及び第2マイクロヒータ252をそれぞれ制御してもよい。
【0063】
以上説明したように、図4において説明した半導体光素子20を制御する方法によれば、半導体光素子20は、制御部260により、出力すべき波長のレーザ光を出力するレーザ素子を選択して、当該レーザ光を出力することができる。また、半導体光素子20は、2つのリングフィルタの通過波長帯域を制御することで、選択したレーザ素子110が出力するレーザ光を通過させつつ、当該レーザ素子110に入射する自然放出光の減少させることができる。
【0064】
図5は、第2の実施形態の変形例に係る半導体光素子を上面から見た平面図である。本変形例においては、第1リングフィルタ220は、光合流器130の出力端から受けたレーザ光を、光合流器130の出力端に対して基板上で光軸と垂直な方向(+x方向)にリング導波路の直径分オフセットした出力端からレーザ光を出力する。第1リングフィルタ220の出力端は、第2リングフィルタ222の入力端と接続されている。
【0065】
第2リングフィルタ222は、第1リングフィルタ220の出力端から受けた光を、基板上において第1リングフィルタ220側(−x方向)にリング導波路の直径分オフセットした出力端からレーザ光を出力する。つまり、第1リングフィルタ220の入力端から出力端へのオフセットの方向(+x方向)は、第2リングフィルタ222の入力端から出力端へのオフセットの方向(−x方向)と反対である。
【0066】
このように第1リングフィルタ220と第2リングフィルタ222を配置することで、第2リングフィルタ222の出力端に接続される半導体光増幅器140を半導体光素子30の中央付近に配置することができる。さらに、半導体光増幅器140から伸びる半導体光素子30の出力端を半導体光素子30の中央付近に配置することができる。
【0067】
以上の第1および第2の実施形態で説明した半導体光素子10、20、30は、基板100のレーザ素子110が形成されていない面の下側には、他の部材を有することができる。例えば、半導体光素子10、20、30は、基板100のレーザ素子110が形成された領域の下に温度調節素子を有する。温度調節素子は、レーザ素子110の温度を調節して、出力光の波長を調整することができる。
【0068】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0069】
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、および手順等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
【符号の説明】
【0070】
10 半導体光素子、20 半導体光素子、30 半導体光素子、100 基板、110 レーザ素子、120 波長選択フィルタ、130 光合流器、140 半導体光増幅器、150 マイクロヒータ、160 制御部、220 第1リングフィルタ、222 第2リングフィルタ、224 波長選択フィルタ、250 第1マイクロヒータ、252 第2マイクロヒータ、260 制御部

【特許請求の範囲】
【請求項1】
複数のレーザ素子と、
前記複数のレーザ素子のそれぞれに導波路を介して接続され、前記複数のレーザ素子が出力するレーザ光を合流する光合流器と、
前記光合流器から出力されるレーザ光を増幅する半導体光増幅器と、
前記光合流器及び前記半導体光増幅器と同一の基板上において、前記複数のレーザ素子のそれぞれと前記光合流器との間の経路上にそれぞれ形成された複数の波長選択フィルタと、
を備える半導体光素子。
【請求項2】
前記複数のレーザ素子のそれぞれは、互いに異なる波長のレーザ光を出力し、
前記複数の波長選択フィルタのそれぞれは、対応するレーザ素子が出力するレーザ光を選択的に通過させる
請求項1に記載の半導体光素子。
【請求項3】
前記複数の波長選択フィルタのそれぞれは、前記半導体光増幅器により発生され、前記光合流器から対応するレーザ素子へと向かう自然放出光を、当該レーザ素子が出力するレーザ光の波長以外の遮断波長帯域において減衰させる請求項1または2に記載の半導体光素子。
【請求項4】
前記複数の波長選択フィルタのそれぞれは、前記基板上に形成されたリングフィルタである請求項1から3のいずれか一項に記載の半導体光素子。
【請求項5】
前記複数の波長選択フィルタのそれぞれは、通過させる波長帯域が可変である請求項4に記載の半導体光素子。
【請求項6】
複数のレーザ素子と、
前記複数のレーザ素子のそれぞれに導波路を介して接続され、前記複数のレーザ素子が出力するレーザ光を合流する光合流器と、
前記光合流器から出力されるレーザ光を増幅する半導体光増幅器と、
前記半導体光増幅器と同一の基板上において、前記光合流器と前記半導体光増幅器との間の経路上に形成された波長選択フィルタと、
を備える半導体光素子。
【請求項7】
前記複数のレーザ素子のそれぞれは、互いに異なる波長のレーザ光を出力し、
前記波長選択フィルタは、前記複数のレーザ素子のうち選択されたレーザ素子からのレーザ光の波長を選択的に透過させる可変波長選択フィルタである
請求項6に記載の半導体光素子。
【請求項8】
前記波長選択フィルタは、直列に接続された第1リングフィルタおよび第2リングフィルタを含む請求項7に記載の半導体光素子。
【請求項9】
前記第1リングフィルタおよび前記第2リングフィルタは、互いに波長帯域における間隔が異なる複数の波長においてレーザ光を通過させ、
前記第1リングフィルタおよび前記第2リングフィルタを制御して、前記第1リングフィルタおよび前記第2リングフィルタの両方により、前記複数のレーザ素子のうち選択されたレーザ素子からのレーザ光を通過させる
請求項8に記載の半導体光素子。
【請求項10】
前記第1リングフィルタは、前記光合流器の出力端から受けたレーザ光を、前記光合流器の出力端に対して前記基板上でオフセットした出力端からレーザ光を出力し、
前記第2リングフィルタは、前記第1リングフィルタの出力端から受けた光を、前記基板上において前記第1リングフィルタと反対方向にオフセットした出力端からレーザ光を出力する
請求項8または9に記載の半導体光素子。
【請求項11】
レーザ素子と、
前記レーザ素子から出力されるレーザ光を増幅する半導体光増幅器と、
前記半導体光増幅器と同一の基板上において、前記レーザ素子と前記半導体光増幅器との間の経路上に形成された波長選択フィルタと、
を備える半導体光素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−26543(P2013−26543A)
【公開日】平成25年2月4日(2013.2.4)
【国際特許分類】
【出願番号】特願2011−161874(P2011−161874)
【出願日】平成23年7月25日(2011.7.25)
【出願人】(000005290)古河電気工業株式会社 (4,457)
【Fターム(参考)】