説明

半導体発光装置用樹脂パッケージ及び該樹脂パッケージを有してなる半導体発光装置

【課題】樹脂成形体とリードとの接着性が良好でリードとの隙間がなく、硬化後の可視光から近紫外光の反射率が高く、液状射出成形に適したシリコーン樹脂組成物を用いた半導体発光装置用樹脂パッケージを提供する。
【解決手段】半導体発光素子を載置するための凹部を有する半導体発光装置用樹脂パッケージであって、
該樹脂パッケージの凹部は底面と側面とからなり、少なくとも前記凹部側面を形成する(A)ポリオルガノシロキサン、(B)一次粒子のアスペクト比が1.2以上4.0以下、一次粒子径が0.1μm以上2.0μm以下の白色顔料、および(C)硬化触媒を含有する熱硬化性シリコーン樹脂組成物から形成される樹脂成形体と、
前記凹部底面の一部を形成するように対応して配置された少なくとも1対の正及び負のリードとを、
液状射出成形法によって、両者の接合面を隙間なく一体化して形成されてなることを特徴とする半導体発光装置用樹脂パッケージ。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、照明器具、ディスプレイ、携帯電話や液晶テレビなどのバックライト、デジタルサイネージ及びその他の光源などに用いられる半導体発光装置、該半導体発光装置に適した樹脂パッケージに関する。
【背景技術】
【0002】
発光素子を用いた表面実装型発光装置は、小型で電力効率がよくまた発光色も鮮やかである。また、この発光素子は半導体素子であるため球切れなどの心配がない。さらに初期駆動特性が優れ、振動や点灯のオン・オフの繰り返しに強いという特徴を有する。このような優れた特性を有するため、発光ダイオード(LED)、レーザーダイオード(LD)などの発光素子を用いる発光装置は、各種の光源として利用されている。
【0003】
半導体発光装置は、リードと樹脂組成物とを一体的に成形した樹脂成形体を有してなる半導体発光装置用樹脂パッケージに、リードと電気的に接続された発光素子を搭載し、該発光素子を封止材で被覆した構成を基本構成とする。例えば、特許文献1〜3には、凹部を有する樹脂成形体と正負のリードとが一体的に成形されたパッケージを用いてなる表面実装タイプの半導体発光装置が開示されている。
また、上記半導体発光装置用樹脂パッケージは、通常、リードを成形金型により挟み込み、閉じられた金型内に溶融した熱可塑性樹脂組成物を注入した後に、室温に戻して当該樹脂組成物を硬化させ、これらを一体化することにより製造される。
【0004】
前記パッケージを構成する樹脂成形体の材料としてはポリアミド等の熱可塑性樹脂に光の反射効率を上げるための反射材料として白色顔料を配合した熱可塑性樹脂組成物が広く用いられているが、半導体発光装置とするためには、近年の鉛使用回避のための高融点の鉛フリーハンダを用いるリフロー条件では耐熱性が不十分となることがあった。
そこで、熱可塑性樹脂に代え耐熱性に優れたエポキシ樹脂やシリコーン樹脂等の熱硬化性樹脂をパッケージに使用することが提案されている(特許文献4参照)。また、同特許文献4には、トランスファーモールド法により発光素子を載置する基台とリードと樹脂とを一体的に成形した量産性に優れた樹脂成形体および表面実装型発光装置の製造方法が記載されている。
また、特許文献5には基台を支持したリードフレームと上述のような熱硬化性樹脂組成物又は熱可塑性樹脂組成物を射出成形により一体成形した放熱性に優れるパッケージが開示されている。
しかしながら、半導体発光装置用樹脂パッケージに使用される樹脂の耐熱性、耐光性、密着性や量産性の面で更なる改良が求められており、また半導体発光装置用樹脂パッケージを構成するリードや樹脂成形体の構造及びその構造に適合した成形方法についても更なる改善が求められていた。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2002−280616号公報
【特許文献2】特開2004−55632号公報
【特許文献3】特開2004−342782号公報
【特許文献4】特開2007−329219号公報
【特許文献5】特表2009−543329号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
近年、半導体発光装置は、利用分野の広がりと共に厳しい使用条件のもとで使用されることが多くなっており、これまで以上に高い信頼性を有することが求められている。しかしながら、前述の樹脂成形体の作成に一般的に用いられている熱可塑性樹脂組成物は、その線膨張率(20〜120ppm/℃)が、リードとして一般的に使用される銅の線膨張率(約17ppm/℃)と比較して多く、さらにその線膨張率が温度に依存し、大きく変化することに伴い、これらを一体化する際やパッケージを配線基板にリフロー実装する際に大きな応力が発生するため、樹脂成形体とリードとの接着性が低下し、これらの間に数十μmオーダーの隙間が生じる場合があった。また、樹脂成形体とリードの接着性が低いと、リードのアウターリードを折り曲げる工程において加わる応力によってもこれらの間に隙間が生じてしまい、半導体発光装置の信頼性が低下してしまうという問題があった。
【0007】
また、従来より用いられている熱可塑性樹脂による射出成形法は生産性のよさが利点であったが、これを半導体発光装置用樹脂パッケージに適用しようとすると、樹脂が高粘度である上に、反射材料として白色顔料を配合すると組成物の粘度がさらに高くなって流動性が低下するため、白色顔料の添加量をあまり多くすることはできなかった。
また、従来この用途に用いられる熱可塑性樹脂は高いガラス転移温度(Tg)を確保するために紫外吸収があり耐熱耐光性に劣る芳香族成分を多く含むので、屈折率が高くなるため、用いることができる白色顔料もバインダ樹脂との屈折率差が大きく少量添加にて高い反射率を得られるチタニア等に限られていた。チタニアは可視光領域において少量にて高い反射率が得られるが、紫外領域に吸収があるため青〜紫外領域においては反射率が低くなる。この結果、射出成形に用いるためには「芳香族基含有樹脂+チタニア」に代表される組成しか選択できず、結果的に耐熱・耐光性が劣り、反射率の低いパッケージしか得ることができなかった。
【0008】
一方で、特許文献4に開示されたトランスファー成形法では、室温で固形状の原料組成物が用いられるため、芳香族成分を用いることなく極性基や剛直な有機基を多く含む熱硬化性樹脂組成物や半硬化状のエポキシ化合物を用いることができる。しかしながら得られる硬化物は有機骨格主体の樹脂であるため耐熱性は十分とはいえなかった。また、これらの熱硬化性樹脂の屈折率も高いため、やはり反射材としてはチタニアを主体に使用する組成しか選択できず、広い波長域において高い反射率を有するパッケージを得ることは困難であった。また、トランスファー成形は射出成形と比較して成形サイクルが長く、大量生産には不向きで、成形品の形状選択の自由度にも課題があった。更に、多数個を1回のショットで製造するためには高価なダイサーを必要とするなど、設備投資面での問題もあった。
また、特許文献5のパッケージにおいても、樹脂そのものは従来と同様なものが用いられており、樹脂本体の性質に由来する前記と同様の問題が解決されたとは言い難い。
【0009】
また、近年では、紫外領域などに発光ピーク波長を有する半導体発光素子が開発され、この素子についても表面実装タイプの半導体発光装置への適用が期待されているが、紫外領域付近の光はエネルギーが高いため、樹脂成形体の凹部内周面(リフレクター)が該紫外領域付近の光により劣化し易く、さらに凹部内周面(リフレクター)の劣化が進むと、可視光の反射率も低下してしまうという問題がある。
【0010】
本発明は、上述の従来技術の課題を解決し、樹脂成形体とリードとの接着性が良好でリードとの隙間がなく信頼性に優れると共に、硬化後の可視光から近紫外光の反射率が高く、耐光、耐熱劣化性に優れ、液状射出成形に適したシリコーン樹脂組成物を用いた半導体発光装置用樹脂パッケージ、該パッケージを備えた半導体発光装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。
【0012】
すなわち、本発明は、以下の発明に係るものである。
<1> 半導体発光素子を載置するための凹部を有する半導体発光装置用樹脂パッケージであって、
該樹脂パッケージの凹部は底面と側面とからなり、少なくとも前記凹部側面を形成する(A)ポリオルガノシロキサン、(B)一次粒子のアスペクト比が1.2以上4.0以下、一次粒子径が0.1μm以上2.0μm以下の白色顔料、および(C)硬化触媒を含有する熱硬化性シリコーン樹脂組成物から形成される樹脂成形体と、
前記凹部底面の一部を形成するように対応して配置された少なくとも1対の正及び負のリードとを、
液状射出成形法によって、両者の接合面を隙間なく一体化して形成されてなる半導体発光装置用樹脂パッケージ。
<2> 前記熱硬化性シリコーン樹脂組成物の25℃における剪断速度100s-1での粘度が10Pa・s以上10,000Pa・s以下である前記<1>に記載の半導体発光装置用樹脂パッケージ。
<3> 前記熱硬化性シリコーン樹脂組成物の25℃における剪断速度100s-1での粘度に対する剪断速度1s-1での粘度の比が15以上である前記<1>又は<2>に記載の半導体発光装置用樹脂パッケージ。
<4> 前記(B)白色顔料の二次粒子の中心粒径が0.2μm以上5μm以下である前記<1>から<3>のいずれかに記載の半導体発光装置用樹脂パッケージ。
<5> 前記(B)白色顔料がアルミナ及び/又はチタニアである前記<1>から<4>のいずれかに記載の半導体発光装置用樹脂パッケージ。
<6> 前記(B)白色顔料の合計量が、前記熱硬化性シリコーン樹脂組成物全体に対して、60重量%以上90重量%以下である前記<1>から<5>のいずれかに記載の半導体発光装置用樹脂パッケージ。
<7> 前記樹脂成形体が、厚さ0.4mmの成形体試料について波長400nmの条件で測定した光反射率が60%以上である樹脂成形体である前記<1>から<6>のいずれかに記載の半導体発光装置用樹脂パッケージ。
<8> 前記熱硬化性シリコーン樹脂組成物から得られる成形品の200℃以上250℃以下における平均線膨張係数が100ppm/℃以上200ppm/℃以下であり、かつ、0℃以上50℃以下における平均線膨張係数に対する200℃以上250℃以下における平均線膨張係数の比が1以上1.3以下である前記<1>から<7>のいずれかに記載の半導体発光装置用樹脂パッケージ。
<9> 前記<1>から<8>のいずれかに記載の半導体発光装置用樹脂パッケージと、前記パッケージの凹部底面に搭載された半導体発光素子と、前記凹部内の半導体発光素子を覆う封止材とを有する半導体発光装置。
【発明の効果】
【0013】
本発明によれば、樹脂成形体とリードとの接着性が良好で、耐久性(耐光性、耐熱性)が高く、かつ優れた反射率によりLED出力を向上させることが可能な半導体発光装置用樹脂パッケージ及び該パッケージを備えた半導体発光装置が提供される。
【図面の簡単な説明】
【0014】
【図1】本発明の実施形態に係る半導体発光装置用樹脂パッケージの一例を示す概略斜視図である。
【図2】本発明の実施形態に係る半導体発光装置用樹脂パッケージの一例を示す概略断面図である。
【図3】本発明の実施形態に係る半導体発光装置の一例を示す概略断面図である。
【図4】本発明の他の実施形態に係る半導体発光装置の一例を示す概略断面図である。
【図5】本発明の他の実施形態に係る半導体発光装置の一例を示す概略断面図である。
【図6】本発明の他の実施形態に係る半導体発光装置の一例を示す概略断面図である。
【図7】本発明における各試験片の反射率の測定結果を示すグラフである。
【図8】実施例1における樹脂成形体用材料の粘度の測定結果を示すグラフである。
【発明を実施するための形態】
【0015】
以下、本発明に係る半導体発光装置用樹脂パッケージ及び該樹脂パッケージを有する半導体発光装置を、実施形態及び実施例を用いて説明する。だたし、本発明は、この実施形態及び実施例に限定されない。
【0016】
<1.半導体発光装置用樹脂パッケージ>
<1.1.パッケージ概要>
本発明の半導体発光装置用樹脂パッケージは、半導体発光素子を載置するための凹部を有する半導体発光装置用樹脂パッケージであって、該樹脂パッケージの凹部は底面と側面とからなり、少なくとも前記凹部側面を形成する(A)ポリオルガノシロキサン、(B)一次粒子のアスペクト比が1.2以上4.0以下、一次粒子径が0.1μm以上2.0μm以下の白色顔料、および(C)硬化触媒を含有する熱硬化性シリコーン樹脂組成物から形成される樹脂成形体と、前記凹部底面の一部を形成するように対応して配置された少なくとも1対の正及び負のリードとを、液状射出成形法によって、両者の接合面を隙間なく一体化して形成されてなることを特徴とする。
【0017】
本発明において、「樹脂成形体」とは、半導体発光装置用樹脂組成物を成形して得られるものをいい、「半導体発光装置用樹脂パッケージ」(以下、単に「パッケージ」と記載する場合がある。)とは、導電性金属であるリードと樹脂成形体の原料である半導体発光装置用樹脂組成物とが一体的に成形されたものである。
また、「半導体発光装置」とは、上記半導体発光装置用樹脂パッケージと、半導体発光素子(以下、単に「発光素子」と記載する場合がある。)及び該半導体発光素子を被覆する封止材等を含む発光装置である。
また、本発明において「リード」は、いわゆる「リード線」、即ち、導電配線の他に、所謂「リードフレーム」といわれる、電気的な接続に用いられる板状その他の任意の形状に成形された導電体をも含むものである。
【0018】
また、「インナーリード部」は、リードの中で樹脂成形体の内側に設置される部分をいう。インナーリード部は、樹脂成形体の凹部底面から少なくともその一部が露出しており、露出部において発光素子の電極と電気的に接続される。
「アウターリード部」は樹脂成形体の凹部が形成された面(以下「主面」ということがある)と反対の面(以下「裏面」ということがある)または樹脂成形体から外部に露出するリードの部分をいい、放熱効率の向上と外部電極との電気的接続に用いられ、このアウターリード部を所定の長さとして折り曲げて使用する等により、照明器具等にそのまま実装することも可能となる。
【0019】
本発明の半導体発光装置用樹脂パッケージにおける樹脂成形体は、(A)ポリオルガノシロキサン、(B)一次粒子のアスペクト比が1.2以上4.0以下、一次粒子径が0.1μm以上2.0μm以下の白色顔料、および(C)硬化触媒を含有する熱硬化性シリコーン樹脂組成物から形成され、柔軟性が高い。
そのため、この樹脂成形体と、前記凹部底面の一部を形成するように対応して配置された少なくとも1対の正及び負のリードとを液状射出成形法によって、両者の接合面を隙間なく一体化して形成すると、樹脂成形体とリード付近で応力が緩和され、剥離しにくいので、樹脂成形体とリードとの密着性に優れたパッケージとなる。そして、該樹脂成形体は、(B)白色顔料として、一次粒子のアスペクト比が1.2以上4.0以下、一次粒子径が0.1μm以上2.0μm以下の白色顔料を使用していることにより、反射率に優れる。
【0020】
なお、樹脂成形体を形成する熱硬化性シリコーン樹脂組成物に含まれる、(A)ポリオルガノシロキサン、(B)白色顔料、及び(C)硬化触媒の詳細ついては後述する。
【0021】
以下、本発明の半導体発光装置用樹脂パッケージの概要を、その一実施形態を図面を参照することで説明する。図1は、本発明のパッケージの一例を示す概略斜視図であり、図2は、図1のA−Aの概略断面図である。
パッケージ10は、第1のリード11及び第2のリード12と、樹脂成形体13とから構成されている。
【0022】
第1のリード11は第1のインナーリード部11aと第1のアウターリード部11bとを有している。第1のインナーリード部11aは、その一部が凹部14の底面14aから露出しており、露出した部分に金属メッキ11cを有する。金属メッキ11cとしては、Agなど導電性の高い金属が用いられる。金属メッキ11cは第1のリード11全体に施されて、底面14aから露出しない部分に存在していてもよい。
第1のアウターリード部11bは、樹脂成形体13から露出している部分である。第1のアウターリード部11bは、外部電極(図示せず)と電気的に接続されるとともに熱伝達する作用も有する。そのため、材質としては、金属等の導電性部材を用いる。
【0023】
第2のリード12は第2のインナーリード部12aと第2のアウターリード部12bとを有している。第2のインナーリード部12aは、その一部が凹部14の底面14aから露出しており、露出した部分に金属メッキ12cを有する。金属メッキ12cとしては、Agなど導電性の高い金属が用いられる。金属メッキ12cは第2のリード12全体に施されて、底面14aから露出しない部分に存在していてもよい。
第2のリード12は、樹脂成形体13の側面外側に露出する第2のアウターリード部12bを有しており、第2のアウターリード部12bは、外部電極(図示せず)と電気的に接続されるため、材質としては、金属等の導電性部材を用いる。
【0024】
これらのインナーリード部11a、12aの主面側及びアウターリード部11b,12bはそれぞれ樹脂成形体から露出しており、この部位からの電気的接続が可能となっている。なお、インナーリード部11a、12aの露出部分は、半導体発光装置の発光素子の電極と電気的に接続する面積を有していればよく、それ以外の部分をより反射率の高い樹脂にて被覆してもよい。
パッケージ10を他の配線基板上に表面実装する場合には、各リード11,12を露出させることにより側面のみならず裏面側からも電気接続することができる。
また、放熱効率をより高くするためにインナーリード部11a,12aの裏面に当たる部分をパッケージ10から露出させることもできる。インナーリード部11a,12aの裏面露出部はアウターリード部11b,12bと同様に電気的接続が可能となる。
【0025】
パッケージ10には、底面14aと側面14bとを含む凹部14が形成されている。
図1、2に示すように底面14aは、第1のインナーリード部11a及び第2のインナーリード部12aのそれぞれ一部、及び、樹脂成形体13の連結部13aからなり、また、側面14bは、樹脂成形体13に形成された開口した連通穴の壁面からなる。
なお、凹部14の開口部は、底面14aよりも広口になっており、樹脂成形体13で形成される側面14bには傾斜が設けられていることが好ましい。
【0026】
凹部14は、開口方向に広口となるように傾斜を設けられている。これにより開口方向への光の取り出し効率を向上することができる。ただし、傾斜を設けず、円筒形状の凹部とすることもできる。また、傾斜面は平滑な方が好ましいが凹凸を設けることもできる。凹凸を設けることにより樹脂成形体13と封止材30との界面の密着性を向上することができる。凹部14の傾斜角度は、底面から95°以上150°以下が好ましいが、100°以上120°以下が特に好ましい。
また、側面14bの末端部分が、稜角部を有していないことが好ましい。このような構成とすることにより、硬化後の成形品の金型からの剥離(脱型)が容易になる。
【0027】
なお、パッケージ10の主面側の形状は矩形であるが、楕円、円形、五角形、六角形等とすることもできる。凹部14の主面側の形状は、円〜楕円であるが、矩形、五角形、六角形等とすることも可能である。必要に応じて、カソードマークを付けてもよい。
【0028】
以下、パッケージにおける樹脂成形体及び該樹脂成形体を構成する液状熱硬化性シリコーン樹脂組成物について詳細に説明する。
【0029】
<1.2.樹脂成形体>
樹脂成形体13は、第1のリード11と第2のリード12と一体的に成形されパッケージ10を構成する。樹脂成形体13は、液状射出成形(LIM)法により成形することができる。樹脂成形体13用の樹脂組成物としては、後述する熱硬化性シリコーン樹脂組成物が用いられる。
【0030】
樹脂成形体13は、硬化後に可視光について高反射率を有する液状熱硬化性シリコーン樹脂組成物からなる。
樹脂成形体の反射率は、具体的には、厚さ0.4mmの成形体試料について460nmの光の反射率が80%以上であることが好ましく、90%以上であることがより好ましい。
また、厚さ0.4mmの成形体試料について波長400nmの光の反射率が60%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。
ここで、上記厚さ0.4mmの成形体試料は、原料である液状熱硬化性シリコーン樹脂組成物を例えば、10kg/cm2の圧力下、180℃で4分間、硬化させることにより行うことができる。
この反射率は、厚さ0.4mmの成形体試料を作製し、コニカミノルタ社製SPECTROPHOTOMETER CM−2600dのような測色計を用いて測定することができる。パッケージのように小型の形状の成形体しか入手できない場合は、パッケージを研磨するなどして厚さ0.4mmの試料を作製し、反射率測定装置として日本電色VSR400のような微小面反射率計を用いて、0.05mmφ以上の面積における反射率を測定することにより得ることができる。
なお、樹脂成形体の反射率は、樹脂の種類やフィラーの種類、フィラーの粒径や含有量などにより制御することができる。
【0031】
また、前記熱硬化性シリコーン樹脂組成物から得られる成形品の200℃以上250℃以下における平均線膨張係数が100ppm/℃以上200ppm/℃以下であり、かつ、0℃以上50℃以下における平均線膨張係数に対する200℃以上250℃以下における平均線膨張係数の比が1以上1.3以下であることが好ましい。
成形品の平均線膨張係数がこのような範囲であると、リードを構成する金属材料との膨張率の違いによる応力の発生が特に抑制され、樹脂成形体とリードとの接着性の低下を回避できる。
【0032】
<2.熱硬化性シリコーン樹脂組成物>
<2.1.熱硬化性シリコーン樹脂組成物の特性>
<2.1.1.熱硬化性シリコーン樹脂組成物の組成>
熱硬化性シリコーン樹脂組成物は、(A)ポリオルガノシロキサン、(B)白色顔料、(C)硬化触媒を主成分とし、必要に応じてその他の成分を含む。
その他の成分としては、(D)硬化速度制御剤、(E)流動性調整剤などが挙げられる。
特に(A)ポリオルガノシロキサン、(B)一次粒子のアスペクト比が1.2以上4.0以下、一次粒子径が0.1μm以上2.0μm以下の白色顔料、および(C)硬化触媒を含有してなる熱硬化性シリコーン樹脂組成物が好適である。
上記(A)乃至(C)成分の、本発明に用いる半導体発光装置用樹脂成形体用の熱硬化性シリコーン樹脂組成物の好ましい組成は以下のとおりである。
本発明に用いる熱硬化性シリコーン樹脂組成物中における(A)ポリオルガノシロキサンの含有量は、樹脂成形体用材料として通常用いることができる範囲であれば限定されないが、通常組成物全体の15重量%以上、50重量%以下であり、好ましくは20重量%以上、40重量%以下であり、より好ましくは25重量%以上、35重量%以下である。
また、上記組成物中の(B)白色顔料の含有量は、樹脂成形体用材料として通常用いることができる範囲であれば限定されないが、例えば組成物全体の30重量%以上、85重量%以下であり、好ましくは40重量%以上80重量%以下であり、より好ましくは45重量%以上、70重量%以下である。
【0033】
<2.1.2.熱硬化性シリコーン樹脂組成物の粘度>
本発明に用いる熱硬化性シリコーン樹脂組成物は、25℃における剪断速度100s-1での粘度が10Pa・s以上10,000Pa・s以下であることが好ましい。上記粘度は、半導体装置用樹脂成形体を成形する際の成形効率の観点から、150Pa・s以上1,000Pa・s以下であることがより好ましい。
【0034】
特に液状樹脂材料を用いたLIM成形では、金型の微小な隙間から材料が染み出すことに起因するバリが発生しやすく、通常、バリを除去する後処理工程が必要であり、一方、バリの発生を抑えるために金型の隙間を小さくするとショートモールド(未充填)が発生しやすくなる等の問題があるが、前記液状熱硬化性シリコーン樹脂組成物の粘度が上記範囲にある場合、このような問題を解決することができ、樹脂成形体のLIM成形を容易に、効率よく行うことができる。
剪断速度100s-1での粘度が10,000Pa・sより大きいと、樹脂の流れが悪いため金型への充填が不十分となったり、射出成形を行う際に前記液状樹脂組成物供給に時間がかかるため成形サイクルが長くなったりするなどして、成形効率が低下する傾向にある。
また、上記粘度が10Pa・sより小さいと、金型の隙間から前記液状樹脂組成物が漏れてバリが発生したり、金型の隙間に射出圧力が逃げやすくなるため成形が安定しにくくなったりして、やはり成形効率が低下する傾向にある。特に成形体が小さい場合にはバリを除去するための後処理も困難になるため、バリの発生を抑えることは成形性には重要である。
【0035】
加えて、チキソトロピー性の観点から、本発明に用いる熱硬化性シリコーン樹脂組成物は25℃での剪断速度100s-1での粘度に対する25℃での剪断速度1s-1での粘度の比(1s-1/100s-1)が15以上であることが好ましく、30以上であることが特に好ましい。一方、上限は、300以下であることがより好ましい。
【0036】
成形性のよい材料とするためには、材料に一定以上のチキソトロピー性を持たせることが必要であるが、上記のような条件を満たすことにより、バリやショートモールド(未充填)の発生が少なく、成形時の材料の計量時間や成形サイクルを短縮でき、成形も安定しやすく、成形効率の高い材料となる。
【0037】
また、25℃における剪断速度100s-1での粘度に対する25℃における剪断速度1s-1での粘度の比が15未満の場合、つまり剪断速度1s-1での粘度が比較的小さい場合は、成形機や金型の隙間にも材料が入り込みやすくなり、バリが発生しやすくなったり、ノズル部で液ダレしやすくなったり、射出圧力が材料に伝わりにくく成形が安定しにくくなったりするなど、成形のコントロールが難しくなることがある。LIM成形ではスプルー部のパーティングラインの樹脂漏れが問題になりやすいが、上記の粘度範囲に調整することは樹脂漏れ抑制にも効果がある。
これらの25℃における剪断速度100s-1での粘度と剪断速度1s-1での粘度は、例えばARES−G2−歪制御型レオメータ(ティー・エイ・インスツルメント・ジャパン株式会社製)を用いて測定することができる。
【0038】
<2.2.熱硬化性シリコーン樹脂組成物の構成成分>
<(A)ポリオルガノシロキサン>
本発明におけるポリオルガノシロキサンとは、ケイ素原子が酸素を介して他のケイ素原子と結合した部分を持つ構造に有機基が付加している高分子物質を指す。ここでポリオルガノシロキサンは、常温常圧下において液体であることが好ましい。これは、半導体発光装置用樹脂成形体を成形する際に、材料の扱いが容易となるからである。また、常温常圧下において固体のポリオルガノシロキサンは、一般的に硬化物としての硬度は比較的高いが、破壊に要するエネルギーが小さく靭性が低いものや、耐光性、耐熱性が不十分で光や熱により変色しやすいものが多い傾向にあるからである。
【0039】
上記ポリオルガノシロキサンは、通常、シロキサン結合を主鎖とする有機重合体をいい、例えば以下に示す一般組成式(1)で表される化合物や、その混合物が挙げられる。
(R123SiO1/2M(R45SiO2/2D(R6SiO3/2T(SiO4/2Q ・・・(1)
ここで、上記式(1)において、R1からR6は独立して、有機官能基、水酸基、水素原子から選択される。またM、D、TおよびQは0以上1未満であり、M+D+T+Q=1を満足する数である。
有機官能基としては、得られる樹脂成形体の光・熱に対する耐久性や硬化特性、反射特性を損じない範囲で公知の1価有機基より任意に選択して良いが、中でも炭素数1〜10のアルキル基・芳香族基・アルケニル基、炭素数1〜3のアルコキシ基が樹脂成形体が熱により着色しにくいため好ましく、中でもメチル基、フェニル基、ビニル基が工業的に入手しやすく光に対して安定であるため好ましく、ポリオルガノシロキサン及び樹脂成形体の2官能ケイ素含有量を高くすることが出来、柔軟な樹脂成形体を与えることができる観点からメチル基主体とすることが特に好ましい。
主なポリオルガノシロキサンを構成する単位は、1官能型[R3SiO0.5](トリオルガノシルヘミオキサン)、2官能型[R2SiO](ジオルガノシロキサン)、3官能型[RSiO1.5](オルガノシルセスキオキサン)、4官能型[SiO2](シリケート)であり、これら4種の単位の構成比率を変えることにより、ポリオルガノシロキサンの性状の違いが出てくるので、所望の特性が得られるように適宜選択すればよい。
【0040】
ポリオルガノシロキサンは、硬化触媒の存在下で、熱エネルギーや光エネルギー等を与えることにより硬化させる事ができる。ここで硬化とは、流動性を示す状態から、流動性を示さない状態に変化することをいい、例えば、対象物を水平より45度傾けた状態で30分間静置しても流動性がある状態を未硬化状態といい、全く流動性がない状態を硬化状態として判断することができる。また、フィラー充填量が多い等の理由で、対象物が流動性を示さない場合には、該対象物が塑性変形せず、硬度をデュロメータタイプAにて測定でき、硬度測定値が少なくとも5以上であるか否かで未硬化状態、硬化状態を判断することもできる。
ポリオルガノシロキサンは、硬化のメカニズムにより分類すると、通常、付加重合硬化タイプ、縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのポリオルガノシロキサンを挙げることができる。これらの中では、付加重合硬化タイプ(付加型ポリオルガノシロキサン)、および縮合硬化タイプ(縮合型ポリオルガノシロキサン)が好適である。中でも、副生物が無く、また、反応が非可逆性のヒドロシリル化(付加重合)によって硬化するポリオルガノシロキサンのタイプがより好適である。これは、成形加工時に副生成物が発生すると、成形容器内の圧を上昇させたり、硬化材料中に泡として残存したりする傾向にあるからである。
【0041】
付加型ポリオルガノシロキサンは、ポリオルガノシロキサン鎖が、有機付加結合により架橋されたものをいう。代表的なものとしては、例えばビニルシラン等のアルケニル基を有するケイ素含有化合物と、例えばヒドロシラン等のヒドロシリル基を含有するケイ素化合物とを総アルケニル基量に対する総ヒドロシリル基量のモル比が0.5倍以上、2.0倍以下となる量比で混合し、Pt触媒などの付加縮合触媒の存在下反応させて得られるSi−C−C−Si結合を架橋点に有する化合物等を挙げることができる。
【0042】
縮合型ポリオルガノシロキサンとしては、例えば、アルキルアルコキシシランの加水分解・重縮合で得られるSi−O−Si結合を架橋点に有する化合物を挙げることができる。
【0043】
<(B)白色顔料>
本発明において用いる(B)白色顔料としては、一次粒子のアスペクト比が1.2以上4.0以下、一次粒子径が0.1μm以上2.0μm以下のものが好ましく、樹脂の硬化を阻害しない公知の白色顔料を適宜選択する事ができる。白色顔料としては無機および/または有機の材料を用いる事ができる。ここで白色とは、無色であり透明ではない事をいう。すなわち可視光領域に特異な吸収波長を持たない物質により入射光を乱反射させる事ができる色をいう。
【0044】
白色顔料として用いることができる無機粒子としては、アルミナ(以下、「酸化アルミニウム」と称する場合がある。)、酸化ケイ素、チタニア(以下、「酸化チタン」と称する場合がある。)、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム等の金属酸化物;炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸バリウム等の金属塩;窒化ホウ素、アルミナホワイト、コロイダルシリカ、ケイ酸アルミニウム、ケイ酸ジルコニウム、ホウ酸アルミニウム、クレー、タルク、カオリン、雲母、合成雲母などが挙げられる。
中でも白色度が高く少量でも光反射効果が高く変質しにくい点からは、アルミナ、チタニア、酸化亜鉛、酸化ジルコニウムなどが好ましく、特にアルミナ、チタニアが好ましい。また、材料硬化時の熱伝導率向上の点からは、アルミナ、窒化ホウ素などが特に好ましい。また、近紫外線の光反射効果が高く、近紫外線による変質が小さい観点からも、アルミナが特に好ましい。チタニアは、光触媒性、分散性、白色性等の問題が出ない程度に含有する事ができる。
これらの白色顔料は、単独もしくは2種以上混合して用いる事ができる。
【0045】
(A)ポリオルガノシロキサンの屈折率と(B)白色顔料の屈折率差が大きいほど、少量の白色顔料を添加しただけでも白色度がより高く、反射・散乱効率のよい半導体発光装置用樹脂成形体を得ることができる。(A)ポリオルガノシロキサンは屈折率が1.41程度のものが好ましく、屈折率が1.76のアルミナ粒子を(B)白色顔料として好適に用いることができる。
【0046】
また、アルミナは、紫外線の吸収能が低いことから、特に、紫外〜近紫外発光の発光素子と共に用いる場合に好適に用いることができる。本発明において用いるアルミナとしてはその結晶形態は問わないが、化学的に安定、融点が高い、機械的強度が大きい、硬度が高い、電気絶縁抵抗が大きい等の特性を持つα−アルミナが好適に使用できる。
【0047】
また、本発明において(B)白色顔料としてアルミナを用いる場合、アルミナ結晶の結晶子サイズが500Å以上2,000Å以下であることが好ましく、700Å以上1,500Å以下であることがより好ましく、900Å以上1,300Å以下であることが特に好ましい。結晶子とは、単結晶とみなせる最大の集まりをいう。
アルミナ結晶の結晶子サイズが上記範囲であると、成形時の配管、スクリュー、金型などの磨耗が少なく、磨耗による不純物が混入しにくい点で好ましい。なお、上記結晶子サイズは、X線回折測定により確認することができる。
【0048】
一般にアルミナはチタニアより耐久性が高く、アルミナとチタニアを併用した場合、チタニアの比率が増すと材料の耐久性が低下する傾向にある。一方で、チタニアは、アルミナと比較して屈折率が高く、樹脂との屈折率差が大きいため、チタニアの比率が増すと樹脂成形体の反射率が高くなる傾向にある。
そこで、アルミナに同程度以下のチタニアを添加すると、チタニアの比率から予測される程度より大きく反射率が向上し、材料の反射率を高くしつつ、耐久性の低下を極力抑制することができる。
【0049】
熱硬化性シリコーン樹脂組成物の硬化時の熱伝導率は、成形効率及び半導体発光装置の放熱の点からも高い方が好ましいが、熱伝導率を高くするためには、純度が98%以上のアルミナを用いることが好ましく、純度99%以上のアルミナを用いることがより好ましく、特に低ソーダアルミナを用いることが好ましい。また、熱伝導率を高くするためには、窒化ホウ素を用いることも好ましく、純度が99%以上の窒化ホウ素を用いることが特に好ましい。
【0050】
また、特に、発光ピーク波長が420nm以上の発光素子を使用する半導体発光装置では、白色顔料としてチタニアも好適に使用することができる。チタニアは紫外線吸収能を持つが、屈折率が大きく光散乱性が強いため、420nm以上の波長の光の反射率が高く、少ない添加量でも高反射を発現しやすい。本発明の白色顔料としてチタニアを用いる場合は、紫外線吸収能や光触媒能が大きく高温で不安定なアナターゼ型よりも、高温で安定であり、屈折率が高く、比較的耐光性が高いルチル型が好ましく、光触媒活性を抑える目的で表面にシリカやアルミナの薄膜コートが施されたルチル型が特に好ましい。
チタニアは屈折率が高く、ポリオルガノシロキサンとの屈折率差が大きいため少ない添加量でも高反射となりやすいことから、アルミナとチタニアを50:50〜95:5(重量比)のような割合で併用してもよい。
【0051】
本発明に用いる(B)白色顔料は、その一次粒子のアスペクト比が、1.2以上4.0以下であるものが好適である。
アスペクト比は、粒子等の形状を定量的に表現する簡便な方法として一般に用いられており、本発明ではSEMなどの電子顕微鏡観察により計測した粒子の長軸長さ(最大長径)を短軸長さ(長径に垂直方向で最も長い部分の長さ)で除して求めるものとする。軸長さにばらつきがある場合は、複数点(例えば10点)をSEMで計測し、その平均値から算出することができる。あるいは、30点、100点を計測しても同様の算出結果を得ることができる。
好ましいアスペクト比は、1.25以上であり、より好ましくは1.3以上、特に好ましくは1.4以上である。一方、上限は、3.0以下が好ましく、2.5以下がより好ましく、2.2以下が更に好ましく、2.0以下が特に好ましく、1.8以下であることが最も好ましい。
アスペクト比が上記範囲であると、散乱により高反射率を発現しやすく、特に近紫外領域の短波長の光の反射が大きい。これにより、この樹脂成形体を用いた半導体発光装置において、LED出力を向上させることができる。
また、アスペクト比が上記範囲の白色顔料を使用することは、金型の磨耗が少ないなど、成形上も好ましい。アスペクト比が上記範囲を超えて大きい場合、顔料粒子との接触により金型の磨耗が激しくなることがあり、逆に、アスペクト比が小さい白色顔料を使用する場合も材料中の顔料の充填密度を高くできるため金型と顔料との接触頻度が上がり、金型が磨耗しやすくなる。さらに、アスペクト比が上記範囲の白色顔料を使用すると、材料粘度の調整が容易で、成形に適した粘度に調整できるので、成形サイクルの短縮や、バリの防止が可能となる等、成形性に優れた材料となる。
【0052】
アスペクト比が上記範囲であることで、白色顔料が金型の隙間に充填され、バリが発生しにくいが、アスペクト比が1.2未満のように球状に近くなると金型の隙間を通り抜けてバリが発生しやすくなる。
本発明では、アスペクト比が上記範囲に含まれる粒子が(B)白色顔料全体の60体積%以上、より好ましくは70体積%以上、特に好ましくは80体積%以上を占めることが好ましく、必ずしも全ての(B)白色顔料が上記アスペクト比の範囲を満たさなければいけないわけではないことは当業者が当然に理解できる事項である。
【0053】
アスペクト比を上記範囲とするためには、白色顔料の表面処理をしたり、研磨したりする等の一般的な方法を採ればよい。また、白色顔料を破砕(粉砕)して微細化することや、篩粉等により分級することによっても調整できる。
【0054】
本発明に用いる(B)白色顔料は、形状が破砕形状であることが好ましく、破砕後の処理により結晶の角が少ない丸みを帯びた形状となったもの、焼成などによって生成した球状でない顔料の形状も含まれる。
【0055】
また、(B)白色顔料の一次粒子径が、0.1μm以上2μm以下であるものが好適である。下限値については好ましくは0.15μm以上、より好ましくは0.2μm以上、特に好ましくは0.25μm以上であり、上限値については好ましくは1μm以下、更に好ましくは0.8μm以下、特に好ましくは0.5μm以下である。
一次粒子径が上記範囲である場合には、後方散乱傾向と散乱光強度を兼ね備えることで材料が高反射率を発現しやすく、特に近紫外領域等の短波長の光に対する反射が大きくなり、好ましい。
白色顔料は、一次粒子径が小さすぎると散乱光強度が小さいため反射率は低くなる傾向にあり、一次粒子径が大きすぎると散乱光強度は大きくなるが、前方散乱傾向になるため反射率は小さくなる傾向にある。
また、一次粒子径が上記範囲である場合には、成形に適した粘度への調整が容易である上、金型の磨耗が少ないなど、成形性の観点からも好ましい。一次粒子径が上記範囲よりも大きい場合、顔料粒子との接触による金型への衝撃が大きく金型の磨耗が激しくなる傾向があり、一次粒子径が上記範囲よりも小さい白色顔料を使用する場合には、材料が高粘度になりやすく、白色顔料の充填量を上げられないため、高反射等の材料特性と成形性との両立が難しくなる傾向にある。
特に、液状射出成形に好適に使用できる材料とするためには材料にある程度以上のチキソトロピー性を持たせることが必要である。一次粒子径が0.1μm以上2.0μm以下の白色顔料を組成物中に添加するとチキソトロピー性付与効果が大きく、バリやショートが少なく成形しやすい組成物とするために、粘度とチキソトロピー性を容易に調整することができる。
なお、樹脂組成物中の白色顔料の充填率を上げる等の目的で、一次粒子径が2μmよりも大きい白色顔料を併用することもできる。
【0056】
本発明にいう一次粒子とは粉体を構成している粒子のうち、他と明確に区別できる最小単位をいい、一次粒子径はSEMなどの電子顕微鏡観察により計測することができる。一方、一次粒子が凝集してできる凝集粒子を二次粒子といい、二次粒子の中心粒径は粉体を適当な分散媒(例えばアルミナの場合は水)に分散させて粒度分析計等で測定することができる。一次粒子径にばらつきがある場合は、数点(例えば10点)をSEM観察し、その平均値を粒子径とすればよい。また、測定の際、個々の粒子が球状でない場合はもっとも長い、すなわち長軸の長さを粒子径とする。
【0057】
一方、上記白色顔料は、二次粒子の中心粒径(以下、「二次粒径」と称する場合がある。)が、0.2μm以上であるものが好ましく、0.3μm以上であるものがより好ましい。上限は5μm以下であるものが好ましく、3μm以下であるものがより好ましく、2μm以下であるものが更に好ましい。
二次粒径が上記範囲であると、液状射出成形の成形性が良好となり、好ましい。また、成形に適した粘度への調整が容易で、金型の磨耗が少ない。加えて、白色顔料が金型の隙間を通過しにくいためバリが発生しにくく、かつ、金型のゲートに詰まりにくいため成形時のトラブルが起こりにくい。二次粒径が上記範囲よりも大きい場合には、白色顔料の沈降により材料が不均一となる傾向にあり、金型の磨耗やゲートの詰まりにより成形性が損なわれたり、成形品の反射の均一性が損なわれたりすることがある。
なお、樹脂組成物中の白色顔料の充填率を上げる等の目的で、二次粒径が10μmよりも大きい白色顔料を併用することもできる。なお、中心粒径とは体積基準粒度分布曲線の体積積算値が50%になる粒子径をいい、一般的に50%粒子径(D50)、メディアン径と呼ばれるものを指す。
【0058】
本発明において半導体発光装置用樹脂成形体材料中の(B)白色顔料の含有量は、使用する顔料の粒径や種類、ポリオルガノシロキサンと顔料の屈折率差により適宜選択され特に限定されない。例えば、組成物中の含有割合として通常30重量%以上、好ましくは60重量%以上であり、好ましく90重量%以下、より好ましくは85重量%以下である。
上記範囲内であると反射率、成形性等が良好である。上記下限未満である場合には光線が透過してしまい半導体発光装置の反射効率が低下する傾向にあり、上限よりも大きい場合には材料の流動性が悪化することにより成形性が低下する傾向にある。
また、熱硬化性シリコーン樹脂組成物の熱伝導率を例えば、0.4以上3.0以下の範囲のように高くするためには、(B)白色顔料としてアルミナ及び/又はチタニアを樹脂成形体用材料全体量に対して40重量部以上90重量部以下添加することが好ましい。
または(B)白色顔料として窒化ホウ素を樹脂成形体用材料全体量に対して30重量部以上90重量部以下添加することが好ましい。なお、アルミナ、チタニア、窒化ホウ素を併用してもよい。
【0059】
<(C)硬化触媒>
本発明における(C)硬化触媒とは、(A)のポリオルガノシロキサンを硬化させる触媒である。この触媒はポリオルガノシロキサンの硬化機構により付加重合用触媒、縮合重合用触媒がある。
【0060】
付加重合用触媒は、前記(A)成分中のアルケニル基とヒドロシリル基との付加反応を促進するための触媒であり、この付加重合触媒の例としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。なお、この付加重合触媒の配合量は通常、白金族金属として(A)成分の重量に対して通常1ppm以上、好ましくは2ppm以上であり、通常100ppm以下、好ましくは50ppm以下、さらに好ましくは20ppm以下である。
【0061】
縮合重合用触媒としては、塩酸、硝酸、硫酸、有機酸などの酸、アンモニア、アミン類などのアルカリ、ホウ素のアルコキシド等の有機ホウ素化合物、金属キレート化合物などを用いることができ、好適なものとしてTi、Ta、Zr、Al、Hf、Zn、Sn、Ga、Ptのいずれか1以上を含む金属キレート化合物を用いることができる。なかでも、金属キレート化合物は、Ti、Al、Zn、Zr、Gaのいずれか1以上を含むものが好ましく、Zrを含むものがさらに好ましく用いられる。
【0062】
縮合重合用触媒の配合量は、上記(A)成分の合計重量に対して通常0.01重量%以上、好ましくは0.05重量%以上、一方上限は通常10重量%以下、好ましくは6重量%以下である。
触媒の添加量が上記範囲であると半導体発光装置用樹脂成形体材料の硬化性、保存安定性が良好であり、加えて成形した樹脂成形体の品質が良好である。添加量が上限値を超えると樹脂成形体材料の保存安定性に問題が生じる場合があり、下限値未満では硬化時間が長くなり樹脂成形体の生産性が低下し、未硬化成分により樹脂成形体の品質が低下する傾向にある。
これらの触媒は半導体発光装置用樹脂組成物の安定性、被膜の硬度、無黄変性、硬化性などを考慮して選択される。
【0063】
<その他>
本発明の半導体発光装置用樹脂成形体用材料は、さらに(D)硬化速度制御剤を含有することが好ましい。ここで(D)硬化速度制御剤とは、樹脂成形体用材料を成形する際に、その成形効率を向上させるために硬化速度を制御するためのものであり、硬化遅延剤または硬化促進剤が挙げられる。
【0064】
硬化遅延剤は、特に、硬化速度が速い付加重合型ポリオルガノシロキサン組成物の液状射出成形において重要な成分である。
付加重合反応における硬化遅延剤としては、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられ、これらを併用してもかまわない。
脂肪族不飽和結合を含有する化合物としては、3−ヒドロキシ−3−メチル−1−ブチン、3−ヒドロキシ−3−フェニル−1−ブチン、3−(トリメチルシリルオキシ)−3−メチル−1−ブチン、1−エチニル−1−シクロヘキサノール等のプロパギルアルコール類、エン−イン化合物類、ジメチルマレート等のマレイン酸エステル類等が例示される。
縮合重合反応における硬化遅延剤としては、炭素数1〜5の低級アルコール、分子量500以下のアミン類、窒素や硫黄含有する有機化合物、エポキシ基含有化合物などシラノールと反応あるいは水素結合する化合物が挙げられる。
【0065】
(D)硬化速度制御剤の種類や配合量を目的に応じて選択することにより、樹脂成形体用材料の成形が容易となる。例えば、金型への充填率が高くなったり、射出成形による成形時に金型からの漏れがなく、バリが発生しにくくなったりするメリットが得られる。
【0066】
樹脂成形体用材料である熱硬化性シリコーン樹脂組成物には、本発明の効果を損なわない限り、必要に応じて他の成分を1種、または2種以上を任意の比率および組み合わせで含有させることができる。
例えば、熱硬化性シリコーン樹脂組成物の流動性コントロールや白色顔料の沈降抑制の目的で、(E)流動性調整剤を含有させることができる。
(E)流動性調整剤としては、添加により熱硬化性シリコーン樹脂組成物の粘度が高くなる常温から成形温度付近で固体の粒子であれば特に限定されないが、例えば、シリカ微粒子、石英ビーズ、ガラスビーズなどの無機粒子、ガラス繊維などの無機物繊維、窒化ホウ素、窒化アルミニウム等が挙げられる。
【0067】
また、熱硬化性シリコーン樹脂組成物の粘度を調整するため、液状増粘剤として非硬化性のポリオルガノシロキサンを(A)ポリオルガノシロキサンに一部配合することができる。
液状増粘剤としてのポリオルガノシロキサンの配合量は(A)ポリオルガノシロキサン全体を100重量部とした時、通常、0〜10重量部、好ましくは0.1〜5重量部、より好ましくは0.5〜3重量部程度を(A)と置き換えて使用することができる。
【0068】
また、上記成分以外にも、上記熱硬化性シリコーン樹脂組成物には、熱硬化後の強度、靭性を高める目的で、ガラス繊維などの無機物繊維を含有させてもよく、また、熱伝導性を高めたるため、熱伝導率の高い窒化ホウ素、窒化アルミ、繊維状アルミナ等を前述の白色顔料とは別に含有させることができる。その他、硬化物の線膨張係数を下げる目的で、石英ビーズ、ガラスビーズ等を含有させることができる。
これらを添加する場合の含有量は、少なすぎると目的の効果か得られず、多すぎると熱硬化性シリコーン樹脂組成物の粘度が上がり、加工性に影響するので、十分な効果が発現し、材料の加工性を損なわない範囲で適宜選択できる。通常、ポリオルガノシロキサン100重量部に対し500重量部以下、好ましくは200重量部以下である。
【0069】
また、上記熱硬化性シリコーン樹脂組成物中には、その他、イオンマイグレーション(エレクトロケミカルマイグレーション)防止剤、老化防止剤、ラジカル禁止剤、紫外線吸収剤、接着性改良剤、難燃剤、界面活性剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、カップリング剤、酸化防止剤、熱安定剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、物性調整剤などを本発明の目的および効果を損なわない範囲において含有させることができる。
【0070】
<2.3.組成物の配合割合>
上記熱硬化性シリコーン樹脂組成物における(A)ポリオルガノシロキサンの含有量は、通常、樹脂組成物全体の15重量%以上、50重量%以下であり、好ましくは20重量%以上、40重量%以下であり、より好ましくは25重量%以上、35重量%以下である。なお、該樹脂組成物中に含まれる硬化速度制御剤やその他成分である液状増粘剤がポリオルガノシロキサンである場合は上記(A)の含有量に含まれるものとする。
上記熱硬化性シリコーン樹脂組成物における(B)白色顔料の含有量は、上述の通り該樹脂組成物が、樹脂成形体用材料として用いることができる範囲であれば限定されないが、通常樹脂組成物全体の30重量%以上90重量%以下であり、好ましくは60重量%以上90重量%以下であり、より好ましくは60重量%以上85重量%以下である。
上記熱硬化性シリコーン樹脂組成物における流動性調整剤の含有量は、本発明の効果を阻害しない範囲であれば限定されないが、通常樹脂組成物全体の55重量%以下であり、好ましくは2重量%以上50重量%以下であり、より好ましくは5重量%以上45重量%以下である。
【0071】
<3.パッケージの製造方法>
本発明のパッケージは、実装使用時においてリードと樹脂成形体が隙間無く一体化されており、かつ長期使用時にもリードから樹脂成形体が剥離せず、隙間が出来ないことを特徴とする。本発明のパッケージの構成及び構成部材の一般的な説明について上述したが、本発明のパッケージを製造するには、例えば下記に説明する液状射出成形のような方法を取れば良い。
【0072】
本発明のパッケージは、熱硬化性樹脂を用いた圧縮成形、射出成形にて製造されることが好ましい。中でも生産性の観点から、硬化前には常温(23℃付近)で液体であり、加熱により硬化するポリオルガノシロキサン組成物を用いた液状射出成形を行うことが好ましい。また、比較的柔らかい成形体とすることが好ましい。
【0073】
ポリフタルアミドなどの熱可塑性樹脂を用いた従来の射出成形では樹脂を流動可能な高温に加熱し、冷却して硬化させる。このような熱可塑性樹脂は、線膨張係数が高温になるに従って大きくなり、室温付近では非常に小さくなることから、得られる成形体は硬化収縮が大きく大きな内部応力を含んだ状態となる。冷却硬化後の樹脂は硬いためリードとの接着界面にて応力緩和できず外部応力や熱衝撃により容易に剥離し、隙間が出来る。
また、エポキシ樹脂等を用いた熱硬化性樹脂トランスファー成形においては半硬化状のペレットを加熱溶融し、金型内でさらに加熱して硬化させる。このような熱硬化性樹脂は、熱可塑性樹脂より低い温度で成形するため硬化時の収縮応力が熱可塑性樹脂を用いた場合より小さく成形直後はリードと隙間が出来にくい。しかしながら、成形後の樹脂は硬いため、リードとの接着界面にて応力緩和できず、依然として外部応力や熱衝撃により剥離する頻度が高い。また、エポキシ樹脂は耐熱性、耐光性に劣り、高輝度の半導体発光素子用パッケージの成形体材料には不適である。
これに対し、本発明では上述の熱硬化性ポリオルガノシロキサン樹脂組成物を用いて液状射出成形を行うので、硬化時収縮が熱可塑性樹脂より小さく硬化時の剥離が起きにくい。また、比較的低硬度の樹脂を構成成分とすることにより、応力緩和能力大きく外部応力や熱衝撃によりリードが剥離することのないパッケージを得ることができる。
【0074】
本発明の成形体においては、成形体の200℃〜250℃の領域における平均線膨張係数が100ppm/℃以上、200ppm/℃以下、かつ0〜50℃の平均線膨張係数に対する200℃〜250℃における平均線膨張係数の比が1以上1.3以下であることが好ましい。このように温度領域により線膨張係数が変化しにくい特性を有するのはポリオルガノシロキサン樹脂の特徴であり、特にジオルガノポリシロキサン単位が多いポリオルガノシロキサン化合物を用いると、成形体の硬さを比較的柔らかくすることが出来好ましい。このような線膨張係数を有する成形体を使用することにより、半田リフロー(260℃付近)などの熱衝撃においてもリードが成形体から剥離する事無く、リードとの接合面の応力緩和も可能になり隙間の無いパッケージを得ることが出来る。この数値範囲は、近年多用される蛍光体を含有するシリコーン封止材硬化物の線膨張係数と類似しており、このような樹脂成形体を用いると、シリコーン系封止材とパッケージの樹脂成形体部分の剥離を低減できる利点もある。
【0075】
本発明に適した成形体の硬度は、ショアD硬度にて表現すると、好ましくは30〜80、さらに好ましくは35〜75程度である。
【0076】
その他、製造法の工夫としては、予め折り曲げ加工を行ったリードを用いて成形を行う、反射材を含めた総フィラー量を多めに設定し、上記の範囲において低目の線膨張係数となるようにする、硬化時の温度を低目に設定し金型外でより高温のアフターキュアを実施することにより成形体への残留応力を低減する、成形体樹脂にエポキシ基やメタクリル基、イソシアヌル基、水酸基、アルコキシ基など、リード表面の金属と水素結合や共有結合可能な官能基を有するシランカップリング剤などの接着付与成分を添加するなどの方法があり、適宜組み合わせて用いることができる。
【0077】
<4.半導体発光装置>
次いで、本発明の半導体発光装置について説明する。
本発明の半導体発光装置は、上述の本発明のパッケージと、前記パッケージの凹部底面に搭載された半導体発光素子と、前記凹部内の半導体発光素子を覆う封止材とを有することを特徴とする。
以下、図1及び図2の実施形態のパッケージを有する半導体発光装置に基づき説明する。
図3に図1及び図2の実施形態のパッケージを有する半導体発光装置の概略断面図を示す。
【0078】
図3の半導体発光装置1は、(樹脂)パッケージ10と、パッケージ10に載置される発光素子20と、発光素子20を被覆する封止材30とを有する。
【0079】
発光素子20は、同一面側に正負一対の第1の電極21と第2の電極22とを有しており、それぞれの電極が、第1のリード11及び第2のリード12と電気的に接続されている。
図3の半導体発光装置1においては、同一面側に正負一対の電極を有するものについて説明するが、発光素子の下面側を導電性のダイボンド剤を用いて第1のリードと接着することにより発光素子の上面と下面とから正負一対の電極を有するものを用いることもできる。
【0080】
封止材30は、発光素子20を被覆するようにパッケージ10の凹部14内に装入される。
封止材30は、熱硬化性樹脂あるいは熱硬化性樹脂を主成分とする組成物(以下、「封止材用熱硬化性樹脂組成物」と総称する。)を用いており、発光素子20の光を直接利用する場合には透明封止するが、発光素子20の光を任意の波長に変換する場合には、通常、蛍光体を含有している。
【0081】
第2のリード12は第2のインナーリード部12aと第2のアウターリード部12bとを有している。第2のインナーリード部12aは、その一部が凹部14の底面14aから露出しており、発光素子20が持つ第2の電極22とワイヤ40を介して電気的に接続されている。第2のリード12は、樹脂成形体13の側面外側に露出する第2のアウターリード部12bを有しており、第2のアウターリード部12bは、外部電極(図示せず)と電気的に接続されるため、材質としては、金属等の導電性部材を用いる。
【0082】
なお、第1のリード11及び第2のリード12とが短絡しないように、裏面側において第1のリード11及び第2のリード12との近接する部分の表面には、絶縁体を設けてもよい。また、第1のインナーリード部11aと第2のインナーリード部12aの裏面は露出せずパッケージの一部である樹脂成形体用樹脂組成物に覆われ一体的に成形されていてもよい。
【0083】
以下、本発明の半導体発光装置における、パッケージ以外の構成要素について説明する。
【0084】
<4.1.半導体発光素子>
発光素子20は、近紫外領域の波長を有する光を発する近紫外半導体発光素子、紫領域の波長の光を発する紫半導体発光素子、青領域の波長の光を発する青色半導体発光素子などを用いることが可能であり、通常、これらの発光素子は350nm以上520nm以下の波長を有する光を発する。
【0085】
発光素子20として具体的には、基板上にGaAlN、ZnS、ZnSe、SiC、GaP、GaAlAs、AlN、InN、AlInGaP、InGaN、GaN、AlInGaN等の半導体を発光層として形成させたものが用いられる。
半導体の構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。半導体層の材料やその混晶度によって発光波長を紫外光から赤外光まで種々選択することができる。発光層は、量子効果が生ずる薄膜とした単一量子井戸構造や多重量子井戸構造としてもよい。
【0086】
屋外などでの使用を考える場合、高輝度な発光素子20を形成可能な半導体材料として窒化ガリウム系化合物半導体を用いることが好ましく、また、赤色ではガリウム・アルミニウム・砒素系の半導体やアルミニウム・インジウム・ガリウム・燐系の半導体を用いることが好ましいが、用途によって種々利用することもできる。
【0087】
窒化ガリウム系化合物半導体を使用した場合、半導体基板にはサファイア、スピネル、SiC、Si、ZnOやGaN単結晶等の材料が用いられる。結晶性のよい窒化ガリウムを量産性よく形成させるためにはサファイア基板を用いることが好ましい。
窒化ガリウム系化合物半導体は、不純物をドープしない状態でN型導電性を示す。なお、発光効率を向上させる等所望のN型窒化ガリウム半導体を形成させる場合は、N型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。
【0088】
一方、P型窒化ガリウム半導体を形成させる場合は、P型ドーパンドであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。窒化ガリウム系半導体は、P型ドーパントをドープしただけではP型化しにくいためP型ドーパント導入後に、炉による加熱、低電子線照射やプラズマ照射等によりアニールすることでP型化させる必要がある。こうして形成された半導体ウエハーを部分的にエッチングなどさせ正負の各電極を形成させる。その後半導体ウエハーを所望の大きさに切断することによって発光素子を形成させることができる。
【0089】
こうした発光素子20は、必要に応じて複数個用いることができ、その組み合わせによって白色表示における混色性を向上させることもできる。
なお、発光効率を向上させるために、発光層直下に蒸着等により金属反射膜を設けサファイア等の基板を剥離除去し、新たな支持基板となるGeやSiなどのウエハーに貼り替えた裏面メタル反射層付き発光素子を用いることもできる。
【0090】
<4.2.封止材>
封止材30は、発光素子20が載置されたパッケージ10における凹部14内に装入され、これにより発光素子20を被覆する。
封止材30は、外部環境からの外力や埃、水分などから発光素子20を保護すると共に発光素子20から出射される光を効率よく外部に放出することを可能とする。
また、発光素子20の屈折率と空気の屈折率とは大きく異なるため、発光素子20から出射された光は効率よく外部に出力されてこないのに対し、封止材30で発光素子20を被覆することにより、発光素子20から出射された光を効率よく外部に出力することができる。また、発光素子20から出射された光の一部は凹部14の底面14a及び側面14bに照射され、反射して、発光素子20が載置されている主面側に出射される。これにより主面側の発光出力の向上を図ることができる。
【0091】
封止材30を構成する樹脂組成物として熱硬化性樹脂組成物を使用することが好ましい。これによって、半導体発光装置用樹脂パッケージにおける樹脂成形体を構成する熱硬化性シリコーン樹脂組成物と封止材を構成する熱硬化性樹脂組成物とはそれぞれ熱硬化性樹脂である点で共通するため、化学的性質や膨張係数などの物理的性質が近似していることから密着性がよく、樹脂成形体と封止材との界面での剥離を防止することができる。
【0092】
封止材の主成分の熱硬化性樹脂としては、透明性、耐光性、耐熱性に優れ、長期間使用してもクラックや剥離を生じることなく半導体発光装置を封止することができる樹脂が用いられる。
熱硬化性樹脂としては、例えば、エポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂、アクリレート樹脂、ウレタン樹脂等が例示され、その一種又は二種以上が使用できる。この中でもエポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂が透明性、電気絶縁性に優れ、化学的に安定な点で好ましく、特にシリコーン樹脂、変性シリコーン樹脂は耐光性、耐熱性に優れ前記樹脂成形体と同種類の樹脂であることから密着性等に優れ好適に使用される。
封止材30は、発光素子20を保護するため硬質のものが好ましい。本発明に係る樹脂成形体はジオルガノシロキサン単位を多く含み応力緩和能に優れるので、硬質の封止材との接着面において外部応力や繰り返し点灯使用による剥離を起こしにくい。一方、特に熱衝撃が激しい環境で使用する場合には封止材自身がクラックや電極剥離を起こしやすいので、封止材4としてショアA15〜60程度のゴム弾性有する柔軟なものを好ましく用いることが出来る。
また、封止材30は、所望の機能を持たせるため、フィラー、拡散剤、顔料、蛍光体、反射性物質からなる群から選択される少なくとも1種を混合することもできる。ここで用いることができる拡散剤としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化ケイ素等が好ましい。また、所望外の波長の光をカットする目的で有機や無機の染料や顔料を含有させることができる。さらに、封止材30に、発光素子20からの光の波長を変換する蛍光体の一種又は二種以上を含有させることも好ましい。
また、封止材30は上記の助剤以外に紫外線吸収剤、及び酸化防止剤を含んでいてもよい。
【0093】
<2.6.蛍光体>
以下に説明する蛍光体と、封止材との組成物を、半導体発光デバイスのカップ内に注入して成型したり、適当な透明支持体に薄膜上に塗布したりすることにより、波長変換部材として用いることができる。
蛍光体としては、上述の半導体発光素子の発する光に直接的または間接的に励起され、異なる波長の光を発する物質であれば特に制限はなく、無機系蛍光体であっても有機系蛍光体であっても用いることができる。例えば、以下に例示するような青色蛍光体、緑色蛍光体、黄色蛍光体、橙色ないし赤色蛍光体の1種または2種以上を用いることができる。所望の発光色を得られるよう、用いる蛍光体の種類や含有量を適宜調整することが好ましい。
【0094】
<青色蛍光体>
青色蛍光体としては、発光ピーク波長が、通常420nm以上、中でも430nm以上、更には440nm以上、また、通常490nm以下、中でも480nm以下、更には470nm以下の範囲にあるものが好ましい。
具体的には、(Ca,Sr,Ba)MgAl1017:Eu、(Sr,Ca,Ba,Mg)10(PO46(Cl,F)2:Eu、(Ba,Ca,Mg,Sr)2SiO4:Eu、(Sr,Ca,Ba,Mg)10(PO46(Cl,F)2:Eu、(Ba,Ca,Sr)3MgSi28:Euが好ましく、(Ba,Sr)MgAl1017:Eu、(Ca,Sr,Ba)10(PO46(Cl,F)2:Eu、Ba3MgSi28:Euがより好ましい。
【0095】
<緑色蛍光体>
緑色蛍光体としては、発光ピーク波長が、通常500nm以上、中でも510nm以上、更には515nm以上、また、通常550nm以下、中でも542nm以下、更には535nm以下の範囲にあるものが好ましい。
具体的には、Y3(Al,Ga)512:Ce、CaSc24:Ce、Ca3(Sc,Mg)2Si312:Ce、(Sr,Ba)2SiO4:Eu、β型サイアロン、(Ba,Sr)3Si612:N2:Eu、SrGa24:Eu、BaMgAl1017:Eu,Mnが好ましい。
【0096】
<黄色蛍光体>
黄色蛍光体としては、発光ピーク波長が、通常530nm以上、中でも540nm以上、更には550nm以上、また、通常620nm以下、中でも600nm以下、更には580nm以下の範囲にあるものが好適である。
黄色蛍光体としては、Y3Al512:Ce、(Y,Gd)3Al512:Ce、(Sr,Ca,Ba,Mg)2SiO4:Eu、(Ca,Sr)Si222:Eu、(La,Y,Gd,Lu)3(Si,Ge)611:Ceが好ましい。
【0097】
<橙色ないし赤色蛍光体>
橙色ないし赤色蛍光体としては、発光ピーク波長が、通常570nm以上、中でも580nm以上、更には585nm以上、また、通常780nm以下、中でも700nm以下、更には680nm以下の範囲にあるものが好ましい。
具体的には、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Ca,Sr,Ba)Si(N,O)2:Eu、(Ca,Sr,Ba)AlSi(N,O)3:Eu、(Sr,Ba)3SiO5:Eu、(Ca,Sr)S:Eu、(La,Y)22S:Eu、Eu(ジベンゾイルメタン)3・1,10−フェナントロリン錯体等のβ−ジケトン系Eu錯体、カルボン酸系Eu錯体、K2SiF6:Mnが好ましく、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Sr,Ca)AlSi(N,O):Eu、(La,Y)22S:Eu、K2SiF6:Mnがより好ましい。
また、橙色蛍光体としては、(Sr,Ba)3SiO5:Eu、(Sr,Ba)2SiO4:Eu、(Ca,Sr,Ba)2Si5(N,O)8:Eu、(Ca,Sr,Ba)AlSi(N,O)3:Ceが好ましい。
【0098】
<4.4.保護素子>
半導体発光装置1には、さらに保護素子としてツェナーダイオードを設けることもできる。ツェナーダイオードは、発光素子20から離れて凹部14の底面14aの第1のリード11に載置することもできる。また、保護素子は第1のリード又は第2のリードの表面若しくは裏面に載置し、透光性封止材で被覆することもできる他、樹脂成形体13で被覆することもできる。
【0099】
<4.5.ヒートシンク(外部放熱部材)>
半導体発光装置1の裏面側に放熱接着剤を介してヒートシンクを設けることができる。この放熱接着剤は、樹脂成形体13の材質よりも熱伝導性が高いものが好ましい。放熱接着剤の材質は、電気絶縁性のエポキシ樹脂、シリコーン樹脂などを用いることができる。 ヒートシンクの材質は熱伝導性の良好なアルミ、銅、タングステン、金などが好ましい。半導体発光装置1の裏面側は平坦とすることにより、ヒートシンクの実装時の安定性を保持することができる。
【0100】
<5.他の実施形態>
以下、既に図1及び図2に例をとって説明した実施態様以外の本発明の半導体発光装置用樹脂パッケージを用いた半導体発光装置の具体的な実施形態を図を用いて説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。
【0101】
<5.1.図4の実施形態>
図4として概略断面図が示される半導体発光装置1Aは、いわゆるフリップチップ実装のサーフェスダウン型実装例であり、発光素子20は、半田バンプ41により第1のインナーリード11a上に設けられた金属メッキ11c、第2のインナーリード12a上に設けられた金属メッキ12cにより電気的に接続される。
本実施形態では、発光素子20の電極を下側にして実装するため、ワイヤや電極が光をさえぎらないので高い輝度をえることができる。
一方で、パッケージ10におけるリード電極間距離(連結部13a)を狭くする必要あり、発光素子20の載置位置にも高い精度が必要となる。
【0102】
<5.2.図5の実施形態>
図5として概略断面図が示される半導体発光装置1Bは、第1のアウターリード11b、第2のアウターリード12bが折り曲げられた構造を有するものである。
樹脂成形体13を構成する樹脂組成物として、ポリフタルアミド等の熱硬化性樹脂を用いた場合には、この構造をとる際アウターリード折り曲げ時や、熱衝撃を与えた際に樹脂成形体13と第1のリード、あるいは樹脂成形体13と第2のリード12との接触部分で剥離が起き、隙間ができるという問題がある。
これに対し、本願発明のパッケージの樹脂成形体13を形成する上述の熱硬化性シリコーン樹脂組成物は、柔軟性が高いため、リード付近で応力を緩和し、剥離しにくいので、図5に示す構造でも好適に使用できる。
柔らかい熱硬化性シリコーン樹脂組成物を用いる際には予め上記の構造にアウターリードを曲げ加工したリードを用いて成形すると、リード折り曲げ時による成形体のゆがみが生じないのでより好ましい。
【0103】
<5.3.図6の実施形態>
図6として概略断面図が示される半導体発光装置1Cは、リード11,12と樹脂成形体13とから構成されるパッケージ10の構造が液状射出成形(LIM)法に適しており、また、放熱が良好な構成となっている。
本発明のパッケージ成形においてはパッケージ材バインダとなるシリコーン樹脂が従来のエンプラ樹脂と比較して柔らかくタックがあるため型離れしにくかったり、成形体の薄肉部が離型時に千切れて型内に残ったりして連続成形を妨げる要因となりやすい。そのため、側面リフレクタ部の上縁やパッケージの角は角部を無くし曲面に近い形状とすることが好ましい。また、リフレクタの内壁面及び外壁面はパッケージ底面から離れるほどリフレクタが肉薄となるように、パッケージ底面に対して垂直に立ち上げた線から3±1度程度の傾斜を有することが好ましい。また、リードフレーム型では成形・型抜け時、パーツフィーダー・ロボットアーム等によるパッケージ個片移送時、また発光素子実装時などにパッケージへのねじり外力がかかりリードが成形体から剥離・脱落することがあるので、正負のインナーリードは例えばパッケージ上から見て凸型と凹型のようにパッケージ底面において相互に入りこみ、ねじり応力やワイヤボンディング時の局部応力に対して強い構造となっていることが好ましい。さらに、リードフレームは上下から成形体に挟まれた部分の面積が多い構造であることが好ましく、図6の実施態様では側面部と底面部の樹脂成形体がアウターリードを挟む構造になっている。
リードフレームがあらかじめ折り曲げてあると図5等のように成形後に折り曲げ加工するよりパッケージとリードフレームの界面に応力がかからず破損しにくいため好ましい。本実施態様においてはアウターリードは完成形状に予め折り曲げてあり、かつアウターリード裏面はパッケージ実装面と同一平面上にあり、実装安定性が高く放熱が良好である。
【実施例】
【0104】
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。
【0105】
実施例1として、樹脂成形体用樹脂として後述する液状熱硬化性ポリオルガノシロキサン(1)を用いた熱硬化性シリコーン樹脂組成物を使用し、図6の実施形態の形状の半導体発光装置用樹脂パッケージを作製した。また、同熱硬化性シリコーン樹脂組成物を用いて、各々試験片を成形した。
また、比較例1として、ポリフタルアミド樹脂組成物(チタニア系顔料、ガラス繊維を含有)である、ソルベイアドバンストポリマーズ株式会社製アモデルA4122を用いて製造された図5の実施形態の形状の市販品のパッケージ及び試験片を使用した。
それぞれのパッケージ及び試験片を用いて、反射率、発光素子実装時の初期輝度及び輝度維持率を比較した。
【0106】
[1.液状熱硬化性ポリオルガノシロキサン(1)の製造]
ビニル基含有ポリジメチルシロキサン組成物(ビニル基:0.3mmol/g含有、粘度3500mPa・s、白金錯体触媒8ppm含有)と、ヒドロシリル基含有ポリジメチルシロキサン組成物(ビニル基:0.1mmol/g含有、ヒドロシリル基:4.6mmol/g含有、粘度600mPa・s)と、硬化遅延成分((D)硬化速度制御剤)含有ポリジメチルシロキサン(ビニル基:0.2mmol/g含有、ヒドロシリル基:0.1mmol/g含有、アルキニル基:0.2mmol/g含有、500mPa・s)とを、100:10:5で混合し、(C)硬化触媒として白金濃度7ppmを含有する液状熱硬化性ポリオルガノシロキサン(1)を得た。
なお、この液状熱硬化性ポリオルガノシロキサン(1)の屈折率は、1.41であった。
【0107】
[2.樹脂成形体用材料の調製、反射率測定用試験片の作製]
(A)上記で得られた液状熱硬化性ポリオルガノシロキサン(1)60重量部、(B)白色顔料として一次粒子径0.3μm、二次粒子の中心粒径D501.2μm、アスペクト比1.48のα結晶形破砕状アルミナを35重量部、(E)流動性調整剤としてシリカ微粒子「AEROSIL RX200」(比表面積140m2/g)を5重量部の割合で配合し、自転公転式ミキサーを用いた攪拌により白色顔料とシリカ微粒子を前記(1)に分散させ、白色の樹脂成形体用材料を得た。これらの材料を、熱プレス機にて180℃、10kg/cm2、硬化時間240秒の条件で硬化させ、直径13mm、厚さ410μmの実施例1の円形の試験片(テストピース)を得た。
比較例1のポリフタルアミド樹脂については、ソルベイアドバンストポリマーズ株式会社製アモデルA4122の2mm厚のテストパネルを約10mm角の大きさに切り出したものを、試験片(テストピース)とした。
【0108】
[3.白色顔料の一次粒子径、および一次粒子のアスペクト比の測定方法]
実施例で用いた白色顔料(アルミナ粉体)のSEM観察により一次粒子径を計測した。粒子径にばらつきがある場合は、数点(例えば10点)をSEM観察し、その平均値を粒子径としてもとめた。特にばらつきが大きく、例えば、極微量含まれる微小粒子や粗大粒子を除き、小粒径と大粒径の差が5倍程度以上あるような場合には、その最大値および最小値を記録した。また、長軸長さ(最大長径)と短軸長さ(長径に垂直方向で最も長い部分の長さ)も計測し、一次粒子径については長軸の長さを採用し、長軸長さ(最大長径)を短軸長さ(長径に垂直方向で最も長い部分の長さ)で除した値をアスペクト比とした。
【0109】
[4.白色顔料の二次粒子の中心粒径D50の測定方法]
10〜20mgの白色顔料(アルミナ粉体)に0.2%のポリリン酸ナトリウム水溶液10gを加え、超音波振動でアルミナを分散させた。この分散液を用いて白色顔料の二次粒子の体積基準の中心粒径D50を日機装株式会社製 マイクロトラックMT3000IIにて測定した。なお、中心粒径D50は、積算%の体積基準粒度分布曲線が50%の横軸と交差するポイントの粒子径をいう。
【0110】
[5.試験片の反射率測定]
上記実施例1および比較例1の各試験片について、コニカミノルタ社製SPECTROPHOTOMETER CM−2600dを用いて測定径6mmにて360nmから740nmの波長における反射率を測定した。リード電極単独の反射率の値と合わせて、測定結果を図7、表1に示す。本発明の樹脂成形体用材料は、従来のパッケージ材であるポリフタルアミド樹脂やLED用に多用される銀メッキ銅リードフレームよりもバインダとして用いている樹脂及び反射材フィラーの種類・粒子径に由来し反射率高いため、長期使用時に着色劣化しやすい銀メッキ表面の電極露出面積を少なくすることが可能である。
【0111】
【表1】

【0112】
[6.樹脂成形体用材料の粘度測定]
実施例1の樹脂成形体用材料について、レオメトリクス社製RMS−800にてパラレルプレートを用い、測定温度25℃で粘度測定を行った。
その結果を表2、および図8に示す。実施例1の材料は、25℃における剪断速度1s-1および100s-1での粘度、並びにその傾きが樹脂成形体の液状射出成形に適していることがわかる。
【0113】
【表2】

【0114】
[7.パッケージの液状射出成形]
実施例1の樹脂成形体用材料を用いて、全面銀メッキした銅リードフレームと共に液状射出成形により半導体発光装置用樹脂パッケージを成形した。該パッケージは、樹脂部が縦3.2mm×横2.7mm×高さ1.4mm、開口部の直径2.4mmの凹部を有するカップ状、図6の実施形態の形状を有する表面実装型パッケージであった。成形は金型温度170℃、硬化時間20秒の条件で行った。成形したパッケージを観察したところ、バリの発生はなく、ショートモールド、離型不良の無いパッケージであった。成形したパッケージを液体窒素で凍結した状態でミクロトームにより切削し、パッケージ断面のSEM観察を行った。断面に露出したアルミナの一次粒子径は0.3μm、一次粒子のアスペクト比は1.48であった。
【0115】
[8.封止材の製造]
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製両末端シラノールジメチルシリコーンオイルXC96−723を385g、メチルトリメトキシシランを10.28g、及び、触媒としてジルコニウムテトラアセチルアセトネート粉末0.791gを、攪拌翼と、分留管、ジムロートコンデンサ及びリービッヒコンデンサとを取り付けた500ml三つ口フラスコ中に計量し、室温にて15分間触媒の粗大粒子が溶解するまで攪拌した。この後、反応液を100℃まで昇温して触媒を完全溶解し、ジムロートコンデンサを用いて100℃全還流下で30分間500rpmで攪拌しつつ初期加水分解を行った。
【0116】
続いて留出ラインをリービッヒコンデンサ側に切り替えて、窒素をSV20で液中に吹き込み生成メタノール及び水分、副生する低沸点ケイ素化合物を窒素に随伴させて留去しつつ100℃、500rpmにて1時間攪拌した。窒素をSV20で液中に吹き込みながらさらに130℃に昇温、保持しつつ5時間重合反応を継続し、粘度120mPa・sの反応液を得た。なお、「SV」は「Space Velocity」の略称であり、単位時間当たりの窒素吹き込み体積比(対反応液体積)を指す。
窒素の吹き込みを停止し反応液をいったん室温まで冷却した後、ナス型フラスコに反応液を移し、ロータリーエバポレーターを用いてオイルバス上120℃、圧力1kPaで50分間、微量に残留しているメタノール及び水分、低沸点ケイ素化合物を留去し、粘度230mPa・s、屈折率1.41の無溶剤の封止材液を得た。
【0117】
[9.発光装置の製造]
[9−1.発光装置の組み立て]
実施例1及び比較例1のパッケージを用い、次のようにして各々3種の発光装置を組み立てた。360nm、406nm、460nmの発光波長を有する半導体発光素子1個(定格電流20mA)をパッケージの凹部に露出しているインナーリード上の所定位置にシリコーンダイボンド材(信越化学工業(株)製 KER−3000−M2)を介して設置した後、該シリコーンダイボンド材を100℃で1時間、さらに150℃で2時間硬化させた。こうして半導体発光素子をパッケージ上に搭載した後、金線で該パッケージのリード電極と半導体発光素子を接続した。
【0118】
[9−2.半導体発光素子の封止]
9−1にて製造した発光装置のパッケージ凹部へ、開口部上縁と同じ高さになるように前述の封止材を滴下した後、恒温器にて90℃×2時間、次いで110℃×1時間、150℃×3時間の加熱硬化を行い半導体発光素子を透明(クリア)封止し、実施例1、比較例1のパッケージ各々について360nm、406nm、460nmの発光素子を有する3種の半導体発光装置を得た。
【0119】
[10.輝度の測定]
上記[9.発光装置の製造]にて製造した実施例1及び比較例1のパッケージを用いたクリア封止半導体発光装置を点灯電源にセットし、60mAの駆動電流を通電して点灯20秒後の輝度の測定を行った。結果を表3に示す。
表3に示すように、実施例1のパッケージを用いた透明封止の半導体発光装置は従来構成の比較例1のパッケージを用いた半導体発光装置と比較して、360nm、406nm、460nm何れの波長においても高い輝度を示すことがわかる。
なお、輝度の測定には、オーシャンオプティクス社製分光器「USB2000」(積算波長範囲:350−800nm、受光方式:100mmφの積分球)を用い、分光器本体を25℃恒温槽内に保持して測定した。なお、実施例1、比較例1ではLED装置の温度上昇を防ぐために、熱伝導性絶縁シートを介し3mm厚のアルミ板にて放熱を行なった。
【0120】
【表3】

【0121】
[11.接着性評価]
実施例1及び比較例1のパッケージを用いて、樹脂成形体とリードとの接着性の評価を行った。
具体的には、実施例1及び比較例1のパッケージの凹部に赤インクを滴下した後、70℃に設定したホットプレート上で6時間加熱し、デジタルスコープにて、樹脂成形体とリードの間から赤インクの漏れだしの有無を評価した。比較例1のパッケージでは、加熱前からインクの漏れだしが確認されたのに対し、実施例1のパッケージでは、加熱後もインクの漏れだしが確認されなかった。
このことから、実施例1のパッケージは、樹脂成形体とリードとの接着性が高く、加熱によっても隙間が生じないことが確認された。
【0122】
[12.線膨張係数の測定]
実施例1及び比較例1の試料反射率の測定に用いたものと同じものを準備し、下記の条件にて線膨張係数の測定を行った。

分析装置 ブルカー・エイエックスエスTMA4000(圧縮法(3mmφ))
測定温度範囲 25〜300℃
昇温速度 10℃/min
荷重 10g
雰囲気 100mL/min 窒素気流下
なお、試料面積はプローブ(3mmφ)におさまる大きさとした。
測定結果を表4に示す。また、0〜50℃における平均線膨張係数と200〜250℃における平均線膨張係数の比を表5に示す。
【0123】
【表4】

【0124】
【表5】

【0125】
表4に示すように、実施例1の試料の線膨張係数は、従来パッケージ用成形体として用いられる比較例1のポリフタルアミド樹脂組成物と比較し、室温付近では大きな値を示したが、温度上昇してもほとんど数値が変わらず、リフロー温度に近い250℃付近では比較例1のポリフタルアミド樹脂の線膨張係数より小さな値となった。また、表5で示すように、実施例1と比較例1の上記温度域における平均線膨張係数の比を対比すると、比較例1では、室温付近(0〜50℃)とリフロー温度付近(200〜250℃)とで、3倍平均線膨張率が異なるのに対し、実施例1では、平均線膨張係数の比が1に近い。
このことから、実施例1の成形体は、高温使用時にも従来パッケージ成形体より膨張しにくく、成形時にも内部応力発生しにくいことがわかる。
【産業上の利用可能性】
【0126】
本発明によれば、屋内外の照明器具、ディスプレイ、携帯電話や液晶テレビ、デジタルサイネージなどのバックライト、カメラのフラッシュライト、前照灯などの車載照明、検査用や医療用の照明、植物工場などの各種照明用光源としてに好適に利用することができる、半導体発光装置が提供される。
【符号の説明】
【0127】
1,1A〜1C 半導体発光装置
10 (半導体発光装置用)パッケージ
11 第1のリード
11a 第1のインナーリード部
11b 第1のアウターリード部
11c 金属メッキ
12 第2のリード
12a 第2のインナーリード部
12b 第2のアウターリード部
12c 金属メッキ
13 (半導体発光装置用)樹脂成形体
13a (樹脂成形体の)連結部
14 凹部
14a 底面
14b 側面
20 発光素子
21 第1の電極
22 第2の電極
30 封止材
40 ワイヤ

【特許請求の範囲】
【請求項1】
半導体発光素子を載置するための凹部を有する半導体発光装置用樹脂パッケージであって、
該樹脂パッケージの凹部は底面と側面とからなり、少なくとも前記凹部側面を形成する(A)ポリオルガノシロキサン、(B)一次粒子のアスペクト比が1.2以上4.0以下、一次粒子径が0.1μm以上2.0μm以下の白色顔料、および(C)硬化触媒を含有する熱硬化性シリコーン樹脂組成物から形成される樹脂成形体と、
前記凹部底面の一部を形成するように対応して配置された少なくとも1対の正及び負のリードとを、
液状射出成形法によって、両者の接合面を隙間なく一体化して形成されてなることを特徴とする半導体発光装置用樹脂パッケージ。
【請求項2】
前記熱硬化性シリコーン樹脂組成物の25℃における剪断速度100s-1での粘度が10Pa・s以上10,000Pa・s以下であることを特徴とする請求項1に記載の半導体発光装置用樹脂パッケージ。
【請求項3】
前記熱硬化性シリコーン樹脂組成物の25℃における剪断速度100s-1での粘度に対する剪断速度1s-1での粘度の比が15以上であることを特徴とする請求項1又は2に記載の半導体発光装置用樹脂パッケージ。
【請求項4】
前記(B)白色顔料の二次粒子の中心粒径が0.2μm以上5μm以下であることを特徴とする請求項1から3のいずれか1項に記載の半導体発光装置用樹脂パッケージ。
【請求項5】
前記(B)白色顔料がアルミナ及び/又はチタニアであることを特徴とする請求項1から4のいずれか1項に記載の半導体発光装置用樹脂パッケージ。
【請求項6】
前記(B)白色顔料の合計量が、前記熱硬化性シリコーン樹脂組成物全体に対して、60重量%以上90重量%以下であることを特徴とする請求項1から5のいずれか1項に記載の半導体発光装置用樹脂パッケージ。
【請求項7】
前記樹脂成形体が、厚さ0.4mmの成形体試料について波長400nmの条件で測定した光反射率が60%以上である樹脂成形体であることを特徴とする請求項1から6のいずれか1項に記載の半導体発光装置用樹脂パッケージ。
【請求項8】
前記熱硬化性シリコーン樹脂組成物から得られる成形品の200℃以上250℃以下における平均線膨張係数が100ppm/℃以上200ppm/℃以下であり、かつ、0℃以上50℃以下における平均線膨張係数に対する200℃以上250℃以下における平均線膨張係数の比が1以上1.3以下であることを特徴とする請求項1から7のいずれか1項に記載の半導体発光装置用樹脂パッケージ。
【請求項9】
請求項1から8のいずれか1項に記載の半導体発光装置用パッケージと、前記パッケージの凹部底面に搭載された半導体発光素子と、前記凹部内の半導体発光素子を覆う封止材とを有することを特徴とする半導体発光装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−4922(P2013−4922A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−137726(P2011−137726)
【出願日】平成23年6月21日(2011.6.21)
【出願人】(000005968)三菱化学株式会社 (4,356)
【Fターム(参考)】