説明

半導体素子の作製方法

【課題】閾値電圧が制御され、動作速度が速く、製造工程が比較的簡単であり、十分な信頼性を有する、酸化物半導体を用いた薄膜トランジスタ、及び薄膜トランジスタの作製方法を提供することを課題の一つとする。
【解決手段】酸化物半導体層に含まれるキャリア濃度に影響する不純物、例えば、水素原子や、HOなど水素原子を含む化合物を排除すればよい。酸化物半導体層に接して未結合手に代表される欠陥を多く含む酸化物絶縁層を形成し、当該酸化物絶縁層に不純物を拡散させ、上記酸化物半導体層中の不純物濃度を低減すればよい。また、酸化物半導体層、又は酸化物半導体層に接する酸化物絶縁層を、クライオポンプを用いて排気して不純物濃度が低減された成膜室内で成膜すればよい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体素子、及び半導体素子の成膜方法に関する。具体的には、酸化物半導体
を含む半導体素子、及びその作製方法に関する。
【背景技術】
【0002】
液晶表示装置に代表されるように、ガラス基板などの平板に形成される薄膜トランジスタ
(TFT:Thin Film Transistorともいう)は、主にアモルファス
シリコン、または多結晶シリコンなどの半導体材料を用いて作製される。アモルファスシ
リコンを用いたTFTは、電界効果移動度が低いもののガラス基板の大面積化に対応する
ことができ、一方、多結晶シリコンを用いたTFTは、電界効果移動度が高いもののレー
ザアニールなどの結晶化工程が必要であり、ガラス基板の大面積化には必ずしも適応しな
いといった特性を有している。
【0003】
これに対し、半導体材料として酸化物半導体を用いてTFTを作製し、該TFTを電子デ
バイスや光デバイスに応用する技術が注目されている。例えば、半導体材料として酸化亜
鉛、In−Ga−Zn−O系酸化物半導体を用いてTFTを作製し、画像表示装置のスイ
ッチング素子などに用いる技術が特許文献1及び特許文献2で開示されている。
【0004】
酸化物半導体にチャネル形成領域(チャネル領域ともいう)を設けたTFTは、アモルフ
ァスシリコンを用いたTFTよりも高い電界効果移動度が得られている。酸化物半導体層
はスパッタリング法などによって300℃以下の温度で膜形成が可能であり、多結晶シリ
コンを用いたTFTよりも製造工程が簡単である。
【0005】
このような酸化物半導体を用いてガラス基板、プラスチック基板などにTFTを形成し、
液晶ディスプレイ、エレクトロルミネセンスディスプレイ(ELディスプレイともいう)
または電子ペーパなどの表示装置への応用が考えられている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2007−123861号公報
【特許文献2】特開2007−96055号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、酸化物半導体を用いて作製した半導体素子の特性は未だ充分なものとは言
えない。例えば、酸化物半導体層を用いた薄膜トランジスタには、制御された閾値電圧、
速い動作速度、製造工程が比較的簡単であること、そして十分な信頼性が求められている
。本発明は、このような技術的背景のもとでなされたものである。
【0008】
従って本発明の一態様は、酸化物半導体層を用いた半導体素子の信頼性の向上を課題とす
る。具体的には、閾値電圧が制御された酸化物半導体を用いた薄膜トランジスタを提供す
ることを課題の一つとする。また、動作速度が速く、製造工程が比較的簡単であり、十分
な信頼性を有する、酸化物半導体を用いた薄膜トランジスタを提供することを課題の一つ
とする。
【0009】
また、閾値電圧が制御され、動作速度が速く、製造工程が比較的簡単であり、十分な信頼
性を有する、酸化物半導体を用いた薄膜トランジスタの作製方法を提供することを課題の
一つとする。
【課題を解決するための手段】
【0010】
酸化物半導体を用いた薄膜トランジスタの閾値電圧は酸化物半導体層に含まれるキャリア
濃度に影響される。また、酸化物半導体層に含まれるキャリア濃度は、酸化物半導体層に
含まれる不純物により発生する。例えば、成膜された酸化物半導体層に含まれる水素原子
や、HOに代表される水素原子を含む化合物や、炭素原子を含む化合物は、酸化物半導
体層のキャリア濃度を高める効果を有する。
【0011】
その結果、水素原子や、HOに代表される水素原子を含む化合物や、炭素原子を含む化
合物を含む酸化物半導体層を用いて作製した薄膜トランジスタは、閾値電圧を制御するこ
とが困難である。
【0012】
上記目的を達成するために、酸化物半導体層に含まれるキャリア濃度に影響する不純物、
例えば、水素原子や、HOなど水素原子を含む化合物や、炭素原子を含む化合物を排除
すればよい。具体的には、半導体素子が有する酸化物半導体層が含む水素濃度を1×10
18cm−3以上2×1020cm−3以下とすればよい。
【0013】
また、未結合手に代表される欠陥を多く含む酸化物絶縁層を、酸化物半導体層に接して形
成し、酸化物半導体層に含まれる水素原子や、HOなど水素原子を含む化合物や、炭素
原子を含む化合物を、上記酸化物絶縁層に拡散させ、上記酸化物半導体層中の不純物濃度
を低減すればよい。
【0014】
また、酸化物半導体層、又は酸化物半導体層に接する酸化物絶縁層を、クライオポンプを
用いて排気して不純物濃度が低減された成膜室内で、成膜すればよい。
【0015】
すなわち、本発明の一態様は、基板上にゲート電極を形成し、ゲート電極上にゲート絶縁
膜を形成し、ゲート絶縁膜を介してゲート電極上に酸化物半導体層を形成し、酸化物半導
体層に接して、端部をゲート電極上に重畳するソース電極、及びドレイン電極を形成し、
ソース電極、及びドレイン電極間の酸化物半導体層を覆う酸化物絶縁層を形成する酸化物
半導体素子の作製方法である。なお、減圧状態に保持された反応室内に基板を保持し、基
板を室温又は600℃未満の温度に加熱し、反応室内の残留水分を除去しつつ、水素及び
水分が除去されたスパッタガスを導入し、反応室内に装着されたターゲットを用いて基板
にゲート絶縁層を形成する。また、反応室内に装着された金属酸化物をターゲットに用い
てゲート絶縁層上に酸化物半導体層を形成することを特徴とする酸化物半導体素子の作製
方法である。
【0016】
また、上記酸化物半導体素子の作製方法において、クライオポンプを用いて排気すること
で残留水分を除去することを特徴とする酸化物半導体素子の作製方法である。
【0017】
また、上記酸化物半導体素子の作製方法において、金属酸化物ターゲットは、酸化亜鉛を
主成分として含む金属酸化物であることを特徴とする酸化物半導体素子の作製方法である

【0018】
また、上記酸化物半導体素子の作製方法において、金属酸化物ターゲットは、インジウム
、ガリウム及び亜鉛を含む金属酸化物であることを特徴とする酸化物半導体素子の作製方
法である。
【0019】
また、本発明の一態様は、基板上にゲート電極を形成し、ゲート電極上にゲート絶縁膜を
形成し、ゲート絶縁膜を介してゲート電極上に酸化物半導体層を形成し、酸化物半導体層
に接して、端部をゲート電極上に重畳するソース電極、及びドレイン電極を形成し、ソー
ス電極、及びドレイン電極間の酸化物半導体層を覆う酸化物絶縁層を形成する酸化物半導
体素子の作製方法である。なお、減圧状態に保持された加熱室内にゲート絶縁膜が形成さ
れた基板を保持し、加熱室内の残留水分を除去しつつ、基板を室温以上400℃未満の温
度に予備加熱し、減圧状態に保持された反応室内に基板を保持し、基板を室温又は600
℃未満の温度に加熱し、反応室内の残留水分を除去しつつ、反応室内に装着された金属酸
化物をターゲットに用いてゲート絶縁層上に酸化物半導体層を形成することを特徴とする
酸化物半導体素子の作製方法である。
【0020】
また、上記酸化物半導体素子の作製方法において、クライオポンプを用いて排気すること
で残留水分を除去することを特徴とする酸化物半導体素子の作製方法である。
【0021】
また、上記酸化物半導体素子の作製方法において、金属酸化物ターゲットは、酸化亜鉛を
主成分として含む金属酸化物であることを特徴とする酸化物半導体素子の作製方法である

【0022】
また、上記酸化物半導体素子の作製方法において、前記金属酸化物ターゲットは、インジ
ウム、ガリウム、亜鉛を含む金属酸化物であることを特徴とする酸化物半導体素子の作製
方法である。
【0023】
すなわち、本発明の一態様は、基板上にゲート電極と、ゲート電極上にゲート絶縁膜と、
ゲート絶縁膜を介して前記ゲート電極上に酸化物半導体層と、酸化物半導体層に接してゲ
ート電極に端部を重畳するソース電極、及びドレイン電極と、ソース電極、及びドレイン
電極の間に形成される前記酸化物半導体層を覆う酸化物絶縁層とを有する薄膜トランジス
タである。なお、酸化物半導体層と前記酸化物絶縁層の界面の水素濃度が5×1019
−3以上1×1022cm−3以下であることを特徴とする薄膜トランジスタである。
【0024】
すなわち、本発明の一態様は、基板上にゲート電極と、ゲート電極上にゲート絶縁層と、
ゲート絶縁層を介してゲート電極上に酸化物半導体層と、酸化物半導体層に接し、ゲート
電極に端部を重畳するソース電極、及びドレイン電極と、ソース電極、及びドレイン電極
の間に形成される酸化物半導体層を覆う酸化物絶縁層とを有する薄膜トランジスタである
。なお、酸化物半導体層と酸化物絶縁層の界面の水素濃度に比べ、界面から30nm離れ
た部分における前記酸化物絶縁層の水素濃度が低く、その差が5倍以上100倍以下であ
る薄膜トランジスタである。
【0025】
すなわち、本発明の一態様は、基板上にゲート電極と、ゲート電極上にゲート絶縁膜と、
ゲート絶縁膜を介してゲート電極上に酸化物半導体層と、酸化物半導体層に接し、ゲート
電極に端部を重畳するソース電極、及びドレイン電極と、ソース電極、及びドレイン電極
の間に形成される酸化物半導体層を覆う酸化物絶縁層とを有する薄膜トランジスタである
。なお、酸化物半導体層に含まれる水素濃度が1×1018cm−3以上2×1020
−3以下である薄膜トランジスタである。
【0026】
なお、本明細書において、Aの上にBが形成されている、あるいは、A上にBが形成され
ている、と明示的に記載する場合は、Aの上にBが直接接して形成されていることに限定
されない。直接接してはいない場合、つまり、AとBとの間に別の対象物が介在する場合
も含むものとする。ここで、A、Bは、対象物(例えば装置、素子、回路、配線、電極、
端子、膜、または層など)であるとする。
【0027】
従って例えば層Aの上または層A上に層Bが形成されていると明示的に記載されている場
合は、層Aの上に直接接して層Bが形成されている場合と、層Aの上に直接接して別の層
(例えば層Cや層Dなど)が形成されていて、その上に直接接して層Bが形成されている
場合とを含むものとする。なお、別の層(例えば層Cや層Dなど)は、単層でもよいし、
複層でもよい。
【0028】
なお、本明細書中で連続成膜とは、第1の成膜工程から第2の成膜工程までの一連のプロ
セス中、被処理基板の置かれている雰囲気が大気等の汚染雰囲気に触れることなく、常に
真空中または不活性ガス雰囲気(窒素雰囲気または希ガス雰囲気)で制御されていること
を言う。連続成膜を行うことにより、清浄化された被処理基板の水分等の再付着を回避し
て成膜を行うことができる。
【0029】
また、本明細書中において、発光装置とは画像表示デバイス、発光デバイス、もしくは光
源(照明装置含む)を指す。また、発光装置にコネクター、例えばFPC(Flexib
le printed circuit)もしくはTAB(Tape Automate
d Bonding)テープもしくはTCP(Tape Carrier Packag
e)が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けら
れたモジュール、または発光素子が形成された基板にCOG(Chip On Glas
s)方式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むもの
とする。
【発明の効果】
【0030】
本発明によれば、信頼性の高い酸化物半導体層を用いた半導体素子を提供できる。具体的
には、閾値電圧が制御された酸化物半導体を用いた薄膜トランジスタを提供できる。また
、動作速度が速く、製造工程が比較的簡単であり、十分な信頼性を有する、酸化物半導体
を用いた薄膜トランジスタを提供できる。
【0031】
また、閾値電圧が制御され、動作速度が速く、製造工程が比較的簡単であり、十分な信頼
性を有する、酸化物半導体を用いた薄膜トランジスタの作製方法を提供できる。
【図面の簡単な説明】
【0032】
【図1】実施の形態に係わる半導体素子を説明する図。
【図2】実施の形態に係わる半導体素子の作製工程を説明する図。
【図3】実施の形態に係わる成膜装置を説明する図。
【図4】実施の形態に係わる成膜装置を説明する図。
【図5】実施の形態に係わる成膜装置を説明する図。
【図6】実施例に係わるSIMS分析結果を説明する図。
【発明を実施するための形態】
【0033】
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定さ
れず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し
得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の
記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において
、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、
その繰り返しの説明は省略する。
【0034】
(実施の形態1)
本実施の形態では、半導体素子の作製方法について説明する。なお、本実施の形態では、
一例として、図1に示す薄膜トランジスタの構成及びその作製方法について説明する。
【0035】
本実施の形態の薄膜トランジスタ151の断面図を図1に示す。薄膜トランジスタ151
は、基板100上にゲート電極111a、及びゲート配線層111bを有し、ゲート電極
111a、及びゲート配線層111b上にゲート絶縁層102が形成されている。ゲート
絶縁層102は第1のゲート絶縁層102a、及び第2のゲート絶縁層102bを積層し
て形成されている。ゲート絶縁層102を介してゲート電極111a上に酸化物半導体層
123が形成されている。ゲート電極111aに端部を重畳してソース電極層、及びドレ
イン電極層(115a、115b)が形成されている。また、酸化物絶縁層107が、ゲ
ート電極111a上のソース電極層、及びドレイン電極層(115a、115b)に挟ま
れた酸化物半導体層123に接して設けられ、酸化物絶縁層107上に保護絶縁層108
が設けられている。
【0036】
また、ゲート配線層111bに到達するコンタクトホール128がゲート絶縁層102に
形成され、コンタクトホール128を介してゲート配線層111bと第2配線層115c
が接続されている。
【0037】
本実施の形態の薄膜トランジスタ151の作製方法について図2(A)、図2(B)、図
2(C)、及び図2(D)を用いて説明する。図2は本実施の形態における薄膜トランジ
スタの作製方法を示す断面図である。
【0038】
まず、基板100に用いるガラス基板としては、後の加熱処理の温度が高い場合には、歪
み点が730℃以上のものを用いると良い。また、ガラス基板には、例えば、アルミノシ
リケートガラス、アルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材
料が用いられている。なお、一般に酸化ホウ素と比較して酸化バリウム(BaO)を多く
含ませることで、より実用的な耐熱ガラスが得られる。このため、BよりBaOを
多く含むガラス基板を用いることが好ましい。
【0039】
なお、上記のガラス基板に代えて、セラミック基板、石英基板、サファイア基板などの絶
縁体でなる基板を用いても良い。他にも、結晶化ガラスなどを用いることができる。
【0040】
また、下地膜となる絶縁膜を基板100と、次に説明するゲート電極111a、ゲート配
線層111bの間に設けてもよい。下地膜は、基板100からの不純物元素の拡散を防止
する機能があり、窒化珪素膜、酸化珪素膜、窒化酸化珪素膜、又は酸化窒化珪素膜から選
ばれた一又は複数の膜による積層構造により形成することができる。
【0041】
絶縁表面を有する基板100上に導電膜を形成した後、第1のフォトリソグラフィ工程に
よりゲート電極111a、及びゲート配線層111bを含む第1配線層を形成する。なお
、形成されたゲート電極の端部はテーパ形状であることが好ましい。
【0042】
なお、レジストマスクをインクジェット法で形成してもよい。レジストマスクをインクジ
ェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。
【0043】
ゲート電極111a、及びゲート配線層111bを形成する導電膜としては、Al、Cr
、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を主成分とする合金か、
上述した元素を組み合わせた合金膜等が挙げられる。また、上述した金属に加え、銅、ネ
オジム、またはスカンジウムなどの金属材料またはこれらを主成分とする合金材料を用い
て、単層でまたは積層して形成することもできる。なお、透光性を有する導電膜を用いて
ゲート電極を形成することもできる。透光性を有する導電膜としては、透明導電性酸化物
膜等をその例に挙げることができる。
【0044】
次いで、ゲート絶縁層102と、酸化物半導体層103を連続成膜する。本実施の形態で
はスパッタリング法により、ゲート絶縁層102と、酸化物半導体層103を連続成膜す
る。ここでは、被成膜基板の予備加熱室と、珪素もしくは酸化珪素(人工石英)ターゲッ
トと、酸化物半導体層用のターゲットを備えたマルチチャンバー型のスパッタリング装置
を用いる。
【0045】
まず、予備加熱室でゲート電極111a、及びゲート配線層111bが形成された基板1
00を200℃以上の温度で予備加熱し、基板100に吸着した不純物を除去する。不純
物としては、水分がその例に挙げられる。
【0046】
本実施の形態では、基板の到達温度を200℃とし、減圧雰囲気下で予備加熱を行う。
【0047】
次いで、ゲート絶縁層102となる絶縁膜を、ゲート電極111a、及びゲート配線層1
11bを覆うように形成する。
【0048】
ゲート絶縁層102は、酸化物半導体層に接する酸化物絶縁層を含んでいればよい。例え
ば酸化珪素層を単層で用いることができる。また、窒化珪素層、酸化窒化珪素層、乃至窒
化酸化珪素層と、酸化物半導体層に接する酸化珪素層を積層して用いることができる。な
お、膜中にリン(P)や硼素(B)がドープされていても良い。
【0049】
本実施の形態では、第1のゲート絶縁層102aとしてスパッタリング法により窒化珪素
層(SiN(y>0))を形成し、第1のゲート絶縁層102a上に第2のゲート絶縁
層102bとして酸化珪素層(SiO(x>0))を積層して、膜厚100nmのゲー
ト絶縁層102とする。
【0050】
次いで、酸化物半導体層をゲート絶縁層102上に形成する。
【0051】
まず、酸化物半導体層103を成膜する。酸化物半導体層103は、In−Ga−Zn−
O系膜、In−Sn−Zn−O系、In−Al−Zn−O系、Sn−Ga−Zn−O系、
Al−Ga−Zn−O系、Sn−Al−Zn−O系、In−Zn−O系、In−Ga−O
系、Sn−Zn−O系、Al−Zn−O系、In−O系、Sn−O系、Zn−O系の酸化
物半導体層を用いる。また、酸化物半導体層は、希ガス(代表的にはアルゴン)雰囲気下
、酸素雰囲気下、又は希ガス(代表的にはアルゴン)及び酸素雰囲気下においてスパッタ
法により形成することができる。また、スパッタ法を用いる場合、SiOを2重量%以
上10重量%以下含むターゲットを用いて成膜を行い、酸化物半導体層に結晶化を阻害す
るSiOx(X>0)を含ませ、後の工程で行う脱水化または脱水素化のための加熱処理
の際に酸化物半導体層が結晶化してしまうのを抑制することが好ましい。
【0052】
ここでは、In、Ga、及びZnを含む金属酸化物ターゲット(組成比として、In
:Ga:ZnO=1:1:1[mol%]、または、In:Ga:Zn=1:1
:0.5[at.%])を用いて、基板とターゲットの間との距離を100mm、圧力0
.6Pa、直流(DC)電源0.5kW、酸素(酸素流量比率100%)雰囲気下で成膜
する。なお、パルス直流(DC)電源を用いると、ごみが軽減でき、膜厚分布も均一とな
るために好ましい。本実施の形態では、酸化物半導体層103として、In−Ga−Zn
−O系金属酸化物ターゲットを用いてスパッタ法によりIn−Ga−Zn−O系膜を成膜
する。
【0053】
また、金属酸化物ターゲットの充填率は90%以上100%以下、好ましくは95%以上
99.9%以下である。充填率の高い金属酸化物ターゲットを用いることにより、成膜し
た酸化物半導体層は緻密な膜となる。
【0054】
なお、酸化物半導体層を成膜する際に導入する酸素ガスや、窒素、ヘリウム、ネオン、ア
ルゴン等の希ガスは、水、水素などの不純物が含まれないことが好ましく、ガスの純度を
6N(99.9999%)以上、好ましくは7N(99.99999%)以上、(即ち不
純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが望ましい。
【0055】
なお、酸化物半導体層103は好ましくは5nm以上30nm以下とする。なお、適用す
る酸化物半導体材料により適切な厚みは異なり、材料に応じて適宜厚みを選択すればよい

【0056】
本実施の形態においては、酸化物半導体層103をゲート絶縁層102上に連続成膜する
。ここで用いるマルチチャンバー型のスパッタリング装置は、珪素もしくは酸化珪素(人
工石英)ターゲットと、酸化物半導体層用のターゲットを備えており、少なくとも、酸化
物半導体層用のターゲットを設けた成膜室は、排気手段としてクライオポンプを有してい
る。なお、排気手段としては、ターボポンプにコールドトラップを加えたものであっても
よい。
【0057】
クライオポンプを用いて排気した成膜室は、例えば、水素原子や、HOなど水素原子を
含む化合物や、炭素原子を含む化合物等が排気されるため、当該成膜室で成膜した酸化物
半導体層に含まれる不純物の濃度を低減できる。
【0058】
特に、本実施例の一態様の半導体素子に好適な酸化物半導体層は、二次イオン質量分析(
SIMS:Secondary Ion Mass Spectrometry)による
水素濃度の定量結果が1×1018cm−3以上2×1020cm−3以下好ましくは2
×1018cm−3以上5×1019cm−3以下に抑制された酸化物半導体層である。
【0059】
酸化物半導体層103は基板を加熱しながら成膜する。本実施の形態においては、基板温
度を100℃以上600℃以下好ましくは200℃以上400℃以下とする。基板を加熱
しながら成膜することにより、成膜した酸化物半導体層に含まれる不純物濃度を低減する
ことができる。また、スパッタリングによる損傷が軽減される。
【0060】
スパッタ法にはスパッタ用電源に高周波電源を用いるRFスパッタ法と、DCスパッタ法
があり、さらにパルス的にバイアスを与えるパルスDCスパッタ法もある。RFスパッタ
法は主に絶縁膜を成膜する場合に用いられ、DCスパッタ法は主に金属導電膜を成膜する
場合に用いられる。
【0061】
また、材料の異なるターゲットを複数設置できる多元スパッタ装置もある。多元スパッタ
装置は、同一チャンバーで異なる材料膜を積層成膜することも、同一チャンバーで複数種
類の材料を同時に放電させて成膜することもできる。
【0062】
また、チャンバー内部に磁石機構を備えたマグネトロンスパッタ法を用いるスパッタ装置
や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるECRスパッタ
法を用いるスパッタ装置がある。
【0063】
また、スパッタ法を用いる成膜方法として、成膜中にターゲット物質とスパッタガス成分
とを化学反応させてそれらの化合物薄膜を形成するリアクティブスパッタ法や、成膜中に
基板にも電圧をかけるバイアススパッタ法もある。
【0064】
なお、酸化物半導体層103をスパッタ法により成膜する前に、アルゴンガスを導入して
プラズマを発生させる逆スパッタを行い、ゲート絶縁層102の表面に付着しているゴミ
を除去することが好ましい。逆スパッタとは、アルゴン雰囲気下でRF電源を用いて電圧
を印加して、基板近傍にプラズマを形成して表面を改質する方法である。なお、アルゴン
雰囲気に代えて窒素、ヘリウム、酸素などを用いてもよい。なお、この段階での断面図を
図2(A)に示す。
【0065】
次いで、酸化物半導体層103を第2のフォトリソグラフィ工程により島状に加工し、酸
化物半導体層113を形成する。
【0066】
なお、島状の酸化物半導体層113を形成するためのレジストマスクをインクジェット法
で形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用
しないため、製造コストを低減できる。
【0067】
次いで、コンタクトホール128を第3のフォトリソグラフィ工程によりゲート絶縁層1
02に形成する。なお、次工程の導電膜を形成する前に逆スパッタを行い、酸化物半導体
層113及びゲート絶縁層102の表面に付着しているレジスト残渣などを除去すること
が好ましい。また、この段階での断面図を図2(B)に示す。
【0068】
なお、本実施の形態では、第3のフォトリソグラフィ工程によりゲート絶縁層を選択的に
エッチングしてゲート配線層111bに達するコンタクトホール128を形成するが、こ
の方法に限定されない。酸化物半導体層103を成膜した後、酸化物半導体層103上に
レジストマスクを形成し、ゲート電極111aに達するコンタクトホールを形成してもよ
い。コンタクトホールを形成した後、レジストマスクを除去し、別のフォトマスクを用い
て酸化物半導体層103上にレジストマスクを形成し、第2の酸化物半導体層を選択的に
エッチングして島状の酸化物半導体層113に加工する工程としてもよい。
【0069】
次いで、薄膜トランジスタのソース電極層及びドレイン電極層等となる導電膜をゲート絶
縁層102、酸化物半導体層113、及びコンタクトホール128を介してゲート配線層
111b上に成膜する。
【0070】
導電膜としては、Ti、Mo、W、Al、Cr、Cu、Ta、から選ばれた元素、または
上述した元素を主成分とする合金か、上述した元素を組み合わせた合金等を用いる。導電
膜は、上述した元素を含む単層に限定されず、二層以上の積層を用いることができる。本
実施の形態では、チタン膜(膜厚100nm)とアルミニウム膜(膜厚200nm)とチ
タン膜(膜厚100nm)の3層構造の導電膜を形成する。また、Ti膜に変えて窒化チ
タン膜を用いてもよい。
【0071】
なお、200℃〜600℃の熱処理を行う場合には、この熱処理に耐える耐熱性を導電膜
に持たせることが好ましい。例えばヒロック防止元素が添加されたアルミニウム合金や、
耐熱性導電膜と積層した導電膜を用いることが好ましい。なお、導電膜の成膜方法は、ス
パッタ法や真空蒸着法(電子ビーム蒸着法など)や、アーク放電イオンプレーティング法
や、スプレー法を用いる。また、銀、金、銅などの導電性ナノペーストを用いてスクリー
ン印刷法、インクジェット法などを用いて吐出し焼成して形成しても良い。
【0072】
次いで、第4のフォトリソグラフィ工程によりレジストマスクを形成し、導電膜を選択的
にエッチング除去してソース電極層、ドレイン電極層を含む第2配線層(115a、11
5b、115c)を形成する(図2(C)参照。)。また、図2(C)に示すように、コ
ンタクトホール128介してゲート配線層111bに第2配線層115cが直接接続する

【0073】
また、第4のフォトリソグラフィ工程においては、酸化物半導体層上に接する部分の導電
膜のみを選択的に除去する。酸化物半導体層上に接する部分の導電膜のみを選択的に除去
するため、アルカリ性のエッチャントとしてアンモニア過水(組成の重量比として、過酸
化水素:アンモニア:水=5:2:2)などを用いると、金属導電膜を選択的に除去し、
In−Ga−Zn−O系酸化物半導体からなる酸化物半導体層を残存させることができる

【0074】
また、エッチング条件にもよるが第4のフォトリソグラフィ工程において酸化物半導体層
113の露出領域がエッチングされる場合がある。その場合、ソース電極層とドレイン電
極層に挟まれる領域(115aと115bに挟まれる領域)の酸化物半導体層113の厚
みは、ゲート電極111a上でソース電極層が重なる領域の酸化物半導体層113の厚み
、又はドレイン電極層が重なる領域の酸化物半導体層の厚みに比べ、薄くなる。(図2(
C)参照)。
【0075】
なお、ソース電極層及びドレイン電極層を含む第2配線層(115a、115b、及び1
15c)を形成するためのレジストマスクをインクジェット法で形成してもよい。レジス
トマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを
低減できる。
【0076】
次いで、酸化物絶縁層107を、ゲート絶縁層102、酸化物半導体層113を第2配線
層上に形成する。この段階で、酸化物半導体層113と酸化物絶縁層107が接する領域
が形成される。なお、ゲート電極111aに重畳し、酸化物絶縁層107と酸化物絶縁層
であるゲート絶縁層102に接して挟まれる酸化物半導体層113の領域がチャネル形成
領域となる。
【0077】
酸化物半導体層に接する酸化物絶縁層は、水分や、水素イオンや、OHなどの不純物を
含まず、これらが外部から侵入することをブロックする無機絶縁膜を用いて形成する。代
表的には酸化珪素膜、窒化酸化珪素膜、酸化アルミニウム膜、または酸化窒化アルミニウ
ムなどを用いる。また、酸化物絶縁層107は、少なくとも1nm以上の膜厚とし、スパ
ッタリング法など、酸化物絶縁層に水、水素等の不純物を混入させない方法を適宜用いて
形成することができる。
【0078】
本実施の形態では、スパッタリング法を用いて酸化物絶縁層として酸化珪素膜を成膜する
。成膜時の基板温度は、室温以上300℃以下とすればよく、本実施の形態では100℃
とする。酸化珪素膜のスパッタリング法による成膜は、希ガス(代表的にはアルゴン)雰
囲気下、酸素雰囲気下、または希ガス(代表的にはアルゴン)及び酸素雰囲気下において
行うことができる。なお、スパッタ法で形成した酸化物絶縁層は特に緻密であり、接する
層へ不純物が拡散する現象を抑制する保護膜として単層であっても利用することができる
。また、リン(P)や硼素(B)をドープしたターゲットを用い、酸化物絶縁層にリン(
P)や硼素(B)を添加することもできる。
【0079】
また、ターゲットとして酸化珪素ターゲットまたは珪素ターゲットを用いることができ、
特に珪素ターゲットが好ましい。珪素ターゲットを用いて、酸素、及び希ガス雰囲気下で
スパッタリング法により成膜した酸化珪素膜は、珪素原子または酸素原子の未結合手(ダ
ングリングボンド)を多く含んでいる。
【0080】
酸化物絶縁層107は未結合手を多く含むため、酸化物半導体層113に含まれる不純物
は、酸化物半導体層113と酸化物絶縁層107が接する界面を介して、酸化物絶縁層1
07に拡散し易くなる。具体的には、酸化物半導体層113に含まれる水素原子や、H
Oなど水素原子を含む化合物や、炭素原子を含む化合物等が酸化物絶縁層107に拡散移
動し易くなる。
【0081】
また、酸化物半導体層113が酸化物絶縁層107と接する界面に水素が移動し、界面の
水素濃度が1×1019cm−3以上5×1022 cm−3以下好ましくは5×10
cm−3以上1×1022 cm−3以下であると、酸化物半導体層の水素濃度は低減
された状態となる。水素濃度が低減された酸化物半導体層を適用した半導体素子は優れた
信頼性を示す。
【0082】
また、酸化物半導体層113と接する界面から30nm離れた部分の酸化物絶縁層107
の水素濃度が低く、その差が5倍以上100倍以下(好ましくは5倍以上10倍以下)と
なることで、界面を介して酸化物半導体層113から、酸化物絶縁層107への水素の移
動が促進される。
【0083】
本実施の形態では、純度が6Nであり、柱状多結晶Bドープの珪素ターゲット(抵抗値0
.01Ωcm)を用い、基板とターゲットの間との距離(T−S間距離)を89mm、圧
力0.4Pa、直流(DC)電源6kW、酸素(酸素流量比率100%)雰囲気下でパル
スDCスパッタ法により成膜する。膜厚は300nmとする。
【0084】
なお、酸化物絶縁層107は酸化物半導体層の113チャネル形成領域となる領域上に接
して設けられ、チャネル保護層として機能する。
【0085】
次いで、保護絶縁層108を酸化物絶縁層107上に形成する(図2(D)参照。)。保
護絶縁層108としては、窒化珪素膜、窒化酸化珪素膜、または窒化アルミニウム膜など
を用いる。本実施の形態では、RFスパッタ法を用いて窒化珪素膜の保護絶縁層108を
形成する。
【0086】
以上の工程により、薄膜トランジスタ151を作製することができる。
【0087】
なお、本実施の形態ではゲート絶縁層102と、酸化物半導体層103を連続成膜するが
、成膜したゲート絶縁層102を大気に暴露し、その後酸化物半導体層103を形成して
もよい。その場合は、ゲート絶縁層102を不活性ガス雰囲気(窒素、またはヘリウム、
ネオン、アルゴン等)下において加熱処理(400℃以上であって基板の歪み点未満)す
ることが好ましい。この加熱処理により、酸化物半導体層の成膜前にゲート絶縁層102
内に含まれる水素及び水などの不純物を除去することができる。
【0088】
また、酸化珪素層、窒化珪素層、酸化窒化珪素層又は窒化酸化珪素層は、スパッタリング
法の他プラズマCVD法を用いて形成してもよい。例えば、成膜ガスとして、SiH
酸素及び窒素を用いてプラズマCVD法により酸化窒化珪素層を形成すればよい。ゲート
絶縁層102の膜厚は、100nm以上500nm以下とし、積層の場合は、例えば、膜
厚50nm以上200nm以下の第1のゲート絶縁層102aと、第1のゲート絶縁層1
02a上に膜厚5nm以上300nm以下の第2のゲート絶縁層102bの積層とする。
なお、プラズマCVD法等を用いて形成した膜が水素及び水などの不純物を含む場合、上
記の加熱処理を施し、不純物を除去した後に酸化物半導体層を成膜するのが好ましい。
【0089】
なお、本実施の形態では、第3のフォトリソグラフィ工程によりゲート絶縁層を選択的に
エッチングしてゲート配線層111bに達するコンタクトホール128を形成するが、こ
の方法に限定されない。例えば、ゲート絶縁層102を形成した後、ゲート絶縁層上にレ
ジストマスクを形成し、ゲート配線層111bに達するコンタクトホールを形成してもよ
い。
【0090】
また、酸化物半導体層を形成した後、酸化物半導体層の脱水化または脱水素化を行っても
よい。
【0091】
脱水化または脱水素化を行う第1の加熱処理の温度は、400℃以上であって750℃未
満、好ましくは425℃以上とする。なお、425℃以上であれば熱処理時間は1時間以
下でよいが、425℃未満であれば加熱処理時間は、1時間よりも長時間行うこととする
。第1の加熱処理では、加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体
層に対して窒素雰囲気下において加熱処理を行った後、大気に触れることなく、酸化物半
導体層への水や水素の再混入を防ぎ、水素濃度の低い酸化物半導体層を得る。酸化物半導
体層の脱水化または脱水素化を行う加熱温度Tから、再び水が入らないような十分な温度
まで同じ炉を用い、具体的には加熱温度Tよりも100℃以上下がるまで窒素雰囲気下で
徐冷する。また、窒素雰囲気に限定されず、ヘリウム、ネオン、アルゴン等)下において
脱水化または脱水素化を行う。
【0092】
なお、加熱処理装置は電気炉に限られず、例えば、GRTA(Gas Rapid Th
ermal Anneal)装置、LRTA(Lamp Rapid Thermal
Anneal)装置等のRTA(Rapid Thermal Anneal)装置を用
いることができる。LRTA装置は、ハロゲンランプ、メタルハライドランプ、キセノン
アークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのラ
ンプから発する光(電磁波)の輻射により、被処理物を加熱する装置である。GRTA装
置は、上記のランプから発する光による熱輻射、およびランプから発する光で気体を加熱
し、加熱された気体からの熱伝導によって、被処理物を加熱する装置である。気体には、
アルゴンなどの希ガス、または窒素のような、加熱処理によって被処理物と反応しない不
活性気体が用いられる。また、LRTA装置、GRTAには、ランプだけでなく、抵抗発
熱体などの発熱体からの熱伝導または熱輻射によって、被処理物を加熱する装置を備えて
いてもよい。
【0093】
また、第1の加熱処理においては、窒素、またはヘリウム、ネオン、アルゴン等の希ガス
に、水、水素などが含まれないことが好ましい。または、加熱処理装置に導入する窒素、
またはヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上
、好ましくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好ま
しくは0.1ppm以下)とすることが好ましい。
【0094】
なお、第1の加熱処理の条件、または酸化物半導体層の材料によっては、酸化物半導体層
が結晶化し、微結晶膜または多結晶膜となる場合もある。例えば、結晶化率が90%以上
、または80%以上の微結晶の酸化物半導体層となる場合もある。また、第1の加熱処理
の条件、または酸化物半導体層の材料によっては、結晶成分を含まない非晶質の酸化物半
導体層となる場合もある。
【0095】
酸化物半導体層は、第1の加熱処理後に酸素欠乏型となり、低抵抗化する。第1の加熱処
理後の酸化物半導体層は、成膜直後の酸化物半導体層よりもキャリア濃度が高まり、好ま
しくは1×1018cm−3以上のキャリア濃度を有する酸化物半導体層となる。
【0096】
なお、第1の加熱処理の条件、ゲート電極111a、及びゲート配線層111bの材料に
よっては、酸化物半導体層が結晶化し、微結晶膜または多結晶膜となる場合もある。例え
ば、ゲート電極111a、及びゲート配線層111bとして、酸化インジウム酸化スズ合
金膜を用いる場合は450℃1時間の第1の熱処理で酸化物半導体層が結晶化し、ゲート
電極111a、及びゲート配線層111bとして、酸化珪素を含む酸化インジウム酸化ス
ズ合金膜を用いる場合は結晶化しない。
【0097】
また、酸化物半導体層113の第1の加熱処理は、島状の酸化物半導体層に加工する前の
酸化物半導体層103に行うこともできる。その場合には、第1の加熱処理後に、加熱装
置から基板を取り出し、フォトリソグラフィ工程を行う。
【0098】
また、酸化物絶縁層107の形成後、第2の加熱処理(好ましくは200℃以上400℃
以下、例えば250℃以上350℃以下)を不活性ガス雰囲気下、または窒素ガス雰囲気
下で行ってもよい。
【0099】
例えば、窒素雰囲気下で250℃、1時間の第2の加熱処理を行う。第2の加熱処理を行
うと、酸化物半導体層113の一部が酸化物絶縁層107と接した状態で加熱され、また
、酸化物半導体層113の他の一部が第2配線層(115a、及び115b)と接した状
態で加熱される。
【0100】
第1の加熱処理で低抵抗化された酸化物半導体層113(が酸化物絶縁層107と接した
状態で第2の加熱処理が施されると、酸化物半導体層113におけるに酸化物絶縁層10
7が接した領域の近傍が酸素過剰な状態となる。その結果、酸化物半導体層113の酸化
物絶縁層107が接する領域から、酸化物半導体層113の深さ方向に向けて、高抵抗化
(I型化)する。
【0101】
具体的には、酸化物半導体層113と酸化物絶縁層107が接する界面からゲート絶縁層
102にかけて、高抵抗化(I型化)された領域を有する酸化物半導体層123が形成さ
れる。
【0102】
薄膜トランジスタ151はチャネル形成領域に高抵抗化(I型化)された酸化物半導体層
が形成されているため、閾値電圧が正の値を示し、エンハンスメント型の挙動を示す。
【0103】
なお、第2の加熱処理を行うことにより、金属導電膜からなる第2配線層(115a及び
115b)が接する酸化物半導体層113の領域の近傍において、該金属導電膜側に酸素
が移動しやすくなり、該酸化物半導体層は、よりN型化する。
【0104】
また、第2の加熱処理を行うタイミングは、酸化物絶縁層107の形成工程よりも後の工
程であれば特に限定されない。
【0105】
本実施の形態で例示する方法により作製した不純物の濃度が抑制された酸化物半導体層を
適用することにより、信頼性の高い半導体素子を提供できる。具体的には、閾値電圧が制
御された酸化物半導体を用いた薄膜トランジスタを提供できる。また、動作速度が速く、
製造工程が比較的簡単であり、十分な信頼性を有する、酸化物半導体を用いた薄膜トラン
ジスタを提供できる。
【0106】
また、本実施の形態によって、閾値電圧が制御され、動作速度が速く、製造工程が比較的
簡単であり、十分な信頼性を有する、酸化物半導体を用いた薄膜トランジスタの作製方法
を提供できる。
【0107】
また、BTストレス試験(バイアス・温度ストレス試験)を行った際のしきい値電圧のシ
フト量を低減することができ、信頼性の高い薄膜トランジスタを得ることができる。なお
、本明細書中で、BTストレス試験(バイアス・温度ストレス試験)とは、薄膜トランジ
スタに高温雰囲気下で、高ゲート電圧を印加する試験のことを指す。
【0108】
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる

【0109】
(実施の形態2)
本実施の形態では、本発明の一態様の半導体素子の作製に用いる連続成膜装置および当該
装置を用いた成膜方法について説明する。なお、本実施の形態では、連続成膜を行う工程
を説明し、その他の工程は、実施の形態1に従って薄膜トランジスタを作製すればよい。
【0110】
本実施の形態で用いる連続成膜装置1000を図3に示す。連続成膜装置1000は、ロ
ーダー室1110と、アンローダー室1120を有し、それぞれ処理前の基板を収納する
カセット1111と、処理済みの基板を収納するカセット1121が設置されている。ロ
ーダー室1110と、アンローダー室1120の間には第1の搬送室1100があり、基
板を搬送する搬送機構1101が設置されている。
【0111】
また、連続成膜装置1000は第2の搬送室1200を有している。第2の搬送室120
0には搬送機構1201が設置され、ゲートバルブを介して周囲に4つの処理室(第1の
処理室1210、第2の処理室1220、第3の処理室1230、及び第4の処理室12
40)と接続されている。なお、第1の処理室1210はゲートバルブを介して、一方が
第1の搬送室1100と接続され、他方が第2の搬送室1200と接続されている。
【0112】
なお、第1の搬送室1100、ローダー室1110、及びアンローダー室1120内の圧
力は、大気圧である。また、第2の搬送室1200、第1の処理室1210、第2の処理
室1220、第3の処理室1230、及び第4の処理室1240には、それぞれ排気手段
1205、排気手段1215、排気手段1225、排気手段1235、及び排気手段12
45が設けられており、減圧状態を実現できる。また、これらの排気手段は各処理室の使
用用途に応じて適宜排気装置を選定すればよいが、特にクライオポンプを備えた排気手段
が好ましい。また、ターボポンプにコールドトラップを備えた手段であってもよい。
【0113】
酸化物半導体層を成膜する場合、酸化物半導体層を成膜する処理室はもちろんのこと、酸
化物半導体層に接する膜、及び酸化物半導体層の成膜前後の工程において不純物が混入し
ないよう、クライオポンプなどの排気手段を選定するのが好ましい。
【0114】
第1の処理室1210には、基板加熱機構1211が設けられている。基板加熱機構とし
ては、ホットプレートの他、RTA等を用いることができる。また、第1の処理室121
0は、大気圧状態の第1の搬送室1100から減圧状態の第2の搬送室1200に、基板
を搬送する受け渡し室の役割を有している。受け渡し室を設けることにより、第2の搬送
室1200を大気による汚染から守ることができる。
【0115】
第2の処理室1220、第3の処理室1230、及び第4の処理室1240には、それぞ
れスパッタリング装置と、基板加熱機構が設けられている。基板加熱機構としては、ホッ
トプレートの他、RTA等を用いることができる。
【0116】
連続成膜装置1000の動作の一例について説明する。ここでは、ゲート電極が形成され
た基板にゲート絶縁膜と酸化物半導体層を連続成膜する方法について説明する。なお、当
該連続成膜方法は、実施の形態1に説明する薄膜トランジスタの作製工程の一例として適
用することができる。
【0117】
はじめに、搬送機構1101が、ゲート電極が形成された基板100をカセット1111
から大気圧状態の第1の処理室1210に搬送する。次いで、ゲートバルブを閉じ第1の
処理室1210を排気する。また、第1の処理室1210で基板100を予備加熱し、基
板に吸着した不純物を脱離し、排気する。不純物としては、例えば、水素原子や、H
など水素原子を含む化合物や、炭素原子を含む化合物をその例に挙げることができる。な
お、予備加熱の温度としては、室温以上600℃以下好ましくは100℃以上400℃以
下である。
【0118】
次いで、基板100を第2の処理室1220に搬送して窒化珪素膜を成膜し、その後基板
100を第2の搬送室1200を介して第3の処理室1230に搬送して酸化珪素膜を成
膜して積層する。第2の処理室1220、及び第3の処理室1230はクライオポンプ等
により排気され、処理室内の不純物濃度が低減されている。不純物が低減された処理室内
で積層された窒化珪素膜と酸化珪素膜は、不純物濃度が抑制されたゲート絶縁膜として機
能する。
【0119】
ゲート電極上に窒化珪素膜と酸化珪素膜が連続成膜された基板100を第4の処理室12
40に搬送する。第4の処理室1240は、酸化物半導体層用のターゲットを備えており
、排気手段としてクライオポンプを有している。
【0120】
次いで、基板100の酸化珪素膜上に、酸化物半導体層を成膜する。不純物が低減された
処理室内で成膜された酸化物半導体層は、不純物濃度が抑制される。具体的には、酸化物
半導体層の水素濃度を低減することができる。また、酸化物半導体層は基板を加熱しなが
ら成膜する。本実施の形態においては、基板温度を100℃以上600℃以下好ましくは
200℃以上400℃以下とする。基板を加熱しながら成膜することにより、成膜した酸
化物半導体層に含まれる不純物濃度を低減することができる。
【0121】
なお、金属酸化物ターゲットの充填率は90%以上100%以下、好ましくは95%以上
99.9%である。充填率の高い金属酸化物ターゲットを用いることにより、成膜した酸
化物半導体層は緻密な膜となる。
【0122】
また、酸化物半導体層を成膜する際に導入する酸素ガスや、窒素、ヘリウム、ネオン、ア
ルゴン等の希ガスは、水、水素などの不純物が含まれないことが好ましく、ガスの純度を
6N(99.9999%)以上、好ましくは7N(99.99999%)以上、(即ち不
純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが望ましい。
【0123】
以上のように、クライオポンプで排気され、不純物が低減された処理室内で連続成膜する
ことにより、半導体素子を構成する各層の不純物濃度を抑制することができる。
【0124】
クライオポンプを設けた排気手段を適用した連続成膜装置を用いることで、処理室内の不
純物を低減できる。処理室の内壁に吸着していた不純物が脱離し、成膜中の基板や、膜の
中に不純物が混入する不具合を低減できる。
【0125】
本実施の形態で例示する連続成膜装置を用いて形成した酸化物半導体層は不純物の混入が
抑制されている。従って、当該酸化物半導体層を用いて、信頼性の高い半導体素子を提供
できる。具体的には、閾値電圧が制御された酸化物半導体を用いた薄膜トランジスタを提
供できる。また、動作速度が速く、製造工程が比較的簡単であり、十分な信頼性を有する
、酸化物半導体を用いた薄膜トランジスタを提供できる。
【0126】
また、本実施の形態で例示する連続成膜装置を用いることによって、閾値電圧が制御され
、動作速度が速く、製造工程が比較的簡単であり、十分な信頼性を有する、酸化物半導体
層を用いた薄膜トランジスタの作製方法を提供できる。
【0127】
また、BTストレス試験(バイアス・温度ストレス試験)を行った際の閾値電圧のシフト
量を低減することができ、信頼性の高い薄膜トランジスタを得ることができる。
【0128】
なお、本実施の形態では、3つ以上の処理室が搬送室を介して接続する構成を有している
がこれに限られない。例えば、基板の搬入口と搬出口を有し、各処理室が互いに接続する
構成、所謂インライン型の構成としてもよい。
【0129】
また、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる

【0130】
(実施の形態3)
本実施の形態では、酸化物半導体層の成膜装置および当該装置を用いた酸化物半導体層の
成膜方法について説明する。なお、本実施の形態では、酸化物半導体層の成膜工程を説明
し、その他の工程は、実施の形態1に従って薄膜トランジスタを作製すればよい。
【0131】
本実施の形態で用いる成膜装置2000を図4に示す。成膜装置2000は、ローダー室
2110と、アンローダー室2120を有し、それぞれ処理前の基板を収納するカセット
2111と、処理済みの基板を収納するカセット2121が設置されている。ローダー室
2110と、アンローダー室2120の間には第1の搬送室2100があり、基板を搬送
する搬送機構2101が設置されている。
【0132】
また、成膜装置2000は第2の搬送室2200を有している。第2の搬送室2200に
は搬送機構2201が設置され、ゲートバルブを介して周囲に4つの処理室(第1の処理
室2210、第2の処理室2220、第3の処理室2230、及び第4の処理室2240
)と接続されている。なお、第1の処理室2210はゲートバルブを介して、一方が第1
の搬送室2100と接続され、他方が第2の搬送室2200と接続されている。
【0133】
なお、第1の搬送室2100、ローダー室2110、及びアンローダー室2120内の圧
力は、大気圧である。また、第2の搬送室2200、第1の処理室2210、第2の処理
室2220、第3の処理室2230、及び第4の処理室2240には、それぞれ排気手段
2205、排気手段2215、排気手段2225、排気手段2235、及び排気手段22
45が設けられており、減圧状態を実現できる。また、これらの排気手段は各処理室の使
用用途に応じて適宜排気装置を選定すればよいが、特にクライオポンプを備えた排気手段
が好ましい。また、ターボポンプにコールドトラップを備えた手段であってもよい。
【0134】
酸化物半導体層を成膜する処理室はもちろんのこと、酸化物半導体層の成膜前後の工程に
おいて不純物が混入しないよう、クライオポンプなどの排気手段を選定するのが好ましい

【0135】
第1の処理室2210は、大気圧状態の第1の搬送室2100から減圧状態の第2の搬送
室2200に、基板を搬送する受け渡し室の役割を有している。受け渡し室を設けること
により、第2の搬送室2200を大気による汚染から守ることができる。
【0136】
第2の処理室2220には、基板加熱機構2221が設けられている。基板加熱機構とし
ては、ホットプレートの他、RTA等を用いることができる。また、第3の処理室223
0にはスパッタリング装置と、基板加熱機構が設けられている。基板加熱機構としては、
ホットプレートの他、RTA等を用いることができる。また、第4の処理室2240には
冷却機構2241が設けられている。
【0137】
酸化物半導体層の成膜装置2000を用いた酸化物半導体層の成膜方法について説明する
。ここでは、ゲート電極と、ゲート電極上にゲート絶縁膜があらかじめ形成された基板に
、酸化物半導体層を成膜する方法について説明する。なお、当該成膜方法は、実施の形態
1に説明する薄膜トランジスタの作製工程の一例として適用することができる。
【0138】
はじめに、搬送機構2101が、カセット2111から大気圧状態の第1の処理室221
0に、ゲート電極上にゲート絶縁膜が形成された基板100を搬送する。次いで、ゲート
バルブを閉じ第1の処理室2210を排気する。第1の処理室2210の圧力が第2の搬
送室2200の圧力と概略等しくなったら、ゲートバルブを開き第2の搬送室2200を
介して第1の処理室2210から第2の処理室2220へ基板100を搬送する。
【0139】
次いで、基板100を第2の処理室2220の基板加熱機構2221で予備加熱し、基板
に吸着した不純物を脱離し、排気する。不純物としては、例えば、水素原子や、HOな
ど水素原子を含む化合物や、炭素原子を含む化合物をその例に挙げることができる。なお
、予備加熱の温度としては、室温以上600℃以下好ましくは100℃以上400℃以下
である。なお、第2の処理室2220に設ける排気手段はクライオポンプが好ましい。基
板100に吸着していた不純物が予備加熱により脱離し、第2の処理室2220内に拡散
するため、クライオポンプを用いて不純物を第2の処理室2220から排出する必要があ
る。
【0140】
次いで、基板100を第3の処理室2230に搬送して酸化物半導体層を成膜する。第3
の処理室2230はクライオポンプ等により排気され、処理室内の不純物濃度が低減され
ている。不純物が低減された処理室内で成膜された酸化物半導体層は、不純物濃度が抑制
される。具体的には、酸化物半導体層の水素濃度を低減することができる。また、酸化物
半導体層は基板を加熱しながら成膜する。本実施の形態においては、基板温度を100℃
以上600℃以下好ましくは200℃以上400℃以下とする。基板を加熱しながら成膜
することにより、成膜した酸化物半導体層に含まれる不純物濃度を低減することができる

【0141】
なお、金属酸化物ターゲットの充填率は90%以上100%以下、好ましくは95%以上
99.9%である。充填率の高い金属酸化物ターゲットを用いることにより、成膜した酸
化物半導体層は緻密な膜となる。
【0142】
次いで、基板100を第4の処理室2240に搬送する。酸化物半導体層の成膜中の基板
温度Tから、再び水等の不純物が入らないよう、十分低い温度まで冷却する。具体的には
酸化物半導体層の成膜中の基板温度Tよりも100℃以上下がるまで徐冷する。冷却は、
ヘリウム、ネオン、アルゴン等を第4の処理室2240に導入して行ってもよい。なお、
冷却に用いる窒素、またはヘリウム、ネオン、アルゴン等の希ガスに、水、水素などが含
まれないことが好ましい。または、窒素、またはヘリウム、ネオン、アルゴン等の希ガス
の純度を、6N(99.9999%)以上、好ましくは7N(99.99999%)以上
、(即ち不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好まし
い。
【0143】
以上のように、クライオポンプで排気され、不純物が低減された処理室内で成膜すること
により、大気に触れることなく、酸化物半導体層への水や水素の再混入を防ぎ、不純物濃
度が抑制された酸化物半導体層を得ることができる。
【0144】
クライオポンプを設けた排気手段を適用した成膜装置を用いることで、処理室内の不純物
を低減できる。処理室の内壁に吸着していた不純物が脱離し、成膜中の基板や、膜の中に
不純物が混入する不具合を低減できる。また、予備加熱中の雰囲気から脱離する不純物を
排気して、基板に再吸着される現象を防ぐことができる。
【0145】
本実施の形態で例示する成膜装置を用いて形成した酸化物半導体層は不純物の混入が抑制
されている。従って、当該酸化物半導体層を用いて、信頼性の高い半導体素子を提供でき
る。具体的には、閾値電圧が制御された酸化物半導体を用いた薄膜トランジスタを提供で
きる。また、動作速度が速く、製造工程が比較的簡単であり、十分な信頼性を有する、酸
化物半導体を用いた薄膜トランジスタを提供できる。
【0146】
また、本実施の形態で例示する成膜装置を用いることによって、閾値電圧が制御され、動
作速度が速く、製造工程が比較的簡単であり、十分な信頼性を有する、酸化物半導体層を
用いた薄膜トランジスタの作製方法を提供できる。
【0147】
また、BTストレス試験(バイアス・温度ストレス試験)を行った際のしきい値電圧のシ
フト量を低減することができ、信頼性の高い薄膜トランジスタを得ることができる。
【0148】
なお、本実施の形態では、3つ以上の処理室が搬送室を介して接続する構成を有している
がこれに限られない。例えば、基板の搬入口と搬出口を有し、各処理室が互いに接続する
構成、所謂インライン型の構成としてもよい。
【0149】
また、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる

【0150】
(実施の形態4)
本実施の形態では、酸化物半導体層上に形成する酸化物絶縁層、及び保護膜の連続成膜装
置および当該装置を用いた酸化物絶縁層、及び保護膜の連続成膜方法について説明する。
なお、本実施の形態では、酸化物絶縁層、及び保護膜の成膜工程を説明し、その他の工程
は、実施の形態1に従って薄膜トランジスタを作製すればよい。
【0151】
本実施の形態で用いる連続成膜装置3000を図5に示す。連続成膜装置3000は、ロ
ーダー室3110と、アンローダー室3120を有し、それぞれ処理前の基板を収納する
カセット3111と、処理済みの基板を収納するカセット3121が設置されている。
【0152】
また、連続成膜装置3000は第1の搬送室3100を有している。第1の搬送室310
0には搬送機構3101が設置され、ゲートバルブを介して周囲に5つの処理室(第1の
処理室3210、第2の処理室3220、第3の処理室3230、第4の処理室3240
、及び第5の処理室3250)と接続されている。
【0153】
ローダー室3110、アンローダー室3120、第1の搬送室3100、第1の処理室3
210、第2の処理室3220、第3の処理室3230、第4の処理室3240、及び第
5の処理室3250には、それぞれ排気手段3115、排気手段3125、排気手段31
05、排気手段3215、排気手段3225、排気手段3235、排気手段3245、及
び排気手段3255が設けられており、減圧状態を実現できる。また、これらの排気手段
は各処理室の使用用途に応じて適宜排気装置を選定すればよいが、特にクライオポンプを
備えた排気手段が好ましい。また、ターボポンプにコールドトラップを備えた手段であっ
てもよい。
【0154】
酸化物半導体層の成膜前後の工程において不純物が混入しないよう、クライオポンプなど
の排気手段を選定するのが好ましい。
【0155】
ローダー室3110、及びアンローダー室3120は、大気圧状態の室内から減圧状態の
第1の搬送室3100に、基板を搬送する受け渡し室の役割を有している。受け渡し室を
設けることにより、第1の搬送室3100を大気による汚染から守ることができる。
【0156】
第1の処理室3210、及び第4の処理室3240には、それぞれ基板加熱機構3211
、及び基板加熱機構3241が設けられている。基板加熱機構としては、ホットプレート
の他、RTA等を用いることができる。また、第2の処理室3220、及び第3の処理室
3230にはスパッタリング装置と、基板加熱機構が設けられている。基板加熱機構とし
ては、ホットプレートの他、RTA等を用いることができる。また、第5の処理室325
0には冷却機構3251が設けられている。
【0157】
連続成膜装置3000の動作の一例について説明する。ここでは、ゲート電極上にゲート
絶縁膜が形成され、ゲート絶縁膜を介してゲート電極上に酸化物半導体層が形成され、端
部をゲート電極と重畳するソース電極、及びドレイン電極が形成された基板の酸化物半導
体層に接して、酸化物絶縁層、及び保護膜を連続して成膜する方法について説明する。な
お、当該連続成膜方法は、実施の形態1に説明する薄膜トランジスタの作製工程の一例と
して適用することができる。
【0158】
はじめに、ローダー室3110を排気し、ローダー室3110の圧力が第1の搬送室31
00の圧力と概略等しくなったら、ゲートバルブを開き第1の搬送室3100を介してロ
ーダー室3110から第1の処理室3210へ基板100を搬送する。
【0159】
次いで、基板100を第1の処理室3210の基板加熱機構3211で予備加熱し、基板
に吸着した不純物を脱離し、排気する。不純物としては、例えば、水素原子や、HOな
ど水素原子を含む化合物や、炭素原子を含む化合物をその例に挙げることができる。なお
、予備加熱の温度としては、室温以上600℃以下好ましくは100℃以上400℃以下
である。なお、第1の処理室3210に設ける排気手段はクライオポンプが好ましい。基
板100に吸着していた不純物が予備加熱により脱離し、第1の処理室3210内に拡散
するため、クライオポンプを用いて不純物を第1の処理室3210から排出する必要があ
る。
【0160】
次いで、基板100を第2の処理室3220に搬送し、酸化物絶縁層を成膜する。第2の
処理室3220はクライオポンプ等により排気され、処理室内の不純物濃度が低減されて
いる。不純物が低減された処理室内で成膜された酸化物絶縁層は、不純物濃度が抑制され
る。具体的には、酸化物絶縁層に含まれる水素濃度を低減することができる。また、酸化
物絶縁層は基板を加熱しながら成膜する。本実施の形態においては、基板温度を100℃
以上600℃以下好ましくは200℃以上400℃以下さらに好ましくは250℃以上3
00℃以下とする。基板を加熱しながら成膜することにより、成膜された酸化物絶縁層に
含まれる未結合手の濃度を高めることができる。
【0161】
スパッタリング装置を用いて酸化物絶縁層として酸化珪素を成膜する場合、ターゲットと
して酸化珪素ターゲットまたは珪素ターゲットを用いることができ、特に珪素ターゲット
が好ましい。珪素ターゲットを用いて、酸素、及び希ガス雰囲気下でスパッタリング法に
より成膜した酸化珪素膜は、珪素原子または酸素原子の未結合手(ダングリングボンド)
を多く含んでいる。
【0162】
未結合手を多く含む酸化物絶縁層を酸化物半導体層に接して設けることにより、酸化物半
導体層に含まれる不純物は、酸化物半導体層と酸化物絶縁層が接する界面を介して、酸化
物絶縁層に拡散し易くなる。具体的には、酸化物半導体層に含まれる水素原子や、H
など水素原子を含む化合物が酸化物絶縁層に拡散移動し易くなる。その結果、酸化物半導
体層の不純物濃度が低減され、不純物に由来するキャリア濃度の増加が抑制される。
【0163】
次いで、基板100を第3の処理室3230に搬送し、酸化物絶縁層上に保護絶縁層を成
膜する。保護絶縁層としては、不純物元素の拡散を防止する機能があればよく、例えば窒
化珪素膜、窒化酸化珪素膜、又は酸化窒化珪素膜から選ばれた一又は複数の膜による積層
構造により形成することができる。また、第3の処理室3230はクライオポンプ等によ
り排気され、処理室内の不純物濃度が低減されている状態が好ましい。
【0164】
保護絶縁層は半導体素子の外部から内部へ不純物が拡散し、酸化物半導体層に不純物が侵
入する現象を防止する。不純物としては、例えば、水素原子や、HOなど水素原子を含
む化合物や、炭素原子を含む化合物をその例に挙げることができる。
【0165】
スパッタリング装置を用いて保護絶縁層として窒化珪素膜を成膜する場合、例えば、珪素
ターゲットを用い、第3の処理室3230に窒素とアルゴンの混合ガスを導入して、反応
性スパッタリングにより成膜できる。基板温度を、200℃以上400℃以下例えば20
0℃以上350℃以下として成膜する。加熱しながら成膜することにより、水素原子を含
む不純物を拡散させ、酸化珪素に代表される酸化物絶縁層中に捕獲させることができる。
特に、水素原子の拡散が促進される200℃以上350℃以下の温度範囲が好適である。
【0166】
次いで、基板100を第4の処理室3240に搬送し、成膜後の加熱処理を行う。成膜後
の加熱処理において基板温度を100℃以上600℃以下とする。加熱処理により、酸化
物半導体層に含まれる不純物を酸化物半導体層と酸化物絶縁層が接する界面を介して、酸
化物絶縁層に拡散し易くなる。具体的には、酸化物半導体層に含まれる水素原子や、H
Oなど水素原子を含む化合物が酸化物絶縁層に拡散移動し易くなる。その結果、酸化物半
導体層の不純物濃度が低減され、不純物に由来するキャリア濃度の増加が抑制される。
【0167】
次いで、基板100を第5の処理室3250に搬送する。成膜後の加熱処理の基板温度T
から、再び水等の不純物が入らないよう、十分低い温度まで冷却する。具体的には成膜後
の加熱処理の基板温度Tよりも100℃以上下がるまで徐冷する。冷却は、ヘリウム、ネ
オン、アルゴン等を第5の処理室3250に導入して行ってもよい。なお、冷却に用いる
窒素、またはヘリウム、ネオン、アルゴン等の希ガスに、水、水素などが含まれないこと
が好ましい。または、窒素、またはヘリウム、ネオン、アルゴン等の希ガスの純度を、6
N(99.9999%)以上、好ましくは7N(99.99999%)以上、(即ち不純
物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。
【0168】
クライオポンプを設けた排気手段を適用した成膜装置を用いることで、処理室内の不純物
を低減できる。処理室の内壁に吸着していた不純物が脱離し、成膜中の基板や、膜の中に
不純物が混入する不具合を低減できる。また、予備加熱中の雰囲気から脱離する不純物を
排気して、基板に再吸着される現象を防ぐことができる。
【0169】
本実施の形態で例示する成膜装置を用いて形成した酸化物絶縁層は、未結合手を多く含む
。当該成膜装置を用いて酸化物半導体層に接して酸化物絶縁層を設けることにより、酸化
物半導体層に含まれる不純物、具体的には水素原子や、HOなど水素原子を含む化合物
が酸化物半導体層から酸化物絶縁層へ拡散、移動し、その結果酸化物半導体層に含まれる
不純物濃度を低減できる。不純物濃度が低減された酸化物半導体層は、不純物に由来する
キャリア濃度の増加が抑制される。
【0170】
例えば、本実施の形態で例示する成膜装置を用いて形成した酸化物絶縁層が接して設けら
れた酸化物半導体層をチャネル形成領域に適用した薄膜トランジスタは、ゲート電極に電
圧を印加しない状態、所謂オフ状態において、チャネル形成領域のキャリア濃度が低減さ
れているため、オフ電流が少なく、良好な特性を示す。
【0171】
また、BTストレス試験(バイアス・温度ストレス試験)を行った際のしきい値電圧のシ
フト量を低減することができ、信頼性の高い薄膜トランジスタを得ることができる。
【0172】
なお、本実施の形態では、3つ以上の処理室が搬送室を介して接続する構成を例示したが
これに限られない。例えば、基板の搬入口と搬出口を有し、各処理室が互いに接続する構
成、所謂インライン型の構成としてもよい。
【0173】
また、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる

【実施例1】
【0174】
本実施例では、図6を用いて、酸化物半導体層を絶縁層で挟んだ積層構造における膜厚方
向の水素濃度分布分析結果について説明する。図6(A)は、本分析で用いた試料の断面
構造模式図である。本試料は、実施の形態1で説明した作製方法を用いて、ガラス基板4
00上にプラズマCVD法で酸化窒化絶縁層401を形成し、酸化窒化絶縁層401上に
In−Ga−Zn−O系酸化物半導体層402を形成し、酸化物半導体層402上にスパ
ッタ法にて酸化珪素絶縁層403を形成した。
【0175】
本試料の水素濃度分布分析は、二次イオン質量分析法(SIMS:Secondary
Ion Mass Spectrometry)で行った。図6(B)は、本試料の膜厚
方向の水素濃度分布を示すSIMS分析結果である。横軸は試料表面からの深さを示して
おり、左端の深さ0nmの位置が試料表面(酸化珪素絶縁層403)に相当する。図6(
A)に示す分析方向404は、SIMS分析の分析方向を示している。分析は酸化珪素絶
縁層403からガラス基板400に向かう方向で行った。つまり、図6(B)の横軸にお
いて、左端から右端の方向に向かって行った。
【0176】
図6(B)の縦軸は、特定深さにおける試料中の水素濃度と、珪素イオン強度を対数軸で
示している。図6(B)において、水素濃度プロファイル422は、試料中の水素濃度プ
ロファイルを示している。珪素イオン強度プロファイル421は、水素濃度プロファイル
422測定時に同時に取得した珪素イオン強度を示している。珪素イオン強度プロファイ
ル421の強度変化から、図6(B)中の深さ0nm乃至44nmの範囲が酸化珪素絶縁
層403に相当し、深さ44nm乃至73nmの範囲が酸化物半導体層402に相当し、
深さ73nm以降の範囲が酸化窒化絶縁層401に相当することがわかる。
【0177】
また、酸化物半導体層402中の水素濃度は、試料と同じ酸化物半導体で作製した標準試
料を用いて定量しており、酸化珪素絶縁層403及び酸化窒化絶縁層401中の水素濃度
は、酸化珪素で作製した標準試料を用いて定量している。
【0178】
水素濃度プロファイル422から、酸化珪素絶縁層403中の水素濃度が約7×1020
atoms/cmであることがわかる。また、酸化物半導体層402中の水素濃度が約
1×1019atoms/cm以上であることがわかる。また、酸化窒化絶縁層401
中の水素濃度が約2×1021atoms/cmであることがわかる。さらに、酸化珪
素絶縁層403と酸化物半導体層402の界面410近傍において、約4×1021at
oms/cmの水素濃度ピークが存在している。
【0179】
水素濃度ピークと、酸化物半導体層402中の水素濃度比411は、およそ100倍であ
り、水素濃度ピークと、酸化珪素絶縁層403中の水素濃度比412は、およそ5倍から
6倍の範囲にある。なお、次の実施例2において示すように、欠陥を含む酸化珪素絶縁層
は酸化物半導体層に比べて水素原子の束縛エネルギーが大きいため、酸化物半導体層40
2中の水素は酸化珪素絶縁層403に向けて移動し、界面410近傍に集約される。一方
、酸化物半導体層402に含まれる水素の量は成膜時に抑制されている。従って、界面4
10近傍に集約される水素の濃度には上限が生じ、界面410と酸化珪素絶縁層403の
水素濃度の比は少なくとも5倍から10倍の濃度差が存在し得ると考えることができる。
【0180】
これは、酸化物半導体層402中の水素が、一旦界面410近傍に集まった後、酸化珪素
絶縁層403中に拡散しているためと考えられる。従って、酸化珪素絶縁層403中にも
ともと存在している水素濃度を下げることにより、界面410近傍の水素濃度ピークを小
さくすることができ、酸化物半導体層402中の水素濃度もさらに低減させることが可能
となる。
【実施例2】
【0181】
アモルファスIGZO TFTはTFT特性にゲート長依存性が存在し、ゲート長が10
μm付近より短くなるとVthがマイナスにシフトする傾向がある。その対策として、1
50℃アニールを10時間行う事により回復する。アニールの効果の一つとして、アニー
ルによりIGZO内の水素がSiO内へ移動するという過程が考えられる。そこで、水
素原子がアモルファスIGZO内とアモルファスSiO内のどちらに存在しやすいかを
計算した。
【0182】
環境における水素原子の安定性を評価するために水素原子の束縛エネルギーE_bind
を以下で定義し、評価を行った。E_bind={E(元の構造)+E(H)}−E(H
を付加した構造)この束縛エネルギーE_bindが大きい方が水素原子は存在しやすい
といえる。E(元の構造)、E(H)、E(Hを付加した構造)はそれぞれ、元の構造の
エネルギー、水素原子のエネルギー、Hを付加した構造のエネルギーを表す。この束縛エ
ネルギーをアモルファスIGZO、ダングリングボンド(以下、DBと略す)無しのアモ
ルファスSiO、DB有りのアモルファスSiOxを2種類、の計4つに対して計算し
た。
【0183】
計算には密度汎関数法のプログラムであるCASTEPを用いた。密度汎関数の方法とし
て平面波基底擬ポテンシャル法を用い、汎関数はLDAを用いた。カットオフエネルギー
は300eVを用いた。k点は2×2×2のグリッドを用いた。
【0184】
計算した構造に関して以下に記す。はじめに元の構造に関して以下に記す。アモルファス
IGZOのユニットセルはInを12原子、Gaを12原子、Znを12原子、Oを48
原子、計84原子を含む。DB無しのアモルファスSiOのユニットセルはSiを16
原子、Oを32原子、計48原子を含む。また、DB有りのアモルファスSiOx(1)
は、DBの無いアモルファスSiOからOを抜き、上記Oと結合していたSiの内1つ
にHを結合させた構造である。つまり、Siを16原子、Oを31原子、Hを1原子、計
48原子を含む。また、DB有りのアモルファスSiOx(2)は、DBの無いアモルフ
ァスSiOからSiを抜き、上記Siと結合していたOの内3つにHを結合させた構造
である。つまり、Siを15原子、Oを32原子、Hを3原子、計50原子を含む。Hを
付加した構造は上記の4つの構造にHを付加した構造である。尚、Hは、アモルファスI
GZOではO原子、DBの無いアモルファスSiOではSi、DB有りのアモルファス
SiOxではDBを有する原子に付加した。Hを計算した構造はユニットセル内にHを一
つ含む。なお、各構造のセルサイズを表1にまとめた。
【0185】
【表1】

【0186】
計算結果を表2に示す。
【0187】
【表2】

【0188】
以上より、酸素にDBがある場合のアモルファスSiOxが最も束縛エネルギーが大きく
、次にSiにDBがある場合、その次にIGZO、最も小さいのがDB無しのアモルファ
スSiOの順となった。よって、水素はアモルファスSiOx中のDBに結合した場合
に最も安定となる。
【0189】
よって、以下のような過程が考えられる。アモルファスSiOxには多量のDBが存在す
る。従って、アモルファスIGZO―アモルファスSiOx界面を拡散する水素原子はア
モルファスSiOx内のDBに捉えられる事で安定化する。よって、アモルファスIGZ
O内の水素原子はアモルファスSiOx中のDBに移動する。
【符号の説明】
【0190】
100 基板
102 ゲート絶縁層
102a ゲート絶縁層
102b ゲート絶縁層
103 酸化物半導体層
107 酸化物絶縁層
108 保護絶縁層
111a ゲート電極
111b ゲート配線層
113 酸化物半導体層
115c 配線層
123 酸化物半導体層
128 コンタクトホール
151 薄膜トランジスタ
400 ガラス基板
401 酸化窒化絶縁層
402 酸化物半導体層
403 酸化珪素絶縁層
410 界面
411 水素濃度比
412 水素濃度比
421 珪素イオン強度プロファイル
422 水素濃度プロファイル
1000 連続成膜装置
1100 搬送室
1101 搬送機構
1110 ローダー室
1111 カセット
1120 アンローダー室
1121 カセット
1200 搬送室
1201 搬送機構
1205 排気手段
1210 処理室
1211 基板加熱機構
1215 排気手段
1220 処理室
1225 排気手段
1230 処理室
1235 排気手段
1240 処理室
1245 排気手段
2000 成膜装置
2100 搬送室
2101 搬送機構
2110 ローダー室
2111 カセット
2120 アンローダー室
2121 カセット
2200 搬送室
2201 搬送機構
2205 排気手段
2210 処理室
2215 排気手段
2220 処理室
2221 基板加熱機構
2225 排気手段
2230 処理室
2235 排気手段
2240 処理室
2241 冷却機構
2245 排気手段
3000 連続成膜装置
3100 搬送室
3101 搬送機構
3105 排気手段
3110 ローダー室
3111 カセット
3115 排気手段
3120 アンローダー室
3121 カセット
3125 排気手段
3210 処理室
3211 基板加熱機構
3215 排気手段
3220 処理室
3225 排気手段
3230 処理室
3235 排気手段
3240 処理室
3241 基板加熱機構
3245 排気手段
3250 処理室
3251 冷却機構
3255 排気手段

【特許請求の範囲】
【請求項1】
基板上にゲート電極を形成する工程と、
前記ゲート電極上にゲート絶縁層を形成する工程と、
前記ゲート絶縁層上に酸化物半導体層を形成する工程と、
前記酸化物半導体層に加熱処理を施す工程と、
前記酸化物半導体層上に、前記酸化物半導体層と接する、ソース電極及びドレイン電極を形成する工程と、
前記酸化物半導体層の、前記ソース電極及び前記ドレイン電極と重ならない領域と接する酸化物絶縁層を形成する工程と、
を有する半導体素子の作製方法であって、
前記酸化物半導体層の形成前に、前記基板の温度を室温以上600℃以下とする工程と、
前記基板が保持された処理室内の水分を排出し、前記基板の温度を100℃以上600℃以下とし、金属酸化物をターゲットとして前記酸化物半導体層を形成する工程と、
を有することを特徴とする半導体素子の作製方法。
【請求項2】
請求項1において、
前記水分の排出は、クライオポンプを用いて行うことを特徴とする半導体素子の作製方法。
【請求項3】
請求項1又は2において、
前記酸化物半導体層は、インジウム、ガリウム及び亜鉛を有することを特徴とする半導体素子の作製方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−102187(P2013−102187A)
【公開日】平成25年5月23日(2013.5.23)
【国際特許分類】
【出願番号】特願2013−557(P2013−557)
【出願日】平成25年1月7日(2013.1.7)
【分割の表示】特願2010−209431(P2010−209431)の分割
【原出願日】平成22年9月17日(2010.9.17)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】