説明

半導体装置の製造方法

【課題】半導体ウエハにBG工程を施すと、研削された半導体ウエハの面に破砕層が形成される。この破砕層は、半導体ウエハの内部への不純物の侵入を抑制する効果を有している。一方、半導体装置の薄型化に伴い、半導体ウエハの厚さを更に薄くしなければならない。そのため、半導体ウエハの抗折強度は従来に比べて低下してきており、薄くなった半導体ウエハに破砕層が形成されていると、半導体ウエハにクラックが発生する恐れがある。そこで、半導体ウエハの抗折強度を向上するために、BG工程の後に、ストレスリリーフを行うことが有効とされている。しかし、破砕層を除去してしまうと、ゲッタリング効果は低下してしまう。
【解決手段】本願発明は、半導体装置の製造方法において、そのデバイス面に集積回路が形成されたウエハの裏面に対して、バックグラインディング処理を実行した後、裏面の破砕層が残存するように、同裏面に保護膜を形成するものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置(または半導体集積回路装置)の製造方法におけるBG(Back Grinding)処理後のウエハ裏面処理技術に適用して有効な技術に関する。
【背景技術】
【0002】
日本特開2005−210038号公報(特許文献1)または、これに対応する米国特許第7759224号公報(特許文献2)には、ウエハに対するBG処理後に破砕層をストレスリリーフ処理等により除去した後、裏面を酸化(たとえばオゾン水、過酸化水素水など)して非常に薄い酸化膜(たとえば、1nm前後)を形成することにより、ウエハ裏面における金属不純物等の拡散阻止特性を確保しつつ、抗折強度を確保する技術が開示されている。
【0003】
日本特開2005−85925号公報(特許文献3)または、これに対応する米国特許公開2006−94210号公報(特許文献4)には、ウエハに対するBG処理後に破砕層をストレスリリーフ処理等により除去した後、裏面を酸化(たとえばオゾンガス雰囲気中での処理など)して薄い酸化膜を形成することにより、ウエハ裏面における金属不純物等の拡散阻止特性を確保しつつ、抗折強度を確保する技術が開示されている。
【0004】
国際公開第2006/8824号パンフレット(特許文献5)または、これに対応する米国特許公開2008−318362号公報(特許文献6)には、ウエハに対するBG処理における仕上げ研削を微細な砥粒を有するグラインディングホイールを用いて実行することにより、ウエハの裏面に比較的薄い破砕層を残した状態とすることにより、ウエハ裏面における金属不純物等のトラップ特性を確保しつつ、抗折強度を確保する技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−210038号公報
【特許文献2】米国特許第7759224号公報
【特許文献3】特開2005−85925号公報
【特許文献4】米国特許公開2006−94210号公報
【特許文献5】国際公開第2006/8824号パンフレット
【特許文献6】米国特許公開2008−318362号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
半導体ウエハにBG(Back Grinding)工程を施すと、研削された半導体ウエハの面に研削傷(破砕層、結晶欠陥層)が形成される。この研削傷は、前記特許文献1および前記特許文献2に示されるように、半導体ウエハの内部への不純物(汚染不純物)の侵入を抑制する効果を有している。一方、近年では、電子装置(又は、半導体装置)の薄型化に伴い、半導体ウエハの厚さを更に薄くしなければならない。そのため、半導体ウエハの抗折強度は従来に比べて低下してきており、薄くなった半導体ウエハに研削傷が形成されていると、半導体ウエハにクラックが発生する恐れがある。そこで、半導体ウエハの抗折強度を向上するために、例えば前記特許文献1から4に示されるように、BG工程の後に、この研削傷を除去するための工程(ストレスリリーフ工程)を行うことが有効とされている。しかし、研削傷を除去してしまうと、不純物の侵入を抑制する効果(ゲッタリング効果)は低下してしまう。なお、不純物の侵入は、例えば上記のストレスリリーフ工程で生じる。これは、破砕層を除去するために研磨パッドを半導体ウエハの裏面に押し当てるため、この研磨パッドの圧力(荷重)により不純物が半導体ウエハの内部に埋め込まれてしまう。そこで、本願発明では、ゲッタリング効果および半導体ウエハの抗折強度を確保できる技術について検討する。
【0007】
本願発明は、これらの課題を解決するためになされたものである。
【0008】
本発明の目的は、信頼性の高い半導体装置の製造プロセスを提供することにある。
【0009】
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
【課題を解決するための手段】
【0010】
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
【0011】
すなわち、本願の一つの発明は、半導体装置の製造方法において、そのデバイス面に集積回路が形成されたウエハの裏面に対して、バックグラインディング処理を実行した後、裏面の破砕層が残存するように、同裏面に保護膜を形成するものである。
【発明の効果】
【0012】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
【0013】
すなわち、半導体装置の製造方法において、そのデバイス面に集積回路が形成されたウエハの裏面に対して、バックグラインディング処理を実行した後、裏面の破砕層が残存するように、同裏面に保護膜を形成するものであることにより、ゲッタリング効果を確保しつつ、比較的高い抗折強度を達成することができる。
【図面の簡単な説明】
【0014】
【図1】本発明の一実施形態の半導体集積回路装置の製造方法の全体の流れを示す全体フロー図である。
【図2】本発明の一実施形態の半導体集積回路装置の製造方法のダイシングフレームへのウエハのマウント工程を示す断面図である。
【図3】図2のX−X’断面の断面図である。
【図4】本発明の一実施形態の半導体集積回路装置の製造方法のダイシング工程を示す断面図である。
【図5】本発明の一実施形態の半導体集積回路装置の製造方法のUV照射工程を示す断面図である。
【図6】本発明の一実施形態の半導体集積回路装置の製造方法のチップピックアップ工程を示す断面図である。
【図7】本発明の一実施形態の半導体集積回路装置の製造方法のダイボンド工程を示す断面図である。
【図8】本発明の一実施形態の半導体集積回路装置の製造方法の基板への実装工程を示す断面図である。
【図9】本発明の一実施形態の半導体集積回路装置の製造方法の基板上の電極とチップ上のパッド間のワイヤボンディング工程を示す断面図である。
【図10】本発明の一実施形態の半導体集積回路装置の製造方法の封止工程を示す断面図である。
【図11】本発明の一実施形態の半導体集積回路装置の製造方法のバンプ形成工程を示す断面図である。
【図12】本発明の一実施形態の半導体集積回路装置の製造方法のデバイス分離工程を示す断面図である。
【図13】本発明の一実施形態の半導体集積回路装置の製造方法において用いるバックグラインディング−洗浄−ウエハマウント一貫装置の上面図である。
【図14】本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス断面図(UV硬化接着剤塗布工程)である。
【図15】本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス断面図(ウエハサポート部材張り合わせ工程)である。
【図16】本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス断面図(ウエハサポート部材張り合わせ用UV硬化接着剤のUV硬化工程)である。
【図17】図16の破線部に対応する端部拡大断面図である。
【図18】本発明の一実施形態の半導体集積回路装置の製造方法の要部プロセスであるバックグラインディング工程におけるウエハとサポート部材の貼り付けの位置関係を示すウエハ全体平面図である。
【図19】図18の2点破線部の拡大平面図である。
【図20】本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(ウエハのバックグラインディング前)である。
【図21】本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(ウエハのバックグラインディング工程途中)である。
【図22】本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(ウエハのバックグラインディング工程完了時点)である。
【図23】本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(サポート部材剥離補助膜へのレーザビーム照射工程)である。
【図24】本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(サポート部材剥離工程)である。
【図25】本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(サポート部材貼り付け用UV硬化接着剤剥離工程)である。
【図26】本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスを説明する配線基板等断面図(基板準備工程)である。
【図27】本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスを説明する配線基板等断面図(チップマウント工程)である。
【図28】本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスを説明する配線基板等断面図(金半田接合工程)である。
【図29】本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスを説明する配線基板等断面図(アンダーフィル工程)である。
【図30】本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスを説明する配線基板等断面図(半田バンプ形成工程)である。
【図31】本願の前記一実施の形態の半導体装置の製造方法における要部要素プロセスである裏面酸化プロセスに使用する低温プラズマ陽極酸化装置の模式断面図である。
【図32】本願の前記一実施の形態の半導体装置の製造方法における対象ウエハのバックグラインディング前の断面構造の一例を示す模式デバイス断面図である。
【図33】本願の前記一実施の形態の半導体装置の製造方法におけるバックグラインディング処理とウエハ断面の関係を説明するウエハの模式断面図である。
【図34】本願の前記一実施の形態の半導体装置の製造方法におけるバックグラインディング処理後のウエハの裏面近傍の断面を示すウエハの模式断面図である。
【図35】本願の前記一実施の形態の半導体装置の製造方法における裏面酸化処理後のウエハの裏面近傍の断面を示すウエハの模式断面図である。
【図36】図35を簡略化して示したウエハの模式断面図である。
【図37】本願の前記一実施の形態の半導体装置の製造方法におけるバックグラインディング処理とイントリンシックゲッタリングとの関係を説明するウエハの部分模式断面図である。
【図38】本願の前記一実施の形態の半導体装置の製造方法に対する変形例に対応するウエハ薄膜化工程への破砕層を残すドライポリッシュの適用例を説明するためのプロセス全体フロー図である。
【図39】チップ抗折強度(3点曲げ測定)と裏面酸化膜厚の関係を示すデータプロット図である。
【図40】破砕層厚さとチップ裏面から表面への銅汚染浸透の程度を示すデータプロット図である。
【図41】破砕層厚さとチップ抗折強度の関係を示すデータプロット図である。
【図42】裏面酸化膜厚とチップ抗折強度の関係を説明するための説明図である。
【図43】裏面酸化膜厚、チップ抗折強度およびゲッタリング能力の関係を説明するための説明図である。
【図44】低温酸化プロセス等のダイシングへの応用例を示すウエハ広域模式断面図(ダイシング後)である。
【図45】図44のチップ端部拡大領域C1に対応するチップ端部拡大模式断面図である。
【図46】低温酸化プロセス等のダイシングへの応用例を示すウエハ広域模式断面図(低温酸化後後)である。
【図47】図46のチップ端部拡大領域C1に対応するチップ端部拡大模式断面図である。
【発明を実施するための形態】
【0015】
〔実施の形態の概要〕
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。
【0016】
1.以下の工程を含む半導体装置の製造方法:
(a)第1の厚さを有するとともに、第1および第2の主面を有し、前記第1の主面側に集積回路が形成された半導体ウエハを準備する工程;
(b)前記半導体ウエハの前記第2の主面に対して、バックグラインディング処理を実施することにより、前記第1の厚さよりも薄い第2の厚さにする工程;
(c)前記工程(b)の後、前記半導体ウエハの前記第2の主面、または、その近傍に破砕層が残存するように、前記第2の主面に保護膜を形成する工程。
【0017】
2.前記1項の半導体装置の製造方法において、前記半導体ウエハは、シリコンを主要な成分のするものである。
【0018】
3.前記1または2項の半導体装置の製造方法において、前記工程(c)は、前記半導体ウエハの前記第2の主面、または、その近傍に破砕層が存在する状態で実行される。
【0019】
4.前記1から3項のいずれか一つの半導体装置の製造方法において、前記保護膜の形成は、摂氏300度以下で行われる低温酸化処理である。
【0020】
5.前記1から4項のいずれか一つの半導体装置の製造方法において、前記保護膜の厚さは、10nm以上、且つ90nm未満である。
【0021】
6.前記1から5項のいずれか一つの半導体装置の製造方法において、前記保護膜は、酸化シリコン系絶縁膜である。
【0022】
7.前記1から6項のいずれか一つの半導体装置の製造方法において、前記保護膜は、プラズマ酸化によって形成される。
【0023】
8.前記1から6項のいずれか一つの半導体装置の製造方法において、前記保護膜は、プラズマ陽極酸化によって形成される。
【0024】
9.前記1から6項のいずれか一つの半導体装置の製造方法において、前記半導体ウエハは、CZ結晶である。
【0025】
10.前記1から6項のいずれか一つの半導体装置の製造方法において、前記保護膜は、CVDによって形成される。
【0026】
11.前記1から6項のいずれか一つの半導体装置の製造方法において、前記第2のウエハ厚さは、50マイクロメートル以下である。
【0027】
12.前記1から11項のいずれか一つの半導体装置の製造方法において、前記破砕層は、前記バックグラインディング処理によって形成されたものである。
【0028】
13.前記1から12項のいずれか一つの半導体装置の製造方法において、更に以下の工程を含む:
(d)前記工程(c)の後、前記半導体ウエハの前記第2の主面に対して、洗浄処理を実行する工程。
【0029】
14.前記13項の半導体装置の製造方法において、更に以下の工程を含む:
(e)前記工程(d)の後、前記半導体ウエハの前記第2の主面に、ダイシングテープを貼り付ける工程。
【0030】
15.前記1から14項のいずれか一つの半導体装置の製造方法において、前記破砕層は、マイクロクラック層、および、その上に形成された多結晶質層を有する。
【0031】
16.前記14または15項の半導体装置の製造方法において、更に以下の工程を含む:
(f)前記工程(e)の後、前記半導体ウエハを半導体チップに分離する工程;
(g)前記工程(f)の後、前記半導体チップを配線基板に搭載する工程;
(h)前記工程(g)の後、前記半導体チップの裏面が露出するように、前記半導体チップを樹脂で封止する工程。
【0032】
17.前記1から16項のいずれか一つの半導体装置の製造方法において、更に以下の工程を含む:
(i)前記工程(b)の後であって、前記工程(c)の前に、前記半導体ウエハの前記第2の主面に対して、ドライポリッシング処理を実行する工程。
【0033】
18.以下の工程を含む半導体装置の製造方法:
(a)第1の厚さを有するとともに、第1および第2の主面を有し、前記第1の主面側に集積回路が形成された半導体ウエハの前記第1の主面を、ウエハサポート部材に貼り付ける工程;
(b)前記ウエハサポート部材に貼り付けられた前記半導体ウエハの前記第2の主面に対して、バックグラインディング処理を実行することにより、前記第1の厚さよりも薄い第2の厚さにする工程;
(c)前記工程(b)の後、前記半導体ウエハが前記ウエハサポート部材に貼り付けられた状態で、前記半導体ウエハの前記第2の主面、または、その近傍に破砕層が残存するように、前記第2の主面に保護膜を形成する工程。
【0034】
19.前記18項の半導体装置の製造方法において、前記半導体ウエハは、シリコンを主要な成分のするものである。
【0035】
20.前記18または19項の半導体装置の製造方法において、前記工程(c)は、前記半導体ウエハの前記第2の主面、または、その近傍に破砕層が存在する状態で実行される。
【0036】
21.前記18から20項のいずれか一つの半導体装置の製造方法において、前記保護膜の形成は、摂氏300度以下で行われる低温酸化処理である。
【0037】
22.前記18から21項のいずれか一つの半導体装置の製造方法において、前記保護膜の厚さは、10nm以上、且つ90nm未満である。
【0038】
23.前記18から22項のいずれか一つの半導体装置の製造方法において、前記保護膜は、プラズマ酸化によって形成される。
【0039】
24.前記18から22項のいずれか一つの半導体装置の製造方法において、前記保護膜は、プラズマ陽極酸化によって形成される。
【0040】
25.前記18から22項のいずれか一つの半導体装置の製造方法において、前記半導体ウエハは、CZ結晶である。
【0041】
26.前記18から22項のいずれか一つの半導体装置の製造方法において、前記保護膜は、CVDによって形成される。
【0042】
27.前記18から22項のいずれか一つの半導体装置の製造方法において、前記第2のウエハ厚さは、50マイクロメートル以下である。
【0043】
28.前記18から27項のいずれか一つの半導体装置の製造方法において、前記破砕層は、前記バックグラインディング処理によって形成されたものである。
【0044】
29.前記18から28項のいずれか一つの半導体装置の製造方法において、更に以下の工程を含む:
(d)前記工程(c)の後、前記半導体ウエハの前記第2の主面に対して、洗浄処理を実行する工程。
【0045】
30.前記29項の半導体装置の製造方法において、更に以下の工程を含む:
(e)前記工程(d)の後、前記半導体ウエハの前記第2の主面に、ダイシングテープを貼り付けるとともに、前記半導体ウエハが前記ダイシングテープに貼り付けられた状態で、前記半導体ウエハから前記ウエハサポート部材を分離する工程。
【0046】
31.前記18から30項のいずれか一つの半導体装置の製造方法において、前記破砕層は、マイクロクラック層、および、その上に形成された多結晶質層を有する。
【0047】
32.前記30または31項の半導体装置の製造方法において、更に以下の工程を含む:
(f)前記工程(e)の後、前記半導体ウエハを半導体チップに分離する工程;
(g)前記工程(f)の後、前記半導体チップを配線基板に搭載する工程;
(h)前記工程(g)の後、前記半導体チップの裏面が露出するように、前記半導体チップを樹脂で封止する工程。
【0048】
33.前記18から32項のいずれか一つの半導体装置の製造方法において、更に以下の工程を含む:
(i)前記工程(b)の後であって、前記工程(c)の前に、前記半導体ウエハの前記第2の主面に対して、ドライポリッシング処理を実行する工程。
【0049】
34.以下の工程を含む半導体装置の製造方法:
(a)第1の厚さを有するとともに、第1および第2の主面を有し、前記第1の主面側に集積回路が形成された半導体ウエハの前記第1の主面を、ウエハサポート部材に貼り付ける工程;
(b)前記ウエハサポート部材に貼り付けられた前記半導体ウエハの前記第2の主面に対して、バックグラインディング処理を実行することにより、前記第1の厚さよりも薄い第2の厚さにする工程;
(c)前記工程(b)の後、前記ウエハサポート部材に貼り付けられた前記半導体ウエハの前記第2の主面側から、ダイシングを実行することにより、ダイシング溝を形成する工程;
(d)前記工程(c)の後、前記半導体ウエハが前記ウエハサポート部材に貼り付けられた状態で、前記半導体ウエハの前記第2の主面、または、その近傍、および、前記ダイシング溝の両方に破砕層が残存するように、前記第2の主面に保護膜を形成する工程。
【0050】
〔本願における記載形式、基本的用語、用法の説明〕
1.本願において、実施の態様の記載は、必要に応じて、便宜上複数のセクションに分けて記載する場合もあるが、特にそうでない旨明示した場合を除き、これらは相互に独立別個のものではなく、単一の例の各部分、一方が他方の一部詳細または一部または全部の変形例等である。また、原則として、同様の部分は繰り返しを省略する。また、実施の態様における各構成要素は、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、必須のものではない。
【0051】
更に、本願において、「半導体装置」または「半導体集積回路装置」というときは、主に、各種トランジスタ(能動素子)単体、および、それらを中心に、抵抗、コンデンサ等を半導体チップ等(たとえば単結晶シリコン基板)上に集積したものをいう。ここで、各種トランジスタの代表的なものとしては、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)に代表されるMISFET(Metal Insulator Semiconductor Field Effect Transistor)を例示することができる。このとき、集積回路構成の代表的なものとしては、Nチャネル型MISFETとPチャネル型MISFETを組み合わせたCMOS(Complemetary Metal Oxide Semiconductor)型集積回路に代表されるCMIS(Complemetary Metal Insulator Semiconductor)型集積回路を例示することができる。
【0052】
今日の半導体集積回路装置、すなわち、LSI(Large Scale Integration)のウエハ工程は、通常、原材料としてのシリコンウエハの搬入からプリメタル(Premetal)工程(M1配線層下端とゲート電極構造の間の層間絶縁膜等の形成、コンタクトホール形成、タングステンプラグ、埋め込み等からなる工程)あたりまでのFEOL(Front End of Line)工程と、M1配線層形成から始まり、アルミニウム系パッド電極上のファイナルパッシベーション膜へのパッド開口の形成あたりまで(ウエハレベルパッケージプロセスにおいては、当該プロセスも含む)のBEOL(Back End of Line)工程に大別できる。
【0053】
2.同様に実施の態様等の記載において、材料、組成等について、「AからなるX」等といっても、特にそうでない旨明示した場合および文脈から明らかに、そうでない場合を除き、A以外の要素を主要な構成要素のひとつとするものを排除するものではない。たとえば、成分についていえば、「Aを主要な成分として含むX」等の意味である。たとえば、「シリコン部材」等といっても、純粋なシリコンに限定されるものではなく、SiGe合金やその他シリコンを主要な成分とする多元合金、その他の添加物等を含む部材も含むものであることはいうまでもない。同様に、「酸化シリコン膜」、「酸化シリコン系絶縁膜」等と言っても、比較的純粋な非ドープ酸化シリコン(Undoped Silicon Dioxide)だけでなく、FSG(Fluorosilicate Glass)、TEOSベース酸化シリコン(TEOS-based silicon oxide)、SiOC(Silicon Oxicarbide)またはカーボンドープ酸化シリコン(Carbon-doped Silicon oxide)またはOSG(Organosilicate glass)、PSG(Phosphorus Silicate Glass)、BPSG(Borophosphosilicate Glass)等の熱酸化膜、CVD酸化膜、SOG(Spin ON Glass)、ナノクラスタリングシリカ(Nano-Clustering Silica:NCS)等の塗布系酸化シリコン、これらと同様な部材に空孔を導入したシリカ系Low-k絶縁膜(ポーラス系絶縁膜)、およびこれらを主要な構成要素とする他のシリコン系絶縁膜との複合膜等を含むことは言うまでもない。
【0054】
また、酸化シリコン系絶縁膜と並んで、半導体分野で常用されているシリコン系絶縁膜としては、窒化シリコン系絶縁膜がある。この系統の属する材料としては、SiN,SiCN,SiNH,SiCNH等がある。ここで、「窒化シリコン」というときは、特にそうでない旨明示したときを除き、SiNおよびSiNHの両方を含む。同様に、「SiCN」というときは、特にそうでない旨明示したときを除き、SiCNおよびSiCNHの両方を含む。
【0055】
なお、SiCは、SiNと類似の性質を有するが、SiONは、むしろ、酸化シリコン系絶縁膜に分類すべき場合が多い。
【0056】
3.同様に、図形、位置、属性等に関して、好適な例示をするが、特にそうでない旨明示した場合および文脈から明らかにそうでない場合を除き、厳密にそれに限定されるものではないことは言うまでもない。
【0057】
4.さらに、特定の数値、数量に言及したときも、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、その特定の数値を超える数値であってもよいし、その特定の数値未満の数値でもよい。
【0058】
5.「ウエハ」というときは、通常は半導体装置(半導体集積回路装置、電子装置も同じ)をその上に形成する単結晶シリコンウエハを指すが、エピタキシャルウエハ、SOI基板、LCDガラス基板等の絶縁基板と半導体層等の複合ウエハ等も含むことは言うまでもない。
【0059】
6.砥石(Abrasive)の特性は主に砥粒、結合剤、これらの結合状態、気孔(Pore)の有無(ポーラス系砥石)等の構造的特長に依存するが、結合剤、構造的特長が同じ場合、主に砥粒の粒径(番数表示#Nで、たとえば#350)に依存する。番数表示の数値が大きいほど砥粒の平均粒径(単に「砥粒径」という)は小さくなる。(研削砥粒の径を表す#の後の数値は砥石等を製造する際に砥粒をより分けるふるいの目の大きさに対応する。言い換えると、それに含まれる主要な砥粒の径に対応する。例を示すと、#280の粒径はほぼ100μm程度、#360の粒径はほぼ40から60μm程度、#2000の粒径はほぼ4から6μm程度、#4000の粒径はほぼ2から4μm程度、#8000の粒径はほぼ0.2μm程度である。本願では、これに準拠して、砥粒の径に関する砥石の特性を記載する。なおJIS規格がすでにある部分についてはそれに準じている。同基準がないものについては、下記ディスコ社製品の基準に準拠している。)砥粒には一般にはダイヤモンドが使用されるが、その他の材料でもよい。なお、グラインディングプロセスで使用される砥石は、一般にダイヤモンド砥粒と無機系結合剤を混ぜて、あるいは表面にコートして焼成したセラミック系のものと、ダイヤモンド砥粒を有機系結合剤(レジンボンド)で固めたレジノイド系(レジンにはフェノール系、ポリイミド系などがある)のもの、またはその中間のものがある。一般にレジン系の結合剤の方が研削ダメージが小さいとされている。また、適用可能な砥粒(固定砥粒)としては、ダイヤモンドの外に、シリコンカーバイド、アルミナベース砥粒、CBN(Cubic Boron Nitride)等がある。なお、市販されている仕上げ研削用グラインディングホイール(回転研削砥石)としては、株式会社ディスコ(DISCO Corporation)のグラインディングホイールIFシリーズ、GF01シリーズ、ポリグラインド(Poligrind)シリーズ等がある。
【0060】
7.「グラインディング」は、通常、ダイヤモンド系砥粒を含有する砥石を多数装着したグラインディングホイール(回転研削刃)によって行われる研削プロセスである。「ドライポリッシング」は、元来、シリコンウエハ等のバックグラインディングの際に形成されるダメージ層を除去するストレスリリーフ処理のために導入されたもので、シリカ系等の非ダイヤモンド系砥粒を含有する砥石を用いた固定砥粒研摩(スラリを用いない研磨)に分類される。通常のドライポリッシング後の処理面はミラー面を呈する固相反応を利用しているので、広い意味では、「化学機械研摩」の範疇に入る。
【0061】
また、ゲッタリング能力を残す目的で、破砕層を残すドライポリッシングもあり、「ゲッタリングドライポリッシュ」等と呼ばれている。これに使用できるドライポリッシュ用ホイールとしては、たとえば、株式会社ディスコ(DISCO Corporation)のゲッタリングドライポリッシュ用ホイール(DPEG−GA0001)等がある。
【0062】
通常の「化学機械研摩」は、一般にポリウレタン等の研摩パッドと、遊離砥粒を含有するスラリを用いる湿式研磨処理である。なお、遊離砥粒を含有するスラリを用いた湿式研磨処理の変わりに、「固定砥粒湿式研摩」も、適用できることは言うまでもない。
【0063】
「研削」と「研摩」の相違を装置的な面から言うと、「研削」は、運動制御方式で決められた位置及び速度で移動するので、大きな圧力が被処理体に作用する可能性がある。一方、「研摩」は一定の圧力を保つように制御されている。
【0064】
〔実施の形態の詳細〕
実施の形態について更に詳述する。各図中において、同一または同様の部分は同一または類似の記号または参照番号で示し、説明は原則として繰り返さない。
【0065】
また、添付図面においては、却って、煩雑になる場合または空隙との区別が明確である場合には、断面であってもハッチング等を省略する場合がある。これに関連して、説明等から明らかである場合等には、平面的に閉じた孔であっても、背景の輪郭線を省略する場合がある。更に、断面でなくとも、空隙でないことを明示するために、ハッチングを付すことがある。
【0066】
なお、ウエハの裏面にガラス補強体を適用するプロセスについて開示した先行特許出願としては、たとえば日本特願第2009−164632号(日本出願日2009年7月13日)がある。
【0067】
1.本願の一実施の形態の半導体装置の製造方法における要部であるバックグラインディング工程以降のプロセスのアウトラインの説明(主に図1から図12)
図1は本発明の一実施形態の半導体集積回路装置の製造方法の全体の流れを示す全体フロー図である。図2は本発明の一実施形態の半導体集積回路装置の製造方法のダイシングフレームへのウエハのマウント工程を示す断面図である。図3は図2のX−X’断面の断面図である。図4は本発明の一実施形態の半導体集積回路装置の製造方法のダイシング工程を示す断面図である。図5は本発明の一実施形態の半導体集積回路装置の製造方法のUV照射工程を示す断面図である。図6は本発明の一実施形態の半導体集積回路装置の製造方法のチップピックアップ工程を示す断面図である。図7は本発明の一実施形態の半導体集積回路装置の製造方法のダイボンド工程を示す断面図である。図8は本発明の一実施形態の半導体集積回路装置の製造方法の基板への実装工程を示す断面図である。図9は本発明の一実施形態の半導体集積回路装置の製造方法の基板上の電極とチップ上のパッド間のワイヤボンディング工程を示す断面図である。図10は本発明の一実施形態の半導体集積回路装置の製造方法の封止工程を示す断面図である。図11は本発明の一実施形態の半導体集積回路装置の製造方法のバンプ形成工程を示す断面図である。図12は本発明の一実施形態の半導体集積回路装置の製造方法のデバイス分離工程を示す断面図である。これらに基づいて、本願の一実施の形態の半導体装置の製造方法における要部であるバックグラインディング工程以降のプロセスの流れ等を説明する。
【0068】
ここでは、シリコン系の300φウエハ(たとえば、単結晶シリコンからなるウエハ、通常、CZ結晶を使用する)を例にとって具体的に説明するが、ウエハ径は300φのほか、450φでも200φ、又は、その他であってもよい。また、シリコン系のほか、GaAs系その他の化合物半導体系でもよい。ここで例示する300φの単結晶シリコンウエハの場合は、当初の厚さ、すなわち、バックグラインディングの準備工程前の厚さは(第1の厚さ)、たとえば、775マイクロメートル程度である。この場合、ウエハは当初、すなわち、バックグラインディングの準備工程前においては、平面的には、ほぼ真円であるが、方位決定のためノッチが一つ存在する。ただし、このウエハノッチは、通常、以下で説明するように、バックグラインディングの準備工程中に消滅する。
【0069】
次に図1によって、本実施形態の全体の流れを説明する。先行ウエハ工程131が完了したウエハ1の表面1a(デバイス面、第1の主面)に、セクション3等で詳述するように、表面保護構造が形成される(ガラス貼り付け工程132)。その後、バックグラインディング処理133(装置等の説明は、セクション2等参照)が施される。バックグラインディング処理133が完了する(第2の厚さになっている)と、ウエハ1の表面1aとは反対側の裏面1b(第2の主面)に対して、酸化処理134(又は、裏面保護膜形成、詳細はセクション5参照)が実行される。
【0070】
次にウエハ1はダイシングのためのフレーム6にダイシングテープDT1を介してマウントされる(ウエハマウント工程135)。マウント後、不要な表面保護構造が除去される(図24参照、ガラス剥離工程136)。その後、ダイシングされ(ダイシング工程137)、つづいてダイシングテープDT1の粘着力を弱めるためのUV照射工程138を経て、ダイボンド工程139に送られる。なお、バックグラインディング処理133の準備工程からダイシング工程137の準備工程までの流れについては、セクション3で詳しく説明するので、ここでは簡単に触れるのみとする。
【0071】
次に、バックグラインディングにより半導体ウエハ1を薄膜化した後の各工程について、さらに順を追って説明する。ここでは、BGA(Ball Grid Array)型のパッケージを例に取り具体的に説明するが、セクション4に説明するように、フリップチップ(Flip Chip)方式その他のパッケージ方式にも同様に適用できることは言うまでもない。
【0072】
ダイシング工程137の準備工程が完了した時点では、図2及び図3に示すように、半導体ウエハ1の裏面(回路形成面の反対の主面)は、たとえば、DAF(Die Attach Film)等のボンディング用接着剤層5を介して、ダイシングテープDT1に固定されている。このダイシングテープDT1は円環状のダイシングフレーム6によって保持されている。ダイシングテープDT1は、例えばポリオリフィンを基材とし、アクリル系UV硬化タイプの粘着剤が塗布され、さらにその上にポリエステルからなる剥離材が貼り付けられている。剥離材は、例えば離形紙であり、剥離材を剥がしてダイシングテープDT1は半導体ウエハ1に貼り付けられる。ダイシングテープDT1の厚さは、例えば90μm、粘着力は、例えばUV照射前200g/25mm、UV照射後10から20g/25mmである。なお、剥離材がなく、基板の背面を離形処理したダイシングテープを用いてもよい。
【0073】
次に、図4に示すように、半導体ウエハ1をダイシングする。半導体ウエハ1はチップSC1に個片化されるが、個片化された後も各チップSC1はダイシングテープDT1を介してフレーム6に固定されているため、整列した状態を維持している。まず、半導体ウエハ1をウエハ搬送治具により半導体ウエハ1の回路形成面を真空吸着し、そのままダイシング装置へ搬送し、ダイシングテーブル7上に載置する。続いてダイヤモンドソーと呼ばれるダイヤモンド微粒を貼り付けた極薄の円形刃8を用いて、半導体ウエハ1をスクライブラインに沿って縦、横にカットする(ウエハの分割はレーザを用いた方法を使用しても良い。その場合は、切削幅を微少にする等の付加的なメリットがある)。
【0074】
次に、図5に示すように、半導体ウエハ1にUVを照射する。ダイシングテープDT1の裏面側からUVを照射して、ダイシングテープDT1の各チップSC1と接する面の粘着力を、例えば10から20g/25mm程度に低下させる。これにより各チップSC1がダイシングテープDT1から剥がれやすくなる。
【0075】
次に、図6に示すように、ウエハテスト工程において良品と判断されたチップSC1をピックアップする。まず、突き上げピン9によりダイシングテープDT1を介してチップSC1の裏面を押圧し、これによりチップSC1をダイシングテープDT1から剥離する。続いてコレット10が移動して突き上げピン9と対向する上部に位置し、剥離されたチップSC1の回路形成面をコレット10により真空吸着することにより、1個ずつチップSC1をダイシングテープDT1から引き剥がしてピックアップする。UV照射によりダイシングテープDT1とチップSC1との接着力が弱められているため、薄く強度が低下しているチップSC1であっても、確実にピックアップすることができる。コレット10は、例えば略円筒形の外形を有し、その底部に位置する吸着部は、例えば軟質の合成ゴムなどで構成されている。
【0076】
次に、図7に示すように、1段目となるチップSC1を配線基板11に搭載する。まず、ピックアップされたチップSC1はコレット10に吸着、保持されて、基板11(たとえば有機基板で単層または多層配線構造を有する)上の所定位置に搬送される。続いて基板11のメッキされたアイランド(チップ搭載領域)上にチップSC1を押し付け、100から200℃程度の温度により硬化処理を行う。これによりチップSC1を基板11に貼り付ける。ダイボンディング用接着層5としては、DAF材の外、ペースト材としてエポキシ系樹脂、ポリイミド系樹脂、アクリル系樹脂またはシリコーン系樹脂を例示することができる。なお、その他、メッキされたアイランドにチップSC1の裏面を軽く擦り付ける、あるいはメッキしたアイランドとチップSC1との間に金テープの小片を挟み、金とシリコンとの共晶を作って接着してもよい。
【0077】
ダイシングテープDT1に貼着された良品チップのダイボンディングおよび不良品チップの除去が終了すると、ダイシングテープDT1はフレーム6から剥がされ、フレーム6はリサイクルされる。
【0078】
次に、図8に示すように、前記チップSC1と同様にしてチップSC2を準備し、例えば絶縁性ペースト13a(DAF材でもよい。以下同じ)を用いて1段目のチップSC1上に2段目となるチップSC2を接合し、続いて、前記チップSC1と同様にしてチップSC3を準備し、例えば絶縁性ペースト13bを用いて2段目のチップSC2上に3段目となるチップSC3を接合することにより、チップSC1,SC2およびSC3を積層する。1段目のチップSC1は、例えばマイコン、2段目のチップSC2は、例えば電気的一括消去型EEPROM(Electric Erasable Programmable Read Only Memory)、3段目のチップSC3は、例えばSRAMを例示することができる。この基板11の表面には複数個の電極パッド14が設けられ、裏面には複数個の接続パッド15が設けられており、両者は基板内配線16によって電気的に接続されている。
【0079】
次に、図9に示すように、各々のチップSC1,SC2またはSC3の表面の縁辺に配列されたボンディングパッドと、基板11の表面の電極パッド14とをボンディングワイヤ17を用いて接続する。その作業は自動化されており、ボンディング装置を用いて行われる。ボンディング装置には、あらかじめ積層チップSC1,SC2およびSC3のボンディングパッドおよび基板11の表面の電極パッド14の配置情報が入力されており、基板11上に搭載された積層チップSC1,SC2およびSC3、その表面のボンディングパッドおよび基板11の表面の電極パッド14の相対的位置関係を画像として取り込み、データ処理を行って正確にボンディングワイヤ17が接続される。この際、ボンディングワイヤ17のループ形状は、積層チップSC1,SC2およびSC3の周辺部に触れないよう、盛り上がった形に制御される。
【0080】
次に、図10に示すように、ボンディングワイヤ17が接続された基板11を金型成形機にセットし、温度を上げ液状化した樹脂18を圧送して流し込み、積層チップSC1,SC2およびSC3を封入して、モールド成型する。続いて余計な樹脂18またはバリを取り除く。
【0081】
次に、図11に示すように、例えば半田からなるバンプ19を基板11の裏面の接続パッド15に供給した後、リフロー処理を施してバンプ19を溶解させ、バンプ19と接続パッド15とを接続する。
【0082】
その後、図12に示すように、樹脂18上に品名などを捺印し、基板11から1個1個の積層チップSC1,SC2およびSC3を切り分ける。その後、仕上がった1個1個の積層チップSC1,SC2およびSC3からなる製品を製品規格に沿って選別し、検査工程を経て製品が完成する。
【0083】
2.本願の前記一実施の形態の半導体装置の製造方法において、バックグラインディング&ウエハマウント一貫装置を使用した場合の処理フローの概要説明(主に図13)
このセクションでは、バックグラインディングからウエハマウントまでを連続処理する一例を、図13に示す一貫処理装置の説明図を用いて説明する。
【0084】
図13は本発明の一実施形態の半導体集積回路装置の製造方法において用いるバックグラインディング−洗浄−ウエハマウント一貫装置の上面図である。これに基づいて、バックグラインディング&ウエハマウント一貫装置における処理フローの概要を説明する。
【0085】
図13に示す一貫処理装置BGM1は、バックグラインディング部S1、洗浄部S2およびウエハマウント部S3(デマウント等を含む)、裏面酸化処理室57等からなる。各部には半導体ウエハ1を搬入するローダ20と搬出するアンローダ21とが備わっており、各部をスタンドアローンとして使用することもできる。また、バックグラインディング部S1と洗浄部S2との間には、両者間で半導体ウエハ1を搬送する搬送ロボット22が備わっており、同様に洗浄部S2とウエハマウント部S3との間には、両者間で半導体ウエハ1を搬送する搬送ロボット23が備わっている。
【0086】
まず、バックグラインディング部S1のローダ20に、複数の半導体ウエハ1を搭載したフープ(ウエハ密閉搬送容器)を乗せた後、搬送ロボット24にてフープから1枚の半導体ウエハ1を取り出してバックグラインディング部S1の処理室R1へ搬入する。フープは半導体ウエハ1のバッチ搬送用の密閉収納容器で、通常25枚、12枚、6枚等のバッチ単位で半導体ウエハ1を収納する。フープの容器外壁は微細な通気フィルタ部を除いて機密構造になっており、塵埃はほぼ完全に排除される。従って、クラス1000の雰囲気で搬送しても、内部はクラス1の清浄度が保てるようになっている。装置とのドッキングは、装置側のロボットがフープ(ウエハ密閉搬送容器)の扉を装置内部に引き込むことによって清浄さを保持した状態で行われる。
【0087】
次に、半導体ウエハ1をロータリーテーブル25上の吸着ステージ2(たとえば4個の内の一つ)に、ウエハ1の表面1aが補強された状態(詳細はセクション3参照)で載置し真空吸着した後、第1研削材59a(第1の回転砥石)を用いて半導体ウエハ1の裏面を粗研削し、半導体ウエハ1の厚さを所定の厚さ(第1の厚さ)まで減少させる。続いて、第2研削材59b(第2の回転砥石)を用いて半導体ウエハ1の裏面を仕上げ研削し、半導体ウエハ1の厚さを目的とする所定の厚さ(第2の厚さ)まで減少させる。
【0088】
なお、抗折強度を更に引き上げるために、更に砥粒径の小さいグラインディングホイールで仕上研摩するときは、第2研削材59b(第2の回転砥石)による処理に加えて(又は、それに変えて)、最終仕上げ用グラインディングホイール(BGヘッド)59cを用いて、付加的な仕上げ研削を実施しても良い。
【0089】
また、セクション6で説明するような仕上げ研削の後に、破砕層を形成するドライポリッシュによって、バックグラインディングでできた破砕層を一度除去して、改めて破砕層を形成する場合には、たとえば、ドライポリッシング研摩ヘッド56を使用すればよい。
【0090】
次に、半導体ウエハ1のバックグラインディングが終わると、半導体ウエハ1を搬送ロボット22にてバックグラインディング部S1から搬出して洗浄部S2へ搬送し、さらに搬送ロボット26にて半導体ウエハ1を洗浄部S2の処理室R2へ搬入し、半導体ウエハ1の純水による洗浄および乾燥が行われる。続いて、半導体ウエハ1は、搬送ロボット23等によって洗浄部S2から搬出され、裏面酸化処理室57へ搬入される。そこにおいて、ウエハ1の裏面1bに対して、酸化処理134(図1)が実行される。酸化処理134が完了すると(必要があれば、ウエハ1の裏面1b等を洗浄するため、洗浄部の処理室R2に戻しても良い)、ウエハ1は、搬送ロボット27等によりウエハマウント部S3へ搬送される。続いて、搬送ロボット27等により半導体ウエハ1は、ウエハマウント部S3の処理室R3へ搬入される。ここでは環状のフレームに貼り付け固定されたダイシングテープにその回路形成面を上面にして半導体ウエハ1を貼着した後、ダイシングテープにその回路形成面を上面にして半導体ウエハ1を貼着する。なお、ウエハ1の表面1aの補強構造は、セクション3に説明する方法並びにタイミングで適宜除去される。その後、半導体ウエハ1をウエハマウント部S3のアンローダ21へ搬送し、ウエハマウント部S3から半導体ウエハ1を取り出して再びフープに戻す。
【0091】
このように、一貫処理装置BGM1を用いることにより、半導体ウエハ1はバックグラインディングからウエハマウントまでを短時間で処理することができる。
【0092】
3.本願の前記一実施の形態の半導体装置の製造方法(ウエハサポート部材としてガラス系部材を使用する例)における要部プロセスの説明(主に図14から図25)
このセクションでは、セクション1、2に説明した全体プロセス等の中における要部プロセスであるバックグラインディング処理133(図1参照、以下同じ)の準備工程からダイシング工程137の準備工程までの流れについて詳しく説明する。
【0093】
図14は本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス断面図(UV硬化接着剤塗布工程)である。図15は本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス断面図(ウエハサポート部材張り合わせ工程)である。図16は本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス断面図(ウエハサポート部材張り合わせ用UV硬化接着剤のUV硬化工程)である。図17は図16の破線部に対応する端部拡大断面図である。図18は本発明の一実施形態の半導体集積回路装置の製造方法の要部プロセスであるバックグラインディング工程におけるウエハとサポート部材の貼り付けの位置関係を示すウエハ全体平面図である。図19は図18の2点破線部の拡大平面図である。図20は本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(ウエハのバックグラインディング前)である。図21は本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(ウエハのバックグラインディング工程途中)である。図22は本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(ウエハのバックグラインディング工程完了時点)である。図23は本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(サポート部材剥離補助膜へのレーザビーム照射工程)である。図24は本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(サポート部材剥離工程)である。図25は本発明の一実施形態の半導体集積回路装置の製造方法における要部プロセスであるバックグラインディング工程及びその付随工程の流れを説明するデバイス端部拡大断面図(サポート部材貼り付け用UV硬化接着剤剥離工程)である。図14から図25は、基本的に図18のX−X’断面に対応する。これらに基づいて、バックグラインディング処理133(図1参照)及びその付随工程の詳細を順に説明する。
【0094】
図1の先行するウエハ工程(たとえば、プローブ検査工程)が終了したウエハ1は、図14に示すように、スピン塗布テーブル51上に、そのデバイス面1a(回路形成面)を上にして真空吸着される。UV硬化接着剤3が滴下ノズル52から滴下されるとともに、スピン塗布テーブル51が高速回転して、塗布引き伸ばしが行われる。塗布厚さは、たとえば、20マイクロメートルから70マイクロメートル程度である。この厚さが、薄すぎると、剥離の際に破れるなどして、剥離工程がうまく実行できないほか、レーザ照射による影響がデバイスにまで及ぶ恐れがある。一方、厚すぎると、それに比例して膜厚ばらつきが増大する。ここで、この膜の形成にスピン塗布を使用するのは、塗布均一性が高いからである。もちろん、その他の膜形成方法でもよいことは言うまでもない。なお、UV硬化接着剤層3は、サポート部材4側(すなわち、光熱変換膜31上にスピン塗布等して)に形成してもよい。なお、UV硬化接着剤は多数市販されているが、たとえば、住友スリーエム社のUVレジン接着剤LC−3100またはLC−3200を例示することができる。なお、このステップは、たとえば図13に説明したBG−マウント一貫処理装置BGM1のバックグラインディング部S1の接着剤塗布室60を用いて行われる。
【0095】
次に、図15に示すように、このUV硬化接着剤層3が形成されたウエハ1と、ウエハと同様なスピン塗布またはスプレー塗布等により、たとえば0.5マイクロメートルから5マイクロメートル程度の厚さ(UV硬化接着剤を硬化させる際の紫外線を透過させる程度の厚さが要求される)の光熱変換膜31(サポート部材剥離補助膜であり、具体的には、たとえば炭素粉末を接着剤に混ぜて塗布し乾燥したもので、近赤外光等を吸収して熱に変換できるもの)を、ウエハサポート部材4(ガラス系部材略円板)の第1の主面4a(ウエハと張り合わせる面)に形成したものを、張り合わせ用真空チャンバ53に導入する(この張り合わせ用真空チャンバ53は、たとえば図13に示すように、BG−マウント一貫処理装置BGM1のバックグラインディング部S1に設けられている)。この張り合わせ用真空チャンバ53内において、真空吸着テーブル54にウエハ1を吸着し、真空吸着テーブル55にウエハサポート部材4を吸着し、相互の第1の主面を対向させて、真空状態で張り合わせを実行する。なお、光熱変換膜31は、たとえば、住友スリーエム社から”Light to Heat Conversion”膜(熱炭化発泡レジン膜)として、ガラス基板に形成された状態等の形態で市販されている。
【0096】
ここで、ウエハサポート部材4の厚さとしては、700マイクロメートル程度(好適な範囲としては、500マイクロメートルから1000マイクロメートル程度)を例示することができる。材料的には、紫外光(ここでは主に波長400nmから500nm程度の領域)、可視光、および赤外光(ここでは主に波長800nmから2000nm程度の領域)を比較的よく透過させる必要から、ガラス系部材(主にガラスからなる透明なサポート部材)が好適である。具体的には、ホウケイ酸ガラス(主にホウケイ酸ガラスからなるサポート部材)を好適な例としてあげることができる。これは、シリコンと膨張係数が近似しているからである。ソーダガラス(主にソーダガラスからなるサポート部材)でも可能であるが、ソーダガラスの膨張係数は、シリコンに比べて倍以上大きいほか、ホウケイ酸ガラスの方はアルカリ金属成分が少ないメリットがある。石英ガラス(主に石英ガラスからなるサポート部材)も使用可能であり、紫外線を透過させやすいメリットがあるが、熱膨張係数は、シリコンより、一桁小さい。なお、光を透過させる必要がないときは、不透明なガラス部材を使用してもよい。
【0097】
この張り合わせの際のウエハ1とウエハサポート部材4の平面的相互関係及び周辺部に位置関係(配向等)を図18および図19を用いて説明する。図18に示すように、ウエハ1の直径が300ミリメートルのとき、ウエハサポート部材4の直径は、ウエハ1の直径よりわずかに大きいことが量産上、好適である。たとえば、300.2ミリメートル程度とするとよい。これは、ウエハ1の端部の欠けと、補強構造を有するウエハ1を従来のウエハ処理装置およびウエハハンドリング機構で同様に処理できるようにするためである(通常、数ミリ程度なら許容する装置が多いが、全ての装置が許容する必要があるので、この余剰分は、比較的小さいことが望ましい。もちろん、装置が許容する範囲であれば比較的大きくても問題はない。)。ウエハ1とウエハサポート部材4を貼り付ける際の配向は、半導体ウエハ1のノッチ部があった部分と、サポート部材4のノッチ部35が、ほぼ一致するような配向で、張り合わせる。
【0098】
これは、図19に示すように、ウエハ1のノッチ部は、ノッチトリミング処理により取り除かれ、ノッチトリミング部1nとなっているからである。ウエハ1が薄膜化されると、ウエハ1の周辺部がナイフエッジ化して、危険であり、また、塵埃の発生源となるため、ウエハ1の表面1a側周辺は、グラインディング前に、あらかじめ、最終厚さより、厚めにエッジトリミングされる。このエッジトリミングと相前後して、ノッチトリミング処理によりウエハ1のノッチ部をオリエンテーションフラット様に除去することによって、薄膜化すると塵埃の発生しやすいウエハ1のノッチ部をあらかじめ取り除いている。このように、貼り付けることにより、ウエハ1のノッチ部がなくとも、ウエハサポート部材4のノッチ部35がそのままウエハ1のノッチ部と同様に、位置合わせ等に使用できるので、ウエハ処理装置での処理がスムースとなる。ウエハ1とウエハサポート部材4の張り合わせは、サポート部材4が半導体ウエハ1の第1の主面1aのほぼ全体を覆うように張り合わせることが、ウエハ周辺の損傷防止の観点から望ましい。また、半導体ウエハ1の端部が、サポート部材4の周辺外部にはみ出さないように張り合わせることが、同様の観点から望ましい。従って、ウエハサポート部材4の形状は、ウエハと類似の径を有するほぼ円形とすることが望ましい。
【0099】
ウエハ1とウエハサポート部材4の張り合わせが完了すると、図16に示すように、ウエハ1の裏面1bを真空吸着テーブル54に真空吸着した状態で、UV硬化接着剤層3の硬化のため、UV光照射32が実行される。UV光の照射量(強度と時間の積)としては、たとえば、3000mJ/cm程度(1000mJ/cmから30000mJ/cm程度の範囲)を例示することができる。このときのウエハ1の端部(たとえば、図18のX−X’断面のX’端部等)の断面の詳細を図17に示す。なお、このステップは、たとえば図13に説明したBG−マウント一貫処理装置BGM1のバックグラインディング部S1の張り合わせ用真空チャンバ53内で行われる。
【0100】
次に、図20に示すように、ウエハサポート部材複合体(すなわち、サポート部材が貼り付けられたウエハ)を、真空吸着テーブル55上にウエハ1の裏面1bを上にして吸着する。そして、図21に示すように、たとえば、ダイヤモンド系のグラインディング回転ホイール59を用いて、バックグラインディングを実行し、たとえば、ウエハ研削量61で示す位置まで研削することによってシリコン系部材等を除去する。これによって、ウエハ1の薄膜化が達成されたことになる。薄膜化された時点におけるウエハ1およびウエハサポート部材複合体の様子を図22に示す。バックグラインディング処理は、たとえば、以下のように実施する。
【0101】
(1)粗削り処理ステップでは、たとえば、#300程度の砥粒径のダイヤモンド系砥粒を含有するグラインディングホイールを用いて、775マイクロメータ程度のウエハ1の厚さをたとえば65マイクロメータ程度とする。なお、必要に応じて、その他の種類や粒径の砥粒を含有するグラインディングホイールを用いてもよい(以下において同じ)。
【0102】
このステップは、たとえば図13に説明したBG−マウント一貫処理装置BGM1のバックグラインディング部S1の処理室R1内のロータリーテーブル25および荒削り用グラインディングホイール(BGヘッド)59aを用いて行われる。
【0103】
(2)次に、仕上げ削りステップとして、#2000程度の砥粒径のダイヤモンド系砥粒を含有するグラインディングホイールを用いて、65マイクロメータ程度のウエハ1の厚さをたとえば15マイクロメータ程度とする。
【0104】
このステップは、たとえば図13に説明したBG−マウント一貫処理装置BGM1のバックグラインディング部S1の処理室R1内のロータリーテーブル25および仕上げ用グラインディングホイール(BGヘッド)59bを用いて行われる。
【0105】
(2−1)また、(2)の仕上げ削りステップの代わりに、より小さい砥粒径のダイヤモンド系砥粒を含有するグラインディングホイール(たとえば、#4000、#6000、#8000、または#10000程度の砥粒径)を用いて、仕上げグラインディングを(2)と同様に実施することもできる。この場合は、抗折強度は大きくなるが、そのトレードオフとして、ゲッタリング能力は若干低下する。
【0106】
(3)更に、(2)の仕上げ削りステップの後に、より小さい砥粒径のダイヤモンド系砥粒を含有するグラインディングホイール(たとえば、#10000よりも小さい砥粒径、たとえば#20000程度の砥粒径)を用いて、付加的な最終仕上げグラインディングを(2)と同様に実施することもできる。この場合は、抗折強度は更に大きくなるが、そのトレードオフとして、ゲッタリング能力は更に低下するおそれがある。
【0107】
なお、このセクションで説明した裏面サポートプロセスが特に大きな効果を示すのは、ウエハ1の最終目標厚さは、100マイクロメータ程度以下の場合である。特に、60マイクロメータ程度以下では、薄膜化後のハンドリングが非常に困難になるので量産上、非常に大きな効果が期待できる。また、30マイクロメータ程度以下では、この種のサポートプロセスを使用しない限り、量産は非常に困難と考えられる。
【0108】
このプロセスにおいては、これ以降は、バックグラインディング工程の付随工程であり、かつ、後続のダイシング工程の準備工程となる。
【0109】
バックグラインディング処理が終わると、薄膜化が完了したウエハ1(ウエハサポート部材複合体)に対して、洗浄処理および乾燥処理が実行され、それに続いて、裏面酸化工程134(図1)が実行される。
【0110】
図23に示すように、裏面酸化工程134(図1)が完了したウエハ1(ウエハサポート部材複合体)は、たとえば、ウエハ1の裏面1bがダイシングフレーム6に貼り付け固定されたダイシングテープDT1と対向するように、ダイボンディング用接着層5を介してダイシングテープDT1に固定(押圧)される。次に、この状態で、ウエハサポート部材4側から、近赤外レーザビーム33を光熱変換膜31に集光するように照射することによって、光熱変換膜31の結合構造を脱ガス等により破壊する。すなわち、炭素粉末の存在により、光が吸収され、熱に変わり、その熱により、炭素粉末を結合している有機バインダ成分の温度が急上昇して、脱ガス及び炭化して、結合力を失う結果、光熱変換膜31のほぼ全体がばらばらの炭素粉末又は炭素片に変化する。近赤外レーザビーム33としては、たとえばYAGレーザの波長1.067マイクロメータを例示することができる。ここで、近赤外光を利用するのは、あまり長い波長(たとえば、3マイクロメートル程度以上)の赤外光を当てると、光熱変換膜31を透過して、UV硬化接着剤層3やデバイス(ウエハ1)に影響を与える恐れがあるからである。
【0111】
これにより、図24に示すように、ウエハ1(UV硬化接着剤層3を含む)とウエハサポート部材4(光熱変換膜31を含む)とを分離することが容易となる。なお、このステップは、たとえば図13に説明したBG−マウント一貫処理装置BGM1のウエハマウント部S3の処理室R2内で行われる。
なお、前記のように、ウエハ1の切断工程では、ダイシングテープDT1にウエハ1の裏面1bを接着するため、ダイシングテープDT1に付着した重金属(不純物)がウエハ1の裏面1bからウエハ1の内部に拡散(侵入)する恐れがあるが、本実施の形態では、ウエハ1の裏面1bに破砕層(ゲッタリング層)DLを形成しているため、この重金属の拡散を抑制することができる。
【0112】
次に、図25に示すように、ウエハ1上に残留したUV硬化接着剤層3に、剥離用粘着テープ34を貼り付けて、これをUV硬化接着剤層3ごと引き剥がすことにより、UV硬化接着剤層3を除去する。なお、このステップは、たとえば図13に説明したBG−マウント一貫処理装置BGM1のウエハマウント部S3の処理室R2内で行われる。
【0113】
この後、ウエハ1は、ダイシングテープDT1を介してダイシングフレーム6に固定された状態で、ダイシング処理137(図1)のため、ダイシング工程に移送される。
【0114】
4.本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスの説明(主に図26から図30)
セクション1から3においては、パッケージ又は実装形態としては、BGA(Ball Grid Array)を例にとり、具体的に説明したが、本願発明は、これに限定されるものではないことは言うまでもない。このセクションでは、フリップチップ(Flip Chip)実装の例を説明する。
【0115】
図26は本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスを説明する配線基板等断面図(基板準備工程)である。図27は本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスを説明する配線基板等断面図(チップマウント工程)である。図28は本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスを説明する配線基板等断面図(金半田接合工程)である。図29は本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスを説明する配線基板等断面図(アンダーフィル工程)である。図30は本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスを説明する配線基板等断面図(半田バンプ形成工程)である。これらに基づいて、本願の前記一実施の形態の半導体装置の製造方法をフリップチップ実装用チップの製造に適用した場合の実装プロセスを説明する。
【0116】
図26に示すように、フリップチップ実装用配線基板11(たとえば、単層又は有機系多層配線基板)のチップ搭載面(上面)には、銅等を主要な成分とする複数のボンディングパッド14が設けられており、配線基板実装面(下面)には、銅等を主要な成分とする複数のランド15(電極パッド)が設けられている。
【0117】
次に、図27に示すように、まず、フリップチップ実装用配線基板11のボンディングパッド14上に半田バンプ19(半田層をプリコート)を形成し、一方、半導体チップ8の表面8a側には、たとえば金バンプ28を形成しておく。ここで、チップ8の裏面8bには、すでに、裏面保護膜12(低温酸化膜)が形成されている。
【0118】
次に、この状態で、図28に示すように、半導体チップ8の表面8aとフリップチップ実装用配線基板11の上面を対向させた状態で、加熱等することにより、金半田接続を形成する。
【0119】
次に、図29に示すように、半導体チップ8の表面8aとフリップチップ実装用配線基板11の上面との間に、アンダーフィルレジン29を満たし、硬化させる。
【0120】
次に、図30に示すように、フリップチップ実装用配線基板11のランド15(電極パッド)に半田バンプ19を形成する。その後、必要に応じて、フリップチップ実装用配線基板11を他の基板上に、半田バンプ19を介して実装する。
【0121】
このように、フリップチップ実装のようなベアチップ実装(チップの裏面が被覆されずに露出しているもの)の場合は、裏面に重金属等に対する阻止膜やゲッタリング層がないと、製造工程中のハンドリングや洗浄等、あるいは半導体チップ8の裏面8bが露出した状態で実装基板に実装された後の使用環境下で導入されたコンタミネーションが容易にチップのデバイス面に到達してしまう。しかし、前記実施の形態のように、チップ裏面に低温酸化膜等の保護膜があると、その下層の破砕層(ゲッタリング層)と相俟って、重金属等のデバイス面での拡散を有効に阻止することができる。この効果は、ベアチップ実装だけでなく、チップ裏面にレジン層等を有するウエハレベルパッケージ(Wafer Level Package)や通常のレジン封止パッケージ(これまでに説明したBGA等を含む)においても、同様に有効である。これは、封止レジン中の重金属濃度は、洗浄水やウエハ工程に使用される薬液中の重金属濃度よりも、一般に、高いと考えられるからである。
【0122】
5.本願の前記一実施の形態の半導体装置の製造方法における要部要素プロセスである裏面酸化プロセス等の説明(主に図31から図37)
このセクションでは、図1等で説明した低温裏面酸化工程134(裏面保護工程)の具体例等について説明する。
【0123】
図31は本願の前記一実施の形態の半導体装置の製造方法における要部要素プロセスである裏面酸化プロセスに使用する低温プラズマ陽極酸化装置の模式断面図である。図32は本願の前記一実施の形態の半導体装置の製造方法における対象ウエハのバックグラインディング前の断面構造の一例を示す模式デバイス断面図である。図33は本願の前記一実施の形態の半導体装置の製造方法におけるバックグラインディング処理とウエハ断面の関係を説明するウエハの模式断面図である。図34は本願の前記一実施の形態の半導体装置の製造方法におけるバックグラインディング処理後のウエハの裏面近傍の断面を示すウエハの模式断面図である。図35は本願の前記一実施の形態の半導体装置の製造方法における裏面酸化処理後のウエハの裏面近傍の断面を示すウエハの模式断面図である。図36は図35を簡略化して示したウエハの模式断面図である。図37は本願の前記一実施の形態の半導体装置の製造方法におけるバックグラインディング処理とイントリンシックゲッタリングとの関係を説明するウエハの部分模式断面図である。これらに基づいて、本願の前記一実施の形態の半導体装置の製造方法における要部要素プロセスである裏面酸化プロセス等を説明する。
【0124】
(1)標準的な低温プラズマ陽極酸化路の説明(主に図31):
まず、図31に基づいて、低温裏面酸化工程134(図1)に使用するプラズマ陽極低温酸化装置57または裏面酸化処理室(図13)について説明する。図31に示すように、プラズマ陽極低温酸化装置57のガラス製真空チャンバ71内には、金属製ウエハテーブル76(下部電極)が設けられており、金属製ウエハテーブル76上には、ウエハサポート部材4を介して、ウエハ1がその裏面1bを上に向けて、置かれている。このウエハ1の裏面1bには、金属製ウエハテーブル76と同電位にするためのウエハバイアス用コンタクト80が設けられており、金属製ウエハテーブル76の周辺及び上方には、RFシールド用メタルメッシュ電極75が設けられている。金属製ウエハテーブル76には、ウエハ冷却系78が設けられており、ウエハ温度を摂氏300度以下程度(少なくとも摂氏350度程度以下に保持する必要がある)に、比較的低温に保持するようになっている。また、金属製ウエハテーブル76には、ウエハ1を陽極とするための直流バイアス電源77が接続されている。
【0125】
ガラス製真空チャンバ71の下方には、真空排気系79が設けられており、ガラス製真空チャンバ71の上端部には酸素ガスを供給するための酸素ガス流量調整器81が設けられている。酸素ガス流量調整器81を介して導入された酸素ガスは、酸素導入口72を通して、プラズマ励起部82に送られ、そこで、高周波ソース73により励起された誘導結合プラズマ発生コイル74により、励起され、プラズマとなり、下方へ輸送される。
【0126】
なお、標準的な酸化条件としては、たとえば、真空度:1から100パスカル程度、直流バイアス:60から80ボルト程度、高周波パワー:たとえば27メガヘルツのとき(100から500ワット程度)、ウエハ温度:摂氏300度以下(たとえばウエハ温度:摂氏270度程度)、処理時間:数分程度(酸化レートとしては、たとえば、450nm/時間程度)を好適なものとして例示することができる。なお、真空度その他については、炉の特性によって、大きく変わりうる。たとえば、ECR系の装置では、たとえば、0.01から1パスカルを好適なものとして例示することができる。
【0127】
なお、正バイアスのない通常のプラズマ酸化(バレル型アッシャー、反応性イオンエッチング方式)でも、酸化レートは遅いが、一定の効果が期待できる。しかし、プラズマ陽極低温酸化は、以下のような理由により、もっとも適合しているのがわかる。すなわち、プラズマ陽極低温酸化では、シリコン表面(ウエハ1の裏面1b)に原子状酸素の酸素(O*すなわち、酸素ラジカル)が吸着されており、そこに正バイアスで引かれた電子が衝突し、O−(陰イオン)が生成する。このO−(陰イオン)がSi−Si結合を切断し、それによって生じたSi+イオンとO−イオンの両方が電界によって逆方向に移動し、酸化膜表面とシリコン界面の両方で酸化を進行させる。従って、裏面の表面に被覆酸化膜を形成するとともに、クラックの深部に侵入して、このクラックの深部で酸化作用が行われるため、クラック先端部の形状を緩和させる効果が大きいだけでなく、クラックを挟む相対面を接着する効果も得られ、抗折強度の向上に寄与していると考えられる。
【0128】
なお、低温酸化膜以外の保護膜(無機系保護膜)としては、窒化シリコン膜(SiN膜)、SiC膜、SiCN膜等の窒化または炭化シリコン系膜が可能であるが、一般に酸化シリコン膜よりも生成温度が高いというデメリットがある。一方、窒化または炭化シリコン系膜は、重金属の拡散阻止能を有するというメリットがある。
【0129】
また、酸化シリコン膜といっても、典型的なもの以外に、SiON膜等の酸化窒化シリコン系の絶縁膜も適用できることは言うまでもない。
【0130】
(2)他の低温酸化または低温酸化膜形成方法の説明(主に図1を参照):
プラズマ陽極酸化装置(気相陽極酸化)のその他の例としては、たとえば、マイクロは励起のECR(Electron Cyclotron Resonance)型の高密度プラズマエッチング装置(市販の装置としては、たとえば株式会社日立ハイテクノロジーズのシリコンエッチャー:U−8150等がある)等を使用することができる。この場合、被処理体であるウエハを陽極とするために、表面が金属製のウエハステージを用いて、ウエハとステージをウエハバイアス用コンタクト80(図31)等で短絡する必要がある。
【0131】
また、液相陽極酸化も適用できる。これは、低温で行われる点で有効であるが、液相中での酸化種の輸送は、あまり効率的ではないので、気相陽極酸化と比較して、不利な点がある。
【0132】
更に、裏面に酸化膜(窒化膜)等の保護膜を形成する目的であれば、室温から摂氏350度程度の比較的低温で、酸化膜を形成するプラズマCVD装置が市販されている。シリコン酸化膜を形成する場合は、たとえば、液体ソースであるTEOS(テトラエトキシシラン)を使用する。これに使用できる装置としては、たとえば、サムコ株式会社製の「SiO2圧子膜系静養プラズマCVD装置」等がある。
【0133】
(3)薄膜ウエハ(ウエハ厚さが100マイクロメートル以下又は50マイクロメートル以下)において、ウエハの裏面からの汚染防止対策が必要な理由の説明(主に図32から図37):
現在の代表的な半導体集積回路装置であるCMOS集積回路チップ領域又はウエハの断面構造の概要を図32に基づいて、簡単に説明する。図32に示すように、たとえば、P型の単結晶シリコン基板であるウエハ1の全半導体基板部1sは、一般に当初、600から1000マイクロメートル程度の厚さを有する。全半導体基板部1sの上面近傍には、Pウエル領域PW、Nウエル領域NW等の各種の拡散領域(不純物ドープ領域)や素子分離領域ISOが形成される結果、不変な部分が高濃度半導体基板領域1pである。この高濃度半導体基板領域1pは、一般には、バックグラインディングにより、その一部を残して、除去される部分である。全半導体基板部1sの上面近傍には、Nチャネル型MISFET(QN)やPチャネル型MISFET(QP)が形成されており、これらの素子は、プリメタル絶縁膜36(プリメタル領域)によって被覆されている。プリメタル絶縁膜36を貫通するタングステンプラグ38によって、これらの素子と上層の多層配線領域37が連結されており、多層配線領域37は、多層の層間絶縁膜39および埋め込み配線40を有している。多層配線領域37の上端部には、上層の層間絶縁膜39を貫通するタングステンプラグ38があり、これよって、下層の配線と多層配線領域37の表面近傍のアルミニウム系ボンディングパッド42等が連結されており、多層配線領域37の表面は、ファイナルパッシベーション膜41(たとえば、酸化シリコン膜、窒化シリコン膜、ポリイミド膜又はこれらの複合膜)で被覆されている。
【0134】
次に、図33に示すように、バックグラインディング処理をマクロ的に見ると、ウエハ1の全厚(更に正確には、ウエハの全半導体基板部1s)をBGで除去する領域1gとBG後に残留する領域1rに分ける操作と見ることができる。
【0135】
次に、このバックグラインディング処理(正確には、破砕層を残存させる仕上げ研削又は研摩処理)後のウエハ1の裏面1bの詳細層構造を図34に説明する。図34に示すように、ウエハ1の裏面1bから下に向かって見てゆくと、表面が機械加工によって複雑な無秩序状態となった非晶質領域AR、その次が、多結晶質領域PR、更にその下が微細な亀裂の集合領域であるマイクロクラック領域CRであり、これらによって、(BGによる)破砕層DLが構成されている。破砕層DLの下方には、破砕層DLの存在によって生じた原子レベル歪層SRがあり、その先は、破砕層DLの影響を受けないストレスフリー層FRである。ここで、破壊に直接関与する層は、マイクロクラック領域CRであるが、ゲッタリング効果は、破砕層DL全体が担うと考えられる。
【0136】
次に、図35に裏面酸化処理を施した後のウエハ裏面層構造を示す(ただし、低温酸化膜12の構造は、図のように単純ではなく、裏面表面を除けば平坦ではなく多結晶の粒界境界やクラックに沿って生成している。従って図面上では、裏面表面の平坦部分のみを示す)。低温酸化等の処理をすると、ウエハ1の裏面1bに低温酸化膜12(裏面保護膜)が形成される(この部分は、正確には「低温酸化膜の表面部分」である)。また、低温酸化膜12(裏面保護膜)が厚くなると、非晶質領域ARを消費してしまうことも起こりえるので、図36のように、低温酸化膜12(裏面保護膜)は、主に破砕層DLの表面に形成されるという方が正確である。
【0137】
次に、図37にウエハ1の最終厚さが、100マイクロメートル以下とか、50マイクロメートル以下となると、裏面からのコンタミネーションの防止が重要になる理由を説明する。図37に示すように、集積回路等の製造に使用されるCZ(Czochralski)シリコン結晶は、石英ルツボを用いて結晶成長が行われるため、酸素不純物を飽和濃度以上に含有している。しかし、集積回路の製造上の熱処理や事前のアニール処理によって、ウエハ工程完了時点の十分前にすでに、ウエハ表面及び裏面の厚さ50から60マイクロメートル程度の領域では、酸素がウエハ外に排出される結果、欠陥のない無欠陥領域43(Denuded Zone)を形成しており、一方、内部領域では、酸素が析出して相当に厚い酸素析出領域44(Oxygen Precipitate Zone)を形成している。この相当に厚い酸素析出領域44がイントリンシックゲッタリング(Intrinsic Gettering)領域として作用する結果、ウエハの最終厚さが無欠陥領域43の厚さに比べて十分厚いうちは(たとえば、通常の薄膜ウエハのGB到達面TC)、薄膜化したウエハの裏面には、十分に厚いイントリンシックゲッタリング領域、すなわち酸素析出領域44があることになり、裏面からの重金属の侵入は問題とならなかった。しかし、ウエハの最終厚さが100マイクロメートル以下、更には、50マイクロメートル以下となってくると(たとえば、超薄膜ウエハのGB到達面TU)、酸素析出領域44の厚さが極めて薄いか、全くない状態が出現することとなる。こうなると、ウエハの裏面に何か、エクストリンシックゲッタリング(Extrinsic Gettering)効果のある層を設けないと、摂氏300度程度の比較的低温でも、裏面から導入された重金属不純物(たとえば、銅、鉄、ニッケル等)は、容易に表面のデバイス領域に到達することとなる。
【0138】
以上のように、本願のここまでに示した、又は、以下に示す実施の形態のプロセスは、ウエハ(又はチップ)の最終厚さが、100マイクロメートル(イントリンシックゲッタリング領域が薄くなる)又は50マイクロメートル以下(イントリンシックゲッタリング領域が皆無となる)で特に有効であるが、適度なゲッタリング能力を保持したまま、抗折強度を改善するという点では、一般にハンドリングに留意が必要になるウエハの最終厚さ300マイクロメートル以下の領域でも有効である。なお、以上に共通するウエハ(又はチップ)の最終厚さの下限は、デバイス構造によるが、通常は10マイクロメートル程度と考えられるが、理論的には、数マイクロメートル程度でも可能と考えられる。
【0139】
6.本願の前記一実施の形態の半導体装置の製造方法に対する変形例に対応するウエハ薄膜化工程への破砕層を残すドライポリッシュの適用例の説明(主に図38)
本セクション以外では、基本的に仕上げグラインディングの後、通常のドライポリッシュ等のグラインディングによる破砕層を除去する処理をすることなく、低温酸化等の保護膜形成処理を実行している。これはプロセス等が簡単で合理的であるが、一度、グラインディングによる破砕層を除去した後に、再度、詳細に制御された条件で、破砕層を形成することもできる。この方法について、以下説明する。
【0140】
図38は本願の前記一実施の形態の半導体装置の製造方法に対する変形例に対応するウエハ薄膜化工程への破砕層を残すドライポリッシュの適用例を説明するためのプロセス全体フロー図である。これに基づいて、本願の前記一実施の形態の半導体装置の製造方法に対する変形例に対応するウエハ薄膜化工程への破砕層を残すドライポリッシュの適用例を説明する。
【0141】
図38に示すように、図1と比較すると、このプロセスの特徴は、バックグラインディング処理133と低温裏面酸化工程134(裏面保護工程)の間に、破砕層を残存させることができる破砕層残存型のドライポリッシュ工程140を挿入するところにある。なお、これに使用できるドライポリッシュ用ホイールとしては、たとえば、株式会社ディスコ(DISCO Corporation)のゲッタリングドライポリッシュ用ホイール(DPEG−GA0001)等がある。
【0142】
7.各実施の形態及び全般に対する考察並びに補足的説明(主に図39から図43)
図39はチップ抗折強度(3点曲げ測定)と裏面酸化膜厚の関係を示すデータプロット図である。図40は破砕層厚さとチップ裏面から表面への銅汚染浸透の程度を示すデータプロット図である。図41は破砕層厚さとチップ抗折強度の関係を示すデータプロット図である。図42は裏面酸化膜厚とチップ抗折強度の関係を説明するための説明図である。図43は裏面酸化膜厚、チップ抗折強度およびゲッタリング能力の関係を説明するための説明図である。これらに基づいて、各実施の形態及び全般に対する考察並びに補足的説明を行う。
【0143】
(1)低温酸化処理を施したウエハに関するデータの説明(主に図39):
図39のデータは、以下の条件で測定されている。すなわち、200φの単結晶シリコンウエハを複数準備し、これらを2グループに分け、一つのグループを粒径#2000のグラインディングホイールで処理し、他のグループを粒径#8000のグラインディングホイールで処理した後、図31に説明した装置を用いて、低温酸化を実行した。各サンプルの酸化膜厚は、それぞれ0、152、235,455、および873(単位は、各オングストローム)である。3点曲げ測定方式で、支点間距離:5ミリメートル、ソーマーク方向がポンチに対して平行、試験速度:5ミリメートル/分である。
【0144】
図39からわかるように、付加酸化膜厚235オングストローム前後(24nm程度)に抗折強度のピークを持ち、膜厚が減少する方向では、ほぼリニアな抗折強度の減少が見られ、膜厚が増加する方向では、若干減少した後、水平に移行する傾向が見られる。
【0145】
(2)破砕層の厚さとゲッタリング効果の関係の説明(主に図40):
図40に示したサンプルは、200φ、厚さ500マイクロメートルのシリコン単結晶ウエハの裏面を銅で汚染した後、熱処理(摂氏300度で30分)して、その汚染がどの程度表面に到達したかを示すものである。この破砕層は、各種の粒径のグラインディングホイールを用いてウエハの裏面に形成したものであり、この場合、低温酸化処理等による保護膜は形成されていない。
【0146】
図40に示すように、表面側の汚染度は破砕層の膜厚増加に従って、指数関数的に減少している。
【0147】
(3)破砕層の厚さと抗折強度の関係の説明(主に図41):
図41に示したサンプルは、200φ、厚さ100マイクロメートルのシリコン単結晶ウエハに対して、各種の粒径のグラインディングホイールを用いてウエハの裏面に破砕層を形成したものである。
【0148】
図41に示すように、球抗折強度は、破砕層の厚さが増加するに従って、ほぼ指数関数的に減少している。球抗折強度の測定条件は、サンプルサイズ:15ミリメートル(縦)x15ミリメートル(横)x100マイクロメートル(厚さ)、孔径:7ミリメートル、球直径:4ミリメートル、試験速度:1ミリメートル/分である。
【0149】
(4)各試験結果についての考察(主に図42及び図43)
以上の検査結果を総合的に判断すると、図42に示すように、破砕層を除去し、新たな破砕層を残存させない通常ドライポリッシュ処理をした鏡面ウエハの抗折強度がその厚さでの抗折強度の最大値となる。また、仕上げ研削(仕上げのグラインディング)の砥粒の粒径が大きくなる(#に続く番号が小さくなる)に従い、抗折強度は、要求抗折強度の目安よりも下に来るようになる。しかし、付加酸化膜の膜厚が10nm程度以上、90nm程度以下(あまり厚くなると、破砕層を消費してしまい、ゲッタリング能力が低下する)の場合は、抗折強度が改善されて、ほぼ要求抗折強度の目安程度以上となる。なお、裏面表面の低温酸化膜12(裏面保護膜)の厚さは、表面の機械的安定性を増す効果があるが、クラックに入り込みその先端部の形状を緩和することにより、抗折強度を向上させる効果に比べると小さいと考えられる(図39の高膜厚側の平坦性)。
【0150】
これを横軸に砥粒の粒径に対応するパラメータをとり、右縦軸にゲッタリング能力をとり、左縦軸に抗折強度をとって、ゲッタリング能力の最終研削又は研摩の砥粒の粒径依存性を実線で示し、各付加膜厚における抗折の最終研削又は研摩の砥粒の粒径依存性を破線で示したのが図43である。すなわち、通常のドライポリッシュ(破砕層を残存させないもの)では、ほぼ要求される(又は将来要求される)ゲッタリング能力を満足させることはできないが、要求される抗折強度に対応して、最終研削の砥粒径を選択し、その最終研削の後に、ウエハの裏面に破砕層がある状態で、ウエハの裏面に低温酸化膜等の保護膜を形成すると、相当広い範囲にわたって、要求される抗折強度と必要なゲッタリング能力を確保できる範囲を確保することができる。
【0151】
8.低温酸化プロセス等のダイシングへの応用の説明(主に図44から図47)
このセクションでは、ウエハの裏面等に、破砕層を残存させるとともに、裏面等に低温酸化膜等の保護膜を形成することにより、抗折強度の確保とエクストリンシックゲッタリング(Extrinsic Gettering)効果の両立を図ることができる技術をダイシングに適用した例を説明する。
【0152】
通常は、ウエハ1がウエハサポート部材4に貼り付けられた状態で、ウエハ1の裏面1bをダイシングテープに貼り付け、その後、ウエハサポート部材4を除去した後、ダイシングを実行するが、ここでは、ウエハ1をウエハサポート部材4に貼り付けられた状態であって、ダイシングテープに貼り付ける前に、ウエハ1の裏面1bから回転ブレード等により、フルカットのダイシングを実行している。
【0153】
図44は低温酸化プロセス等のダイシングへの応用例を示すウエハ広域模式断面図(ダイシング後)である。図45は図44のチップ端部拡大領域C1に対応するチップ端部拡大模式断面図である。図46は低温酸化プロセス等のダイシングへの応用例を示すウエハ広域模式断面図(低温酸化後後)である。図47は図46のチップ端部拡大領域C1に対応するチップ端部拡大模式断面図である。これらに基づいて、低温酸化プロセス等のダイシングへの応用等を説明する。
【0154】
図44及び図45に示すように、ウエハ1がウエハ−ガラス接着層30を介してウエハサポート部材4に貼り付けられた状態で、ウエハ1の裏面1b側から、フルカットのダイシングを実行することにより、ダイシング溝45でウエハ1を個々のチップ領域8に分離する。このとき、ウエハ1の裏面1bには、(BGによる)破砕層DLが、一方、ダイシング溝45の側面には、(ダイシングによる)破砕層DLDが形成されている。このようにダイシング溝45の側面に破砕層が形成されると、抗折強度が低下する一因となる。
【0155】
次に、図46及び図47に示すように、たとえば、セクション5に説明した低温プラズマ陽極酸化により、ウエハ1の裏面1bおよびダイシング溝45の側面に対して、低温酸化処理(保護膜形成処理)を実行することにより、ウエハ1の裏面1bおよびダイシング溝45の側面に低温酸化膜12(保護膜)を形成する。なお、低温プラズマ陽極酸化を適用する場合には、分離された各チップ領域を金属製ウエハテーブル76(下部電極)と短絡させる(分離された各チップ領域を接地させる)か、荷電粒子を照射して各チップ領域のチャージアップを防止する等の対策が必要である。
【0156】
その後、たとえば、ウエハ1がウエハサポート部材4に貼り付けられた状態で、ウエハ1の裏面1bをダイシングテープに貼り付け、その後、ウエハサポート部材4を除去した後、セクション1から4に説明したように、個々のチップ8に対してピックアップおよびダイボンディング等を実行する。その後、必要な封止等を実行する。
【0157】
このような一連のプロセスによると、チップ8の側面にも、破砕層DLDおよび低温酸化膜12(保護膜)が早期に形成されるので、チップ側面からの重金属不純物の導入を阻止する効果があるほか、低温酸化等の保護膜形成により、チップの端部が強化され、チッピング防止に有効である。
【0158】
ただし、プロセス的には、ウエハの流れが若干複雑となる。
【0159】
9.サマリ
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本願発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
【0160】
例えば、前記実施の形態においては、最終形態パッケージ形態としてSIP(System In Package)の製品カテゴリに属するBGA(Ball Grid Array)型のパッケージ製品について具体的に説明したが、本願発明はそれに限定されるものではなく、メモリ系製品やリードフレーム、有機及び無機配線基板等を用いたプラスチックパッケージ、フリップチップ実装等のベア実装品等にも適用できることは言うまでもない。
【0161】
また、前記実施の形態においては、製品ウエハとしてシリコン系ウエハを例にとり具体的に説明したが、化合物半導体ウエハ、ガラス板、絶縁基板等の上に形成された半導体装置等にも適用できることは言うまでもない。
【0162】
更に、前記実施の形態においては、サポート部材として、ガラス系のウエハ類似の形状の板状物やシリコン系半導体ウエハ又は、これに類似した板状物を使用する例を主に説明したが、本願発明はそれに限定されるものではなく、セラミックスその他の絶縁物等を使用するものでもよい。
【符号の説明】
【0163】
1 ウエハ
1a ウエハのデバイス面(第1の主面)
1b ウエハの裏面(第2の主面)
1g BGで除去する領域
1n ウエハのノッチトリミング部
1p ウエハの高濃度半導体基板領域
1r BG後に残留する領域
1s ウエハの全半導体基板部
2 吸着ステージ
3 UV硬化接着剤(UV硬化接着剤層またはサポート部材接着層)
4 ウエハサポート部材(ガラス系部材略円板又はシリコン系部材略円板)
4a サポート部材の表面(第1の主面)
5 ダイボンディング用接着層(DAF等)
6 ダイシングフレーム
7 ダイシングテーブル
8 半導体チップ(チップ領域)
8a (半導体チップの)表面
8b (半導体チップの)裏面
9 突き上げピン
10 コレット
11 配線基板
12 裏面保護膜(低温酸化膜)
13a、13b 絶縁性ダイボンディング用接着層(絶縁性ペースト)
14 電極パッド(ボンディングパッド)
15 接続パッド
16 基板内配線
17 ボンディングワイヤ
18 封止レジン(またはレジン封止体)
19 半田バンプ
20 ローダ
21 アンローダ
22、23、24 搬送ロボット
25 ロータリーテーブル
26、27 搬送ロボット
28 金バンプ
29 アンダーフィルレジン
30 ウエハ−ガラス接着層
31 光熱変換膜(サポート部材剥離補助膜)
32 UV光照射
33 近赤外線レーザビーム
34 剥離テープ
35 サポート部材のノッチ部
36 プリメタル絶縁膜(プリメタル領域)
37 多層配線領域
38 タングステンプラグ
39 層間絶縁膜
40 埋め込み配線
41 ファイナルパッシベーション膜
42 アルミニウム系ボンディングパッド
43 無欠陥領域(Denuded Zone)
44 酸素析出領域(Oxygen Precipitate Zone)
45 ダイシング溝
51 スピン塗布テーブル
52 滴下ノズル
53 張り合わせ用真空チャンバ
54,55 真空吸着テーブル
56 ドライポリッシング研摩ヘッド
57 裏面酸化処理室(低温プラズマ陽極酸化装置)
59 グラインディングホイール
59a 荒削り用グラインディングホイール(BGヘッド)
59b 仕上げ用グラインディングホイール(BGヘッド)
59c 最終仕上げ用グラインディングホイール(BGヘッド)
60 接着剤塗布室
61 ウエハ研削量
71 ガラス製真空チャンバ
72 酸素導入口
73 高周波ソース
74 誘導結合プラズマ発生コイル
75 高周波シールド用メタルメッシュ電極
76 金属製ウエハテーブル(下部電極)
77 バイアス直流電源
78 ウエハ冷却系
79 真空排気系
80 ウエハバイアス用コンタクト
81 酸素ガス流量調整器
82 プラズマ励起部
131 ウエハ工程
132 ガラス貼り付け工程
133 バックグラインディング処理
134 低温裏面酸化工程(裏面保護工程)
135 ウエハマウント工程
136 ガラス剥離工程
137 ダイシング工程
138 UV照射工程
139 ダイボンド工程
140 破砕層を残すドライポリッシュ工程
AR 非晶質領域
BGM1 BG−マウント一貫処理装置
C1 チップ端部拡大領域
CR マイクロクラック領域
DL (BGによる)破砕層
DLD (ダイシングによる)破砕層
DT1 ダイシングテープ
FR ストレスフリー層
NW Nウエル領域
ISO 素子分離領域
PR 多結晶質領域
PW Pウエル領域
QN Nチャネル型MISFET
QP Pチャネル型MISFET
R1 バックグラインディング部の処理室
R2 洗浄部の処理室
R3 ウエハマウント部の処理室
S1 バックグラインディング部
S2 洗浄部
S3 ウエハマウント部
SC1、SC2、SC3 半導体チップ
SR 原子レベル歪層
TC 通常の薄膜ウエハのGB到達面
TU 超薄膜ウエハのGB到達面

【特許請求の範囲】
【請求項1】
以下の工程を含む半導体装置の製造方法:
(a)第1の厚さを有するとともに、第1および第2の主面を有し、前記第1の主面側に集積回路が形成された半導体ウエハを準備する工程;
(b)前記半導体ウエハの前記第2の主面に対して、バックグラインディング処理を実施することにより、前記第1の厚さよりも薄い第2の厚さにする工程;
(c)前記工程(b)の後、前記半導体ウエハの前記第2の主面、または、その近傍に破砕層が残存するように、前記第2の主面に保護膜を形成する工程。
【請求項2】
前記1項の半導体装置の製造方法において、前記工程(c)は、前記半導体ウエハの前記第2の主面、または、その近傍に破砕層が存在する状態で実行される。
【請求項3】
前記2項の半導体装置の製造方法において、前記保護膜の厚さは、10nm以上、且つ90nm未満である。
【請求項4】
前記3項の半導体装置の製造方法において、前記保護膜は、酸化シリコン系絶縁膜である。
【請求項5】
前記4項の半導体装置の製造方法において、前記保護膜は、プラズマ陽極酸化によって形成される。
【請求項6】
前記5項の半導体装置の製造方法において、前記破砕層は、前記バックグラインディング処理によって形成されたものである。
【請求項7】
前記6項の半導体装置の製造方法において、更に以下の工程を含む:
(d)前記工程(c)の後、前記半導体ウエハの前記第2の主面に対して、洗浄処理を実行する工程。
【請求項8】
前記7項の半導体装置の製造方法において、更に以下の工程を含む:
(e)前記工程(d)の後、前記半導体ウエハの前記第2の主面に、ダイシングテープを貼り付ける工程。
【請求項9】
前記8項の半導体装置の製造方法において、前記破砕層は、マイクロクラック層、および、その上に形成された多結晶質層を有する。
【請求項10】
前記9項の半導体装置の製造方法において、更に以下の工程を含む:
(f)前記工程(e)の後、前記半導体ウエハを半導体チップに分離する工程;
(g)前記工程(f)の後、前記半導体チップを配線基板に搭載する工程;
(h)前記工程(g)の後、前記半導体チップの裏面が露出するように、前記半導体チップを樹脂で封止する工程。
【請求項11】
以下の工程を含む半導体装置の製造方法:
(a)第1の厚さを有するとともに、第1および第2の主面を有し、前記第1の主面側に集積回路が形成された半導体ウエハの前記第1の主面を、ウエハサポート部材に貼り付ける工程;
(b)前記ウエハサポート部材に貼り付けられた前記半導体ウエハの前記第2の主面に対して、バックグラインディング処理を実行することにより、前記第1の厚さよりも薄い第2の厚さにする工程;
(c)前記工程(b)の後、前記半導体ウエハが前記ウエハサポート部材に貼り付けられた状態で、前記半導体ウエハの前記第2の主面、または、その近傍に破砕層が残存するように、前記第2の主面に保護膜を形成する工程。
【請求項12】
前記11項の半導体装置の製造方法において、前記工程(c)は、前記半導体ウエハの前記第2の主面、または、その近傍に破砕層が存在する状態で実行される。
【請求項13】
前記12項の半導体装置の製造方法において、前記保護膜の厚さは、10nm以上、且つ90nm未満である。
【請求項14】
前記13項の半導体装置の製造方法において、前記保護膜は、プラズマ陽極酸化によって形成される。
【請求項15】
前記14項の半導体装置の製造方法において、前記破砕層は、前記バックグラインディング処理によって形成されたものである。
【請求項16】
前記15項の半導体装置の製造方法において、更に以下の工程を含む:
(d)前記工程(c)の後、前記半導体ウエハの前記第2の主面に対して、洗浄処理を実行する工程。
【請求項17】
前記16項の半導体装置の製造方法において、更に以下の工程を含む:
(e)前記工程(d)の後、前記半導体ウエハの前記第2の主面に、ダイシングテープを貼り付けるとともに、前記半導体ウエハが前記ダイシングテープに貼り付けられた状態で、前記半導体ウエハから前記ウエハサポート部材を分離する工程。
【請求項18】
前記17項の半導体装置の製造方法において、前記破砕層は、マイクロクラック層、および、その上に形成された多結晶質層を有する。
【請求項19】
前記18項の半導体装置の製造方法において、更に以下の工程を含む:
(f)前記工程(e)の後、前記半導体ウエハを半導体チップに分離する工程;
(g)前記工程(f)の後、前記半導体チップを配線基板に搭載する工程;
(h)前記工程(g)の後、前記半導体チップの裏面が露出するように、前記半導体チップを樹脂で封止する工程。
【請求項20】
以下の工程を含む半導体装置の製造方法:
(a)第1の厚さを有するとともに、第1および第2の主面を有し、前記第1の主面側に集積回路が形成された半導体ウエハの前記第1の主面を、ウエハサポート部材に貼り付ける工程;
(b)前記ウエハサポート部材に貼り付けられた前記半導体ウエハの前記第2の主面に対して、バックグラインディング処理を実行することにより、前記第1の厚さよりも薄い第2の厚さにする工程;
(c)前記工程(b)の後、前記ウエハサポート部材に貼り付けられた前記半導体ウエハの前記第2の主面側から、ダイシングを実行することにより、ダイシング溝を形成する工程;
(d)前記工程(c)の後、前記半導体ウエハが前記ウエハサポート部材に貼り付けられた状態で、前記半導体ウエハの前記第2の主面、または、その近傍、および、前記ダイシング溝の両方に破砕層が残存するように、前記第2の主面に保護膜を形成する工程。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate


【公開番号】特開2012−84780(P2012−84780A)
【公開日】平成24年4月26日(2012.4.26)
【国際特許分類】
【出願番号】特願2010−231346(P2010−231346)
【出願日】平成22年10月14日(2010.10.14)
【出願人】(302062931)ルネサスエレクトロニクス株式会社 (8,021)
【Fターム(参考)】