説明

半導体装置

【課題】酸化亜鉛に代表される酸化物半導体膜を用いて薄膜トランジスタを形成すること
で、作製プロセスを複雑化することなく、尚かつコストを抑えることができる半導体装置
及びその作製方法を提供することを目的とする。
【解決手段】基板上にゲート電極を形成し、ゲート電極を覆ってゲート絶縁膜を形成し、
ゲート絶縁膜上に酸化物半導体膜を形成し、酸化物半導体膜上に第1の導電膜及び第2の
導電膜を形成する半導体装置であって、酸化物半導体膜は、チャネル形成領域において少
なくとも結晶化した領域を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置及びその作製方法に関する。特に、酸化物半導体を用いた半導体
装置に関する。また、その半導体装置を備えた電子機器に関する。
【背景技術】
【0002】
液晶ディスプレイ(LCD)やELディスプレイに代表されるフラットパネルディスプレ
イ(FPD)は、これまでのCRTに替わる表示装置として注目を集めている。特にアク
ティブマトリクス駆動の大型液晶パネルを搭載した大画面液晶テレビの開発は、液晶パネ
ルメーカーにとって注力すべき重要な課題になっている。また、大画面のELテレビの開
発も行われている。
【0003】
従来の液晶装置又はエレクトロルミネッセンス表示装置(以下、発光表示装置やEL表
示装置と呼ぶ。)において、各画素を駆動する半導体素子としては結晶質珪素や非晶質珪
素を用いた薄膜トランジスタ(以下、TFTと示す。)が用いられている。
【0004】
結晶質珪素膜を用いたTFTは、非晶質珪素膜を用いたTFTと比べて移動度が2桁以
上高く発光表示装置の画素を選択するための走査線駆動回路や、選択された画素にビデオ
信号を供給するための信号線駆動回路などに用いた場合に高速動作が望める。しかしなが
ら非晶質珪素を半導体膜に用いた場合と比べて半導体膜の結晶化のために工程が複雑化す
るため、その分歩留まりが低減し、コストが高くなるという難点がある。また、その結晶
化のための加熱温度は550度以上であり、融点の低い樹脂やプラスチックなどの基板を
用いることは困難である。
【0005】
一方、非晶質珪素を半導体膜に用いたTFTは、高温加熱を行わないため樹脂やプラス
チック基板を用いることができ、低コストで作製できる。しかしながら、非晶質珪素の半
導体膜でチャネル形成領域を形成したTFTの移動度は大きくても0.2〜1.0cm
/V・s程度しか得ることができない上に、消費電力も高い。
【0006】
また、非晶質珪素膜を基板上に成膜する場合、通常プラズマCVD法が用いられる。プ
ラズマCVD法は成膜時に高真空下での加熱が必要であり、プラスチック基板や基板上の
有機樹脂膜にダメージを与えるおそれがある。また、プラズマCVD法を用いて非晶質珪
素膜を成膜する他に、スパッタリング法を用いて成膜を行った際にも、非晶質珪素膜が成
膜後に大気に晒された場合、表面に薄い絶縁膜が形成されるおそれがある。
【0007】
このような珪素からなる半導体に代わる材料として、近年、チャネル形成領域に酸化亜
鉛などの酸化物半導体を用いてTFTを形成する報告がなされている(例えば、特許文献
1、非特許文献1参照。)。酸化物半導体は、非晶質珪素からなる半導体により形成され
たTFTと同等かそれ以上の移動度を有しているため、さらなる特性の向上が求められて
いる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2000−150900号公報
【非特許文献】
【0009】
【非特許文献1】Elvira M.C.Fortunato他6名 アプライド フィジクス レターズ Vol.85、No.13、P2541(2004)
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は、上記課題に鑑み、特性を向上させた半導体素子を有する半導体装置及びその
作製方法を提供することを目的とする。
【0011】
また、一方で、液晶テレビのように、より安価なプロセスで大面積デバイスを製造する
ために、基板の大型化が進んでいる。しかしながら、基板の大型化によって、撓みや歪み
の影響を受けやすくなるといった問題がある。また、熱処理工程で基板が高温に加熱され
ると、歪みや収縮により基板の寸法が狂い、フォトリソグラフィー工程の精度が悪くなる
といった問題がある。
【0012】
そこで、本発明は、半導体装置に用いられる半導体素子の結晶化工程において、一辺が
1メートルを超えるような大型基板にも、歩留まりよく半導体装置を作製可能な技術を提
供することを目的とする。
【0013】
以上のように、本発明は、従来に比べ低コスト且つ生産性よく製造でき、さらに特性を
向上させた半導体素子を有する半導体装置及びその作製方法を提供することを目的とする

【課題を解決するための手段】
【0014】
本発明は、半導体として化合物半導体、より好ましくは酸化物半導体を用いる。酸化物
半導体として、例えば、酸化亜鉛(ZnO)、InGaO(ZnO)、酸化マグネシ
ウム亜鉛(MgZn1−xO)、酸化カドミウム亜鉛(CdZn1−xO)、酸化カ
ドミウム(CdO)又はIn−Ga−Zn−O系のアモルファス酸化物半導体(a−IG
ZO)等を用いる。そして、化合物半導体に近接するゲート電極をランプ急速熱処理(L
RTA:lamp rapid thermal annealing、又は単にランプ
加熱ともいう)により加熱することで、化合物半導体の結晶化を選択的に促進させ、該結
晶化を促進させた領域を少なくともチャネル形成領域に有する化合物半導体を用いたTF
Tを作製することを要旨とする。
【0015】
また、本発明の一は、基板上に形成されたゲート電極と、ゲート電極を覆って形成され
た絶縁膜と、絶縁膜上に形成された酸化物半導体膜とを有し、酸化物半導体膜は、第1の
酸化物半導体領域及び第2の酸化物半導体領域を有し、ゲート電極と重なる位置に形成さ
れた第1の酸化物半導体領域は第2の酸化物半導体領域よりも結晶性が高いことを特徴と
する。なお、結晶性とは、結晶中の原子配列の規則性の度合いを表現するもので、結晶性
が良好である(結晶性が高い、結晶性が改善されているともいう。)酸化物半導体膜を用
いてTFTを作製すると、その電気的特性は良好なものとなる。
【0016】
また、本発明の一は、基板上にゲート電極と酸化物半導体膜を有し、酸化物半導体膜は
、絶縁膜を介してゲート電極と重なる領域において一部結晶化された領域を有することを
特徴とする。
【0017】
また、本発明の一は、基板上にゲート電極と、酸化物半導体膜と、導電膜を有し、導電
膜は、酸化物半導体膜に接して設けられ、酸化物半導体膜は、絶縁膜を介してゲート電極
と重なる領域において一部結晶化された領域を有することを特徴とする。
【0018】
また、本発明の一は、基板上に形成されたゲート電極と、ゲート電極を覆って形成され
た絶縁膜と、絶縁膜上に形成された酸化物半導体膜とを有し、酸化物半導体膜は、少なく
ともゲート電極と重なる領域において結晶化していることを特徴とする。なお、結晶化す
るとは、非晶質の状態から結晶核が生成する又は結晶核が生成された状態から結晶粒が成
長することをいう。
【0019】
また、本発明の一は、基板上に形成されたゲート電極と、ゲート電極を覆って形成され
た絶縁膜と、絶縁膜上に形成された導電膜と、絶縁膜及び導電膜上に形成された酸化物半
導体膜とを有し、酸化物半導体膜は、少なくとも前記ゲート電極と重なる領域において結
晶化していることを特徴とする。
【0020】
また、本発明の一は、基板上に形成されたゲート電極と、ゲート電極を覆って形成され
た絶縁膜と、絶縁膜上に形成された導電膜と、絶縁膜及び導電膜上に形成された酸化物半
導体膜とを有し、ゲート電極は、導電膜よりも結晶化に用いる光源に対する反射率が低い
ことを特徴とする。なお、反射率の比較は導電膜が遮光性を有する金属膜等であるときに
用いることとする。
【0021】
また、本発明の一は、基板上に形成されたゲート電極と、ゲート電極を覆って形成され
た絶縁膜と、絶縁膜上に形成された導電膜と、絶縁膜及び導電膜上に形成された酸化物半
導体膜とを有し、ゲート電極は、導電膜よりも熱吸収率が高いことを特徴とする。
【0022】
また、本発明の一は、基板上にゲート電極を形成し、ゲート電極上に絶縁膜を形成し、
絶縁膜上に酸化物半導体膜を形成し、ゲート電極をLRTAすることにより、ゲート電極
と重なる酸化物半導体膜の一部を結晶化させることを特徴とする。
【0023】
また、本発明の一は、基板上にゲート電極を形成し、ゲート電極を覆って絶縁膜を形成
し、絶縁膜上に酸化物半導体膜を形成し、ゲート電極をLRTAすることにより、酸化物
半導体膜中に第1の酸化物半導体領域及び第2の酸化物半導体領域を形成し、ゲート電極
と重なる位置に形成された第1の酸化物半導体領域は、前記第2の酸化物半導体領域より
も結晶性が高いことを特徴とする。
【0024】
また、本発明の一は、基板上にゲート電極を形成し、ゲート電極上に絶縁膜を形成し、
絶縁膜上に導電膜を形成し、絶縁膜及び導電膜上に酸化物半導体膜を形成し、ゲート電極
にLRTAを行うことにより、酸化物半導体膜の一部を選択的に結晶化させることを特徴
とする。
【0025】
また、本発明の一は、基板上にゲート電極を形成し、ゲート電極を覆って絶縁膜を形成
し、絶縁膜上に酸化物半導体膜を形成し、酸化物半導体膜上に導電膜を形成し、ゲート電
極をLRTAすることにより、酸化物半導体膜の一部を選択的に結晶化させることを特徴
とする。
【0026】
また、本発明の一において、基板上にゲート電極を形成し、ゲート電極を覆って絶縁膜
を形成し、絶縁膜上に導電膜を形成し、絶縁膜及び導電膜上に酸化物半導体膜を形成し、
ゲート電極をLRTAすることにより、酸化物半導体膜中に第1の酸化物半導体領域及び
第2の酸化物半導体領域を形成する。このとき、ゲート電極と重なる位置に形成された第
1の酸化物半導体領域は、第2の酸化物半導体領域よりも結晶性が高いことを特徴とする

【0027】
また、本発明の一において、基板上にゲート電極を形成し、ゲート電極を覆って絶縁膜
を形成し、絶縁膜上に酸化物半導体膜を形成し、酸化物半導体膜上に導電膜を形成し、ゲ
ート電極をランプ加熱することにより、酸化物半導体膜中に第1の酸化物半導体領域及び
第2の酸化物半導体領域を形成する。このとき、ゲート電極と重なる位置に形成された第
1の酸化物半導体領域は、第2の酸化物半導体領域よりも結晶性が高いことを特徴とする

【0028】
なお、上記導電膜は、Al、Ti、Cu、Au、Ag、Mo、Ni、Ta、Zr及びC
oから選ばれる一つ又は複数の元素から形成されている。
【0029】
なお、上記酸化物半導体膜は、少なくとも酸化亜鉛(ZnO)を含むようにするとよい
。例えば、InGaO(ZnO)、MgZn1−xO又はCdZn1−xOであ
る。
【0030】
なお、上記基板は、有機樹脂基板、無機樹脂基板、プラスチック基板又はガラス基板か
ら選択されたいずれか一である。
【0031】
なお、上記酸化物半導体膜は、スパッタリング法により形成される。
【0032】
なお、上記酸化物半導体膜には、窒素が添加されていても良い。窒素を添加することに
より、酸化物半導体膜がn型の半導体の性質を示す場合、窒素がアクセプタ不純物として
働く。このため、窒素が添加された酸化物半導体膜を用いて作製されたトランジスタのし
きい値電圧を制御することができる。
【0033】
本発明の一は、ゲート電極として、タンタル(Ta)、タングステン(W)、チタン(
Ti)、モリブデン(Mo)、クロム(Cr)、ニオブ(Nb)等から選択された元素ま
たはこれらの元素を主成分とする合金材料若しくは化合物材料を用いることができる。
【0034】
本発明の一は、ハロゲンランプのランプ光を照射することにより酸化物半導体膜の結晶
化を行うことを特徴とする。
【0035】
本発明の一は、ランプ光として、800nm〜2400nmの波長領域の光を用いる。
また、可視光領域又は赤外光領域の波長を用いる。
【0036】
なお、本発明の一は、上記半導体装置を有する液晶テレビジョン又はELテレビジョン
である。
【0037】
また、本発明において、LRTAの代わりにレーザ光を照射して加熱処理を行ってもよ
く、例えば、レーザ光として赤外光レーザ、可視光レーザ、紫外光レーザなどを照射して
選択的に酸化物半導体膜の結晶性を改善してもよい。あるいは、ランプ加熱を行いながら
レーザ光を照射して選択的に酸化物半導体膜の結晶性を改善してもよい。レーザ照射を用
いる場合、連続発振型のレーザビーム(CWレーザビーム)やパルス発振型のレーザビー
ム(パルスレーザビーム)を用いることができる。ここで用いることができるレーザビー
ムは、Arレーザ、Krレーザ、エキシマレーザなどの気体レーザ、単結晶のYAG、Y
VO、フォルステライト(MgSiO)、YAlO、GdVO、若しくは多結
晶(セラミック)のYAG、Y、YVO、YAlO、GdVOに、ドーパン
トとしてNd、Yb、Cr、Ti、Ho、Er、Tm、Taのうち1種または複数種添加
されているものを媒質とするレーザ、ガラスレーザ、ルビーレーザ、アレキサンドライト
レーザ、Ti:サファイアレーザ、銅蒸気レーザまたは金蒸気レーザのうち一種または複
数種から発振されるものを用いることができる。このようなレーザビームの基本波、及び
これらの基本波の第2高調波から第4高調波のレーザビームを照射することで、結晶性を
良好にすることができる。なお、レーザ光は酸化物半導体膜のバンドギャップよりもエネ
ルギーの大きいものを用いる方が好ましい。例えば、KrF、ArF、XeCl、又はX
eFのエキシマレーザ発振器から射出されるレーザ光を用いてもよい。
【0038】
また、本発明において、半導体装置とは半導体素子(トランジスタやダイオードなど)
を含む回路を有する装置をいい、半導体装置として、半導体素子で構成された集積回路、
表示装置、無線タグ、ICタグ等が挙げられる。表示装置としては、代表的には液晶表示
装置、発光装置、DMD(Digital Micromirror Device;デ
ジタルマイクロミラーデバイス)、PDP(Plasma Display Panel
;プラズマディスプレイパネル)、FED(Field Emission Displ
ay;フィールドエミッションディスプレイ)、電気泳動表示装置(電子ペーパー)等の
表示装置があげられる。
【0039】
また、本発明において、表示装置とは、表示素子を用いたデバイス、即ち画像表示デバイ
スを指す。また、表示パネルにコネクター、例えばフレキシブルプリント配線(FPC:
Flexible Printed Circuit)もしくはTAB(Tape Au
tomated Bonding)テープもしくはTCP(Tape Carrier
Package)が取り付けられたモジュール、TABテープやTCPの先にプリント配
線板が設けられたモジュール、または表示素子にCOG(Chip On Glass)
方式によりIC(集積回路)やCPUが直接実装されたモジュールも全て表示装置に含む
ものとする。
【0040】
なお本発明では、酸化物半導体膜は少なくともチャネル形成領域において結晶化してい
れば良い、若しくは結晶性が改善していればよい。またチャネル形成領域は、全て結晶化
する必要はなく、少なくともゲート電極側の部分が結晶化されていればよい。
【0041】
なお、化合物半導体として、酸化物半導体の他に窒化物半導体又は炭化物半導体を用い
てもよい。さらに、可視光に対して透光性を有する半導体を用いることもできる。
【発明の効果】
【0042】
本発明では、ゲート電極をLRTAにより加熱することで酸化物半導体膜のチャネル形
成領域における結晶性を良好にしている。その結果、酸化物半導体膜は局所的にしか加熱
されないため、基板の大半は加熱されずに済み、基板のシュリンク(縮み)やたわみを抑
制しつつ結晶化工程を行うことができる。したがって、工程を簡略化しつつ、移動度特性
を向上させた半導体素子を有する半導体装置を作製することができる。
【0043】
また、基板上にゲート電極を形成し、ゲート電極上にゲート絶縁膜として機能する絶縁
膜を形成し、絶縁膜上にゲート電極よりもLRTAの光源に対する反射率が高い配線を形
成し、配線上に酸化物半導体膜を形成した後に基板表面又は裏面へLRTAを行う場合、
配線は、ゲート電極よりもLRTAの光源に対する反射率が高いため、ゲート電極よりも
加熱されずに済む。そのため、配線に低抵抗である銅やアルミニウム、銀などの比較的融
点が低い導電膜を用いることができる。その結果、安価な半導体装置を提供することがで
きる。
【0044】
また、酸化物半導体膜は、酸素を含む雰囲気に晒されても非晶質珪素膜のように酸化に
よって表面に絶縁膜が形成されない。したがって、成膜後に大気にさらされても膜の変化
が少ない。
【0045】
また、酸化物半導体膜としてZnOを用いる場合、酸化物半導体膜の結晶化工程におけ
る熱処理温度を350℃程度又はそれ以下にできる。ZnOは、350度程度又はそれ以
下の熱処理温度でも十分に結晶化が促進されるためである。その結果、樹脂基板を用いた
場合にも基板のシュリンクを抑制することができる。
また、ゲート電極に、ソース配線及びドレイン配線よりランプから発する光に対する反
射率が低い材料を用いてランプ加熱を行うため、ゲート電極から伝導する熱によりZnO
の少なくともチャネル形成領域の結晶性が改善する一方で、ソース配線及びドレイン配線
は加熱されにくいため、ソース配線及びドレイン配線に比較的融点の低い材料を用いるこ
とができる。例えば、ソース配線及びドレイン配線にAlを用いた場合、熱処理温度が3
50度以下で済むため、Alの半導体層への拡散を抑制できる。
【0046】
以上のように、低温熱処理(350度程度又はそれ以下)で半導体装置を作製できるた
め、プロセスとして安価となる。
【0047】
さらに、酸化物半導体は透光性を有するため、透光性を有する導電膜でソース電極及び
ドレイン電極等を形成し、その上に画素電極を形成することにより、画素部の開口率を上
げることができる。酸化物半導体として酸化亜鉛を用いる場合、酸化亜鉛はインジウム錫
酸化物(ITO:Indium Tin Oxide)と比べて資源が豊富であり、より
低抵抗であるため、画素電極としてITOの代わりに酸化亜鉛を用いることでより安価な
半導体装置を得ることができる。
半導体膜にシリコンを用いる場合、チャネル形成領域に光が照射されるのを防止するた
め、チャネル形成領域に重なるように遮光膜を設けることを要する。その結果、画素部に
おいて、開口率の低下を余儀なくされる。一方、酸化物半導体膜に酸化亜鉛を用いた場合
、亜鉛は比較的資源が豊富であり、また、酸化亜鉛は透光性を有するため、ソース電極、
ドレイン電極及び画素電極を全て透光性を有するインジウム錫酸化物(ITO)、酸化珪
素を含むインジウム錫酸化物(ITSO)、有機インジウム、有機スズ、酸化亜鉛、窒化
チタンなどを含む透明導電性材料を用いて形成することで透過型の表示パネルにおいて、
開口率の高い大型ディスプレイができる。また、バックライト光を有効に利用して省電力
化することができる。例えば、建物の窓や自動車、電車、飛行機などのフロントガラス上
に表示パネルを貼り付けることにより、画像や文字情報を直接表示するヘッドアップディ
スプレイを実現するといったこともできる。
【図面の簡単な説明】
【0048】
【図1】本発明に係る半導体装置の作製工程を説明する断面図。
【図2】本発明の酸化物半導体膜の結晶化の温度依存性を説明する図。
【図3】本発明に係る半導体装置の作製工程を説明する断面図。
【図4】本発明に係る半導体装置の作製工程を説明する断面図。
【図5】本発明に係る半導体装置の作製工程を説明する断面図。
【図6】本発明に係る半導体装置の作製工程を説明する断面図。
【図7】本発明に係る半導体装置の断面図。
【図8】本発明に係る発光素子の形態を示す図。
【図9】本発明に係る表示パネルの画素回路及びその動作構成について説明する図。
【図10】本発明に係る駆動回路の実装について説明する図。
【図11】本発明に係る表示モジュールについて説明する図。
【図12】電子機器の一例を説明する図。
【図13】本発明に係る半導体装置の断面図。
【図14】本発明の半導体装置における画素の回路図及び断面図。
【図15】本発明に係る半導体装置の断面図。
【図16】本発明の半導体装置における素子基板の一形態を示す図。
【図17】本発明の半導体装置における素子基板の一形態を示す図。
【図18】本発明の半導体装置の構成を示すブロック図。
【図19】本発明に係るLRTA装置の構成を示す図。
【図20】本発明に係る電子機器の一例を説明する図。
【図21】本発明に係る電子機器の一例を説明する図。
【発明を実施するための形態】
【0049】
以下、本発明の実施の形態について図面を参照しながら説明する。但し、本発明は多く
の異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱すること
なくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。例え
ば、本実施形態及び本実施例の各々を適宜組み合わせて本発明を実施することができる。
従って、本実施の形態の記載内容に限定して解釈されるものではない。
【0050】
(実施の形態1)
本実施形態では、LRTAを行い酸化物半導体膜の一部の結晶性を改善した領域をチャ
ネル形成領域に用いるTFTの作製工程について図1(A)、(B)を用いて説明する。
【0051】
まず、基板101上に下地膜102を形成する。基板101には、ポリエチレンテレフ
タレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(
PES)、アクリル、ポリイミド等のプラスチック(合成樹脂)やガラスを用いることが
できる。
【0052】
下地膜102としては、酸化珪素膜、窒化珪素膜または酸化窒化珪素膜(SiO
)(x>y)、窒化酸化珪素膜(SiN)(x>y)等の絶縁膜の単層、或いは積
層したものを用いる。なお、下地膜102は、スパッタリング法やCVD法などにより形
成すればよい。なお、下地膜102は設けなくてもよいが、本発明においては形成した方
が好ましい。下地膜102を形成することにより、下地膜102上に形成された電極や配
線などから発生した熱が基板101に伝導するのを抑制することができる。下地膜102
として、例えば、膜厚10〜400nmの窒化酸化珪素膜を用いることができる。次いで
、下地膜102上にゲート電極103を形成する。
【0053】
ゲート電極103は、スパッタリング法により膜厚100〜200nmを形成すればよ
い。また、ゲート電極103は、タンタル(Ta)、タングステン(W)、チタン(Ti
)、モリブデン(Mo)、クロム(Cr)、ニオブ(Nb)等から選択された元素または
これらの元素を主成分とする合金材料若しくは化合物材料を用いて形成することができる
。また、リン等の不純物元素をドーピングした多結晶珪素に代表される半導体材料により
形成することもできる。
【0054】
次いで、ゲート電極103を覆うゲート絶縁膜104を膜厚50〜500nm程度形成
する。ゲート絶縁膜104は、スパッタリング法やプラズマCVD法等の各種CVD法に
より、珪素の酸化物または珪素の窒化物を含む膜を、単層または積層して形成する。具体
的には、酸化珪素を含む膜(SiO)、酸化窒化珪素を含む膜(SiO)、窒化
酸化珪素を含む膜(SiN)を、単層構造として形成するか、当該これらの膜を適
宜積層して形成する。また、ゲート電極103に酸素、窒素、または酸素及び窒素を含む
雰囲気中で、高密度プラズマ処理を行うことにより、ゲート電極103の表面を酸化また
は窒化して、ゲート絶縁膜を形成してもよい。高密度プラズマ処理により形成されたゲー
ト絶縁膜は、膜厚や膜質などの均一性に優れ、且つ緻密な膜を形成することができる。酸
素を含む雰囲気としては、酸素(O)、二酸化窒素(NO)、もしくは一酸化二窒素
(NO)と、希ガスとの混合ガス、または、酸素(O)、二酸化窒素(NO)もし
くは一酸化二窒素(NO)と、希ガスと、水素(H)との混合ガスを用いることがで
きる。また、窒素を含む雰囲気としては、窒素(N)もしくはアンモニア(NH)と
、希ガスとの混合ガス、または、窒素(N)もしくはアンモニア(NH)と、希ガス
と、水素(H)との混合ガスを用いることができる。高密度プラズマにより生成された
酸素ラジカル(OHラジカルを含む場合もある)や窒素ラジカル(NHラジカルを含む場
合もある)によって、ゲート電極103の表面を酸化又は窒化することができる。
【0055】
高密度プラズマ処理を行ってゲート絶縁膜104を形成する場合、1〜20nm、代表
的には5〜10nmの絶縁膜がゲート電極103を覆うように形成される。この場合の反
応は固相反応であるため、当該ゲート絶縁膜104とゲート電極103との界面準位密度
をきわめて低くすることができる。また、ゲート電極103を直接酸化または窒化するた
め、形成されるゲート絶縁膜104の厚さを、均一にすることができる。すなわち、ここ
で示す高密度プラズマ処理で電極の表面を固相酸化することにより、均一性が良く、界面
準位密度が低い絶縁膜を形成することができる。ここでは、タンタル(Ta)、タングス
テン(W)、チタン(Ti)、モリブデン(Mo)、クロム(Cr)、ニオブ(Nb)等
から選択された元素またはこれらの元素を主成分とする合金材料若しくは化合物材料の酸
化物がゲート絶縁膜104として機能する。
【0056】
なお、ゲート絶縁膜104は、高密度プラズマ処理によって形成される絶縁膜のみを用
いてもよいし、それに加えてプラズマや熱反応を利用したCVD法により酸化珪素、酸素
を含む窒化珪素、窒素を含む酸化珪素などの絶縁膜を堆積し、少なくとも一つ積層させて
も良い。いずれにしても、高密度プラズマで形成した絶縁膜がゲート絶縁膜の一部又は全
部であるトランジスタは、特性のばらつきを小さくすることができる。
【0057】
また、ゲート絶縁膜104は、酸化物半導体膜との整合性の良好なアルミナ(Al
)、窒化アルミニウム(AlN)、酸化チタン(TiO)、ジルコニア(ZrO
、酸化リチウム(LiO)、酸化カリウム(KO)酸化ナトリウム(NaO)、酸
化インジウム(In)、酸化イットリウム(Y)、ジルコン酸カルシウム(
CaZrO)又はこれらのうち少なくとも2つを含む材料を用いてもよく、単層又は2
層以上積層させて形成してもよい。
【0058】
次いで、ゲート絶縁膜104上に配線105を膜厚50〜200nmとなるように形成
する。配線材料としては、銀(Ag)、アルミニウム(Al)、金(Au)、銅(Cu)
及びそれらの合金などを用いる。配線材料は、ゲート電極103に用いる材料よりも反射
率の高いものであればよく、ゲート電極103との関係を考慮して適宜組み合わせて用い
る。なお、配線は積層して形成してもよく、例えば、基板側からアルミニウム、チタンの
積層配線としてもよい。チタンは、酸化物半導体膜とアルミニウムとの電気的な接触特性
を良好にするのに有効である。また、アルミニウムが酸化物半導体膜中に拡散するのを抑
制する役目も担っている。また、配線は透明導電膜、例えば、インジウム錫酸化物(IT
O:Indium Tin Oxide)、酸化珪素を含むインジウム錫酸化物(ITS
O)、インジウム亜鉛酸化物(IZO:Indium Zinc Oxide)、酸化イ
ンジウム(In)、酸化錫(SnO)、酸化亜鉛(ZnO)、アルミニウムを添
加した酸化亜鉛(AlZnO)、ガリウムを添加した酸化亜鉛(GaZnO)酸化亜鉛(
ZnO)、などで形成してもよい。なお、配線105は、ゲート電極103よりもランプ
光に対して反射率の高い若しくは透過率の高い(又は熱吸収率の低い)ものを用いるとよ
い。
【0059】
次いで、ゲート絶縁膜104及び配線105上に酸化物半導体膜106を形成する。酸
化物半導体膜106は、1族元素(例えば、リチウム(Li)、ナトリウム(Na)、カ
リウム(K)、ルビジウム(Rb)、セシウム(Cs))、13族元素(例えば、ボロン
(B)、ガリウム(Ga)、インジウム(In)、タリウム(Tl))、14族元素(例
えば、炭素(C)、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb
))、15族元素(例えば、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb
)、ビスマス(Bi))又は17族元素(例えば、フッ素(F)、塩素(Cl)、臭素(
Br)、ヨウ素(I))等の不純物元素のうち一種、又は複数種が添加された酸化亜鉛(
ZnO)の非晶質(アモルファス)状態、多結晶状態又は非晶質状態と多結晶状態が混在
する微結晶(マイクロクリスタルとも呼ばれる。)状態のもの、又は何も不純物元素が添
加されていないものを用いることができる。また、InGaO(ZnO)、酸化マグ
ネシウム亜鉛(MgZn1−xO)又は酸化カドミウム亜鉛(CdZn1−xO)、
酸化カドミウム(CdO)、In−Ga−Zn−O系のアモルファス酸化物半導体(a−
IGZO)のうちいずれかを用いることができる。酸化物半導体膜106は25〜200
nm(好ましくは30〜150nm)の厚さで0.4Paの圧力のもと、Ar:O=5
0:5sccmの流量となる条件でスパッタリング法により成膜し、その後、0.05%
に希釈したフッ酸を用いてエッチングにより所望の形状に形成する。酸化物半導体膜10
6は、非晶質珪素膜を用いた半導体膜と比べて、酸化のおそれがなく高真空にせずとも成
膜できるため、プロセスとして安価である。なお、酸化亜鉛を有する酸化物半導体膜はプ
ラズマに強いため、プラズマCVD(PCVD又はPECVDともいう)法を用いて成膜
してもよい。プラズマCVD法はCVD法の中でも特に装置が簡単であり、生産性もよい

【0060】
次いで、基板101の裏面へLRTAを行う(図1(A))。LRTAは、250〜5
70℃(好ましくは300℃〜400℃、より好ましくは300〜350℃)で1分〜1
時間、好ましくは10分〜30分行うとよい。LRTAは、ハロゲンランプ、メタルハラ
イドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高
圧水銀ランプから選ばれた一種または複数種からの輻射により行う。LRTA法は、短時
間での熱処理が可能であるため、ゲート電極103よりも配線105の反射率若しくは透
過率が高ければ比較的融点の低い材料を用いることができる。LRTA法には、赤外光領
域、可視光領域、紫外光領域等の波長の光を用いることができる。なお、LRTAの代わ
りにレーザ光を照射して加熱処理を行ってもよく、例えば、レーザ光として赤外光レーザ
、可視光レーザ、紫外光レーザ等を用いることができる。また、LRTA及びレーザ光照
射を組み合わせて選択的に酸化物半導体膜の結晶性を改善してもよい。レーザ照射を用い
る場合、連続発振型のレーザビーム(CWレーザビーム)やパルス発振型のレーザビーム
(パルスレーザビーム)を用いることができる。ここで用いることができるレーザビーム
は、Arレーザ、Krレーザ、エキシマレーザなどの気体レーザ、単結晶のYAG、YV
、フォルステライト(MgSiO)、YAlO、GdVO、若しくは多結晶
(セラミック)のYAG、Y、YVO、YAlO、GdVOに、ドーパント
としてNd、Yb、Cr、Ti、Ho、Er、Tm、Taのうち1種または複数種添加さ
れているものを媒質とするレーザ、ガラスレーザ、ルビーレーザ、アレキサンドライトレ
ーザ、Ti:サファイアレーザ、銅蒸気レーザまたは金蒸気レーザのうち一種または複数
種から発振されるものを用いることができる。このようなレーザビームの基本波、及びこ
れらの基本波の第2高調波から第4高調波のレーザビームを照射することで、結晶性を良
好にすることができる。なお、レーザ光は酸化物半導体膜のバンドギャップよりもエネル
ギーの大きいものを用いる方が好ましい。例えば、KrF、ArF、XeCl、又はXe
Fのエキシマレーザ発振器から射出されるレーザ光を用いてもよい。
【0061】
このとき、ゲート電極103は配線105よりもランプ光に対する反射率が低く、より熱
を吸収する材料を用いるため、配線105よりも高い温度まで加熱される。そのため、ゲ
ート電極103周辺の酸化物半導体膜106が加熱され、第2の酸化物半導体領域108
及び第2の酸化物半導体領域108よりも結晶性が良好な領域を有する第1の酸化物半導
体領域107が形成される(図1(B)参照)。ここでは、ハロゲンランプを用いてゲー
ト電極103にランプ光を照射しておよそ300℃に加熱し、その熱により酸化物半導体
膜106を結晶化させ結晶性を改善させる。このとき、配線105は、ゲート電極103
よりもランプ光に対する反射率若しくは透過率が高いものを用いるので、酸化物半導体膜
106を結晶化させたとしても配線105の温度は300℃以下となる。
【0062】
ここで、酸化物半導体膜として用いられるZnOの結晶性の熱処理温度依存性について
図2に示す。図2は、流量Ar:O=50:5(sccm)の割合とする成膜ガスを、
吹き付けた状態(as−depo)、200℃、300℃、350℃の夫々の温度で1h
r加熱したときの(002)面のX線強度を測定した結果を示す。熱処理温度が上昇する
につれ、(002)面の強度ピークは大きくなっている。したがって、少なくとも350
℃までは、熱処理温度が高くなるほどZnOの結晶性は高くなる。一般的に結晶化が進む
ほど移動度は上がるため、熱処理は350℃前後で行った方が望ましい。なお、基板にシ
ュリンク等の支障がなければZnOが400℃前後に加熱されるような熱処理を行っても
よい。
【0063】
一方、図1(A)においてゲート電極103及び配線105が形成されていない領域、
つまり、基板101、下地膜102、ゲート絶縁膜104及び酸化物半導体膜106が積
層されている領域では、配線105又はゲート電極103が形成されている領域と比べて
ランプ光は透過するため、熱を吸収しにくく加熱温度は配線105よりも低い温度となる
。したがって、基板101は、大半の領域で350℃以下となるため、シュリンクが生じ
にくくなる。なお、ゲート電極103が形成されていない領域が大きければ大きいほど基
板101のシュリンクは抑制される。
【0064】
次いで、酸化物半導体膜106上に層間絶縁膜、ソース電極、ドレイン電極、画素電極
、発光素子などの構造を形成することで半導体装置を作製する。
【0065】
本発明では半導体としてZnOを用いる場合、300℃程度の熱処理温度でZnO層の
結晶性が改善するため、結晶性珪素膜を半導体膜に用いる場合と比較して、熱処理温度を
抑えることができる。また、透光性の高い酸化物半導体膜を用い、LRTAにより選択的
にゲート電極を加熱するため、基板の大半は加熱されず基板のシュリンクを抑制すること
ができる。また、ゲート電極よりもランプ光に対する反射率が高い材料を配線に用いるた
め、配線が加熱される温度を350℃程度と抑えても酸化物半導体膜の結晶性を改善する
ことができる。そのため、融点が低いAl配線を用いることができる。また、酸化物半導
体膜中の酸素がAlに拡散して絶縁膜を形成することを防止することができる。Al配線
は、安価かつ低抵抗であるため、性能のよい半導体装置を低コストで生産性良く作製する
ことができる。
【0066】
(実施の形態2)
本実施形態では、実施形態1とは異なる構造について図3(A)〜(C)を用いて説明
する。なお、基板301上に下地膜302、ゲート電極303、ゲート絶縁膜304を形
成するまでの工程は実施の形態1の基板101上に下地膜102、ゲート電極103、ゲ
ート絶縁膜104を形成するまでの工程を参照されたい。
【0067】
ゲート絶縁膜304上に第1の酸化物半導体膜305を形成する。酸化物半導体膜30
5は、1族元素、13族元素、14族元素、15族元素又は17族元素の不純物元素のう
ち一種又は複数種が添加された酸化亜鉛(ZnO)の非晶質(アモルファス)状態、多結
晶状態又は非晶質状態と多結晶状態が混在する微結晶(マイクロクリスタルとも呼ばれる
。)状態のもの、又は何も不純物元素が添加されていないものを用いることができる。ま
た、InGaO(ZnO)、酸化マグネシウム亜鉛(MgZn1−xO)又は酸化
カドミウム亜鉛(CdZn1−xO)、酸化カドミウム(CdO)、In−Ga−Zn
−O系のアモルファス酸化物半導体(a−IGZO)のうちいずれかを用いることができ
る。ここでは、第1の酸化物半導体膜305は酸化亜鉛を50〜200nm(好ましくは
100〜150nm)の厚さでスパッタリング法により成膜する。
【0068】
次いで、結晶性を良好にするため基板表面からLRTAを行う(図3(A)。LRTA
は、250〜570℃(好ましくは300℃〜400℃、より好ましくは300〜350
℃)で1分〜1時間、好ましくは10分〜30分行えばよく、ハロゲンランプ、メタルハ
ライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、
高圧水銀ランプから選ばれた一種または複数種からの輻射により行う。本実施形態では、
酸素雰囲気中においてゲート電極303がおよそ300℃となるように30分間のランプ
加熱を行い、ゲート絶縁膜304を間に挟んでゲート電極303と重なる第1の酸化物半
導体膜305の領域の結晶性を向上させる。第1の酸化物半導体膜305は透光性を有す
るため、ゲート電極303が優先して加熱されることでゲート電極303の周囲から外側
に向けて第1の酸化物半導体膜305の結晶性が上がる。そして、図3(B)に示すよう
に、第2の酸化物半導体領域309と、第2の酸化物半導体領域309よりも結晶性の良
好な第1の酸化物半導体領域308を有する第2の酸化物半導体膜が形成される。なお、
図3(A)では、基板301表面側へランプ加熱しているが基板裏面へLRTAしてもよ
い。酸化物半導体膜305は透光性を有するため、基板の大半の領域はLRTAを行って
も加熱されにくい。そのため、基板に融点の低い樹脂などを用いても基板の縮み等による
変形を抑制することができる。なお、LRTAの出力を上げて基板表面よりランプ加熱を
行うことにより、直接酸化物半導体膜の表面近傍の結晶性を改善させてもよい。また、ラ
ンプ光の波長、ゲート電極の反射率及び酸化物半導体膜の膜厚を調節することにより、基
板表面からランプ加熱を行う際、ゲート電極で反射したランプ光が酸化物半導体膜のゲー
ト絶縁膜304側の表面付近で吸収され、ゲート電極と重なる酸化物半導体膜のゲート絶
縁膜304側の表面付近が優先的に結晶化するようにしてもよい。また、基板にガラス基
板を用いる場合、ランプ光は可視光から赤外光領域を利用する。この波長領域の光はガラ
ス基板に吸収されにくいため、ガラス基板が加熱されるのを最小限に抑えることができる
。なお、ランプ加熱は複数回行ってもよい。複数回行うことにより、基板温度の上昇を抑
えつつゲート電極の加熱時間を稼ぐことができる。
【0069】
なお、LRTAの代わりにレーザ光や紫外光を照射、若しくはそれらを組み合わせて選
択的に酸化物半導体膜の結晶性を改善してもよい。レーザ照射を用いる場合、連続発振型
のレーザビーム(CWレーザビーム)やパルス発振型のレーザビーム(パルスレーザビー
ム)を用いることができる。ここで用いることができるレーザビームは、Arレーザ、K
rレーザ、エキシマレーザなどの気体レーザ、単結晶のYAG、YVO、フォルステラ
イト(MgSiO)、YAlO、GdVO、若しくは多結晶(セラミック)のY
AG、Y、YVO、YAlO、GdVOに、ドーパントとしてNd、Yb、
Cr、Ti、Ho、Er、Tm、Taのうち1種または複数種添加されているものを媒質
とするレーザ、ガラスレーザ、ルビーレーザ、アレキサンドライトレーザ、Ti:サファ
イアレーザ、銅蒸気レーザまたは金蒸気レーザのうち一種または複数種から発振されるも
のを用いることができる。このようなレーザビームの基本波、及びこれらの基本波の第2
高調波から第4高調波のレーザビームを照射することで、結晶性を良好にすることができ
る。なお、レーザ光は酸化物半導体膜のバンドギャップよりもエネルギーの大きいものを
用いる方が好ましい。例えば、KrF、ArF、XeCl、又はXeFのエキシマレーザ
発振器から射出されるレーザ光を用いてもよい。
【0070】
次いで、第1の酸化物半導体領域308及び第2の酸化物半導体領域309上にスパッ
タリング法によりTiとAlを順に堆積し、Ti層とAl層を形成する。その後、Ti及
びAl層をフォトリソグラフィー及びClガスを用いてドライエッチングすることでソ
ース配線及びドレイン配線となる配線306と配線307を形成する(図3(C))。配
線306、307は、加速電圧1.5kw、圧力0.4Pa、Ar(流量30sccm)
を用いて10〜200nmの膜厚で成膜する。なお、配線306、307は積層して形成
しているが、酸化物半導体膜305との整合性がよい材料を用いるのであれば配線306
、配線307は単層でもよい。なお、配線306、307として、アルミニウム(Al)
、タングステン(W)、モリブデン(Mo)、ジルコニウム(Zr)、ハフニウム(Hf
)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、コバルト
(Co)、ニッケル(Ni)、白金(Pt)、チタン(Ti)、ネオジウム(Nd)等の
金属又はその合金、若しくはその金属窒化物または、インジウム錫酸化物(ITO)、イ
ンジウム亜鉛酸化物(IZO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化
インジウム(In)、酸化錫(SnO)、酸化亜鉛(ZnO)、アルミニウムを
添加した酸化亜鉛(AlZnO)、ガリウムを添加した酸化亜鉛(GaZnO)などの透
光性を有する材料を適宜用いることができる。
【0071】
その後、酸化物半導体膜305、配線306、配線307上に層間絶縁膜、配線、画素
電極、発光素子などの構造を形成することで半導体装置を作製する。
【0072】
本実施形態では、酸化物半導体膜305にLRTAして結晶性を改善した後に配線を形
成している。そのため、配線306は、ゲート電極303よりもランプ光に対する反射率
が低い材料を用いても構わず、配線の材料は酸化物半導体膜305と整合性がよいもので
あれば実施形態1に挙げた材料に限られない。
【0073】
なお、LRTAによる加熱は、酸化物半導体膜305を成膜後、所望の形状に加工する
前でも後に行ってもよい。
【0074】
本発明では半導体膜として酸化亜鉛を用いる場合、300℃程度の熱処理温度で半導体
膜の結晶性が改善するため、結晶性珪素膜を半導体膜に用いる場合と比較して、熱処理温
度を抑えることができ、低コストで結晶化工程を行うことができる。また、透光性の高い
酸化物半導体膜を用い、LRTAにより選択的にゲート電極を加熱するため、基板の大半
は加熱されず基板のシュリンクを抑制することができる。
【0075】
(実施の形態3)
本発明の実施の形態について、図4、図5を用いて説明する。本実施の形態は、チャネ
ル保護型の薄膜トランジスタを有する半導体装置の例である。
【0076】
基板400は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス等からなるガラ
ス基板、シリコン基板、耐熱性を有するプラスチック基板又は樹脂基板を用いる。プラス
チック基板又は樹脂基板として、ポリエチレンテレフタレート(PET)、ポリエチレン
ナフタレート(PEN)、ポリエーテルサルフォン(PES)、アクリル、ポリイミド等
を用いることができる。また、基板400の表面が平坦化されるようにCMP法などによ
って、研磨しても良い。なお、基板400上に、絶縁層を形成してもよい。絶縁層は、C
VD法、プラズマCVD法、スパッタリング法、スピンコート法等の公知の方法により、
珪素を含む酸化物材料、窒化物材料を少なくとも一つ用いて、単層又は積層して形成され
る。この絶縁層は、形成しなくても良いが、基板400からの汚染物質などを遮断する効
果や基板に熱が伝わるのを抑制する効果がある。
【0077】
基板400上に導電膜401を形成する。導電膜401は、所望の形状に加工されゲー
ト電極となる。導電膜401は、印刷法、電界メッキ法、蒸着法等の手法によりLRTA
加熱に用いる光源の波長に対する反射率が低い(熱を吸収しやすい、つまり加熱されやす
い)材料を用いて形成することが好ましい。反射率の低い材料を用いることにより、後の
加熱工程が可能となる。導電膜401としては、タングステン(W)、モリブデン(Mo
)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、
タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、白金(Pt
)、チタン(Ti)、ネオジウム(Nd)等の金属又はその合金、若しくはその金属窒化
物を適宜用いることができる。また、これら複数の層を積層して形成しても良い。代表的
には、基板表面に窒化タンタル膜、その上にタングステン膜を積層してもよい。また、珪
素に一導電型を付与する不純物元素を添加した材料を用いても良い。例えば、非晶質珪素
膜にリン(P)などのn型を付与する不純物元素が含まれたn型を有する珪素膜などを用
いることができる。導電膜401は、10nm〜200nmの膜厚で成膜する。
【0078】
本実施の形態では、タングステン(W)をスパッタリング法により膜厚150nmの導
電膜401を形成する。
【0079】
導電膜401上にフォトリソグラフィ工程を用いてレジストからなるマスクを形成し、
マスクを用いて導電膜401を所望の形状に加工してゲート電極402を形成する(図4
(B)参照)。
【0080】
次いで、ゲート電極402上にゲート絶縁膜403a、ゲート絶縁膜403bを形成し2
層の積層構造とする。積層される絶縁膜は、同チャンバー内で真空を破らずに同一温度下
で、反応ガスを切り変えながら連続的に形成するとよい。真空を破らずに連続的に形成す
ると、積層する膜同士の界面が汚染されるのを防ぐことができる。
【0081】
ゲート絶縁膜403a、ゲート絶縁膜403bは、酸化珪素(SiO)、窒化珪素(S
iN)、酸化窒化珪素(SiO)(x>y)、窒化酸化珪素(SiN)(
x>y)などを適宜用いることができる。更には、ゲート電極402を酸化して、ゲート
絶縁膜403aの代わりに、酸化膜を形成しても良い。なお、基板から不純物などの拡散
を防止するため、ゲート絶縁膜403aとしては、窒化珪素(SiN)、窒化酸化珪素
(SiN)(x>y)などを用いて形成することが好ましい。また、ゲート絶縁膜
403bとしては、酸化珪素(SiO)、酸化窒化珪素(SiO)(x>y)な
どを用いて形成することが望ましい。なお、低い成膜温度でゲートリーク電流の少ない緻
密な絶縁膜を形成するには、アルゴンなどの希ガス元素を反応ガスに含ませ、形成される
絶縁膜中に混入させると良い。本実施の形態では、SiH、NHを反応ガスとして形
成される膜厚50nm〜140nmの窒化珪素膜を用いてゲート絶縁膜403aを形成し
、SiH及びNOを反応ガスとして形成される膜厚100nmの酸化珪素膜を用いて
ゲート絶縁膜403bを積層して形成する。なお、ゲート絶縁膜403a及びゲート絶縁
膜403bの膜厚をそれぞれ50nm〜100nmとすると好ましい。
【0082】
また、ゲート絶縁膜403bは、後に形成する酸化物半導体膜との整合性が良好である
アルミナ(Al)又は窒化アルミ(AlN)により形成してもよい。この場合、ゲ
ート絶縁膜403aは絶縁性の高い酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素な
どを用い、ゲート絶縁膜403bに酸化物半導体膜との界面特性が良いアルミナ又は窒化
アルミを用いることにより、信頼性の高いゲート絶縁膜を形成することができる。なお、
ゲート絶縁膜を3層とし、3層目をアルミナ又は窒化アルミを用いたゲート絶縁膜として
もよい。
【0083】
次にゲート絶縁膜403b上に酸化物半導体膜404を形成する。酸化物半導体膜40
4は流量Ar:O=50:5sccm、圧力0.4Pa、100nmの厚さでスパッタ
リング法により成膜する。
【0084】
酸化物半導体膜404は、1族元素、13族元素、14族元素、15族元素又は17族
元素等のうち一種、又は複数種の不純物元素が添加されたZnOの非晶質(アモルファス
)状態、多結晶状態又は非晶質状態と多結晶状態が混在する微結晶(マイクロクリスタル
とも呼ばれる。)状態のもの、又は何も不純物元素が添加されていないものを用いること
ができる。また、InGaO(ZnO)、酸化マグネシウム亜鉛(MgZn1−x
O)又は酸化カドミウム亜鉛(CdZn1−xO)、酸化カドミウム(CdO)、In
−Ga−Zn−O系のアモルファス酸化物半導体(a−IGZO)のうちいずれかを用い
ることができる。
【0085】
なお、酸化物半導体膜404にZnOを用いる場合、窒素を添加(ドープ)しておくと
よい。ZnOは本来n型の半導体の性質を示す。窒素を添加することで窒素がZnOに対
してアクセプタ不純物として働くため、結果としてしきい値電圧を制御することができる

【0086】
次いで、基板400表面又は裏面よりLRTA法を用いて酸化物半導体膜404の加熱
を行う(図4(D))。LRTAは、ハロゲンランプ、メタルハライドランプ、キセノン
アークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプから選ば
れた一種または複数種からの輻射により行う。LRTAは、250〜570℃(好ましく
は300℃〜400℃、より好ましくは300〜350℃)で1分〜1時間、好ましくは
10分〜30分行うとよい。本実施形態では、ハロゲンランプを光源として酸素雰囲気中
で300℃、30分の条件でランプ加熱を行う。
【0087】
LRTAを行うことにより短時間で選択的にゲート電極402が加熱され、その加熱さ
れた熱によりゲート電極402の周辺に形成された点線で示す領域434において結晶性
が向上した第1の酸化物半導体領域が形成される。一方、点線で示す領域434以外の領
域424では、ランプ光の吸収が少ないため、ほとんど加熱されずに済み、第1の酸化物
半導体領域と結晶性の異なる第2の酸化物半導体領域が形成される(図4(E))。した
がって、ゲート電極402が形成されている領域のみ選択的に加熱され、その他の領域は
加熱されないため基板400のシュリンクや撓みを抑制することができる。なお、LRT
Aの出力を上げて基板表面よりランプ加熱を行うことにより、直接酸化物半導体膜の表面
近傍の結晶性を改善させてもよい。また、ランプ光の波長、ゲート電極の反射率及び酸化
物半導体膜の膜厚を調節することにより、基板表面からランプ加熱を行う際、ゲート電極
で反射したランプ光が酸化物半導体膜のゲート絶縁膜403b側の表面付近で吸収され、
ゲート電極と重なる酸化物半導体膜のゲート絶縁膜403b側の表面付近が優先的に結晶
化するようにしてもよい。また、基板にガラス基板を用いる場合、ランプ光は可視光から
赤外光領域を利用する。この波長領域の光はガラス基板に吸収されにくいため、ガラス基
板が加熱されるのを最小限に抑えることができる。なお、ランプ加熱は複数回行ってもよ
い。複数回行うことにより、基板温度の上昇を抑えつつゲート電極の加熱時間を稼ぐこと
ができる。
【0088】
なお、LRTAの代わりにレーザ光や紫外光を照射、若しくはそれらを組み合わせて選
択的に酸化物半導体膜の結晶性を改善してもよい。レーザ照射を用いる場合、連続発振型
のレーザビーム(CWレーザビーム)やパルス発振型のレーザビーム(パルスレーザビー
ム)を用いることができる。ここで用いることができるレーザビームは、Arレーザ、K
rレーザ、エキシマレーザなどの気体レーザ、単結晶のYAG、YVO、フォルステラ
イト(MgSiO)、YAlO、GdVO、若しくは多結晶(セラミック)のY
AG、Y、YVO、YAlO、GdVOに、ドーパントとしてNd、Yb、
Cr、Ti、Ho、Er、Tm、Taのうち1種または複数種添加されているものを媒質
とするレーザ、ガラスレーザ、ルビーレーザ、アレキサンドライトレーザ、Ti:サファ
イアレーザ、銅蒸気レーザまたは金蒸気レーザのうち一種または複数種から発振されるも
のを用いることができる。このようなレーザビームの基本波、及びこれらの基本波の第2
高調波から第4高調波のレーザビームを照射することで、結晶性を良好にすることができ
る。なお、レーザ光は酸化物半導体膜のバンドギャップよりもエネルギーの大きいものを
用いる方が好ましい。例えば、KrF、ArF、XeCl、又はXeFのエキシマレーザ
発振器から射出されるレーザ光を用いてもよい。
【0089】
次いで、酸化物半導体膜404上に、保護膜405を形成し、保護膜405上にレジス
ト406を形成する(図4(F)参照)。レジスト406をマスクとしてフォトリソグラ
フィ工程により保護膜405を所望の形状に加工してチャネル保護膜407を形成する。
チャネル保護膜には、酸化珪素(SiOx)、窒化珪素(SiN)、酸化窒化珪素(S
iO)(x>y)、窒化酸化珪素(SiN)(x>y)などを適宜用いるこ
とができる。チャネル保護膜407を形成することにより、ソース電極層、ドレイン電極
層を形成する際にチャネル部の半導体層のエッチングを防ぐことが出来る。本実施形態で
は、保護膜405として窒化珪素を成膜して、チャネル保護膜407を形成する(図4(
G)参照)。
【0090】
次に、酸化物半導体膜404をフォトリソグラフィ工程を用いてレジストによるマスク
408を作製し(図4(H))、マスク408を用いてエッチングを行い、所望の形状に
加工された酸化物半導体膜409(島状酸化物半導体膜ともいう)を形成する(図5(A
))。なお、エッチングには、希釈したフッ酸を用いる。その後、酸化物半導体膜409
上に第1の導電膜411、第2の導電膜412を形成し、フォトリソグラフィ工程を用い
てレジストによるマスク413を形成する(図5(B))。マスク413を用いて第1の
導電膜411、第2の導電膜412を所望の形状に加工し、ソース電極又はドレイン電極
として機能する第1の導電膜414a、414b、第2の導電膜415a、415bを形
成する(図5(C))。
【0091】
マスクは、感光剤を含む市販のレジスト材料を用いてもよく、例えば、代表的なポジ型レ
ジストである、ノボラック樹脂と感光剤であるナフトキノンジアジド化合物、ネガ型レジ
ストであるベース樹脂、ジフェニルシランジオール及び酸発生剤などを用いてもよい。い
ずれの材料を用いるとしても、その表面張力と粘度は、溶媒の濃度を調整したり、界面活
性剤等を加えたりして適宜調整する。また導電膜に感光性を有する感光性物質を含む導電
性材料を用いると、レジストからなるマスクを形成しなくても導電膜に直接レーザ光を照
射し、露光、エッチャントによる除去を行うことで、所望の形状に加工することができる
。この場合、マスクを形成せずともよいので工程が簡略化する利点がある。
【0092】
感光性物質を含む導電性材料としては、Ag、Au、Cu、Ni、Al、Ptなどの金
属或いは合金と、有機高分子樹脂、光重合開始剤、光重合単量体、または溶剤などからな
る感光性樹脂とを含んだものを用いればよい。有機高分子樹脂としては、ノボラック樹脂
、アクリル系コポリマー、メタクリル系コポリマー、セルローズ誘導体、環化ゴム系樹脂
などを用いる。
【0093】
なお、第1の導電膜411を形成する前に、酸化物半導体膜404上に、n型の酸化物
半導体として、例えば、アルミニウムを添加した酸化亜鉛(AlZnO)又はガリウムを
添加した酸化亜鉛(GaZnO)からなる導電膜をもう一層設けてもよい。AlZnOま
たはGaZnOからなる導電膜を形成することにより第1の導電膜411と酸化物半導体
膜409との整合性が良くなりソース電極及びドレイン電極との接触抵抗を下げることが
できる。また、例えば、GaZnO上にTi或いはTi上にGaZnOを形成した積層構
造としてもよい。
【0094】
また、第1の導電膜414a、414b及び第2の導電膜415a、415bとして、
アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、ジルコニウム(Zr
)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、銅(
Cu)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、白金(Pt)、チタン
(Ti)、ネオジウム(Nd)等の金属又はその合金、若しくはその金属窒化物を適宜用
いることができる。例えば、第1の導電膜がTiで第2の導電膜がAl、第1の導電膜が
Taで第2の導電膜がW、第1の導電膜がTaNで第2の導電膜がAl、第1の導電膜が
TaNで第2の導電膜がCu、第1の導電膜がTiで第2の導電膜がAlでさらに第3の
導電膜としてTiを用いるといった組み合わせも考えられる。また1層目と2層目のいず
れか一方にAgPdCu合金を用いても良い。W、AlとSiの合金(Al−Si)、T
iNを順次積層した3層構造としてもよい。Wの代わりに窒化タングステンを用いてもよ
いし、AlとSiの合金(Al−Si)に代えてAlとTiの合金膜(Al−Ti)を用
いてもよいし、TiNに代えてTiを用いてもよい。アルミニウムには耐熱性を向上させ
るためにチタン、シリコン、スカンジウム、ネオジウム、銅などの元素を0.5〜5原子
%添加させても良い。
【0095】
また、第1の導電膜411及び第2の導電膜412を形成する導電性材料として、イン
ジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化珪素を含むインジウ
ム錫酸化物(ITSO)、酸化インジウム(In)、酸化錫(SnO)、酸化亜
鉛(ZnO)、窒化チタンなどの透光性を有する材料及びそれらを適宜組み合わせて形成
してもよい。
【0096】
なお本実施形態では、酸化物半導体膜305にLRTAして結晶性を改善した後に第1
の導電膜411及び第2の導電膜412を形成している。そのため、第1の導電膜411
及び第2の導電膜412は、ゲート電極402よりもランプ光に対する反射率が低い材料
を用いても構わず、配線又は電極として用いられる導電性材料は酸化物半導体膜305と
整合性がよいものであれば実施形態1に挙げた材料に限らない。
【0097】
なお、本実施形態において、エッチング加工は、プラズマエッチング(ドライエッチング
)又はウエットエッチングのどちらを採用しても良いが、大面積基板を処理するにはプラ
ズマエッチングが適している。エッチングガスとしては、CF、NF、SF、CH
などのフッ素系又はCl、BCl、SiClもしくはCClなどを代表とす
る塩素系ガス、あるいはOのガスを用い、HeやArなどの不活性ガスを適宜加えても
良い。また、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり
、基板の全面にマスク層を形成する必要はない。
【0098】
なお、本実施形態のフォトリソグラフィ工程において、レジストを塗布する前に、酸化
物半導体膜表面に、膜厚が数nm程度の絶縁膜を形成してもよい。この工程により酸化物
半導体膜とレジストとが直接接触することを回避することが可能であり、レジストに含ま
れている不純物が酸化物半導体膜中に侵入するのを防止できる。
【0099】
以上の工程で、チャネル部の半導体層がエッチングされないボトムゲート型(逆スタガ
型ともいう。)の薄膜トランジスタを作製することが出来る。なお、本実施形態では、ボ
トムゲート型のTFTを作製したが、基板上に設けられた酸化物半導体膜上にゲート絶縁
膜を介して形成したゲート電極をLRTAで加熱して、少なくとも酸化物半導体膜のチャ
ネル形成領域の結晶性を改善できるのであればトップゲート型TFTであってもよい。
【0100】
本実施形態は、実施形態1、2と適宜組み合わせることができる。
(実施の形態4)
本発明の実施の形態について、図6を用いて説明する。本実施の形態は、実施の形態3
において、チャネルエッチ型の薄膜トランジスタを有する半導体装置の例である。よって
、同一部分又は同様な機能を有する部分の繰り返しの説明は省略する。
【0101】
基板600上にゲート電極層602を形成し、ゲート電極層602を覆うようにゲート
絶縁膜603a及びゲート絶縁膜603bを形成する(図6(A)参照)。ゲート絶縁膜
603b上に酸化物半導体膜を形成し、基板表面からLRTAを行い、点線で示す領域に
て結晶性が向上した第1の酸化物半導体領域604と、第1の酸化物半導体領域604よ
りも結晶化が進行していない第2の酸化物半導体領域605を有する酸化物半導体膜を形
成する(図6(B)参照)。酸化物半導体膜上にマスク608を設け(図6(C))、フ
ォトリソグラフィ工程を用いて酸化物半導体膜を所望の形状に加工し、酸化物半導体膜6
09を形成する(図6(D))。
【0102】
次に、第1の導電膜611及び第2の導電膜612を形成する。そして、レジストからな
るマスク613を形成する。図6(E)参照)。本実施の形態では、第1の導電膜611
及び第2の導電膜612として、それぞれチタンとアルミニウムを含む導電膜をスパッタ
リング法によって形成する。
【0103】
その後、フォトリソグラフィ工程によりマスク613を用いて所望の形状に加工し、ソー
ス電極又はドレイン電極として機能する第1の導電膜615a、615b、第2の導電膜
616a、616bを形成する(図6(F))。
【0104】
以上の工程で、半導体層におけるチャネル部の一部がエッチングされている薄膜トラン
ジスタを作製することが出来る。
【0105】
なお、本実施形態において、酸化物半導体膜と第1の導電膜611の間にn型の酸化物
半導体として、例えば、アルミニウムを添加した酸化亜鉛(AlZnO)又はガリウムを
添加した酸化亜鉛(GaZnO)からなる導電膜をもう一層設けてもよい。また、例えば
、GaZnO上にTi或いはTi上にGaZnOを形成した積層構造としてもよい。n型
の酸化物半導体膜を形成することにより、ソース電極及びドレイン電極となる第1の導電
膜611と、酸化物半導体膜との接続を良好にし、接触抵抗を下げることができる。
【0106】
本実施形態は、実施形態1、2と適宜組み合わせることができる。
(実施の形態5)
【0107】
本実施の形態では、実施形態3又は実施形態4で形成したボトムゲート型の薄膜トラン
ジスタと画素電極が接続された発光装置について図7を用いて説明する。なお、本実施の
形態の薄膜トランジスタはチャネルエッチ型である。
【0108】
図7に、駆動回路に用いられるTFTの断面図と、画素部に用いられるTFTの断面図
を示す。701は駆動回路に用いられるTFTの断面図に相当し、702は画素部に用い
られるTFT断面図に相当し、703は該TFT702によって電流が供給される発光素
子の断面図に相当する。TFT701、702はボトムゲート型である。
【0109】
駆動回路のTFT701は、基板700上に形成されたゲート電極710と、ゲート電
極710を覆っているゲート絶縁膜711と、ゲート絶縁膜711を間に挟んでゲート電
極710と重なっている、酸化亜鉛を含む酸化物半導体膜712とを有している。さらに
TFT701は、ソース電極またはドレイン電極として機能する第1の導電膜713と、
第2の導電膜714とを有している。なお、第1の導電膜713及び第2の導電膜714
は配線層としても機能する。
【0110】
図7では、ゲート絶縁膜711が2層の絶縁膜で形成されているが、本発明はこの構成
に限定されない。ゲート絶縁膜711が単層または3層以上の絶縁膜で形成されていても
良い。
【0111】
また第2の導電膜714は、アルミニウム又はアルミニウムを含む合金で形成されてい
る。そして一対の第2の導電膜714は、酸化物半導体膜712のチャネル形成領域を間
に挟んで、向かい合っている。
【0112】
また第1の導電膜713は、チタンで形成されている。第1の導電膜713は必ずしも
設ける必要はないが、酸化物半導体膜712と第2の導電膜714との電気的接触特性は
良好となる。また、酸化物半導体膜712中の酸素が第2の導電膜に拡散するのを防止す
るバリア層としての機能も有する。その結果、TFTの信頼性を向上させることができる
。なお、酸化物半導体膜は特に何をせずともn型を示すことが知られている。よって、チ
ャネルが形成される第1の酸化物半導体膜には、p型の導電性を付与する不純物を添加し
、極力I型(真性半導体)に近づくようにその導電型を制御しておいてもよい。
【0113】
画素部のTFT702は、基板700上に形成されたゲート電極720と、ゲート電極
720を覆っているゲート絶縁膜711と、ゲート絶縁膜711を間に挟んでゲート電極
720と重なっている、酸化物半導体膜722とを有している。さらにTFT702は、
ソース電極またはドレイン電極として機能する一対の第1の導電膜723と、第2の導電
膜724とを有している。
【0114】
また第2の導電膜724は、アルミニウム又はアルミニウムを含む合金で形成されてい
る。そして一対の第2の導電膜724は、酸化物半導体膜722のチャネルが形成される
領域を間に挟んで、向かい合っている。
【0115】
また第1の導電膜723は、チタンで形成されている。第1の導電膜723は必ずしも
設ける必要はないが、酸化物半導体膜722との電気的接触特性は良好となる。また、酸
化物半導体膜722中の酸素が第2の導電膜724に拡散するのを防止するバリア層とし
ての機能も有する。その結果、TFTの信頼性を向上させることができる。なお、酸化物
半導体膜722は特に何をせずともn型を示すことが知られている。よって、チャネルが
形成される第1の酸化物半導体膜には、p型の導電性を付与する不純物を添加し、極力I
型に近づくようにその導電型を制御しておいてもよい。
【0116】
また、TFT701、702を覆うように、絶縁膜からなる第1のパッシベーション膜
740、第2のパッシベーション膜741が形成されている。第1のパッシベーション膜
740及び第2のパッシベーション膜741は、プラズマCVD法又はスパッタリング法
などの薄膜形成法を用い、窒化珪素、酸化珪素、窒化酸化珪素、酸化窒化珪素、酸化窒化
アルミニウム、または酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素
含有炭素(CN)、その他の絶縁性材料を用いて形成することができる。TFT701、
702を覆うパッシベーション膜は2層に限らず、単層であっても良いし、3層以上であ
っても良い。例えば第1のパッシベーション膜740を窒化珪素、第2のパッシベーショ
ン膜741を酸化珪素で形成することができる。窒化珪素または窒化酸化珪素でパッシベ
ーション膜を形成することで、外部からの不純物が半導体素子内に侵入するのを防いだり
、TFT701、702が水分などの影響により、劣化するのを防ぐことができる。本実
施の形態では、第1のパッシベーション膜740及び第2のパッシベーション膜741は
同チャンバー内でガス切り替えを行い連続的に形成した。
【0117】
次いで、第2の導電膜724の一方を、発光素子703の画素電極730に接続してい
る。
【0118】
次いで、絶縁層729(隔壁、土手、バンク層とも呼ばれる)を選択的に形成する。絶
縁層729は、画素電極730上に開口部を有するように形成し、第2パッシベーション
膜741を覆って形成する。本実施の形態では、絶縁層729を全面を覆うように形成し
、レジスト等のマスクによって、エッチングする。
【0119】
絶縁層729は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミ
ニウム、酸化窒化アルミニウムその他の無機絶縁性材料、又はシロキサン系材料を出発材
料として形成された珪素、酸素、水素からなる化合物のうちSi−O−Si結合を含む無
機シロキサン系の絶縁材料、珪素と結合している水素がメチルやフェニルのような有機基
によって置換された有機シロキサン系の絶縁材料で形成することができる。アクリル樹脂
、ポリイミド樹脂等の感光性、非感光性の材料を用いて形成してもよい。絶縁層729は
曲率半径が連続的に変化する形状が好ましく、上に形成される電界発光層731、対向電
極732の被覆性が向上する。
【0120】
次いで、画素電極730上に接するように、電界発光層731が形成される。電界発光
層731として、赤色(R)、緑色(G)、青色(B)の発光を示す材料を、それぞれ蒸
着マスクを用いた蒸着法等によって選択的に形成する。赤色(R)、緑色(G)、青色(
B)の発光を示す材料はカラーフィルタ同様、液滴吐出法により形成することもでき(低
分子または高分子材料など)、この場合マスクを用いずとも、RGBの塗り分けを行うこ
とができるため好ましい。なお、RGBによる三色の組合せの他に、エメラルドグリーン
を加えた四色としてもよい。また、朱色を加えてもよい。また、白色発光するEL素子を
含む画素を組み合わせても良い。
【0121】
該電界発光層731に接するように対向電極732が形成されている。なお発光素子7
03は陽極と陰極とを有しているが、いずれか一方を画素電極、他方を対向電極として用
いる。こうして、発光素子を用いた表示機能を有する発光装置が完成する。
【0122】
本発明では、酸化物半導体膜のチャネル形成領域は少なくとも結晶化された領域を含む
ため、非晶質珪素膜を用いたTFTに比べて高い移動度のTFTを得ることができる。ま
た、結晶性珪素膜を用いたTFTに比べて結晶化工程が低温で済むため、プロセスとして
安価である。
【0123】
本実施形態は、実施形態1〜4と適宜組み合わせることができる。
(実施の形態6)
【0124】
本実施の形態では、本発明を適用したボトムゲート型の薄膜トランジスタからなる半導
体素子と画素電極が接続された液晶表示装置について図13〜図18を用いて説明する。
なお、第2のパッシベーション膜741までの形成については、実施の形態5を参照する
ことができるため、図7と同一の符号を付し説明について省略する。
【0125】
図13(A)のように、第2のパッシベーション膜741を形成後、該第2のパッシベ
ーション膜741を覆って、絶縁層1329を形成する。
【0126】
次いで、コンタクトホールを介して第2の導電膜714、724とそれぞれ接続する配
線1371、1372、1373、1374を形成する。そして、第2の導電膜724は
、配線1374を介して液晶素子1303の画素電極1330に電気的に接続している。
画素電極1330は、透過型の液晶表示パネルを作製する場合には、酸化タングステンを
含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含
むインジウム酸化物、酸化チタンを含むインジウム錫酸化物などを用いることができる。
勿論、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化珪素を添
加したインジウム錫酸化物(ITSO)なども用いることができる。また、反射型の表示
パネルを作製する場合には、反射性を有する金属薄膜として、チタン、タングステン、ニ
ッケル、金、白金、銀、アルミニウム、マグネシウム、カルシウム、リチウム、およびそ
れらの合金からなる導電膜などを用いることができる。画素電極1330は、蒸着法、ス
パッタ法、CVD法、印刷法または液滴吐出法などを用いて形成することができる。
【0127】
また画素電極1330上に接するように、配向膜1331が形成されている。一方、画
素電極1330を間に挟んで第1の基板700と向かい合っている第2の基板1340の
下には、対向電極1341と、配向膜1342が順に積層されている。そして、画素電極
1330及び配向膜1331と、対向電極1341及び配向膜1342との間に液晶13
43が設けられており、画素電極1330と液晶1343と対向電極1341とが重なり
合っている部分が液晶素子1303に相当する。なお、画素電極1330は、図13(B
)に示すように、TFT702上に延設して形成してもよい。酸化物半導体膜は可視光に
対して透光性を有するため、第1の導電膜713、723及び第2の導電膜714、72
4に透光性を有するインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物
(ITSO)、有機インジウム、有機スズ、酸化亜鉛、窒化チタンなどを含む透明導電膜
を用いた場合、画素部の開口率を上げることができる。
【0128】
なお、画素電極1330と対向電極1341との距離(セルギャップ)は、スペーサ1
361によって制御されている。図13(A)では、第1の基板700側に設けられた絶
縁膜を所望の形状に加工することでスペーサ1361を形成しているが、別途用意した球
状のスペーサを、配向膜1331上に分散して、セルギャップの制御を行うようにしても
良い。1362はシール材に相当し、シール材1362によって、液晶1343を第1の
基板700と第2の基板1340の間に封止することができる。
【0129】
また第1の基板700の、TFT701及びTFT702が形成されていない面に、偏
光板1350が設けられている。また、第2の基板1340の、対向電極1341が形成
されている面とは逆の面に、偏光板1351が設けられている。なお本発明の液晶表示装
置は、配向膜及び偏光板の数及び設ける位置については、図13(A)に示す構成に限定
されない。
【0130】
本発明では、少なくとも酸化物半導体膜のチャネル形成領域における結晶性が改善され
ているので、非晶質珪素膜を用いたTFTに比べて高い移動度のTFTを得ることができ
る。また、結晶性珪素膜を用いたTFTに比べて結晶化工程が低温で済むため、プロセス
として安価である。さらに、ランプ加熱により選択的に酸化物半導体膜の結晶性を高めて
いるため、酸化物半導体膜全体を結晶化するのに比べて結晶化にかかる時間を短縮できる
。そのため、歩留まりを高めることができる。また、結晶化を選択的に行う且つ短時間で
行うため、基板のシュリンクが起きにくく、樹脂基板等の比較的融点の低い基板を用いる
ことができる。そのため、低コストでTFTを作製することができる。
【0131】
また、チャネル形成領域は可視光を吸収しないため、不要な光キャリアが発生しない。
そのため、耐光性に優れたTFTを形成することができる。
【0132】
次に、本発明の液晶表示装置が有する画素の別の構成について説明する。図14(A)
に、画素の回路図の一形態を、図14(B)に図14(A)に対応する画素の断面構造の
一形態を示す。
【0133】
図14(A)、図14(B)において、1501は画素へのビデオ信号の入力を制御す
るためのスイッチング用TFTに相当し、1502は液晶素子に相当する。具体的には、
スイッチング用TFT1501を介して画素に入力されたビデオ信号の電位が、液晶素子
1502の画素電極に供給される。なお1503は、スイッチング用TFT1501がオ
フのときに液晶素子1502の画素電極と対向電極の間の電圧を保持するための容量素子
に相当する。
【0134】
具体的には、スイッチング用TFT1501は、ゲート電極が走査線Gに接続されてお
り、ソース領域とドレイン領域が、一方は信号線Sに、他方は液晶素子1502の画素電
極1504に接続されている。容量素子1503が有する2つの電極は、一方が液晶素子
1502の画素電極1504に接続され、他方に一定の電位、望ましくは対向電極と同じ
高さの電位が供給されている。
【0135】
なお、図14(A)、図14(B)では、スイッチング用TFT1501が直列に接続
され、なおかつゲート電極1510が接続された複数のTFTが酸化物半導体膜1512
を共有しているような構成を有する、マルチゲート構造となっている。マルチゲート構造
とすることで、スイッチング用TFT1501のオフ電流を低減させることができる。具
体的に図14(A)、図14(B)ではスイッチング用TFT1501が2つのTFTが
直列に接続されたような構成を有しているが、3つ以上のTFTが直列に接続され、なお
かつゲート電極が接続されたようなマルチゲート構造であっても良い。また、スイッチン
グ用TFTは必ずしもマルチゲート構造である必要はなく、ゲート電極とチャネル形成領
域が一つずつ通常のシングルゲート構造のTFTであっても良い。
【0136】
次に、本発明の液晶表示装置が有するTFTの、図13、図14とは異なる形態につい
て説明する。図15に、駆動回路に用いられるTFTの断面図と、画素部に用いられるT
FTの断面図を示す。2301は駆動回路に用いられるTFTの断面図に相当し、230
2は画素部に用いられるスイッチング用TFTの断面図に相当し、2303は液晶素子の
断面図に相当する。
【0137】
駆動回路のTFT2301と画素部のTFT2302は、基板2300上に形成された
ゲート電極2310、2320と、ゲート電極2310、2320を覆っているゲート絶
縁膜2311と、ゲート絶縁膜2311を間に挟んでゲート電極2310、2320と重
なっている、チャネル形成領域に少なくとも結晶化した領域を有する酸化物半導体膜23
12、2322とをそれぞれ有している。そして、酸化物半導体膜2312、2322の
チャネル形成領域を覆うように、絶縁膜で形成されたチャネル保護膜2390、2391
が形成されている。チャネル保護膜2390、2391は、TFT2301、2302の
作製工程において、酸化物半導体膜2312、2322のチャネル形成領域がエッチング
されてしまうのを防ぐために設ける。さらにTFT2301、2302は、ソース電極ま
たはドレイン電極として機能する一対の第1の導電膜2313、2323と、第2の導電
膜2314、2324とを有している。なお、第1の導電膜2313、2323及び第2
の導電膜2314、2324は配線層としても機能する。
【0138】
図15では、ゲート絶縁膜2311が2層の絶縁膜で形成されているが、本発明はこの
構成に限定されない。ゲート絶縁膜2311が単層または3層以上の絶縁膜で形成されて
いても良い。
【0139】
また第2の導電膜2314、2324は、アルミニウム又はアルミニウムを含む合金で
形成されている。そして一対の第2の導電膜2314、2324は、酸化物半導体膜23
22のチャネルが形成される領域を間に挟んでそれぞれ向かい合っている。
【0140】
また第1の導電膜2313、2323は、チタンで形成されている。第1の導電膜23
13、2323は必ずしも設ける必要はないが、酸化物半導体膜2312、2322との
電気的接触特性は良好となる。また、酸化物半導体膜2312、2322中の酸素が第2
の導電膜2314、2324に拡散するのを防止するバリア層としての機能も有する。そ
の結果、TFTの信頼性を向上させることができる。なお、酸化物半導体膜2312、2
322は特に何をせずともn型を示すことが知られている。よって、チャネルが形成され
る酸化物半導体膜には、p型の導電性を付与する不純物を添加し、極力I型に近づくよう
にその導電型を制御しておいてもよい。
【0141】
また、TFT2301、2302を覆うように、絶縁膜からなる第1のパッシベーショ
ン膜2380、第2のパッシベーション膜2381が形成されている。第1のパッシベー
ション膜2380及び第2のパッシベーション膜2381は、プラズマCVD法又はスパ
ッタリング法などの薄膜形成法を用い、窒化珪素、酸化珪素、窒化酸化珪素、酸化窒化珪
素、酸化窒化アルミニウム、または酸化アルミニウム、ダイアモンドライクカーボン(D
LC)、窒素含有炭素(CN)、その他の絶縁性材料を用いて形成することができる。T
FT2301、2302を覆うパッシベーション膜は2層に限らず、単層であっても良い
し、3層以上であっても良い。例えば第1のパッシベーション膜2380を窒化珪素、第
2のパッシベーション膜2381を酸化珪素で形成することができる。窒化珪素または窒
化酸化珪素でパッシベーション膜を形成することで、外部からの不純物が半導体素子内に
侵入するのを防いだり、TFT2301、2302が水分などの影響により、劣化するの
を防ぐことができる。本実施の形態では、第1のパッシベーション膜2380及び第2の
パッシベーション膜2381は同チャンバー内でガス切り替えを行い連続的に形成した。
【0142】
次いで、第2のパッシベーション膜2381を覆って、絶縁層2329を形成する。そ
して、コンタクトホールを介して第2の導電膜2314、2324とそれぞれ接続する配
線2371、2372、2373、2374を形成する。そして、第2の導電膜2324
は、配線2374を介して液晶素子2303の画素電極2330に電気的に接続している

【0143】
また、画素電極2330上に接するように、配向膜2331が形成されている。一方、
画素電極2330を間に挟んで第1の基板2300と向かい合っている第2の基板234
0上には、対向電極2341と、配向膜2342が順に積層されている。そして、画素電
極2330及び配向膜2331と、対向電極2341及び配向膜2342との間に液晶2
343が設けられており、画素電極2330と液晶2343と対向電極2341とが重な
り合っている部分が液晶素子2303に相当する。なお、画素電極は、TFT上に延設し
て形成してもよい。第1の導電膜及び第2の導電膜に透光性を有するインジウム錫酸化物
(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、有機インジウム、有機ス
ズ、酸化亜鉛、窒化チタンなどを含む透明導電膜を用いた場合、画素部の開口率を上げる
ことができる。
【0144】
なお、画素電極2330と対向電極2341との距離(セルギャップ)は、スペーサ2
361によって制御されている。図15では、絶縁膜を所望の形状に加工することでスペ
ーサ2361を形成しているが、別途用意した球状のスペーサを、配向膜2331上に分
散して、セルギャップの制御を行うようにしても良い。2362はシール材に相当し、シ
ール材2362によって、液晶2343を第1の基板2300と第2の基板2340の間
に封止することができる。
【0145】
また第1の基板2300の、TFT2301及びTFT2302が形成されている面と
は逆の面に、偏光板2350が設けられている。また、第2の基板2340の、対向電極
2341が形成されている面とは逆の面に、偏光板2351が設けられている。なお本発
明の液晶表示装置は、配向膜及び偏光板の数及び設ける位置については、図15に示す構
成に限定されない。
【0146】
次に、本発明の液晶表示装置に用いられる素子基板の構成を示す。
【0147】
図16に、信号線駆動回路6013のみを別途形成し、第1の基板6011上に形成さ
れた画素部6012と接続している素子基板の形態を示す。画素部6012及び走査線駆
動回路6014は、少なくともチャネル形成領域に結晶化された領域を含む酸化物半導体
膜を有するTFTを用いて形成する。非晶質珪素膜を用いるTFTよりも高い移動度が得
られるトランジスタで信号線駆動回路を形成することで、走査線駆動回路よりも高い駆動
周波数が要求される信号線駆動回路の動作を安定させることができる。なお、信号線駆動
回路6013は、単結晶シリコンの半導体を用いたトランジスタ、多結晶の半導体を用い
たTFT、またはSOIを用いたトランジスタであっても良い。画素部6012と、信号
線駆動回路6013と、走査線駆動回路6014とに、それぞれ電源の電位、各種信号等
が、FPC6015を介して供給される。
【0148】
なお、信号線駆動回路及び走査線駆動回路を、共に画素部と同じ基板上に形成しても良
い。
【0149】
また、駆動回路を別途形成する場合、必ずしも駆動回路が形成された基板を、画素部が
形成された基板上に張り合わせる必要はなく、例えばFPC上に張り合わせるようにして
も良い。図17(A)に、信号線駆動回路6023のみを別途形成し、第1の基板602
1上に形成された画素部6022及び走査線駆動回路6024と接続している素子基板の
形態を示す。画素部6022及び走査線駆動回路6024は、少なくともチャネル形成領
域に結晶化された領域を含む酸化物半導体膜を用いたTFTによって形成する。信号線駆
動回路6023は、FPC6025を介して画素部6022と接続されている。画素部6
022と、信号線駆動回路6023と、走査線駆動回路6024とに、それぞれ電源の電
位、各種信号等が、FPC6025を介して供給される。
【0150】
また、信号線駆動回路の一部のみまたは走査線駆動回路の一部のみを、少なくともチャ
ネル形成領域に結晶化された領域を含む酸化物半導体膜を有するTFTを用いて画素部と
同じ基板上に形成し、残りを別途形成して画素部と電気的に接続するようにしても良い。
図17(B)に、信号線駆動回路が有するアナログスイッチ6033aを、画素部603
2、走査線駆動回路6034と同じ第1の基板6031上に形成し、信号線駆動回路が有
するシフトレジスタ6033bを別途異なる基板に形成して基板6031に貼り合わせる
素子基板の形態を、図17(B)に示す。画素部6032及び走査線駆動回路6034は
、少なくともチャネル形成領域に結晶化された領域を含む酸化物半導体膜を有するTFT
を用いて形成する。信号線駆動回路が有するシフトレジスタ6033bは、FPC603
5を介して画素部6032と接続されている。画素部6032と、信号線駆動回路に含ま
れるアナログスイッチ6033a、シフトレジスタ6033bと、走査線駆動回路603
4とに、それぞれ電源の電位、各種信号等が、FPC6035を介して供給される。
【0151】
図16、図17に示すように、本発明の液晶表示装置は、駆動回路の一部または全部を
、画素部と同じ基板上に、少なくともチャネル形成領域に結晶化された領域を含む酸化物
半導体膜を有するTFTを用いて形成することができる。
【0152】
なお、別途形成した基板の接続方法は、特に限定されるものではなく、COG(Chi
p On Glass)方法やワイヤボンディング方法、或いはTAB(Tape Au
tomated Bonding)方法などを用いることができる。また接続する位置は
、電気的な接続が可能であるならば、図18に示した位置に限定されない。また、コント
ローラ、CPU、メモリ等を別途形成し、接続するようにしても良い。
【0153】
なお本発明で用いる信号線駆動回路は、シフトレジスタとアナログスイッチのみを有す
る形態に限定されない。シフトレジスタとアナログスイッチに加え、バッファ、レベルシ
フタ、ソースフォロワ等、他の回路を有していても良い。また、シフトレジスタとアナロ
グスイッチは必ずしも設ける必要はなく、例えばシフトレジスタの代わりにデコーダ回路
のような信号線の選択ができる別の回路を用いても良いし、アナログスイッチの代わりに
ラッチ等を用いても良い。
【0154】
図18(A)に本発明を適用した液晶表示装置のブロック図を示す。図18(A)に示
す液晶表示装置は、液晶素子を備えた画素を複数有する画素部801と、各画素を選択す
る走査線駆動回路802と、選択された画素へのビデオ信号の入力を制御する信号線駆動
回路803とを有する。
【0155】
図18(A)において信号線駆動回路803は、シフトレジスタ804、アナログスイ
ッチ805を有している。シフトレジスタ804には、クロック信号(CLK)、スター
トパルス信号(SP)が入力されている。クロック信号(CLK)とスタートパルス信号
(SP)が入力されると、シフトレジスタ804においてタイミング信号が生成され、ア
ナログスイッチ805に入力される。
【0156】
またアナログスイッチ805には、ビデオ信号(video signal)が与えら
れている。アナログスイッチ805は入力されるタイミング信号に従ってビデオ信号をサ
ンプリングし、後段の信号線に供給する。
【0157】
次に、走査線駆動回路802の構成について説明する。走査線駆動回路802は、シフ
トレジスタ806、バッファ807を有している。また場合によってはレベルシフタを有
していても良い。走査線駆動回路802において、シフトレジスタ806にクロック信号
(CLK)及びスタートパルス信号(SP)が入力されることによって、選択信号が生成
される。生成された選択信号はバッファ807において緩衝増幅され、対応する走査線に
供給される。走査線には、1ライン分の画素のトランジスタのゲートが接続されている。
そして、1ライン分の画素のトランジスタを一斉にONにしなくてはならないので、バッ
ファ807は大きな電流を流すことが可能なものが用いられる。
【0158】
フルカラーの液晶表示装置で、R(赤)、G(緑)、B(青)に対応するビデオ信号を
、順にサンプリングして対応する信号線に供給している場合、シフトレジスタ804とア
ナログスイッチ805とを接続するための端子数が、アナログスイッチ805と画素部8
01の信号線を接続するための端子数の1/3程度に相当する。よって、アナログスイッ
チ805を画素部801と同じ基板上に形成することで、アナログスイッチ805を画素
部801と異なる基板上に形成した場合に比べて、別途形成した基板の接続に用いる端子
の数を抑えることができ、接続不良の発生確率を抑え、歩留まりを高めることができる。
【0159】
図18(B)に、図18(A)とは異なる、本発明に係る液晶表示装置のブロック図を
示す。図18(B)において信号線駆動回路813は、シフトレジスタ814、ラッチA
815、ラッチB816、D/A変換回路(以下、DAC817という)を有している。
走査線駆動回路812は、図18(A)の場合と同じ構成を有しているものとする。
【0160】
シフトレジスタ814には、クロック信号(CLK)、スタートパルス信号(SP)が
入力されている。クロック信号(CLK)とスタートパルス信号(SP)が入力されると
、シフトレジスタ814においてタイミング信号が生成され、一段目のラッチA815に
順に入力される。ラッチA815にタイミング信号が入力されると、該タイミング信号に
同期して、ビデオ信号が順にラッチA815に書き込まれ、保持される。なお、図18(
B)ではラッチA815に順にビデオ信号を書き込んでいると仮定するが、本発明はこの
構成に限定されない。複数のステージのラッチA815をいくつかのグループに分け、各
グループごとに並行してビデオ信号を入力する、いわゆる分割駆動を行っても良い。なお
このときのグループの数を分割数と呼ぶ。例えば4つのステージごとにラッチをグループ
に分けた場合、4分割で分割駆動すると言う。
【0161】
ラッチA815の全てのステージのラッチへの、ビデオ信号の書き込みが一通り終了す
るまでの時間を、ライン期間と呼ぶ。実際には、上記ライン期間に水平帰線期間が加えら
れた期間をライン期間に含むことがある。
【0162】
1ライン期間が終了すると、2段目のラッチB816にラッチ信号(Latch Si
gnal)が供給され、該ラッチ信号に同期してラッチA815に保持されているビデオ
信号が、ラッチB816に一斉に書き込まれ、保持される。ビデオ信号をラッチB816
に送出し終えたラッチA815には、再びシフトレジスタ814からのタイミング信号に
同期して、次のビデオ信号の書き込みが順次行われる。この2順目の1ライン期間中には
、ラッチB816に書き込まれ、保持されているビデオ信号が、DAC817に入力され
る。
【0163】
DAC817では、入力されたビデオ信号をデジタルからアナログに変換し、対応する
信号線に供給する。
【0164】
なお、図18(A)、図18(B)に示す構成は、本実施形態に係る液晶表示装置の一
形態であり、信号線駆動回路と走査線駆動回路の構成はこれに限定されない。
【0165】
なお、図16〜18は、本実施形態に係る液晶表示装置に限らず、発光装置やその他の
表示装置に用いることができる。
【0166】
なお、本実施形態は、実施形態1〜4と適宜組み合わせることができる。
【実施例1】
【0167】
本実施例では、実施形態5で説明した発光装置に用いる発光素子の形態を、図8を用い
て説明する。
【0168】
図8(A)は、第1の画素電極11に、透光性を有し且つ仕事関数の大きい導電膜を用
い、第2の画素電極17に、仕事関数の小さい導電膜を用いて形成した例である。第1の
画素電極11を透光性の酸化物導電性材料で形成し、代表的には酸化珪素を1〜15原子
%の濃度で含む酸化物導電性材料で形成している。その上に正孔注入層若しくは正孔輸送
層41、発光層42、電子輸送層若しくは電子注入層43を積層した発光物質を含む層1
6を設けている。第2の画素電極17は、LiFやMgAgなどアルカリ金属又はアルカ
リ土類金属の単体、化合物又は合金を含む第1の電極層33とアルミニウムなどの金属材
料で形成する第2の電極層34で形成している。この構造の画素は、図中の矢印で示した
ように第1の画素電極11側から光を放射することが可能となる。
【0169】
図8(B)は、第1の画素電極11に、仕事関数の大きい導電膜を用い、第2の画素電
極17に、透光性を有し且つ仕事関数の小さい導電膜を用いて形成した例である。第1の
画素電極11はアルミニウム、チタンなどの金属、又は該金属と化学量論的組成比以下の
濃度で窒素を含む金属材料で形成する第1の電極層35と、酸化珪素を1〜15原子%の
濃度で含む酸化物導電性材料で形成する第2の電極層32との積層構造で形成している。
その上に正孔注入層若しくは正孔輸送層41、発光層42、電子輸送層若しくは電子注入
層43を積層した発光物質を含む層16を設けている。第2の画素電極17は、LiFや
CaFなどのアルカリ金属又はアルカリ土類金属の単体、化合物又は合金を含む第3の電
極層33とアルミニウムなどの金属材料で形成する第4の電極層34で形成する。第2の
電極のいずれの層をも100nm以下の厚さとして光を透過可能な状態としておくことで
、図中の矢印で示したように第2の画素電極17から光を放射することが可能となる。
【0170】
図8(E)は、両方向、即ち第1の電極及び第2の電極から光を放射する例を示し、第
1の画素電極11に、透光性を有し且つ仕事関数の大きい導電膜を用い、第2の画素電極
17に、透光性を有し且つ仕事関数の小さい導電膜を用いる。代表的には、第1の画素電
極11を、酸化珪素を1〜15原子%の濃度で含む酸化物導電性材料で形成し、第2の画
素電極17を、それぞれ100nm以下の厚さのLiFやCaFなどのアルカリ金属又は
アルカリ土類金属の単体、化合物又は合金を含む第3の電極層33とアルミニウムなどの
金属材料で形成する第4の電極層34で形成することで、図中の矢印で示したように、第
1の画素電極11及び第2の画素電極17の両側から光を放射することが可能となる。
【0171】
図8(C)は、第1の画素電極11に、透光性を有し且つ仕事関数の小さい導電膜を用
い、第2の画素電極17に、仕事関数の大きい導電膜を用いて形成した例である。発光物
質を含む層を電子輸送層若しくは電子注入層43、発光層42、正孔注入層若しくは正孔
輸送層41の順に積層した構成を示している。第2の画素電極17は、発光物質を含む層
16側から酸化珪素を1〜15原子%の濃度で含む酸化物導電性材料で形成する第2の電
極層32、アルミニウム、チタンなどの金属、又は該金属と化学量論的組成比以下の濃度
で窒素を含む金属材料で形成する第1の電極層35の積層構造で形成している。第1の画
素電極11は、LiFやCaFなどのアルカリ金属又はアルカリ土類金属の単体、化合物
又は合金を含む第3の電極層33とアルミニウムなどの金属材料で形成する第4の電極層
34で形成するが、いずれの層も100nm以下の厚さとして光を透過可能な状態として
おくことで、図中の矢印で示したように第1の画素電極11から光を放射することが可能
となる。
【0172】
図8(D)は、第1の画素電極11に、仕事関数の小さい導電膜を用い、第2の画素電
極17に、透光性を有し且つ仕事関数の大きい導電膜を用いて形成した例である。発光物
質を含む層を電子輸送層若しくは電子注入層43、発光層42、正孔注入層若しくは正孔
輸送層41の順に積層した構成を示している。第1の画素電極11は図8(A)と同様な
構成とし、膜厚は発光物質を含む層で発光した光を反射可能な程度に厚く形成している。
第2の画素電極17は、酸化珪素を1〜15原子%の濃度で含む酸化物導電性材料で構成
している。この構造において、正孔注入層を無機物である金属酸化物(代表的には酸化モ
リブデン若しくは酸化バナジウム)で形成することにより、第2の電極層32を形成する
際に導入される酸素が供給されて正孔注入性が向上し、駆動電圧を低下させることができ
る。また、第2の画素電極17を、透光性を有する導電膜で形成することで、図中の矢印
で示したように、第2の画素電極17の両側から光を放射することが可能となる。
【0173】
図8(F)は、両方向、即ち第1の画素電極及び第2の画素電極から光を放射する例を
示し、第1の画素電極11に、透光性を有し且つ仕事関数の小さい導電膜を用い、第2の
画素電極17に、透光性を有し且つ仕事関数の大きい導電膜を用いる。代表的には、第1
の画素電極11を、それぞれ100nm以下の厚さのLiFやCaFなどのアルカリ金属
又はアルカリ土類金属の単体、化合物又は合金を含む第3の電極層33とアルミニウムな
どの金属材料で形成する第4の電極層34で形成し、第2の画素電極17を、酸化珪素を
1〜15原子%の濃度で含む酸化物導電性材料で形成すればよい。
【0174】
なお、上記で述べたように発光物質を含む層16は、有機化合物又は無機化合物を含む
電荷注入輸送物質及び発光材料で形成し、その分子数から低分子系有機化合物、中分子系
有機化合物(昇華性を有さず、連鎖する分子の長さが10μm以下の有機化合物、代表的
にはデンドリマー、オリゴマー等が挙げられる。)、高分子系有機化合物から選ばれた一
種又は複数種の層を含み、電子注入輸送性又は正孔注入輸送性の無機化合物と組み合わせ
ても良い。
【0175】
電荷注入輸送物質のうち、特に電子輸送性の高い物質としては、例えばトリス(8−キ
ノリノラト)アルミニウム(略称:Alq)、トリス(4−メチル−8−キノリノラト
)アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]−キノリナ
ト)ベリリウム(略称:BeBq)、ビス(2−メチル−8−キノリノラト)−4−フ
ェニルフェノラト−アルミニウム(略称:BAlq)など、キノリン骨格またはベンゾキ
ノリン骨格を有する金属錯体等が挙げられる。
【0176】
また、正孔輸送性の高い物質としては、例えば4,4’−ビス[N−(1−ナフチル)−
N−フェニル−アミノ]−ビフェニル(略称:α−NPD)や4,4’−ビス[N−(3
−メチルフェニル)−N−フェニル−アミノ]−ビフェニル(略称:TPD)や4,4’
,4’’−トリス(N,N−ジフェニル−アミノ)−トリフェニルアミン(略称:TDA
TA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニル−アミ
ノ]−トリフェニルアミン(略称:MTDATA)などの芳香族アミン系(即ち、ベンゼ
ン環−窒素の結合を有する)の化合物が挙げられる。
【0177】
また、電荷注入輸送物質のうち、特に電子注入性の高い物質としては、フッ化リチウム
(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)等のようなアル
カリ金属又はアルカリ土類金属の化合物が挙げられる。また、この他、Alq3のような
電子輸送性の高い物質とマグネシウム(Mg)のようなアルカリ土類金属との混合物であ
ってもよい。
【0178】
電荷注入輸送物質のうち、正孔注入性の高い物質としては、例えば、モリブデン酸化物
(MoO)やバナジウム酸化物(VO)、ルテニウム酸化物(RuO)、タングス
テン酸化物(WO)、マンガン酸化物(MnO)等の金属酸化物が挙げられる。また
、この他、フタロシアニン(略称:HPc)や銅フタロシアニン(CuPc)等のフタ
ロシアニン系の化合物が挙げられる。
【0179】
発光層42は、発光波長帯の異なる発光層を画素毎に形成して、カラー表示を行う構成
としても良い。典型的には、R(赤)、G(緑)、B(青)の各色に対応した発光層を形
成する。この場合にも、画素の光放射側にその発光波長帯の光を透過するフィルター(着
色層)を設けた構成とすることで、色純度の向上や、画素部の鏡面化(映り込み)の防止
を図ることができる。フィルター(着色層)を設けることで、従来必要であるとされてい
た円偏光版などを省略することが可能となり、発光層から放射される光の損失を無くすこ
とができる。さらに、斜方から画素部(表示画面)を見た場合に起こる色調の変化を低減
することができる。
【0180】
発光層42を形成する発光材料には様々な材料がある。低分子系有機発光材料では、4
−(ジシアノメチレン)−2−メチル−6−[2−(1,1,7,7−テトラメチルジュ
ロリジン−9−イル)エテニル]−4H−ピラン(略称:DCJT)、4−ジシアノメチ
レン−2−t−ブチル−6−[2−(1,1,7,7−テトラメチルジュロリジル−9−
イル)エテニル]−4H−ピラン(略称:DCJTB)、ペリフランテン、2,5−ジシ
アノ−1,4−ビス[2−(10−メトキシ−1,1,7,7−テトラメチルジュロリジ
ン−9−イル)エテニル]ベンゼン、N,N’−ジメチルキナクリドン(略称:DMQd
)、クマリン6、クマリン545T、トリス(8−キノリノラト)アルミニウム(略称:
Alq)、9,9’−ビアントリル、9,10−ジフェニルアントラセン(略称:DP
A)や9,10−ビス(2−ナフチル)アントラセン(略称:DNA)等を用いることが
できる。また、この他の物質でもよい。
【0181】
一方、高分子系有機発光材料は低分子系に比べて物理的強度が高く、素子の耐久性が高い
。また塗布により成膜することが可能であるので、素子の作製が比較的容易である。高分
子系有機発光材料を用いた発光素子の構造は、低分子系有機発光材料を用いたときと基本
的には同じであり、陰極、発光物質を含む層、陽極の順に積層した構造となる。しかし、
高分子系有機発光材料を用いた発光物質を含む層を形成する際には、低分子系有機発光材
料を用いたときのような積層構造を形成させることは難しく、多くの場合2層構造となる
。具体的には、陰極、発光層、正孔輸送層、陽極という順に積層した構造である。
【0182】
発光色は、発光層を形成する材料で決まるため、これらを選択することで所望の発光を
示す発光素子を形成することができる。発光層の形成に用いることができる高分子系の発
光材料は、ポリパラフェニレンビニレン系、ポリパラフェニレン系、ポリチオフェン系、
ポリフルオレン系が挙げられる。
【0183】
ポリパラフェニレンビニレン系には、ポリ(パラフェニレンビニレン) [PPV]
の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレンビニレン) [RO−PP
V]、ポリ(2−(2’−エチル−ヘキソキシ)−5−メトキシ−1,4−フェニレンビ
ニレン)[MEH−PPV]、ポリ(2−(ジアルコキシフェニル)−1,4−フェニレ
ンビニレン)[ROPh−PPV]等が挙げられる。ポリパラフェニレン系には、ポリパ
ラフェニレン[PPP]の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレン)
[RO−PPP]、ポリ(2,5−ジヘキソキシ−1,4−フェニレン)等が挙げられる
。ポリチオフェン系には、ポリチオフェン[PT]の誘導体、ポリ(3−アルキルチオフ
ェン)[PAT]、ポリ(3−ヘキシルチオフェン)[PHT]、ポリ(3−シクロヘキ
シルチオフェン)[PCHT]、ポリ(3−シクロヘキシル−4−メチルチオフェン)[
PCHMT]、ポリ(3,4−ジシクロヘキシルチオフェン)[PDCHT]、ポリ[3
−(4−オクチルフェニル)−チオフェン][POPT]、ポリ[3−(4−オクチルフ
ェニル)−2,2ビチオフェン][PTOPT]等が挙げられる。ポリフルオレン系には
、ポリフルオレン[PF]の誘導体、ポリ(9,9−ジアルキルフルオレン)[PDAF
]、ポリ(9,9−ジオクチルフルオレン)[PDOF]等が挙げられる。
【0184】
なお、正孔輸送性の高分子系有機発光材料を、陽極と発光性の高分子系有機発光材料の
間に挟んで形成すると、陽極からの正孔注入性を向上させることができる。一般にアクセ
プター材料と共に水に溶解させたものをスピンコート法などで塗布する。また、有機溶媒
には不溶であるため、上述した発光性の発光材料との積層が可能である。正孔輸送性の高
分子系有機発光材料としては、PEDOTとアクセプター材料としてのショウノウスルホ
ン酸(CSA)の混合物、ポリアニリン[PANI]とアクセプター材料としてのポリス
チレンスルホン酸[PSS]の混合物等が挙げられる。
【0185】
また、発光層42は単色又は白色の発光を呈する構成とすることができる。白色発光材
料を用いる場合には、画素の光放射側に特定の波長の光を透過するフィルター(着色層)
を設けた構成としてカラー表示を可能にすることができる。
【0186】
白色に発光する発光層を形成するには、例えば、Alq、部分的に赤色発光色素であ
るナイルレッドを添加したAlq、Alq、p−EtTAZ、TPD(芳香族ジアミ
ン)を蒸着法により順次積層することで白色を得ることができる。また、スピンコートを
用いた塗布法により発光層を形成する場合には、塗布した後、真空加熱で焼成することが
好ましい。例えば、正孔注入層として作用するポリ(エチレンジオキシチオフェン)/ポ
リ(スチレンスルホン酸)水溶液(PEDOT/PSS)を全面に塗布、焼成し、その後
、発光層として作用する発光中心色素(1,1,4,4−テトラフェニル−1,3−ブタ
ジエン(TPB)、4−ジシアノメチレン−2−メチル−6−(p−ジメチルアミノ−ス
チリル)−4H−ピラン(DCM1)、ナイルレッド、クマリン6など)を添加したポリ
ビニルカルバゾール(PVK)溶液を全面に塗布、焼成すればよい。
【0187】
発光層は単層で形成することもでき、ホール輸送性のポリビニルカルバゾール(PVK
)に電子輸送性の1,3,4−オキサジアゾール誘導体(PBD)を分散させてもよい。
また、30wt%のPBDを電子輸送剤として分散し、4種類の色素(TPB、クマリン
6、DCM1、ナイルレッド)を適当量分散することで白色発光が得られる。ここで示し
た白色発光が得られる発光素子の他にも、発光層の材料を適宜選択することによって、赤
色発光、緑色発光、または青色発光が得られる発光素子を作製することができる。
【0188】
なお、正孔輸送性の高分子系有機発光材料を、陽極と発光性の高分子系有機発光材料の
間に挟んで形成すると、陽極からの正孔注入性を向上させることができる。一般にアクセ
プター材料と共に水に溶解させたものをスピンコート法などで塗布する。また、有機溶媒
には不溶であるため、上述した発光性の有機発光材料との積層が可能である。正孔輸送性
の高分子系有機発光材料としては、PEDOTとアクセプター材料としてのショウノウス
ルホン酸(CSA)の混合物、ポリアニリン[PANI]とアクセプター材料としてのポ
リスチレンスルホン酸[PSS]の混合物等が挙げられる。
【0189】
さらに、発光層42は、一重項励起発光材料の他、金属錯体などを含む三重項励起材料
を用いても良い。例えば、赤色の発光性の画素、緑色の発光性の画素及び青色の発光性の
画素のうち、輝度半減時間が比較的短い赤色の発光性の画素を三重項励起発光材料で形成
し、他を一重項励起発光材料で形成する。三重項励起発光材料は発光効率が良いので、同
じ輝度を得るのに消費電力が少なくて済むという特徴がある。すなわち、赤色画素に適用
した場合、発光素子に流す電流量が少なくて済むので、信頼性を向上させることができる
。低消費電力化として、赤色の発光性の画素と緑色の発光性の画素とを三重項励起発光材
料で形成し、青色の発光性の画素を一重項励起発光材料で形成しても良い。人間の視感度
が高い緑色の発光素子も三重項励起発光材料で形成することで、より低消費電力化を図る
ことができる。
【0190】
三重項励起発光材料の一例としては、金属錯体をドーパントとして用いたものがあり、
第3遷移系列元素である白金を中心金属とする金属錯体、イリジウムを中心金属とする金
属錯体などが知られている。三重項励起発光材料としては、これらの化合物に限られるこ
とはなく、上記構造を有し、且つ中心金属に周期表の8〜10属に属する元素を有する化
合物を用いることも可能である。
【0191】
以上に掲げる発光物質を含む層を形成する物質は一例であり、正孔注入輸送層、正孔輸
送層、電子注入輸送層、電子輸送層、発光層、電子ブロック層、正孔ブロック層などの機
能性の各層を適宜積層することで発光素子を形成することができる。また、これらの各層
を合わせた混合層又は混合接合を形成しても良い。発光層の層構造は変化しうるものであ
り、特定の電子注入領域や発光領域を備えていない代わりに、もっぱらこの目的用の電極
を備えたり、発光性の材料を分散させて備えたりする変形は、本発明の趣旨を逸脱しない
範囲において許容されうるものである。
【実施例2】
【0192】
本実施例では本発明に係る発光装置の表示パネルの画素回路、及びその動作構成につい
て、図9を用いて説明する。表示パネルの動作構成は、ビデオ信号がデジタルの表示装置
において、画素に入力されるビデオ信号が電圧で規定されるのものと、電流で規定される
のものとがある。ビデオ信号が電圧によって規定されるものには、発光素子に印加される
電圧が一定のもの(CVCV)と、発光素子に印加される電流が一定のもの(CVCC)
とがある。また、ビデオ信号が電流によって規定されるものには、発光素子に印加される
電圧が一定のもの(CCCV)と、発光素子に印加される電流が一定のもの(CCCC)
とがある。本実施例では、CVCV動作をする画素を図9(A)及び(B)用いて説明す
る。また、CVCC動作をする画素を図9(C)〜(F)を用いて説明する。
【0193】
図9(A)及び(B)に示す画素は、列方向に信号線3710及び電源線3711、行方
向に走査線3714が配置される。また、スイッチング用TFT3701、駆動用TFT
3703、容量素子3702及び発光素子3705を有する。
【0194】
なお、スイッチング用TFT3701及び駆動用TFT3703は、オンしているときは
線形領域で動作する。また駆動用TFT3703は発光素子3705に電圧を印加するか
否かを制御する役目を有する。両TFTは同じ導電型を有していると作製工程上好ましい
。本実施例ではスイッチング用TFT3701をnチャネル型TFTとし、駆動用TFT
3703をpチャネル型TFTとして形成する。また駆動用TFT3703には、エンハ
ンスメント型だけでなく、ディプリーション型のTFTを用いてもよい。また、駆動用T
FT3703のチャネル幅Wとチャネルと長Lの比(W/L)は、TFTの移動度にもよ
るが1〜1000であることが好ましい。W/Lが大きいほど、TFTの電気特性が向上
する。
【0195】
図9(A)、(B)に示す画素において、スイッチング用TFT3701は、画素に対す
るビデオ信号の入力を制御するものであり、スイッチング用TFT3701がオンとなる
と、画素内にビデオ信号が入力される。すると、容量素子3702にそのビデオ信号の電
圧が保持される。
【0196】
図9(A)において、電源線3711がVssで発光素子3705の対向電極がVdd
の場合、即ち図8(C)及び(D)の場合、発光素子の対向電極は陽極であり、駆動用T
FT3703に接続される電極は陰極である。この場合、駆動用TFT3703の特性バ
ラツキによる輝度ムラを抑制することが可能である。
【0197】
図9(A)において、電源線3711がVddで発光素子3705の対向電極がVss
の場合、即ち図8(A)及び(B)の場合、発光素子の対向電極は陰極であり、駆動用T
FT3703に接続される電極は陽極である。この場合、Vddより電圧の高いビデオ信
号を信号線3710に入力することにより、容量素子3702にそのビデオ信号の電圧が
保持され、駆動用TFT3703が線形領域で動作するので、TFTのバラツキによる輝
度ムラを改善することが可能である。
【0198】
図9(B)に示す画素は、TFT3706と走査線3715を追加している以外は、図9
(A)に示す画素構成と同じである。
【0199】
TFT3706は、新たに配置された走査線3715によりオン又はオフが制御される。
TFT3706がオンとなると、容量素子3702に保持された電荷は放電し、駆動用T
FT3703がオフとなる。つまり、TFT3706の配置により、強制的に発光素子3
705に電流が流れない状態を作ることができる。そのためTFT3706を消去用TF
Tと呼ぶことができる。従って、図9(B)の構成は、全ての画素に対する信号の書き込
みを待つことなく、書き込み期間の開始と同時又は直後に点灯期間を開始することができ
るため、発光のデューティ比を向上することが可能となる。
【0200】
上記動作構成を有する画素において、発光素子3705の電流値は、線形領域で動作する
駆動用TFT3703により決定することができる。上記構成により、TFTの特性のバ
ラツキを抑制することが可能であり、TFT特性のバラツキに起因した発光素子の輝度ム
ラを改善して、画質を向上させた表示装置を提供することができる。
【0201】
次に、CVCC動作をする画素を図9(C)〜(F)を用いて説明する。図9(C)に示
す画素は、図9(A)に示す画素構成に、電源線3712、電流制御用TFT3704が
設けられている。
【0202】
図9(E)に示す画素は、駆動用TFT3703のゲート電極が、行方向に配置された電
源線3712に接続される点が異なっており、それ以外は図9(C)に示す画素と同じ構
成である。つまり、図9(C)、(E)に示す両画素は、同じ等価回路図を示す。しかし
ながら、行方向に電源線3712が配置される場合(図9(C))と、列方向に電源線3
712が配置される場合(図9(E))とでは、各電源線は異なる層に形成された導電膜
で形成される。ここでは、駆動用TFT3703のゲート電極が接続される配線に注目し
、これらを作製する層が異なることを表すために、図9(C)、(E)として分けて記載
する。
【0203】
なお、スイッチング用TFT3701は線形領域で動作し、駆動用TFT3703は飽和
領域で動作する。また駆動用TFT3703は発光素子3705に流れる電流値を制御す
る役目を有し、電流制御用TFT3704は飽和領域で動作し発光素子3705に対する
電流の供給を制御する役目を有する。
【0204】
図9(D)及び(F)示す画素はそれぞれ、図9(C)及び(E)に示す画素に、消去用
のTFT3706と走査線3715を追加している以外は、図9(C)及び(E)に示す
画素構成と同じである。
【0205】
なお、図9(A)及び(B)に示される画素でも、CVCC動作をすることは可能である
。また、図9(C)〜(F)に示される動作構成を有する画素は、図9(A)及び(B)
と同様に、発光素子の電流の流れる方向によって、Vdd及びVssを適宜変えることが
可能である。
【0206】
上記構成を有する画素は、電流制御用TFT3704が線形領域で動作するために、電流
制御用TFT3704のVgsの僅かな変動は、発光素子3705の電流値に影響を及ぼ
さない。つまり、発光素子3705の電流値は、飽和領域で動作する駆動用TFT370
3により決定することができる。上記構成により、TFTの特性バラツキに起因した発光
素子の輝度ムラを改善して、画質を向上させた表示装置を提供することができる。
【0207】
なお、容量素子3702を設けた構成を示したが、本発明はこれに限定されず、ビデオ信
号を保持する容量がゲート容量などで、まかなうことが可能な場合には、容量素子370
2を設けなくてもよい。
【0208】
このようなアクティブマトリクス型の表示装置は、画素密度が増えた場合、各画素にTF
Tが設けられているため低電圧駆動でき、有利であると考えられている。
【0209】
また、本発明に係る表示装置において、画面表示の駆動方法は特に限定されず、例えば、
点順次駆動方法や線順次駆動方法や面順次駆動方法などを用いればよい。代表的には、線
順次駆動方法とし、時分割階調駆動方法や面積階調駆動方法を適宜用いればよい。また、
表示装置のソース線に入力する映像信号は、アナログ信号であってもよいし、デジタル信
号であってもよく、適宜、映像信号に合わせて駆動回路などを設計すればよい。
【実施例3】
【0210】
本実施例では、本発明に係る駆動回路の実装について、図10を用いて説明する。
【0211】
図10(A)に示すように、画素部1401の周辺に信号線駆動回路1402、及び走査
線駆動回路1403a、1403bを実装する。図10(A)では、信号線駆動回路14
02、及び走査線駆動回路1403a、1403b等として、公知の異方性導電接着剤、
及び異方性導電フィルムを用いた実装方法、COG方式、ワイヤボンディング方法、並び
に半田バンプを用いたリフロー処理等により、基板1400上にICチップ1405を実
装する。ここでは、COG方式を用いる。そして、FPC(フレキシブルプリントサーキ
ット)1406を介して、ICチップと外部回路とを接続する。
【0212】
また、図10(B)に示すように、酸化物半導体でTFTを代表とする半導体素子を形成
する場合、画素部1401と走査線駆動回路1403a、1403b等を基板上に一体形
成し、信号線駆動回路1402等を別途ICチップとして実装する場合がある。図10(
B)において、信号線駆動回路1402として、COG方式により、基板1400上にI
Cチップ1405を実装する。そして、FPC1406を介して、ICチップと外部回路
とを接続する。
【0213】
さらに、図10(C)に示すように、COG方式に代えて、TAB方式により信号線駆動
回路1402等を実装する場合がある。そして、FPC1406を介して、ICチップと
外部回路とを接続する。図10(C)において、信号線駆動回路をTAB方式により実装
しているが、走査線駆動回路をTAB方式により実装してもよい。
【0214】
ICチップをTAB方式により実装すると、基板に対して画素部を大きく設けることが
でき、狭額縁化を達成することができる。
【0215】
ICチップは、シリコンウェハを用いて形成するが、ICチップの代わりにガラス基板
上にICを形成したIC(以下、ドライバICと表記する)を設けてもよい。ICチップ
は、円形のシリコンウェハからICチップを取り出すため、母体基板形状に制約がある。
一方ドライバICは、母体基板がガラスであり、形状に制約がないため、生産性を高める
ことができる。そのため、ドライバICの形状寸法は自由に設定することができる。例え
ば、ドライバICの長辺の長さを15〜80mmとして形成すると、ICチップを実装す
る場合と比較し、必要な数を減らすことができる。その結果、接続端子数を低減すること
ができ、製造上の歩留まりを向上させることができる。
【0216】
ドライバICは、基板上に形成された結晶性半導体を用いて形成することができ、結晶
性半導体は連続発振型のレーザ光を照射することで形成するとよい。連続発振型のレーザ
光を照射して得られる半導体膜は、結晶欠陥が少なく、大粒径の結晶粒を有する。その結
果、このような半導体膜を有するトランジスタは、移動度や応答速度が良好となり、高速
駆動が可能となり、ドライバICに好適である。本発明の少なくともチャネル形成領域の
結晶性が改善された酸化物半導体膜を用いてドライバICを形成してもよい。
【実施例4】
【0217】
本実施例では、本発明に係る表示モジュールについて説明する。ここでは、表示モジュ
ールの一例として、液晶モジュールを、図11を用いて示す。
【0218】
基板1601と対向基板1602とが、シール材1600により固着され、それらの間に
は画素部1603と液晶層1604とが設けられ表示領域を形成している。
【0219】
着色層1605は、カラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑
、青の各色に対応した着色層が各画素に対応して設けられている。基板1601と対向基
板1602との外側には、偏光板1606、1607が配設されている。また、偏光板1
606の表面には、保護膜1616が形成されており、外部からの衝撃を緩和している。
【0220】
基板1601に設けられた接続端子1608には、FPC1609を介して配線基板1
610が接続されている。配線基板1610には、画素駆動回路(ICチップ、ドライバ
IC等)、コントロール回路や電源回路などの外部回路1612が組み込まれている。
【0221】
冷陰極管1613、反射板1614、及び光学フィルム1615はバックライトユニッ
トであり、これらが光源となって液晶表示パネルへ光を投射する。液晶パネル、光源、配
線基板、FPC等は、ベゼル1617で保持及び保護されている。
【実施例5】
【0222】
本実施例は、本発明に係る電子機器として、テレビジョン装置(単にテレビ、又はテレビ
ジョン受信機ともよぶ)、デジタルカメラ、デジタルビデオカメラ、携帯電話装置(単に
携帯電話機、携帯電話ともよぶ)、PDA等の携帯情報端末、携帯型ゲーム機、コンピュ
ータ用のモニター、コンピュータ、カーオーディオ等の音響再生装置、家庭用ゲーム機等
の記録媒体を備えた画像再生装置等について図面を参照して説明する。
【0223】
図12(A)に示す携帯情報端末は、本体9201、表示部9202等を含んでいる。本
発明の一である表示装置を用いることにより、携帯情報端末を安価に提供することができ
る。
【0224】
図12(B)に示すデジタルビデオカメラは、表示部9701、表示部9702等を含ん
でいる。本発明の一である表示装置を用いることにより、デジタルビデオカメラを安価に
提供することができる。
【0225】
図12(C)に示す携帯端末は、本体9101、表示部9102等を含んでいる。表示部
9102は、実施形態1〜5、及び実施例1〜4で示すものを適用することができる。本
発明の一である表示装置を用いることにより、携帯端末を安価に提供することができる。
【0226】
図12(D)に示す携帯型のテレビジョン装置は、本体9301、表示部9302等を含
んでいる。本発明の一である表示装置を用いることにより、携帯型のテレビジョン装置を
安価に提供することができる。このようなテレビジョン装置は携帯電話などの携帯端末に
搭載する小型のものから、持ち運びをすることができる中型のもの、また、大型のもの(
例えば40インチ以上)まで、幅広く適用することができる。
【0227】
図12(E)に示す携帯型のコンピュータは、本体9401、表示部9402等を含んで
いる。本発明の一である表示装置を用いることにより、携帯型のコンピュータを安価に提
供することができる。
【0228】
図12(F)に示すテレビジョン装置は、本体9501、表示部9502等を含んでいる
。本発明の一である表示装置を用いることにより、テレビジョン装置を安価に提供するこ
とができる。
【0229】
上記に挙げた電子機器において、二次電池を用いているものは、消費電力を削減した分、
電子機器の使用時間を長持ちさせることができ、二次電池を充電する手間を省くことがで
きる。
【実施例6】
【0230】
本実施例では、本発明に用いるLRTA装置の構成について図19を用いて説明する。
【0231】
図19(A)において、ガラス基板1901上に、ゲート電極1922、ゲート絶縁膜
1923a、1923b、酸化物半導体膜1902が形成されている。また、基板下面側
に赤外光ランプ1903、基板上面側に紫外光ランプ1904が設けられている。そして
、紫外光ランプ1904に並列して第1の赤外光補助ランプ1905、第2の赤外光補助
ランプ1906を配置する。なお、第1の赤外光補助ランプ1905、第2の赤外光補助
ランプ1906は設けなくてもよい。
【0232】
また、本実施例では紫外光ランプ1904の(基板の移動方向に対して)前方および後
方に第1の赤外光補助ランプ1905、第2の赤外光補助光ランプ1906を配置する構
成としているが、片方のみに配置した構成とすることもできる。
【0233】
以上の様な構成において、各ランプ(赤外光ランプ1903〜第2の赤外光補助ランプ
1906)は図中の矢印の方向に向かって移動し、線状光を走査する。本実施例の構成で
は、まずゲート絶縁膜1923a、1923bを介してゲート電極1922と重なってい
る酸化物半導体膜1902の点線で示す領域1908に第1の赤外光補助ランプ1905
により赤外光が照射されて加熱される。そして、基板の移動に伴い前方へと移動していく
。なお、基板にランプ照射をする際に各ランプを移動させているが、ガラス基板1901
を移動させても又はランプと基板の両方を移動させてもよい。
【0234】
第1の赤外光補助ランプ1905照射後、基板上面側から紫外光ランプ1904からの
紫外光が照射され、かつ、基板下面側から赤外光ランプ1903からの赤外光が照射され
てゲート電極1922と重なる酸化物半導体膜1902の領域1908が加熱される。本
実施例の場合、酸化物半導体膜1902の結晶化はこの領域1908が優先して行われる

【0235】
紫外光ランプ1904及び赤外光ランプ1903からの照射により加熱された領域19
08は、紫外光ランプ1904後方に配置された第2の赤外光補助ランプ1906からの
赤外光により加熱される。第2の赤外光補助ランプ1906からの赤外光の照射は、結晶
化が促進した領域1908をさらに加熱するために設けられている。
【0236】
以上の様に、酸化物半導体膜1902中のゲート電極1922と重なる領域(途中から
結晶性酸化物半導体膜となる領域)1908は、見かけ上基板の移動に伴って前方へ移動
する。
【0237】
ここで図19(B)に示すのは、酸化物半導体膜1902の領域1908について、時
間(Time)と温度(Temp. )の関係を示した図である。図19(B)に示す様
に、時間の経過に伴ってまず前加熱(プレヒート)状態となり、次いで主加熱(メインヒ
ート)状態、後加熱(ポストヒート)状態と続く。
【0238】
図19(B)から明らかな様に、プレヒート状態ではある程度にまで温度が上げられ、
次のメインヒート状態との温度勾配を緩和する役割を果たしている。これは、メインヒー
ト状態で急激に熱せられて酸化物半導体膜に歪みエネルギー等が蓄積するのを防ぐための
工夫である。
【0239】
そのため、第1の赤外光補助ランプ1905の出力エネルギーは赤外光ランプ1903
の出力エネルギーよりも小さめに設定しておくことが望ましい。この時、どの様な温度勾
配を形成する様に調節するかは実施者が適宜決定すれば良い。
【0240】
次に、プレヒート状態を通過すると、基板下面側から赤外光を照射され、膜面温度が
250〜570℃でまで上昇したメインヒート状態となる。この状態で酸化物半導体膜1
902中の領域1908は結晶性が良好となる。なお、同時に照射される紫外光は電子励
起に寄与するので熱的な変化はもたらさない。
【0241】
メインヒート状態で得られた結晶性が改善した領域1908は紫外光ランプ1904の
後方に配置された第2の赤外光補助ランプ1906によって加熱される。このポストヒー
ト状態は、メインヒート状態の急冷により熱的平衡の崩れた状態で結晶化が終了するのを
防ぐ役割を果たす。これは結晶化に要する時間に余裕を持たせて最も安定な結合状態を得
るための工夫である。
【0242】
従って、第2の赤外光補助ランプ1906も基板下面に配置される赤外光ランプ190
3よりも出力エネルギーを小さく設定し、徐々に温度が下がる様な温度勾配を形成する様
に調節することが望ましい。
【0243】
以上の様な構成とすることで、ゲート電極と重なる酸化物半導体膜の一部が加熱される
ため、基板のシュリンクを抑制することができる。また、結晶化工程を各ランプ又は基板
を移動させながら行うことによりスループットを上げることができる。また、酸化物半導
体膜の急加熱および結晶性酸化物半導体膜の急冷により生じうる応力歪み、不対結合手等
の結晶欠陥の発生を抑制し、結晶性に優れた領域1908を有する酸化物半導体膜を得る
ことができる。
【0244】
また、第1の赤外光補助ランプ1905、第2の赤外光補助ランプ1906を設けずに
照射加熱を行うことで、基板にかかる熱を抑制してもよい。
【0245】
なお、本実施例では、線状ランプを用いたLRTA装置の構成について説明したが、面
状ランプを用いて結晶化工程を行ってもよい。
【実施例7】
【0246】
本実施例では、本発明に係る半導体装置を電気泳動表示装置に適用した例について図2
0を参照しながら示す。
【0247】
図20に示す電気泳動表示装置は、本体2010、画像を表示する画素部2011、ドラ
イバIC2012、受信装置2013、フィルムバッテリー2014などを含んでいる。
ドライバIC2012や受信装置2013などは半導体部品を用い実装しても良い。本発
明の半導体装置は画素部2011やドライバIC2012に用いることができる。なお、
画素部2011は、マイクロカプセルやジリコンビーズなどが配列された表示層と、それ
を制御するドライバ層が積層した構造となっている。表示層とドライバ層は2枚のプラス
チックフィルムで挟まれている。
【0248】
このような電気泳動表示装置は電子ペーパーとも呼ばれており、非常に軽く、可撓性を
有していることから筒状に丸めることも可能であり、持ち運びに非常に有利である。した
がって、大画面の表示媒体を自由に持ち運びすることができる。また、本発明の半導体装
置を画素部2011等に用いるため、安価な表示装置を提供することができる。
【0249】
本実施例の電気泳動表示装置として様々な形態が考えられ得るが、プラスの電荷を有す
る第1の粒子と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒ま
たは溶質に複数分散されたものであり、マイクロカプセルに電界を印加することによって
、マイクロカプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色の
みを表示するものである。なお、第1の粒子または第2の粒子は染料を含み、電界がない
場合において移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるも
の(無色を含む)とする。マイクロカプセルを溶媒中に分散させたものが電子インクと呼
ばれるものであり、この電子インクはガラス、プラスチック、布、紙などの表面に印刷す
ることができる。
【0250】
また、本発明の半導体装置は、可視光に対して透光性を有する酸化物半導体膜に併せて
、ソース電極及びドレイン電極などに可視光に対して透光性を有するインジウム錫酸化物
(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、有機インジウム、有機ス
ズ、酸化亜鉛、窒化チタンなどを含む透明導電膜を用いることができる。ドライバ層に用
いるTFTに従来のアモルファスシリコンやポリシリコンを用いたのであれば、チャネル
形成領域に光が照射されないようにするために、チャネル形成領域に重ねて遮光膜を設け
ることを要する。しかしながら、本発明のように、可視光に対して透光性を有する酸化物
半導体膜、ソース電極およびドレイン電極を用いてドライバ層を作製することにより、両
面表示の電気泳動表示装置を得ることができる。
【0251】
尚、本発明の半導体装置は、ナビゲーションシステム、音響再生装置(カーオーディオ
、オーディオコンポ等)、パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイ
ルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等)に加え、冷蔵庫装置、洗
濯機、炊飯器、固定電話装置、真空掃除機、体温計など家庭電化製品から、電車内の吊し
広告、鉄道駅や空港の発着案内版など大面積のインフォメーションディスプレイまで、主
に静止画像を表示する手段として用いることができる。
【実施例8】
【0252】
本実施例は、本発明に係るデジタルオーディオプレーヤーについて図21を参照して説
明する。
【0253】
図21に示すデジタルオーディオプレーヤーは、本体2110、表示部2111、メモ
リ部2112、操作部2113、イヤホン2114等を含んでいる。なお、イヤホン21
14の代わりにヘッドホンや無線式イヤホンを用いることができる。表示部2111とし
て、液晶又は有機EL等を用いることができる。メモリ部2112として、記録容量が2
0メガバイト(MB)〜200ギガバイト(GB)のフラッシュメモリを用い、操作部2
113を操作することにより、映像や音声(音楽)を記録、再生することができる。
【0254】
本発明の半導体装置が有するTFTの酸化物半導体膜のチャネル形成領域は少なくとも
結晶化した領域を有するため、本発明の半導体装置を表示部2111に設けることで、安
価で性能のよいデジタルオーディオプレーヤーを提供することができる。さらに、酸化物
半導体膜のチャネル形成領域は透明であり可視光を吸収しないため、不要な光キャリアが
発生しない。そのため、チャネル形成領域において光照射による特性劣化が生じないため
、信頼性の高いデジタルオーディオプレーヤーを提供することができる。
【0255】
本実施例は、実施形態1〜6、実施例1〜4と適宜組み合わせることができる。
【符号の説明】
【0256】
101 基板
102 下地膜
103 ゲート電極
104 ゲート絶縁膜
105 配線
106 酸化物半導体膜
107 第1の酸化物半導体領域
108 第2の酸化物半導体領域
301 基板
302 下地膜
303 ゲート電極
304 ゲート絶縁膜
305 酸化物半導体膜
306 配線
307 配線
308 第1の酸化物半導体領域
309 第2の酸化物半導体領域
400 基板
401 導電膜
402 ゲート電極
403a ゲート絶縁膜
403b ゲート絶縁膜
404 酸化物半導体膜
405 保護膜
406 レジスト
407 チャネル保護膜
408 マスク
409 酸化物半導体膜
411 第1の導電膜
412 第2の導電膜
413 マスク
414a 第1の導電膜
414b 第1の導電膜
415a 第2の導電膜
415b 第2の導電膜
424 領域
434 領域

【特許請求の範囲】
【請求項1】
ゲート電極と、
前記ゲート電極上の第1の絶縁膜と、
前記第1の絶縁膜上の第2の絶縁膜と、
前記第2の絶縁膜上の酸化物半導体膜と、を有し、
前記酸化物半導体膜は、インジウムとガリウムと亜鉛とを含み、
前記第1の絶縁膜は、窒素と珪素とを含み、
前記第2の絶縁膜は、酸素と珪素とを含み、
前記酸化物半導体膜は、前記第1の絶縁膜と前記第2の絶縁膜とを介して前記ゲート電極と重なる領域において結晶領域を有することを特徴とする半導体装置。
【請求項2】
ゲート電極と、
前記ゲート電極上の第1の絶縁膜と、
前記第1の絶縁膜上の第2の絶縁膜と、
前記第2の絶縁膜上の酸化物半導体膜と、を有し、
前記酸化物半導体膜は、インジウムとガリウムと亜鉛とを含み、
前記第1の絶縁膜は、窒素と酸素と珪素とを含み、
前記第1の絶縁膜において、窒素は酸素よりも多く含まれ、
前記第2の絶縁膜は、窒素と酸素と珪素とを含み、
前記第2の絶縁膜において、酸素は窒素よりも多く含まれ、
前記酸化物半導体膜は、前記第1の絶縁膜と前記第2の絶縁膜とを介して前記ゲート電極と重なる領域において結晶領域を有することを特徴とする半導体装置。
【請求項3】
ゲート電極と、
前記ゲート電極上の第1の絶縁膜と、
前記第1の絶縁膜上の第2の絶縁膜と、
前記第2の絶縁膜上の酸化物半導体膜と、を有し、
前記酸化物半導体膜は、インジウムとガリウムと亜鉛とを含み、
前記第1の絶縁膜は、窒素と酸素と珪素とを含み、
前記第1の絶縁膜において、窒素は酸素よりも多く含まれ、
前記第2の絶縁膜は、酸素と珪素とを含み、
前記酸化物半導体膜は、前記第1の絶縁膜と前記第2の絶縁膜とを介して前記ゲート電極と重なる領域において結晶領域を有することを特徴とする半導体装置。
【請求項4】
ゲート電極と、
前記ゲート電極上の第1の絶縁膜と、
前記第1の絶縁膜上の第2の絶縁膜と、
前記第2の絶縁膜上の酸化物半導体膜と、を有し、
前記酸化物半導体膜は、インジウムとガリウムと亜鉛とを含み、
前記第1の絶縁膜は、窒素と珪素とを含み、
前記第2の絶縁膜は、窒素と酸素と珪素とを含み、
前記第2の絶縁膜において、酸素は窒素よりも多く含まれ、
前記酸化物半導体膜は、前記第1の絶縁膜と前記第2の絶縁膜とを介して前記ゲート電極と重なる領域において結晶領域を有することを特徴とする半導体装置。
【請求項5】
請求項1乃至請求項4のいずれか一において、
前記酸化物半導体膜に電気的に接続された、ソース電極及びドレイン電極を有することを特徴とする半導体装置。
【請求項6】
請求項5において、
前記ソース電極及び前記ドレイン電極は、アルミニウム、タングステン、モリブデン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、コバルト、ニッケル、白金、チタン、及びネオジムから選ばれた一の金属を含むことを特徴とする半導体装置。
【請求項7】
請求項5において、
前記ソース電極及び前記ドレイン電極は、アルミニウム、タングステン、モリブデン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、コバルト、ニッケル、白金、チタン、及びネオジムから選ばれた一の金属の窒化物を含むことを特徴とする半導体装置。
【請求項8】
請求項1乃至請求項7のいずれか一において、
前記ゲート電極は、タンタル、タングステン、チタン、モリブデン、クロム、またはニオブを含むことを特徴とする半導体装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2012−248862(P2012−248862A)
【公開日】平成24年12月13日(2012.12.13)
【国際特許分類】
【出願番号】特願2012−160330(P2012−160330)
【出願日】平成24年7月19日(2012.7.19)
【分割の表示】特願2006−262991(P2006−262991)の分割
【原出願日】平成18年9月27日(2006.9.27)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】