説明

半導体装置

【課題】接触不良を低減し、コンタクト抵抗の増大を抑制し、開口率が高い液晶表示装置
を得ることを課題とする。
【解決手段】基板と、前記基板上に設けられ、ゲート配線と、ゲート絶縁膜と、島状半導
体膜と、ソース領域と、ドレイン領域を有する薄膜トランジスタと、前記基板上に設けら
れ、前記ソース領域に接続されたソース配線と、前記基板上に設けられ、前記ドレイン領
域に接続されたドレイン電極と、前記基板上に設けられた補助容量と、前記ドレイン電極
に接続された画素電極と、前記薄膜トランジスタ及び前記ソース配線上に形成された保護
膜を有し、前記保護膜は、前記ゲート配線および前記ソース配線とで囲まれた開口部を有
し、前記薄膜トランジスタ及び前記ソース配線は保護膜に覆われ、前記補助容量は保護膜
に覆われていない液晶表示装置に関する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板に設けられた非晶質半導体膜を用いたボトムゲート型の薄膜トランジス
タ(Thin Film Transistor(以下、TFTと略記する))、TFT
により構成された回路、及びTFTにより構成された回路を有する装置、及びその作製方
法に関するものである。
【0002】
特に本発明は、液晶表示装置に代表される電気光学装置、及びそのような電気光学装置
を搭載した電子機器に好適に利用できる技術に関する。
【背景技術】
【0003】
現在、ノート型のパーソナルコンピュータやデスクトップ型のパーソナルコンピュータ
用のモニタ、携帯電話、音楽再生装置、テレビ、携帯端末、デジタルスチルカメラ、ビデ
オカメラ、画像・動画閲覧専用のビューワ等の電子機器に、画像や文字情報を表示するた
めに直視型の液晶表示装置が幅広く用いられている。
【0004】
特にパッシブ型液晶表示装置に比べ、アクティブマトリクス型液晶表示装置は高精細な
画像が得られることから、広く用いられている。
【0005】
アクティブマトリクス型液晶表示装置は、表示領域となる画素部において能動素子(例
えば薄膜トランジスタ)を個々の画素に対応してマトリクス状に配置して構成している。
TFTはスイッチング素子として液晶に印加する電圧を画素毎に制御し所望の画像表示を
行っている(特許文献1参照)。
【0006】
アクティブマトリクス型液晶表示装置は、フォトリソグラフィ技術により、複数のフォ
トマスクを使用して、基板上にTFT、配線、電極、絶縁膜中のコンタクトホール等を形
成している。
【0007】
配線や電極を、アルミニウム(Al)やタングステン(W)、チタン(Ti)などの金
属を用いて形成する場合には、乾式エッチング(ドライエッチング)、湿式エッチング(
ウェットエッチング)いずれかのエッチングを行うことにより所望のパターンを形成する
ことができる。
【0008】
また透過型液晶表示装置の画素電極の材料などに用いられる透光性導電膜(本明細書で
は「透明導電膜」ともいう)についても、乾式エッチング(ドライエッチング)、湿式エ
ッチング(ウェットエッチング)いずれかのエッチングを行うことにより所望のパターン
を形成することができる。
【0009】
このような透明導電膜として、インジウム錫酸化物(Indium Tin Oxid
e(以下「ITO」ともいう))、酸化亜鉛、酸化インジウム酸化亜鉛(Indiumu
Zinc Oxide(以下「IZO」ともいう))等の金属酸化物や半導体酸化物が
用いられる。
【0010】
特に、透明導電膜のエッチングについてはウェットエッチングが主流である。
【0011】
しかしながら上記に例示した透明導電膜は、アルミニウム(Al)等の金属と比較して
残渣が生じ易いという欠点がある。従って残渣が発生し最終的に基板上に残渣が残留した
場合には、画素電極間で電流リークを引き起こす恐れがある。
【0012】
また上述した透明導電膜と同様に、窒化珪素膜や酸化珪素膜などの絶縁膜においては、
ウェットエッチングにより発生する残渣が導電体間の接続部に残留するという欠点がある
。そのため接触不良やコンタクト抵抗の増大などを引き起こす恐れがある。
【0013】
また、従来のTFTを用いた液晶表示装置においては、スイッチング機能の核となる半
導体膜、或いはTFT全体を汚染物から保護するために、窒化珪素膜や、窒素を含む酸化
珪素膜や、酸素を含む窒化珪素膜からなる保護膜(「パシベーション膜」ともいう)で覆
うことで保護している。
【0014】
ここでいう汚染物とは、半導体のスイッチングとしての機能を劣化させる効果をもつ、
リチウム(Li)やナトリウム(Na)、カリウム(K)などのアルカリ金属である。
【0015】
ところが、透過型液晶表示装置あるいは半透過型液晶表示装置の場合、この保護膜はT
FTの上部だけでなく、バックライトの光を透過させ、表示画像を形成する開口部にも形
成される。
【0016】
バックライトの光は開口部においても保護膜を透過するが、保護膜内部で光は反射、屈
折や吸収などの影響を受け、最終的な透過光の強度は減少してしまう。このため液晶表示
装置の輝度がバックライト光源自体に対し低減した値となってしまう恐れがある。加えて
、同様の理由から保護膜を透過した後の光の波長が光源の波長から変化し、実際に表示さ
れる色と目的とする色との間にずれが生じてしまう恐れがある。
【0017】
また、従来のアクティブマトリクス型の液晶表示装置は行と列からなるマトリクス状の
画素からなり、線順次駆動により走査線(ゲート配線)を選択し画像を表示領域(画素部
)に表示させる方式をとることが主流である。
【0018】
各走査信号線は60Hz等の周期で選択されるが、任意の行への書き込みを終了した後
、次の周期で書き込みが行われるまでの期間、画素電極の電位を保持するために、各画素
に補助容量(Cs)を設けている。
【0019】
従来の非晶質半導体膜を用いたアクティブマトリクス型の液晶表示装置においては、補
助容量の形成方法として、次の二つの方法が考えられる。すなわち、隣接する画素のゲー
ト配線(走査線)もしくはゲート配線と同じ材料及び同じ層に形成した配線を一方の電極
とし、画素電極を他方の電極とし、二つの電極との間に、ゲート絶縁膜と保護膜の二層を
挟んで補助容量を形成する方法(以下「第1の方法」という)と、ゲート配線とは別に形
成され、かつゲート配線と同様の材料及び同じ層に形成された補助容量線を一方の電極と
し、画素電極と接続し、ドレイン電極と同様の材料及び同じ層に形成された電極を他方の
電極とし、二つの電極との間に、ゲート絶縁膜を挟んで補助容量を形成する方法(以下「
第2の方法」という)が挙げられる。
【0020】
従来のアクティブマトリクス型液晶表示装置の画素の上面図を図2に示す。図2の液晶
表示装置は、ゲート電極及びゲート配線(「ゲート配線」を「走査線」ともいう)100
2、TFTの半導体膜1003、ソース電極及びソース配線(「ソース配線」を「信号線
」ともいう)1004、ドレイン電極1005、画素電極1006、補助容量1007を
有している。補助容量1007は、ゲート配線1002、画素電極1006、及びゲート
配線1002と画素電極1006の間に形成された絶縁膜(誘電体膜)によって形成され
ている。
【0021】
図2に示す従来のアクティブマトリクス型液晶表示装置の作製工程を、図12(A)〜
図12(F)及び図13(A)〜図13(D)を用いて説明する。なお図12(A)〜図
12(F)及び図13(A)〜図13(D)は、図2のB−B’線に沿った断面に対応す
る。
【0022】
まず基板1000上に第1の導電膜1021を成膜する(図12(A)参照)。次いで
第1のフォトリソグラフィ工程を行い、レジストマスクを形成し、第1の導電膜1021
の不要な部分をエッチングにより除去して、ゲート電極及びゲート配線1002を形成す
る(図12(B)参照)。
【0023】
基板1000、ゲート電極及びゲート配線1002上に、ゲート絶縁膜1022、非晶
質半導体膜1023、一導電型を付与する不純物を含む非晶質半導体膜1024を成膜す
る(図12(C)参照)。次いで第2のフォトリソグラフィ工程を行い、レジストマスク
を形成して、非晶質半導体膜1023、一導電型を付与する不純物を含む非晶質半導体膜
1024の不要な部分をエッチングにて除去し、島状半導体膜1025aと島状不純物半
導体膜1025bを形成する(図12(D)参照)。
【0024】
次いで、ゲート絶縁膜1022、島状半導体膜1025a、島状不純物半導体膜102
5b上に、第2の導電膜1026を成膜する(図12(E)参照)。さらに第3のフォト
リソグラフィ工程を行い、レジストマスクを形成して、第2の導電膜1026の不要な部
分をエッチングして、ソース電極及びソース配線1004、ドレイン電極1005を形成
する(図12(F)参照)。
【0025】
さらにソース電極及びソース配線1004、ドレイン電極1005をマスクとして、島
状半導体膜1025aと島状不純物半導体膜1025bを自己整合的にエッチングする。
島状不純物半導体膜1025bをソース領域1003bs及びドレイン領域1003bd
に分離する。また島状半導体膜1025aもエッチングされ島状半導体膜1003aとな
る(図13(A)参照)。
【0026】
ソース電極及びソース配線1004、ドレイン電極1005、ソース領域1003bs
及びドレイン領域1003bd、及び島状半導体膜1003a上に、保護膜1027を成
膜する(図13(B)参照)。第4のフォトリソグラフィ工程によりレジストマスクを形
成し、保護膜1027をエッチングして、ドレイン電極1005に達するコンタクトホー
ル1001を形成する(図13(C)参照)。
【0027】
さらに保護膜1027及びコンタクトホール1001を覆って、第3の導電膜1029
を成膜する(図13(D)参照)。第5のフォトリソグラフィ工程によりレジストマスク
を形成し、第3の導電膜1029をエッチングして、画素電極1006を形成する(図1
3(E)参照)。
【0028】
このように、図2に示す従来のアクティブマトリクス型液晶表示装置の画素は、5回の
フォトリソグラフィ工程により、5枚のフォトマスクを使用して形成される。
【0029】
また、補助容量を上記第1の方法で形成した例を図2及び図11に示す。図2の液晶表
示装置は、隣接する画素のゲート配線(走査線)を一方の電極とし、画素電極を他方の電
極とした例である。図2において、ゲート電極及びゲート配線1002、TFTの半導体
膜1003、ソース電極及びソース配線1004、ドレイン電極1005、画素電極10
06である。補助容量1007は、ゲート配線1002、画素電極1006、及びゲート
配線1002と画素電極1006の間に形成されたゲート絶縁膜と保護膜を誘電体膜とし
て用いることにより形成されている。
【0030】
また図11の液晶表示装置は、ゲート配線と同じ材料及び同じ層に形成した配線を一方
の電極とし、画素電極を他方の電極とした例である。図11において、ゲート電極及びゲ
ート配線1012、TFTの半導体膜1013、ソース電極及びソース配線1014、ド
レイン電極1015、画素電極1016、補助容量1017、補助容量線1018である
。ドレイン電極1015と画素電極1016はコンタクトホール1011で接続されてい
る。補助容量線1018は、ゲート電極及びゲート配線1012と同様の材料及び同じ層
に形成されている。
【0031】
補助容量1017は、補助容量線1018、画素電極1016、及び補助容量線101
8と画素電極1016の間に形成されたゲート絶縁膜と保護膜を誘電体膜として用いるこ
とにより形成されている。
【0032】
第2の方法で補助容量を形成した例は図50に示される。図50において、ゲート電極
及びゲート配線1032、TFTの半導体膜1033、ソース電極及びソース配線103
4、ドレイン電極1035、画素電極1036、補助容量1037a及び1037b、下
層補助容量線1038、上層補助容量電極1039a及び1039bである。ドレイン電
極1035はコンタクトホール1031を介して画素電極1036と接続されている。
【0033】
上層補助容量電極1039aは、ソース電極及びソース配線1034、並びにドレイン
電極1035と、同じ材料及び同じ層に形成されており、コンタクトホールを介して画素
電極1036と接続されている。補助容量1037aは、下層補助容量線1038を一方
の電極、上層補助容量電極1039aを他方の電極、ゲート絶縁膜を電極間の誘電体とし
て形成される。
【0034】
また上層補助容量電極1039bも、ソース電極及びソース配線1034、並びにドレ
イン電極1035と、同じ材料及び同じ層に形成され、コンタクトホールを介して画素電
極1036と接続されている。補助容量1037bは、下層補助容量線1038を一方の
電極、上層補助容量電極1039bを他方の電極、ゲート絶縁膜を電極間の誘電体として
形成される。
【0035】
第2の方法では、二つの電極間の誘電体膜がゲート絶縁膜一層分で良いことから膜厚を
薄くできるので容量を増加させることができる。従って第2の方法は、第1の方法に比べ
補助容量を形成するのに大きな面積を必要としない。
【0036】
しかし逆に第2の方法では、一方の電極として補助容量線を走査線(ゲート配線)と別
に設けるために電極を形成するための面積が必要となり、開口率が低下すること、また他
方の電極としてドレイン電極と同様の材料及び同じ層に形成された電極を形成することか
ら、歩留まりの低下が問題となる。
【0037】
これに対し第1の方法では、誘電体膜にゲート絶縁膜と保護膜の二層を用いるため、容
量が第2の方法と比較して小さく、そのため電極を形成するためにより大きな面積が必要
となる。このため走査線自体を太い配線としなくてはならない、画素電極と走査線との重
なり部分を設計上広くとらなければならないなどの問題が起こってしまう。
【0038】
またさらに、図2及び図11に示すように従来のアクティブ型液晶表示装置では、TF
Tに接続されたソース電極又はドレイン電極と画素電極は、円形のコンタクトホール10
01又は1011を介して接続され、それによりTFTと画素電極とを電気的に接続させ
ている。
【0039】
しかしこのコンタクトホールそのものまたはコンタクトホール近傍の形状が、凹状とな
って配向膜に凹部が生じてしまうため、理想的なラビングが困難である。このためコンタ
クトホール上部近辺に位置する液晶は配向乱れを起こしてしまうという欠点がある。この
ためコンタクトホール上部近辺において光漏れが生じるため、表示の質が損なわれてしま
うという問題がある。
【0040】
このような問題を防ぐ方法として、TFTが形成される基板と対向する対向基板側にブ
ラックマトリクスを設け、コンタクトホールとその近傍を遮光するという方法がある。し
かしこのことは開口率を低減させる要因の一つになっている。
【0041】
また保護膜は、保護膜材料をドライエッチング方法を用いてエッチングし、所定の形状
にすることによって作成される。この時エッチングにより生じた保護膜材料の一部や、保
護膜材料とエッチングガス成分との反応生成物等、不要な物質が残渣として被処理面に残
留する。例えばこの残渣が画素電極と接続する配線との間に生じた場合、画素電極と配線
との間の接触抵抗の原因となったり、あるいは電気的な接触が妨げられる恐れがあり、ひ
いては液晶表示装置としての機能を著しく損ねたり、機能自体を不可能なものにしてしま
う。
【0042】
そのため残渣が残留するのを回避する目的で、フッ酸系の薬液やアルカリ洗浄剤、界面
活性剤、純水、あるいはこれらと超音波洗浄との組合せ(以下洗浄剤と呼ぶ)により被処
理面を洗浄する。
【0043】
しかし、従来の液晶表示装置の構造では、画素電極とドレイン電極との接触部分に径の
小さい円形のコンタクトホールを用いていたが、洗浄後において洗浄剤から被処理面を有
する基板を引き上げた際、円形のコンタクトホール内壁や底部に残渣や洗浄液が残留する
恐れがあった。
【0044】
またこのような従来の径の小さいコンタクトホールでは、画素電極とドレイン電極が段
差により断線してしまい、接続不良が起こるという恐れがあった。
【0045】
また、液晶表示装置には、表示装置の背後に設けられたバックライトからの光を透過さ
せ表示を行う透過型液晶表示装置と、外光を基板中に設けられた反射電極で反射させ表示
を行う反射型液晶表示装置がある。
【0046】
透過型液晶表示装置は屋内等の暗所でも視認性に優れ、反射型液晶表示装置は屋外の明
るい場所で優れる。また携帯電話のように屋内、屋外と場所を選ばず使用される表示装置
に対しては、透過型と反射型との機能を併せた半透過型(透過領域と反射領域がほぼ同程
度の割合で形成)液晶表示装置や、微反射型(反射領域が透過領域よりも小さい)液晶表
示装置がある。
【先行技術文献】
【特許文献】
【0047】
【特許文献1】特開2002−116712号公報
【発明の概要】
【発明が解決しようとする課題】
【0048】
上記のような液晶表示装置を含む製品を市場に供給するには、生産性の向上及び低コス
ト化と、高信頼性を同時に推進することが課題となる。
【課題を解決するための手段】
【0049】
本発明は、アクティブマトリクス型の液晶表示装置に代表される電気光学装置ならびに
半導体装置において、上記課題を解決するものであって、その目的とするところは、歩留
まりの高い量産工程を可能とし、且つ、輝度の高い、高開口率の液晶表示装置及びその作
製方法を提供することにある。
【0050】
本発明では、画素における開口部中の保護膜およびゲート配線上の保護膜を除去するこ
とにより、前記課題を解決し上記目的を達成する。
【0051】
本発明は、絶縁性基板と、前記絶縁性基板より上に設けられた薄膜トランジスタ(Th
in Film Transistor(TFT))と、前記絶縁性基板より上に設けら
れたゲート配線と、前記絶縁性基板より上に設けられたソース配線と、前記絶縁性基板よ
り上に設けられた補助容量と、前記薄膜トランジスタに接続された画素電極と、前記ゲー
ト配線および前記ソース配線とで囲まれた開口部とを有し、前記薄膜トランジスタおよび
前記ソース配線は絶縁性材料を含む保護膜に覆われ、前記開口部の一部と前記補助容量は
保護膜に覆われていないことを特徴とする半導体装置に関するものである。
【0052】
なお、本明細書では「ソース配線」及び「ソース線」を「信号線」ともいう。また本明
細書では、便宜上薄膜トランジスタの一対の不純物領域をソース領域及びドレイン領域と
している。しかしソース領域及びドレイン領域が反転する場合は、それぞれ逆の働きをす
るのはいうまでもなく、またソース電極及びドレイン電極についても同様である。
【0053】
TFTのスイッチング機能を行う中核となるのが、半導体膜である。半導体膜にはシリ
コンを用いることが多い。また半導体膜の結晶状態から液晶表示装置を大きく二つに分類
することができる。即ち、半導体膜の結晶状態が非晶質(アモルファス状態)である非晶
質半導体膜を用いた液晶表示装置と、結晶質(多結晶状態)である結晶性半導体膜を用い
た液晶表示装置である。
【0054】
結晶性半導体膜を用いた液晶表示装置では、半導体膜中のキャリアの移動度が高いなど
の理由から、表示領域周辺にTFTを用いて駆動回路を一体形成することが可能である。
しかしその反面、製造工程の複雑さによる歩留まり低下や、製造コストの増大などが問題
となる。
【0055】
また、結晶性半導体膜を作製する場合には、結晶化のためにXeClやKrF等の気体
レーザの一種であるエキシマレーザを線状のレーザビームに加工し、非晶質半導体膜上を
走査するのが一般的である。
【0056】
しかし現状では線状レーザビームの長さに限界があるため、コスト低減に有利な大型ガ
ラス基板に対応することができない等の問題がある。
【0057】
一方、非晶質半導体膜を用いた液晶表示装置は、結晶性半導体膜を用いた液晶表示装置
と比較して、製造工程が簡易であるため、製造コストが安価となるという利点がある。
【0058】
本発明は、基板と、前記基板上に設けられ、チャネル形成領域、ソース領域、ドレイン
領域、ゲート絶縁膜と、ゲート電極を有する薄膜トランジスタと、前記ソース領域に接続
されるソース配線と、前記ドレイン領域に接続されるドレイン電極と、前記基板上に設け
られた補助容量と、前記ドレイン電極に接続される画素電極と、前記薄膜トランジスタ及
び前記ソース配線を覆い、前記画素電極の周辺部と重なる保護膜とを有し、前記保護膜は
、前記ゲート配線および前記ソース配線とで囲まれた開口部を有し、前記補助容量は前記
保護膜に覆われていないことを特徴とする半導体装置に関するものである。
【0059】
また本発明は、基板と、前記基板上に設けられ、一対の一導電型の不純物領域とチャネ
ル形成領域を含む薄膜トランジスタと、前記一対の一導電型の不純物領域の一方と電気的
に接続する第1の配線と、前記一対の一導電型の不純物領域の他方と電気的に接続する第
1の電極と、前記第1の電極と接続する画素電極と、前記基板上に設けられた補助容量と
、前記画素電極と前記補助容量上に開口部を有し、前記薄膜トランジスタ及び前記ソース
配線を覆う保護膜と、を有することを特徴とする半導体装置に関するものである。
【0060】
また本発明は、基板と、前記基板上に設けられ、ゲート配線と、ゲート絶縁膜と、チャ
ネル形成領域と、ソース領域と、ドレイン領域を有する薄膜トランジスタと、前記ソース
領域に接続されたソース配線と、前記基板上に設けられ、前記ドレイン領域に接続された
ドレイン電極と、前記基板上に設けられた補助容量と、前記ドレイン電極に接続された画
素電極と、前記薄膜トランジスタ及び前記ソース配線上に形成された保護膜と、前記ゲー
ト配線および前記ソース配線とで囲まれた開口部と、前記薄膜トランジスタ、前記画素電
極、前記保護膜上に形成された第1の配向膜と、前記基板に対向する対向基板と、前記対
向基板上に形成された対向電極と、前記対向電極上に形成された第2の配向膜と、前記基
板と前記対向基板との間に保持された液晶とを有し、前記薄膜トランジスタ及び前記ソー
ス配線は保護膜に覆われ、前記開口部の一部と前記補助容量は前記保護膜に覆われていな
いことを特徴とする半導体装置に関するものである。
【0061】
又本発明は、基板と、前記基板上に設けられ、ゲート配線と、ゲート絶縁膜と、チャネ
ル形成領域と、ソース領域と、ドレイン領域を有する薄膜トランジスタと、前記基板上に
設けられ、前記ソース領域に接続されたソース配線と、前記基板上に設けられ、前記ドレ
イン領域に接続されたドレイン電極と、前記基板上に設けられた補助容量と、前記ドレイ
ン電極に接続された画素電極と、前記薄膜トランジスタ及び前記ソース配線上に形成され
た保護膜と、前記ゲート配線および前記ソース配線とで囲まれた開口部を有し、前記薄膜
トランジスタ及び前記ソース配線は保護膜に覆われ、前記開口部の一部と前記補助容量は
前記保護膜に覆われておらず、前記画素電極は透明電極であり、前記画素電極の一部に重
なって、反射電極が形成されていることを特徴とする半導体装置に関するものある。
【0062】
本発明において、前記反射電極は、アルミニウム(Al)、銀(Ag)、クロム(Cr
)のいずれか1つを含んでもよい。
【0063】
また本発明は、基板と、前記基板上に設けられ、ゲート配線と、ゲート絶縁膜と、チャ
ネル形成領域と、ソース領域と、ドレイン領域を有する薄膜トランジスタと、前記基板上
に設けられ、前記ソース領域に接続されたソース配線と、前記基板上に設けられ、前記ド
レイン領域に接続されたドレイン電極と、前記基板上に設けられた補助容量と、前記ドレ
イン電極に接続された画素電極と、前記薄膜トランジスタ及び前記ソース配線上に形成さ
れた保護膜と、前記ゲート配線および前記ソース配線とで囲まれた開口部と、前記基板上
に形成され、前記ゲート配線と同じの材料及び同じ層に形成されたコモン配線と、前記基
板上に形成され、前記画素電極と同じ材料及び同じ層に形成され、前記コモン配線に接続
された、複数のコモン電極と、前記基板に対向する対向基板と、前記基板と前記対向基板
との間に保持された液晶とを有し、前記薄膜トランジスタ及び前記ソース配線は保護膜に
覆われ、前記開口部の一部と前記補助容量は前記保護膜に覆われていないことを特徴とす
る半導体装置に関するものである。
【0064】
また本発明は、基板と、前記基板上に設けられた薄膜トランジスタと、前記薄膜トラン
ジスタは、ゲート配線と、ゲート絶縁膜と、チャネル形成領域と、ソース領域と、ドレイ
ン領域を有し、前記基板上に設けられ、前記ソース領域に接続されたソース配線と、前記
基板上に設けられ、前記ドレイン領域に接続されたドレイン電極と、前記基板上に設けら
れた補助容量と、前記ドレイン電極に接続された画素電極と、前記薄膜トランジスタ及び
前記ソース配線上に形成された保護膜と、前記ゲート配線および前記ソース配線とで囲ま
れた開口部と、前記画素電極に設けられた複数の溝と、前記薄膜トランジスタ、前記画素
電極、前記保護膜上に形成された第1の配向膜と、前記基板に対向する対向基板と、前記
対向基板上に形成された対向電極と、前記対向電極上に設けられた複数の突起と、前記対
向電極及び前記複数の突起上に形成された第2の配向膜と、前記基板と前記対向基板との
間に保持された液晶とを有し、前記薄膜トランジスタ及び前記ソース配線は保護膜に覆わ
れ、前記開口部の一部と前記補助容量は前記保護膜に覆われていないことを特徴とする半
導体装置に関するものである。
【0065】
また本発明は、基板と、前記基板上に設けられ、ゲート配線と、ゲート絶縁膜と、チャ
ネル形成領域と、ソース領域と、ドレイン領域を有する薄膜トランジスタと、前記基板上
に設けられ、前記ソース領域に接続されたソース配線と、前記基板上に設けられ、前記ド
レイン領域に接続されたドレイン電極と、前記基板上に設けられた補助容量と、前記ドレ
イン電極に接続された画素電極と、前記薄膜トランジスタ及び前記ソース配線上に形成さ
れた保護膜と、前記ゲート配線および前記ソース配線とで囲まれた開口部と、前記画素電
極に設けられた複数の第1の溝と、前記薄膜トランジスタ、前記画素電極、前記保護膜上
に形成された第1の配向膜と、前記基板に対向する対向基板と、前記対向基板上に形成さ
れた対向電極と、前記対向電極に設けられた複数の第2の溝と、前記対向電極及び前記複
数の溝上に形成された第2の配向膜と、前記基板と前記対向基板との間に保持された液晶
とを有し、前記薄膜トランジスタ及び前記ソース配線は保護膜に覆われ、前記開口部の一
部と前記補助容量は前記保護膜に覆われておらず、前記第1の溝と前記第2の溝は重なら
ないように配置されることを特徴とする半導体装置に関するものである。
【0066】
また本発明は、基板と、前記基板上に設けられ、第1のゲート配線と、ゲート絶縁膜と
、第1のチャネル形成領域と、第1のソース領域と、第1のドレイン領域を有する第1の
薄膜トランジスタ、及び第2のゲート配線と、前記ゲート絶縁膜と、第2のチャネル形成
領域と、第2のソース領域と、第2のドレイン領域を有する第2の薄膜トランジスタと、
前記基板上に設けられ、前記第1のソース領域及び前記第2のソース領域と接続されたソ
ース配線と、前記基板上に設けられ、前記第1のドレイン領域に接続された第1のドレイ
ン電極と、前記基板上に設けられ、前記第2のドレイン領域に接続された第2のドレイン
電極と、前記基板上に設けられた補助容量と、前記第1のドレイン電極に接続された第1
の画素電極と、前記第2のドレイン電極に接続された第2の画素電極と、前記第1のゲー
ト配線及び第2のゲート配線と同じ材料及び同じ層に形成された補助容量線と、前記第1
の画素電極の一部と前記補助容量線が重なる領域に、第1の補助容量が形成され、前記第
2の画素電極の一部と前記補助容量線が重なる領域に、第2の補助容量が形成され、前記
第1の薄膜トランジスタ、前記第2の薄膜トランジスタ及び前記ソース配線上に形成され
た保護膜と、前記第1のゲート配線、前記第2のゲート配線および前記ソース配線とで囲
まれた開口部と、前記第1の薄膜トランジスタ、前記第2の薄膜トランジスタ及び前記ソ
ース配線は前記保護膜に覆われ、前記開口部の一部、前記第1の補助容量及び前記第2の
補助容量は、前記保護膜に覆われておらず、前記第1の薄膜トランジスタ、前記第2の薄
膜トランジスタ、前記第1の画素電極、前記第2の画素電極及び前記保護膜上に形成され
た第1の配向膜と、前記基板に対向する対向基板と、前記対向基板上に形成された対向電
極と、前記対向電極上に形成された第2の配向膜と、前記基板と前記対向基板との間に保
持された液晶とを有することを特徴とする半導体装置に関するものである。
【0067】
本発明において、前記第1の画素電極と前記第2の画素電極の面積が同じであるもので
ある。
【0068】
本発明において、前記第1の画素電極と前記第2の画素電極の面積が異なるものである

【0069】
本発明は、基板上にゲート配線を形成し、前記ゲート配線上にゲート絶縁膜を形成し、
前記ゲート配線上に、前記ゲート絶縁膜を介して、島状半導体膜及び島状不純物半導体膜
を形成し、前記ゲート絶縁膜、前記島状半導体膜、前記島状不純物半導体膜上に、ソース
配線及びドレイン電極を形成し、前記ソース配線及び前記ドレイン電極をマスクとして、
前記島状半導体膜及び前記島状不純物半導体膜をエッチングして、前記島状不純物半導体
膜からソース領域及びドレイン領域を、前記島状半導体膜からチャネル形成領域を形成し
、前記ソース配線、前記ドレイン電極、前記ソース領域、前記ドレイン領域及び前記チャ
ネル形成領域上に絶縁膜を形成し、前記絶縁膜の一部を除去して、前記ドレイン電極の一
部の領域を露出させ、前記ドレイン電極の露出した領域に接して、画素電極を形成し、前
記ソース配線、前記ソース領域、前記ドレイン領域及び前記チャネル形成領域上の絶縁膜
は除去されず、前記除去されない絶縁膜は保護膜として機能することを特徴とする半導体
装置の作製方法に関するものである。
【0070】
本発明において、前記薄膜トランジスタは、ボトムゲート型薄膜トランジスタである。
【0071】
本発明において、前記薄膜トランジスタは、逆スタガ型薄膜トランジスタである。
【0072】
本発明において、前記ソース領域、ドレイン領域及びチャネル形成領域のそれぞれは、
非晶質半導体膜を用いて形成されているものである。
【0073】
本発明において、前記ドレイン電極は、上層ドレイン電極と下層ドレイン電極を有し、
前記開口部において、前記上層ドレイン電極は除去されており、前記画素電極は、前記下
層ドレイン電極のみに接するものである。
【0074】
本発明において、前記ドレイン電極は、上層ドレイン電極、中層ドレイン電極及び下層
ドレイン電極を有し、前記画素電極は、前記上層ドレイン電極のみに接するものである。
【0075】
本発明において、前記ゲート配線の一部と、前記ゲート絶縁膜と、前記画素電極の一部
により、補助容量が形成されているものである。
【0076】
本発明において、前記補助容量は、前記ゲート配線と同一材料で形成された補助容量線
と、前記ゲート絶縁膜と、前記画素電極と電気的に接続するドレイン電極と同一材料で形
成された導電膜の一部とにより形成されているものである。
【0077】
本発明において、前記島状半導体膜及び島状不純物半導体膜のそれぞれは、非晶質半導
体膜を用いて形成されているものである。
【0078】
本発明において、前記画素電極は透明電極であり、前記画素電極の一部に重なって、反
射電極が形成されているものである。
【0079】
本発明において、前記反射電極は、アルミニウム(Al)、銀(Ag)、クロム(Cr
)のいずれか1つを有するものである。
【0080】
本発明において、前記保護膜は、窒化珪素膜、酸素を含む窒化珪素膜、窒素を含む酸化
珪素膜、酸化珪素膜、またはこれらを組み合わせた積層膜のうちの1つである。
【0081】
本発明において、前記基板は、絶縁性基板である。
【0082】
本発明において、前記基板は、ガラス基板又は石英基板である。
【0083】
本発明において、前記画素電極は、酸化インジウム、インジウム錫酸化物、酸化インジ
ウム酸化亜鉛合金のいずれか1つを有するものである。
【0084】
本発明において、前記保護膜と前記ゲート絶縁膜の材料は異なっていても良い。
【0085】
本発明において、前記開口部は、隣の開口部とソース配線に沿って連なっているもので
ある。
【0086】
本発明において、前記半導体装置は、テレビ受像器、携帯電話、液晶ディスプレイ、コ
ンピュータ、ゲーム機、画像再生装置、ビデオカメラ、ナビゲーションシステム、音楽再
生装置及びデジタルスチルカメラのうちの1つである。
【0087】
なお本明細書において、半導体装置とは、半導体を利用することで機能する素子及び装
置全般を指し、上記液晶表示装置を含む電気光学装置およびその電気光学装置を搭載した
電子機器をその範疇とする。
【0088】
また、本明細書において、透明導電膜、透明電極、透明導電材料、透明な電極というの
は、それぞれ、透光性を有している導電膜、透光性を有している電極、透光性を有してい
る導電材料、透光性を有している電極であればよく、多少曇っていたり、色が付いていた
りしても構わない。光を通すのに十分な透明度を有していれば、本明細書では透明である
とみなすこととする。
【発明の効果】
【0089】
本発明では、保護膜を開口部になるべく重ならないように形成することで開口部を増大
させ、また開口部をソース配線に平行に列方向に延在させることにより、保護膜形成のた
めの絶縁膜のエッチングの際に発生する残渣を低減し、残渣に由来する画素電極とドレイ
ン電極とのコンタクト不良を抑制することができる。
【0090】
また同様に、画素電極形成に用いる透明導電材料のエッチングの際に発生する残渣を低
減し、残渣に由来するリーク電流や導通を低減することができる。
【0091】
また本発明により、従来生じていた保護膜のコンタクトホール形状に起因するコンタク
トホール上部近傍における液晶の配向乱れ(「ディスクリネーション」ともいう)を無く
すことができる。
【0092】
さらに本発明により、画素電極とドレイン電極との接触面積を増大させることにより、
コンタクト抵抗を低減することができる。
【0093】
また、開口部の全域では保護膜が除去されており、開口部において光源からの光の透過
率が向上する。
【0094】
また本発明では、フォトマスクの数を従来より増やさないことができ、作製工程や製造
コストを増加させることなく、品質の良い液晶表示装置を作製することが可能となる。
【0095】
以上本発明により、信頼性・歩留まりの高く、高輝度、開口率の液晶表示装置が提供で
きる。
【図面の簡単な説明】
【0096】
【図1】本発明の液晶表示装置における画素の上面図。
【図2】従来の液晶表示装置における画素の上面図。
【図3】本発明の液晶表示装置における画素の上面図。
【図4】本発明の液晶表示装置の作製方法を示す上面図。
【図5】本発明の液晶表示装置の作製方法を示す上面図。
【図6】本発明の液晶表示装置の作製方法を示す上面図。
【図7】本発明の液晶表示装置の作製方法を示す断面図。
【図8】本発明の液晶表示装置の断面図。
【図9】本発明の液晶表示装置の上面図。
【図10】本発明の液晶表示装置の作製方法を示す上面図。
【図11】従来の液晶表示装置における画素の上面図。
【図12】従来の液晶表示装置の作製方法を示す断面図。
【図13】従来の液晶表示装置の作製方法を示す断面図。
【図14】本発明の液晶表示装置の作製方法を示す断面図。
【図15】本発明の液晶表示装置の作製方法を示す断面図。
【図16】本発明の液晶表示装置の作製方法を示す断面図。
【図17】本発明の液晶表示装置の作製方法を示す断面図。
【図18】本発明の液晶表示装置の作製方法を示す上面図。
【図19】本発明の液晶表示装置の作製方法を示す上面図。
【図20】本発明の液晶表示装置の作製方法を示す断面図。
【図21】本発明の液晶表示装置の作製方法を示す断面図。
【図22】本発明の液晶表示装置の作製方法を示す上面図。
【図23】本発明の液晶表示装置の作製方法を示す上面図。
【図24】本発明の液晶表示装置の作製方法を示す断面図。
【図25】本発明の液晶表示装置の作製方法を示す断面図。
【図26】本発明の液晶表示装置の作製方法を示す断面図。
【図27】本発明の液晶表示装置の作製方法を示す上面図。
【図28】本発明の液晶表示装置における画素の上面図。
【図29】本発明の液晶表示装置の作製方法を示す断面図。
【図30】本発明の液晶表示装置における画素の上面図。
【図31】本発明の液晶表示装置の作製方法を示す断面図。
【図32】本発明の液晶表示装置の液晶分子の動きを表す図。
【図33】本発明の液晶表示装置における画素の上面図。
【図34】本発明の液晶表示装置の作製方法を示す断面図。
【図35】本発明の液晶表示装置の液晶分子の動きを表す図。
【図36】本発明の液晶表示装置における画素の上面図。
【図37】本発明の液晶表示装置の作製方法を示す断面図。
【図38】本発明の液晶表示装置の作製方法を示す断面図。
【図39】本発明の液晶滴下方法を用いた液晶表示装置の作製工程を示す図。
【図40】本発明の液晶滴下方法を用いた液晶表示装置の作製工程を示す図。
【図41】本発明の液晶滴下方法を用いた液晶表示装置の作製工程を示す図。
【図42】本発明の液晶滴下方法を用いた液晶表示装置の作製工程を示す図。
【図43】本発明が適用される電子機器の例を示す図。
【図44】本発明が適用される電子機器の例を示す図。
【図45】本発明が適用される電子機器の例を示す図。
【図46】本発明が適用される電子機器の例を示す図。
【図47】本発明が適用される電子機器の例を示す図。
【図48】本発明が適用される電子機器の例を示す図。
【図49】本発明が適用される電子機器の例を示す図。
【図50】従来の液晶表示装置における画素の上面図。
【発明を実施するための形態】
【0097】
本実施の形態では、本発明の液晶表示装置及びその作製方法について、図1(A)〜図
1(B)、図3、図4(A)〜図4(B)、図5(A)〜図5(B)、図6(A)〜図6
(B)、図7(A)〜図7(F)図8、図9、図10(A)〜図10(D)を用いて説明
する。
【0098】
ただし、本発明は多くの異なる態様で実施することが可能であり、本発明の主旨及びそ
の範囲から逸脱することなくその形態及び詳細を変更することは可能である。従って、本
実施の形態の記載内容に限定して解釈されるものではない。
【0099】
本実施の形態の液晶表示装置について、基板上に形成された透過型の画素部の概要を図
1(A)〜図1(B)及び図3に示す。画素部には複数の画素が形成されており、各画素
には能動素子である画素TFTが形成される。図3は画素の実際の上面図であり、図1(
B)は図3から保護膜109を除いたものである。そして図1(A)は開口部101の位
置を明確に記載したものである。
【0100】
本実施の形態では、画素TFT201として、ボトムゲート型TFT、例えば逆スタガ
型TFTが形成される。画素TFT201は、ゲート電極102、島状半導体膜103、
ソース電極104、ドレイン電極105を有している。また画素TFT201に接続する
補助容量(保持容量ともいう)107、画素電極106とドレイン電極105を接続する
コンタクトホールでもある開口部101が形成されている。
【0101】
開口部101は、ゲート電極及びゲート配線102、並びに、ソース電極及びソース配
線104で囲まれた領域に設けられる。
【0102】
ここで図4(A)〜図4(B)、図5(A)〜図5(B)、図6(A)〜図6(B)は
本実施の形態の液晶表示装置の画素の作製工程の過程を示す上面図である。また、図4(
A)、図4(B)、図5(A)、図5(B)、図6(A)、図6(B)において、それぞ
れA−A’線に沿った断面図を、図7(A)、図7(B)、図7(C)、図7(D)、図
7(E)、図7(F)に示す。
【0103】
上面図である図4(A)及びその断面図である図7(A)に示すように、基板100上
にゲート電極及びゲート配線102が形成される。基板100は絶縁性基板を用い、例え
ば基板100として、コーニング社の♯7059や♯1737、EAGLE2000など
に代表されるバリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、アルミノシリケー
トガラスなどの透光性のガラス基板を用いることができる。その他に透光性を有する石英
基板などを使用しても良い。
【0104】
ゲート電極およびゲート配線(走査線)102は、アルミニウム(Al)、などの低抵
抗導電性材料で形成することが望ましいが、アルミニウム単体では耐熱性が劣り、また腐
食しやすい等の問題があることから耐熱性導電性材料と組み合わせて積層膜を形成するこ
とが望ましい。
【0105】
耐熱性導電性材料としては、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)
、タングステン(W)、クロム(Cr)から選ばれた元素、または前記元素を成分とする
合金膜、または前記元素を成分とする窒化物で形成する。或いは、このような耐熱性導電
性材料をのみを組み合わせて用いても良い。
【0106】
またアルミニウムは純アルミニウムの他に、0.01〜5atomic%のスカンジウ
ム(Sc)、チタン(Ti)、シリコン(Si)、銅(Cu)、クロム(Cr)、ネオジ
ム(Nd)、モリブデン(Mo)等を含有するアルミニウムを使用してもよい。アルミニ
ウムよりも質量の重い原子を添加することで、熱処理時のアルミニウム原子の移動を制限
しヒロックを発生するのを防ぐ効果がある。
【0107】
上記のアルミニウムと耐熱性導電性材料との組合せの例として、クロム(Cr)を含む
膜及びアルミニウム(Al)を含む膜の積層膜、クロム(Cr)を含む膜及びネオジムを
含有するアルミニウム(Al−Nd)を含む膜との積層膜、チタン(Ti)を含む膜、ア
ルミニウム(Al)を含む膜及びチタン(Ti)を含む膜の積層膜、チタン(Ti)を含
む膜、ネオジムを含有するアルミニウム(Al−Nd)を含む膜及びチタン(Ti)を含
む膜の積層膜、モリブデン(Mo)を含む膜、アルミニウム(Al)を含む膜及びモリブ
デン(Mo)を含む膜の積層膜、モリブデン(Mo)を含む膜、ネオジムを含有するアル
ミニウム(Al−Nd)を含む膜及びモリブデン(Mo)を含む膜の積層膜、モリブデン
(Mo)を含む膜及びアルミニウム(Al)を含む膜の積層膜、モリブデン(Mo)を含
む膜及びネオジムを含有するアルミニウム(Al−Nd)を含む膜の積層膜などを用いる
ことができる。
【0108】
上述のように積層膜をスパッタにより基板100全面に成膜し、第1のフォトリソグラ
フィ工程を行い、第1のレジストマスクを形成し、エッチングにより不要な部分を除去し
て、ゲート電極及びゲート配線102を形成する。
【0109】
この際図7(A)に示すように、ゲート電極102の端部がテーパー状に形成されるよ
うにエッチングする。テーパー状のゲート電極102を設けることで、ゲート電極102
端部においてゲート絶縁膜108の被覆性を向上させ、ゲート絶縁膜108の耐圧を上げ
ることができる。またテーパー状のゲート電極102を設けることにより、ゲート電極1
02により島状半導体膜103に印加される電界を緩和する効果がある。
【0110】
ゲート電極及びゲート配線102の膜厚は、好ましくは40〜400nmとする。ただ
し液晶表示装置の基板サイズや配線として使用する材質によって決定されるものであり、
必要に応じて膜厚を変えることができるのはもちろんである。
【0111】
こうして、ゲート電極およびゲート配線(走査線)102を形成した後、ゲート絶縁膜
108を形成する。ゲート絶縁膜108はプラズマCVD法またはスパッタ法を用い、3
50〜450nmの膜厚で形成する。ゲート絶縁膜108は窒化珪素膜、酸化珪素膜、酸
素を含む窒化珪素膜、窒素を含む酸化珪素膜などの絶縁膜を用い、これらの材料からなる
単層又は積層構造として形成しても良い。
【0112】
例えばゲート絶縁膜108として、窒化珪素膜200nm積層した後、さらに窒化珪素
膜200nmを積層してもよい。窒化珪素膜を二層成膜してゲート絶縁膜108を形成す
ると、下層の窒化珪素膜の成膜中にピンホールが生じても、上層の窒化珪素膜を成膜する
ことでピンホールの成長を途切れさせ、これによりTFTの絶縁耐圧を向上させることが
できるという効果を得られる。
【0113】
また窒化珪素膜二層でゲート絶縁膜108を成膜することにより、CVD等の装置内壁
に生じる不要生成物からなるフリークが、ゲート絶縁膜108そのものやその他の膜の成
膜中に混入してくるのを防ぐという効果も得られる。
【0114】
さらに生成ガスの組成比等の成膜条件を変えることにより、ゲート絶縁膜108の上部
と下部で接する膜、例えばゲート絶縁膜108と上部で接する非晶質半導体膜、と密着性
等の相性の良い膜質を選択できるなどの効果がある。
【0115】
また後述するが、後の工程で行われる保護膜(パシベーション膜)109のエッチング
時に、ゲート絶縁膜108のエッチングを防ぐため、ゲート絶縁膜108として緻密な膜
質となるように絶縁膜を成膜して、保護膜109のエッチングストッパとなるようにして
も良い。
【0116】
またゲート絶縁膜108として上述した窒化珪素膜を選択した場合、ガラス基板に含ま
れるリチウム(Li)やナトリウム(Na)、カリウム(K)などのアルカリ金属の進入
を妨げることができる。またゲート絶縁膜108に酸化珪素膜と窒化珪素膜の積層膜や、
酸素を含む窒化珪素膜、窒素を含む酸化珪素膜を用いた場合にも同様の効果がある。特に
これら膜中に弗素(F)等のハロゲン元素が含有される場合には、Fによりアルカリ金属
が固定され可動性を失わせることが可能である。
【0117】
次に、ゲート絶縁膜108上に100〜200nmの厚さで非晶質構造を有する非晶質
半導体膜を、プラズマCVD法やスパッタ法などの方法で基板全面に形成する。
【0118】
非晶質構造は電子線回折分析によって確認できる。代表的には、プラズマCVD法で水
素化非晶質珪素膜(a−Si:H膜)を100nmの厚さに形成する。その他、非晶質を
有する半導体膜には、非晶質シリコンゲルマニウム(SiGe)膜などの非晶質構造
を有する半導体膜を適用することもできる。
【0119】
また非晶質半導体膜の代わりに微結晶半導体膜(セミアモルファス半導体膜)を成膜し
てもよい。セミアモルファスシリコン膜に代表されるセミアモルファス半導体膜とは、非
晶質半導体と結晶構造を有する半導体(単結晶、多結晶を含む)の中間的な構造の半導体
(セミアモルファス半導体)を含む膜である。セミアモルファス半導体は、自由エネルギ
ー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結
晶質なものであり、その粒径を0.5〜20nmとして非単結晶半導体中に分散させて存
在せしめることが可能である。セミアモルファス半導体は、そのラマンスペクトルが52
0cm−1よりも低波数側にシフトしており、またX線回折ではSi結晶格子に由来する
とされる(111)、(220)の回折ピークが観測される。また、未結合手(ダングリ
ングボンド)の終端化するために、水素またはハロゲンを少なくとも1原子%またはそれ
以上含ませている。ここでは便宜上、このような半導体をセミアモルファス半導体(SA
S)と呼ぶ。さらに、ヘリウム、アルゴン、クリプトン、ネオンなどの希ガス元素を含ま
せて格子歪みをさらに助長させることで安定性が増し良好なセミアモルファス半導体が得
られる。
【0120】
またSASは珪素を含む気体をグロー放電分解することにより得ることができる。代表
的な珪素を含む気体としては、SiHであり、その他にもSi、SiHCl
、SiHCl、SiCl、SiFなどを用いることができる。また水素や、水素に
ヘリウム、アルゴン、クリプトン、ネオンから選ばれた一種または複数種の希ガス元素を
加えたガスで、この珪素を含む気体を希釈して用いることで、SASの形成を容易なもの
とすることができる。希釈率は2倍〜1000倍の範囲で珪素を含む気体を希釈すること
が好ましい。
【0121】
さらに一導電型を付与する不純物元素を含有する半導体膜として、n型半導体膜を20〜
80nmの厚さで成膜する。例えば、n型の水素化非晶質珪素膜を形成すればよい。n型
の水素化非晶質珪素膜を形成するには、シラン(SiH)に対して0.1〜5%の濃度
でフォスフィン(PH)を添加すればよい。これによりリン(P)が水素化非晶質珪素
膜中に含有される。
【0122】
また一導電型を付与する不純物を含有する半導体膜として、p型半導体膜を用いる場合
には、シラン(SiH)に対してジボラン(B)を添加すれば、p型の不純物元
素であるホウ素(B)を含有する水素化非晶質珪素膜を得ることが可能である。
【0123】
上述のゲート絶縁膜、非晶質半導体膜、一導電型の不純物元素を含有する半導体膜はい
ずれもプラズマCVDや、スパッタ法で作製することができる。そしてこれらの膜はプラ
ズマCVD法であれば反応ガスを適宜切り換えることにより、またスパッタ法であればス
パッタガスを適宜切り換えることにより連続して成膜することができる。
【0124】
即ち、プラズマCVD装置或いはスパッタ装置において、同一の反応室または複数の反
応室(いわゆるマルチチャンバ)を用いることで、これらの膜を大気に晒すことなく連続
して積層することもできる。連続成膜を利用することで、大気に晒されることがないため
、汚染源が混入する可能性が著しく低減される他、作製工程にかかる時間を短縮するなど
の大きな効果を有する。
【0125】
そして、このように積層して半導体膜を形成し、第2のフォトリソグラフィ工程によっ
て第2のレジストマスクを形成し、上面図図4(B)及び断面図図7(B)に示すように
ゲート電極102に重なるように島状半導体膜103を形成する。島状半導体膜103は
、図7(B)に示すように、島状非晶質半導体膜103aと島状不純物半導体膜103b
であるn型の島状半導体膜との積層で構成されている。
【0126】
次に、導電膜をスパッタ法や真空蒸着法、MOCVD法(有機金属気相成長法)等で形
成し、第3のフォトリソグラフィ工程により第3のレジストマスクを形成し、エッチング
処理を施し、図7(C)に示すようにソース電極及びソース配線(「ソース配線」を「デ
ータ信号線」または「信号線」ともいう)104、ドレイン電極105を形成する。
【0127】
本実施の形態ではソース電極及びソース配線104およびドレイン電極105を形成す
るための導電膜として金属膜を用いる。具体的にはソース電極及びソース配線104およ
びドレイン電極105を、モリブデン(Mo)、アルミニウム(Al)及びモリブデン(
Mo)を積層した積層膜を用いて形成する。
【0128】
まず、モリブデン(Mo)膜を20〜80nmの厚さで形成し、島状不純物半導体膜1
03bとオーミック接続を形成し、そのモリブデン(Mo)膜の上に重ねてアルミニウム
(Al)膜を150〜300nmの厚さで形成し、さらにその上にモリブデン(Mo)膜
を40〜120nmの厚さで形成する。ここで用いられる金属層としては例示するモリブ
デン、アルミニウム及びモリブデンの積層膜の他に、ゲート電極およびゲート配線102
、同様にモリブデン(Mo)、チタン(Ti)、タンタル(Ta)、タングステン(W)
、クロム(Cr)から選ばれた元素を含む膜、または前記元素を成分とする合金を含む膜
、または前記元素を成分とする窒化物を含む膜、あるいはクロム(Cr)を含む膜及びア
ルミニウム(Al)を含む膜の積層膜、クロム(Cr)を含む膜及びネオジムを含有する
アルミニウム(Al−Nd)を含む膜との積層膜、チタン(Ti)を含む膜、アルミニウ
ム(Al)を含む膜及びチタン(Ti)を含む膜の積層膜、チタン(Ti)を含む膜、ネ
オジムを含有するアルミニウム(Al−Nd)を含む膜及びチタン(Ti)を含む膜の積
層膜、モリブデン(Mo)を含む膜、アルミニウム(Al)を含む膜及びモリブデン(M
o)を含む膜の積層膜、モリブデン(Mo)を含む膜、ネオジムを含有するアルミニウム
(Al−Nd)を含む膜及びモリブデン(Mo)を含む膜の積層膜、モリブデン(Mo)
を含む膜及びアルミニウム(Al)を含む膜の積層膜、モリブデン(Mo)を含む膜及び
ネオジムを含有するアルミニウム(Al−Nd)を含む膜の積層膜などを用いることがで
きる。
【0129】
ソース電極104及びドレイン電極105をマスクとして、上面図図5(A)及び断面
図図7(D)に示すように島状非晶質半導体膜103aと島状不純物半導体膜103bの
一部をドライエッチングにより除去して、島状不純物半導体膜103bをソース領域20
4とドレイン領域205に分離する。またこのエッチングにより島状非晶質半導体膜10
3aは自己整合的にエッチングされ、チャネル形成領域206を有する島状半導体膜20
3となる。
【0130】
以上のようにして、本実施の形態のボトムゲート型TFT201が形成される。なお、
本実施の形態では、チャネルエッチ型のボトムゲート型TFTを作製したが、可能であれ
ばチャネルストッパ型のボトムゲート型TFTを作製してもよい。
【0131】
その後、島状半導体膜203、ソース領域204、ドレイン領域205、ソース電極及
びソース配線104及びドレイン電極105上に、無機材料からなる絶縁膜を形成する。
【0132】
無機材料からなる絶縁膜は、窒化珪素膜、酸素を含む窒化珪素膜、窒素を含む酸化珪素
膜、酸化珪素膜、またはこれらを組み合わせた積層膜で形成し、厚さは200〜450n
mとする。本実施の形態では、プラズマCVD法でSiH、NHを原料ガスとして窒
化珪素膜を成膜する。
【0133】
その後、第4のフォトリソグラフィ工程によって、第4のレジストマスクを形成し、無
機材料からなる絶縁膜をドライエッチングして保護膜109を形成する(上面図図5(B
)及び断面図図7(E))。保護膜109はTFTを覆うが、画素部の開口部101にお
いてはドライエッチング工程により無機材料からなる絶縁膜が除去されているのでドレイ
ン電極等が露出される。
【0134】
保護膜109を形成することで、TFT201を外部の汚染から保護することができる
。特に島状半導体膜203、ソース領域204及びドレイン領域205に接して保護膜1
09を形成することで、スイッチング機能の中核をなす島状半導体膜203へ汚染源が進
入することを防ぐことができる。
【0135】
また図5(B)及び図7(E)に示すように、前記ゲート配線102の、保護膜109
が形成されず露出した領域には、後に形成される画素電極106の一部とゲート配線10
2とによって、補助容量107が形成される。また無機材料からなる絶縁膜が除去され、
保護膜109が形成されないため、TFT201から延在するドレイン電極の大部分は露
出する。
【0136】
なお、実施の形態では、第4のフォトリソグラフィ工程において、所定の形状のレジス
トマスクを形成する際に、ハーフトーン露光技術を用いて段差のあるレジストマスクを形
成する。
【0137】
また、図1及び図5(B)に示すように、開口部101をソース配線104に平行な方
向に延在させることにより、前記第4のドライエッチング工程によって生じる保護膜10
9の残渣および後述する画素電極106を形成する際に生じる透明導電材料の残渣を低減
することが可能となる。開口部101がソース配線104に平行な方向に延在させるとい
うことは、言い換えると、1つの画素の開口部は隣り合う画素の開口部とソース配線10
4に沿って隣接しているということである。
【0138】
窒化珪素膜に代表される保護膜材料は、前述のとおりドライエッチング方法を用いて所
定の箇所をエッチングして除去される。この時エッチングにより生じた保護膜材料の一部
や、保護膜材料とエッチングガス成分との反応生成物等、不要な物質が残渣として被処理
面に残留する。例えばこの残渣が後に画素電極106と接続する配線上に生じた場合、画
素電極106と配線との接触抵抗として機能する、あるいは電気的な接触が妨げられる恐
れがあり、ひいては液晶表示装置としての機能を著しく損ねたり、機能自体を不可能なも
のにしてしまう。
【0139】
残渣が残留するのを回避するため、フッ酸系の薬液やアルカリ洗浄剤、界面活性剤、純
水、あるいはこれらと超音波洗浄との組合せ(以下洗浄剤と呼ぶ)により被処理面を洗浄
する。
【0140】
しかし従来の液晶表示装置の構造では、画素電極とドレイン電極との接触部分に円形の
コンタクトホール1001(例えば5〜10μm径)を用いていた(図2参照)。このよ
うな円形のコンタクトホール1001では、洗浄後において洗浄剤から被処理面を有する
基板を引き上げた際、コンタクトホール内壁や底部に残渣や洗浄液が残留する恐れがあっ
た。
【0141】
従来のコンタクトホール1001を画素の開口部全体にまで広げることで、残渣の残留
を防ぐとともに、洗浄剤から被処理面を有する基板を引き上げる際、信号線に並行な方向
に延在する開口部101を洗浄剤の流れ落ちる通路として利用し、特に段差部に残渣が残
留することを妨ぐことができる。また上記の洗浄やガスのブロー等の洗浄工程においても
この通路を利用することができる。
【0142】
そして、透明導電膜をスパッタ法や真空蒸着法、スプレー法、ディップ法、CVD法で
30〜120nmの厚さに成膜し、第5のフォトリソグラフィ工程を行い第5のレジスト
マスクを形成し、上面図図6(A)及び断面図7(F)に示すように、画素電極106を
形成する。また図6(B)は図6(A)における開口部101を示すものである。画素電
極106は開口部101でドレイン電極105と接続する。
【0143】
本発明では、図2に示す従来の液晶表示装置に比べて、コンタクトホール1001をさ
らに拡大することにより、ドレイン電極105と画素電極106との接続している領域が
開口部101となる。このためドレイン電極105と画素電極106との接続している領
域が飛躍的に増大する。これによって、従来発生していたコンタクト不良が低減する他、
接触抵抗が低減するといった効果が得られる。
【0144】
透明導電膜の材料は、酸化インジウム(In)、酸化インジウム酸化錫合金(イ
ンジウム錫酸化物ともいう。In−SnO、ITOと略記する。)、酸化インジ
ウム酸化亜鉛合金(In−ZnO)などをスパッタ法や真空蒸着法などを用いて形
成する。またインジウム自体が希少であることから、酸化錫(SnO)等、インジウムを
含有しない透明導電膜材料を用いても良い。
【0145】
一般的に透明導電膜は、塩酸、硝酸、塩化鉄、高純度塩化鉄、臭化水素、あるいはこれ
らの組合せなどからなる酸化性の酸性水溶液によりエッチングされる。この時エッチング
により生じた透明導電膜材料の一部が残渣となって被処理面に残留する場合がある。
【0146】
例えばこの残渣が形成された画素電極の間をつなぐことによって、小規模のリーク電流
や導通がおこり、画質が低下あるいは表示自体が困難になるなどの可能性がある。
【0147】
本発明においてはこれを防止するために、ドレイン電極105と画素電極106を接続
するコンタクトホール開口部101全体にまで広げることで、残渣の残留を防ぐとともに
、洗浄剤から被処理面を有する基板を引き上げた際、信号線に並行な方向に延在する開口
部101を洗浄剤の流れ落ちる通路として利用し、特に段差部に残渣が残留することを妨
ぐことができる。
【0148】
こうして5回のフォトリソグラフィ工程により、5枚のフォトマスクを使用して、逆ス
タガ型のnチャネル型TFT201、補助容量107、開口部を有する画素を完成させる
ことができる。そして、これらの画素をマトリクス状に配置した画像表示部を構成するこ
とにより、能動素子であるTFTを用いたアクティブマトリクス型の液晶表示装置を作製
するための一方の基板とすることができる。本明細書では便宜上、このような基板をTF
T基板と呼ぶ。
【0149】
本実施の形態で作製したTFT基板において、画素部の補助容量107は、ゲート配線
102、画素電極106、及びその間にゲート絶縁膜108のみを誘電体膜として挟んで
構成してもよい。この構成は、本発明におけるソース配線104に平行に列方向に延在す
る開口部101を形成することで可能となったものである。
【0150】
「背景技術」で述べた第2の方法では、補助容量はゲート絶縁膜および保護膜を誘電体
膜としていた。一方本実施の形態の補助容量107は、ゲート絶縁膜108のみから構成
されることで誘電体膜の薄膜化が可能となり、補助容量107の容量を増大させることが
できる。
【0151】
また逆に考えれば、容量が増大するため、従来のように画素電極とゲート配線との重な
り部分を広く設ける必要がなくなる。そのためゲート配線102の幅を細く設計すること
が可能となる。それにより開口率の増大につながるといった効果がある。
【0152】
ただしゲート配線102の幅を細くすることは、配線自体の抵抗を増大させることにも
繋がるため、適正にゲート配線102の幅を選択する必要がある。
【0153】
また本実施の形態によれば、「背景技術」で述べた第1の方法で説明した、画素電極と
接続し、かつドレイン電極と同様の材料及び同じ層に形成された電極を、容量電極として
別途設ける必要がない。よって歩留まり低下の要因となる恐れを除外することができる。
【0154】
また本実施の形態で作製したTFT基板において、ドレイン電極105と画素電極10
6が接続する開口部101は、図2に示す従来のコンタクトホール1001に比べて十分
広がっている。さらにコンタクトホールの端は、画素中の開口部に沿うように形成される

【0155】
このため、従来発生していた、コンタクトホール上方並びにその近傍における液晶の配
向の乱れ(ディスクリネーションともいう)が発生することが無くなる。即ち、従来にお
けるディスクリネーションによる光漏れを防ぐために必要なブラックマトリクスの面積を
低減することができるため、開口率を向上することができる。
【0156】
また本実施の形態で作製したTFT基板において、従来形成されてきたコンタクトホー
ル1001を、開口部101の全域にまで広げている。開口部101はバックライト光源
から発せられる光を透過させ、さらに上部に設けられる液晶を通して画像を形成する部分
である。
【0157】
従来では図13(E)に示されるように、保護膜1027が開口部101にも形成され
ていたが、本発明では開口部に形成されていた保護膜を除去している。
【0158】
すなわち、従来では保護膜1027を開口部にも形成することにより、光を吸収する、
光を反射する、あるいは光を散乱して、光強度を減少させる要因となっていたが、本発明
では開口部の保護膜を除去することにより、開口部における光源からの光の透過率が向上
するという効果を得ることができる。
【0159】
TFT基板を作成後、液晶表示装置を完成させるまでの作製工程を図8、図9、図10
(A)〜図10(D)を用いて以下に説明する。
【0160】
TFT基板上の保護膜109及び画素電極106を覆うように、配向膜208を形成す
る。なお、配向膜208は、液滴吐出法やスクリーン印刷法やオフセット印刷法を用いれ
ばよい。その後、配向膜208の表面にラビング処理を行う。
【0161】
そして、対向基板211には、着色層212、遮光層(ブラックマトリクス)213、
及びオーバーコート層214からなるカラーフィルタを設け、さらに透明電極からなる対
向電極215と、その上に配向膜216を形成する(図8参照)。対向電極215が透明
電極で形成されることにより、本液晶表示装置は透過型液晶表示装置となる。なお対向電
極215を反射電極で形成すると、本実施の形態の液晶表示装置は反射型液晶表示装置と
なる。
【0162】
そして、閉パターンであるシール材221をディスペンサにより画素部231と重なる
領域を囲むように描画する。ここでは液晶218を滴下するため、閉パターンのシール材
を描画する例を示すが、開口部を有するシールパターンを設け、TFT基板を貼りあわせ
た後に毛細管現象を用いて液晶を注入するディップ式(汲み上げ式)を用いてもよい(図
10(A)参照)。
【0163】
次いで、気泡が入らないように減圧下で液晶218の滴下を行い(図10(B)参照)
、基板100及び対向基板211を貼り合わせる(図10(C)参照)。閉ループのシー
ルパターン内に液晶218を1回若しくは複数回滴下する。
【0164】
液晶218の配向モードとしては、液晶分子の配列が光の入射から射出に向かって90
°ツイスト配向したTNモードを用いる場合が多い。TNモードの液晶表示装置を作製す
る場合には、基板のラビング方向が直交するように貼り合わせる。
【0165】
なお、一対の基板間隔は、球状のスペーサを散布する、樹脂からなる柱状のスペーサを
形成する、あるいは、シール材221にフィラーを含ませることによって維持すればよい
。上記柱状のスペーサは、アクリル、ポリイミド、ポリイミドアミド、エポキシの少なく
とも1つを主成分とする有機樹脂材料、もしくは酸化珪素、窒化珪素、窒素を含む酸化珪
素のいずれか一種の材料、或いはこれらの積層膜からなる無機材料であることを特徴とし
ている。
【0166】
次いで、基板の分断を行う。多面取りの場合、それぞれのパネルを分断する。また、1
面取りの場合、予めカットされている対向基板を貼り合わせることによって、分断工程を
省略することもできる(図10(D)参照)。
【0167】
そして、異方性導電体層を介し、公知の技術を用いてFPC(Flexible Pr
inted Circuit)222を貼りつける(図9参照)。以上の工程で液晶表示
装置が完成する。また、必要があれば光学フィルムを貼り付ける。透過型液晶表示装置と
する場合、偏光板は、アクティブマトリクス基板と対向基板の両方に貼り付ける。以上に
より本実施の形態の液晶表示装置が作製される。
【0168】
以上述べたように、本発明により、保護膜(パシべーション膜)形成の工程において、
絶縁膜をエッチングする際に発生する残渣の残留を防ぐことができ、画素電極106とド
レイン電極105とのコンタクト不良を低減させることができる。
【0169】
また本発明により、画素電極106の形成の工程において、透明導電膜材料をエッチン
グする際に発生する残渣の残留を防ぐことができる。これにより画素電極間の導通を防ぐ
ことが可能となる。
【0170】
また本発明により、画素電極106とドレイン電極105との接触面積を従来に比べて
飛躍的に増大させることができる。これにより画素電極106とドレイン電極105との
接触抵抗の低減が可能となる。
【0171】
またさらに本発明では、従来の液晶表示装置に見られた、画素電極内に設けられたコン
タクトホール形状に由来する液晶の配向乱れ(ディスクリネーション)を低減させること
ができる。
【0172】
また本発明では、補助容量107の誘電体膜をゲート絶縁膜108のみから構成される
ので、誘電体膜の薄膜化が可能となり、補助容量107の容量を増大させることができる
。また補助容量107の容量を増大するためゲート配線102の幅を細く設計することが
でき補助容量107の面積を低減させることができる。
【0173】
また、開口部101の全域にまで広げるように保護膜材料からなる絶縁膜を除去してて
保護膜109を形成することにより、開口部101における光源からの光の透過率が向上
し輝度が増大する。
【0174】
また本発明では、フォトリソグラフィ工程で用いるフォトマスクの数を従来より増やさ
ないことができ、作製工程や製造コストを増加させることなく、品質の良い液晶表示装置
を作製することが可能となる。
【実施例1】
【0175】
本実施例では、図14(A)〜図14(D)、図15(A)〜図15(B)、図18(
A)〜図18(B)を用いて、ソース電極及びソース配線、並びにドレイン電極を形成す
る際に用いたレジストマスクを利用して、半導体膜をエッチングして島状半導体膜を形成
する例について説明する。なお本実施例において、説明のない部分は実施の形態の記載を
援用する。
【0176】
まず基板300上にゲート電極及びゲート配線302を形成する(図14(A)参照)
。基板300は実施の形態の基板100と同様のものを用いればよい。またゲート電極及
びゲート配線302は、実施の形態のゲート電極及びゲート配線102と同様の材料及び
同様の作製工程で形成すればよい。
【0177】
次いで基板300及びゲート電極及びゲート配線302上に、ゲート絶縁膜308、非
晶質半導体膜321、一導電型を付与する不純物を含有する半導体膜322、及び導電膜
323を成膜する(図14(B)参照)。
【0178】
ゲート絶縁膜308は、実施の形態のゲート絶縁膜108と同様の材料及び同様の工程
で形成すればよい。また非晶質半導体膜321は、島状半導体膜103を形成するための
非晶質半導体膜と同様の材料及び工程で成膜すればよい。また、一導電型を付与する不純
物を含有する半導体膜322は、ソース領域204及びドレイン領域205を形成するた
めの半導体膜と同様の材料及び工程で成膜すればよい。
【0179】
導電膜323として、実施の形態で述べたのと同様に、スパッタ法や真空蒸着法、MO
CVD法(有機金属気相成長法)等で、金属膜を成膜すればよい。金属膜としては、モリ
ブデン(Mo)、チタン(Ti)、タンタル(Ta)、タングステン(W)、クロム(C
r)から選ばれた元素を含む膜、または前記元素を成分とする合金を含む膜、または前記
元素を成分とする窒化物を含む膜、あるいはモリブデン(Mo)を含む膜、アルミニウム
(Al)を含む膜及びモリブデン(Mo)を含む膜を積層した積層膜、クロム(Cr)を
含む膜及びアルミニウム(Al)を含む膜の積層膜、クロム(Cr)を含む膜及びネオジ
ムを含有するアルミニウム(Al−Nd)を含む膜との積層膜、チタン(Ti)を含む膜
、アルミニウム(Al)を含む膜及びチタン(Ti)を含む膜の積層膜、チタン(Ti)
を含む膜、ネオジムを含有するアルミニウム(Al−Nd)を含む膜及びチタン(Ti)
を含む膜の積層膜、モリブデン(Mo)を含む膜、アルミニウム(Al)を含む膜及びモ
リブデン(Mo)を含む膜の積層膜、モリブデン(Mo)を含む膜、ネオジムを含有する
アルミニウム(Al−Nd)を含む膜及びモリブデン(Mo)を含む膜の積層膜、モリブ
デン(Mo)を含む膜及びアルミニウム(Al)を含む膜の積層膜、モリブデン(Mo)
を含む膜及びネオジムを含有するアルミニウム(Al−Nd)を含む膜の積層膜などを用
いることができる。
【0180】
次いで実施の形態の第3のフォトリソグラフィ工程と同様の工程を用いてレジストマス
ク317を形成する(図14(C)参照)。レジストマスク317により導電膜323を
ウェットエッチングによりエッチングしてソース電極及びソース配線304、及びドレイ
ン電極305を形成する。
【0181】
そしてレジストマスク317を除去せず、非晶質半導体膜321及び一導電型を付与す
る不純物を含有する半導体膜322をエッチングするマスクとして再度利用する。非晶質
半導体膜321及び一導電型を付与する不純物を含有する半導体膜322をドライエッチ
ングによりエッチングして、一導電型を付与する不純物を含有する半導体膜322をソー
ス領域314及びドレイン領域315に分離し、非晶質半導体膜321からチャネル形成
領域を有する島状半導体膜303を形成する(図14(D)参照)。
【0182】
次いで保護膜309を保護膜109と同様の材料及び工程で形成する。実施の形態で述
べたように、保護膜材料からなる絶縁膜を第4のフォトリソグラフィ工程によりエッチン
グして、保護膜309を形成する(図15(A)参照)。
【0183】
保護膜309の端部は、ドレイン電極305の端部より内側になるように形成されてお
り、これによりドレイン電極305が露出する。
【0184】
次いで保護膜309、ドレイン電極305の露出した領域、ゲート絶縁膜308上に、
画素電極306を形成する(図15(B)参照)。保護膜309の端部とドレイン電極3
05の端部が同じ位置にそろっているのではなく、別々の位置に離れて存在するように形
成されているため、画素電極306のカバレッジはよくなり断線を起こすことが少なくな
る。
【0185】
以上のようにして形成された液晶表示装置の画素の上面図を図18(A)〜図18(B
)に示す。図18(A)のC−C’線で示される断面図が、図15(B)である。図18
(A)は画素の実際の上面図であるが、図18(B)は開口部301の位置を強調して表
した図である。
【0186】
補助容量307は、ゲート電極及びゲート配線302と、画素電極306と、その間に
形成されているゲート絶縁膜308により形成されている。開口部の保護膜材料からなる
絶縁膜が除去され、保護膜309が形成されないので、補助容量307の誘電体膜を、ゲ
ート絶縁膜308のみにすることができる。したがってより容量の大きい補助容量307
を作成することが可能となる。
【0187】
本実施例の液晶表示装置においても、実施の形態と同様に従来のコンタクトホール10
01を画素の開口部全体にまで広げることにより、以下の効果が得ることができる。
【0188】
すなわち本実施例により、保護膜309形成の工程において、絶縁膜をエッチングする
際に発生する残渣の残留を防ぐことができ、画素電極306とドレイン電極305とのコ
ンタクト不良を低減させることができる。
【0189】
また本実施例により、画素電極306の形成の工程において、透明導電膜材料をエッチ
ングする際に発生する残渣の残留を防ぐことができる。これにより画素電極間の導通を防
ぐことが可能となる。
【0190】
また本実施例により、画素電極306とドレイン電極305との接触面積を従来に比べ
て飛躍的に増大させることができる。これにより画素電極306とドレイン電極305と
の接触抵抗の低減が可能となる。
【0191】
さらに本実施例においては、保護膜309の端部がドレイン電極305の端部の内側に
あることから、画素電極306のカバレッジがよくなって、画素電極306の断線を防ぐ
ことができる。
【0192】
またさらに本実施例では、従来の液晶表示装置に見られた、画素電極内に設けられたコ
ンタクトホール形状に由来する液晶の配向乱れ(ディスクリネーション)を低減させるこ
とができる。
【0193】
また本発明では、補助容量307の誘電体膜がほぼゲート絶縁膜308のみから構成さ
れるので、誘電体膜の薄膜化が可能となり、補助容量307の容量を増大させることがで
きる。また補助容量307の容量を増大するためゲート配線302の幅を細く設計するこ
とができ補助容量307の面積を低減させることができる。
【0194】
また、開口部301の全域にまで広げるように保護膜材料からなる絶縁膜を除去して保
護膜309を形成することにより、開口部301における光源からの光の透過率が向上し
輝度が増大する。
【0195】
また本発明では、フォトリソグラフィ工程で用いるフォトマスクの数を従来より増やさ
ないことができ、作製工程や製造コストを増加させることなく、品質の良い液晶表示装置
を作製することが可能となる。
【0196】
なお本実施例は、必要であれば実施の形態の構成全てあるいはその一部と組み合わせる
ことが可能である。
【実施例2】
【0197】
本実施例では、図16(A)〜図16(D)、図17(A)〜図17(D)、図19(
A)〜図19(B)を用いて、ソース電極及びソース配線、並びにドレイン電極を形成す
る際に用いたレジストマスクを利用して、半導体膜をエッチングして島状半導体膜を形成
する方法において、実施例1とは別の例について説明する。なお本実施例において、特に
説明のない部分は実施の形態及び実施例1の記載を援用する。
【0198】
まず実施の形態又は実施例1と同様の工程で、基板330上にゲート電極及びゲート配
線332を形成し(図16(A)参照)、その上にゲート絶縁膜338、非晶質半導体膜
341、一導電型を付与する不純物を含有する半導体膜342を成膜する(図16(B)
参照)。
【0199】
次にフォトリソグラフィ工程を行い、レジストマスクを形成して、非晶質半導体膜34
1及び一導電型を付与する不純物を含有する半導体膜342をエッチングして、一導電型
を付与する不純物を含有する半導体膜342をソース領域344及びドレイン領域345
に分離し、また非晶質半導体膜341からチャネル形成領域を含む島状半導体膜333を
形成する(図16(C)参照)。
【0200】
次いでゲート絶縁膜338、島状半導体膜333、ソース領域344及びドレイン領域
345上に、導電膜346を成膜する(図16(D)参照)。導電膜346は、ソース電
極及びソース配線104並びにドレイン電極105を形成するための導電膜、並びに導電
膜323と同様に成膜すればよい。
【0201】
次にフォトリソグラフィ工程を行い、レジストマスク337を形成し、導電膜346を
エッチングする(図17(A)参照)。このエッチングにより導電膜346から、ソース
電極及びソース配線334、並びにドレイン電極335を形成する(図17(B)参照)

【0202】
図17(B)において、ソース電極及びソース配線334の端部はソース領域344の
端部より内側になるように形成されている。またドレイン電極335の端部はドレイン領
域345の端部より内側になるように形成されている。特にドレイン領域345の端部が
ドレイン電極335の端部より、開口部内部へ突出した形状にすることにより、後述する
画素電極336の作製工程において、段差を緩和することができるので有用である。
【0203】
さらに保護膜339を、保護膜109又は保護膜309と同様の材料及び工程で形成す
る。実施の形態又は実施例1で述べたように、保護膜材料からなる絶縁膜をフォトリソグ
ラフィ工程によりエッチングして、保護膜339を形成する(図17(C)参照)。
【0204】
保護膜339の端部は、ドレイン電極335の端部より内側になるように形成されてお
り、これによりドレイン電極335が露出する。
【0205】
次いで保護膜339、ドレイン電極335の露出した領域、ゲート絶縁膜338上に、
画素電極336を形成する(図17(D)参照)。保護膜339の端部、ドレイン電極3
35の端部及びドレイン領域345が同じ位置にそろっているのではなく、別々の位置に
離れて存在するように形成されているため、画素電極336の段差が緩和され、カバレッ
ジがよくなり断線を起こすことが少なくなる。
【0206】
以上のようにして形成された液晶表示装置の画素の上面図を図19(A)〜図19(B
)に示す。図19(A)のD−D’線で示される断面図が、図17(D)である。図19
(A)は画素の実際の上面図であるが、図19(B)は開口部331の位置を強調して表
した図である。
【0207】
本実施例では、実施例1に記載された効果に加えて、さらに保護膜339の端部、ドレ
イン電極335の端部及びドレイン領域345が異なる位置に離れて存在しているため、
画素電極336の段差が緩和され、カバレッジがよくなり断線を防ぐことが可能となる。
【0208】
なお本実施例は、必要であれば実施の形態及び実施例1の構成全てあるいはその一部と
組み合わせることが可能である。
【実施例3】
【0209】
本実施例では、ドレイン電極を積層膜で形成することにより、保護膜材料からなる絶縁
膜をエッチングして保護膜を形成する際にドレイン電極がダメージを受けるのを防止する
例について、図20(A)〜図20(E)、図21(A)〜図21(E)を用いて説明す
る。
【0210】
実施の形態において、第4のフォトリソグラフィ工程によりドライエッチング方法を用
いて保護膜材料からなる絶縁膜をエッチングしている。ドライエッチングに用いるエッチ
ングガス種や反応圧、基板温度や高周波数などの作製条件によっては、絶縁膜の下に形成
されているドレイン電極105が露出した際に、大きなダメージを受けかねないという可
能性がある。
【0211】
ドレイン電極105がダメージを受けてしまうと、ドレイン電極105と画素電極10
6との電気的な接続に悪影響が出る恐れが生じてしまう。
【0212】
従って本実施例では、ドレイン電極を複数の層で構成される積層膜で形成することによ
り、ドレイン電極へのダメージを防止する。
【0213】
まず実施の形態の記載を基にして、図7(B)に示す構造までを作成する。なお本実施
例においては、特に記載のないものについては実施の形態、実施例1及び実施例2の記載
を援用する。
【0214】
次いで、ゲート絶縁膜108、島状非晶質半導体膜103aと島状不純物半導体膜10
3bからなる島状半導体膜103上に、第1の導電膜を成膜し、さらにその上に第2の導
電膜を成膜する。
【0215】
第1の導電膜と第2の導電膜との組み合わせは、クロム(Cr)を含む膜とアルミニウ
ム(Al)を含む膜の積層膜や、クロム(Cr)を含む膜とネオジムを含むアルミニウム
(Al−Nd)を含む膜などの積層膜等が挙げられる。
【0216】
次にフォトレジスト工程を行い、レジストマスクを形成して、第1の導電膜と第2の導
電膜にエッチングを行い、第1の導電膜を下層ソース電極及びソース配線401、並びに
下層ドレイン電極402とする。第2の導電膜は、上層ソース電極及びソース配線403
、並びに電極404を形成する(図20(A)参照)。
【0217】
次いで実施の形態と同様に、下層ソース電極及びソース配線401、上層ソース電極及
びソース配線403、下層ドレイン電極402及び電極404をマスクとして、島状非晶
質半導体膜103aと島状不純物半導体膜103bの一部をドライエッチングにより除去
して、島状不純物半導体膜103bをソース領域204とドレイン領域205に分離する
。またこのエッチングにより島状非晶質半導体膜103aは自己整合的にエッチングされ
、チャネル形成領域206を有する島状半導体膜203となる(図20(B)参照)。
【0218】
次いで基板全面を覆って、無機材料からなる絶縁膜406を形成する(図20(C)参
照)。
【0219】
無機材料からなる絶縁膜406は、窒化珪素膜、酸素を含む窒化珪素膜、窒素を含む酸
化珪素膜、酸化珪素膜、またはこれらを組み合わせた積層膜で形成し、厚さは200〜4
50nmとする。本実施例では、プラズマCVD法でSiH、NHを原料ガスとして
窒化珪素膜を成膜する。
【0220】
その後、フォトリソグラフィ工程によって、レジストマスクを形成し、無機材料からな
る絶縁膜406をドライエッチングして保護膜407を形成する。保護膜407はTFT
を覆うが、画素部の開口部411はドライエッチング工程により無機材料からなる絶縁膜
が除去されているので露出する(図20(D)参照)。
【0221】
ここで絶縁膜406をドライエッチングする際に、下層ドレイン電極402の上部に形
成されている電極404を、意図的に絶縁膜406と共にエッチングにより除去すること
により、下層ドレイン電極402を開口部411にて露出させる。また電極404は、上
層ドレイン電極408と電極409に分離される。
【0222】
よってソース電極及びソース配線414は、下層ソース電極及びソース配線401及び
上層ソース電極及びソース配線403から構成され、ドレイン電極415は下層ドレイン
電極402及び上層ドレイン電極408から構成されることとなる。
【0223】
次いで透明導電膜を保護膜407、開口部411にて露出した下層ドレイン電極402
上に形成し、エッチングして画素電極416を形成する(図20(E)参照)。透明導電
膜がインジウム錫酸化物(ITO)などの酸化物で形成されると、酸化物は多量に酸素を
含有しているため、アルミニウムを含む膜と接触していると、アルミニウム(Al)との
電気的、または物理的な接続性の劣化、あるいは形成後の電蝕による信頼性が劣化してい
まう恐れがある。下層ドレイン電極402を形成するための第2の導電膜がアルミニウム
膜、もしくはアルミニウムを含む膜で構成されるため、保護膜407形成のための絶縁膜
406エッチングの際に、上層ドレイン電極408となる電極404を一緒にエッチング
することにより、アルミニウム(Al)と透明導電膜との接続を回避することが可能であ
る。
【0224】
図21(A)〜図21(E)では、ドレイン電極を三層の積層膜で形成した例を示す。
【0225】
まず実施の形態の記載を基にして、図7(B)に示す構造までを作成する。
【0226】
次いで、ゲート絶縁膜108、島状非晶質半導体膜103aと島状不純物半導体膜10
3bからなる島状半導体膜103上に、第3の導電膜、第4の導電膜及び第5の導電膜を
順に積層して成膜する。
【0227】
第3の導電膜及び第5の導電膜の例としては、モリブデン(Mo)などの耐熱性導電性
材料膜であり、第4の導電膜の材料の例としては、純アルミニウム膜(Al)やネオジム
を含むアルミニウム(Al−Nd)膜など他の元素を含有するアルミニウム(Al)膜で
ある。
【0228】
次にフォトレジスト工程を行い、レジストマスクを形成して、第3の導電膜、第4の導
電膜及び第5の導電膜にエッチングを行い。第3の導電膜を下層ソース電極及びソース配
線431、並びに下層ドレイン電極432とする。第4の導電膜は、中層ソース電極及び
ソース配線433、並びに中層ドレイン電極434とする。また第5の導電膜から、上層
ソース電極及びソース配線435、上層ドレイン電極436を形成する(図21(A)参
照)。なお下層ソース電極及びソース配線431、中層ソース電極及びソース配線433
並びに上層ソース電極及びソース配線435は、ソース電極及びソース配線454を構成
しており、下層ドレイン電極432、中層ドレイン電極434並びに上層ドレイン電極4
36はドレイン電極455を構成している。
【0229】
次いで実施の形態と同様に、ソース電極及びソース配線454並びにドレイン電極45
5をマスクとして、島状非晶質半導体膜103aと島状不純物半導体膜103bの一部を
ドライエッチングにより除去して、島状不純物半導体膜103bをソース領域204とド
レイン領域205に分離する。またこのエッチングにより島状非晶質半導体膜103aは
自己整合的にエッチングされ、チャネル形成領域206を有する島状半導体膜203とな
る(図21(B)参照)。
【0230】
次いで基板全面を覆って、無機材料からなる絶縁膜439を形成する(図21(C)参
照)。なお絶縁膜439は絶縁膜406と同様の材料及び同様の工程で作成すればよい。
【0231】
その後、フォトリソグラフィ工程によって、レジストマスクを形成し、無機材料からな
る絶縁膜439をドライエッチングして保護膜437を形成する。保護膜437はTFT
を覆うが、画素部の開口部441はドライエッチング工程により無機材料からなる絶縁膜
が除去されているので露出する(図21(D)参照)。
【0232】
絶縁膜439のエッチング時に、ドレイン電極455にダメージの加わる恐れがある。
しかし上層ドレイン電極436及び中層ドレイン電極434が存在しているので、耐熱性
導電性材料からなる下層ドレイン電極432はダメージを受けないという利点を有する。
すなわちドレイン電極を三層構造にすることで、エッチングによる膜減りによる影響を抑
制することが可能となる。
【0233】
次いで透明導電膜を保護膜437、開口部441にて露出した上層ドレイン電極436
上に形成し、エッチングして画素電極446を形成する(図21(E)参照)。
【0234】
図21(E)においては、画素電極がインジウム錫酸化物(ITO)などの酸化物を含
んでいたとしても、アルミニウムを含む中層ドレイン電極434上に、耐熱性導電性材料
膜からなる上層ドレイン電極436が存在してるため、アルミニウム(Al)と透明導電
膜との接続を回避することが可能である。
【0235】
本実施例では、実施例1に記載された効果に加えて、さらに保護膜材料からなる絶縁膜
のエッチングの際に、ドレイン電極にダメージを受けるのを抑制することができるという
効果を有する。
【0236】
なお本実施例は、必要であれば実施の形態及び実施例1〜実施例2の構成全てあるいは
その一部と組み合わせることが可能である。
【実施例4】
【0237】
実施の形態及び実施例1〜実施例3では透過型液晶表示装置及びその作製方法を説明し
たが、本実施例では半透過型液晶表示装置や微透過型液晶表示装置について、図22(A
)〜図22(B)、図23を用いて説明する。
【0238】
半透過型液晶表示装置や微透過型液晶表示装置いずれを作製する場合においても、実施
の形態及び実施例1〜実施例3で述べた透過型のTFT基板の作製後、アルミニウム(A
l)、銀(Ag)、クロム(Cr)など反射率の高い金属膜を用いて反射電極を、透明な
画素電極上に少なくとも一部が重なり電気的に接触するように形成する。
【0239】
反射電極を作製した部分が反射領域となり、その他の開口部分が透過領域となる。反射
領域と透過領域との面積比率をほぼ等価にすることで半透過型となり、反射領域の面積を
透過領域よりも小さくすることで微透過型液晶表示装置を作製することができる。
【0240】
実施の形態及び実施例1〜実施例3で述べた透過型液晶表示装置を仮に全透過型液晶表
示装置とすると、全透過型液晶表示装置ではバックライトの光を透過することにより画像
を映し出す。一方微透過型液晶表示装置や半透過型液晶表示装置は、反射電極を有してい
るので外光を利用することが可能となり、消費電力を抑えることができる。
【0241】
図22(A)は、実施の形態の図1(B)に、反射電極501を形成したものである。
なお保護膜109は図面を見やすくするために省略してある。反射電極501が透明電極
である画素電極106の面積よりもかなり小さく、反射領域が透過領域よりかなり小さく
なっている。従って図22(A)の画素構造を有する液晶表示装置は、微透過型液晶表示
装置となる。
【0242】
また図22(B)の液晶表示装置も、実施の形態の図1(B)に、反射電極502を形
成したものであり、反射電極502の面積が画素電極106の面積よりもかなり小さく、
微透過型液晶表示装置となっている。
【0243】
図22(A)の液晶表示装置の画素のJ−J’線に沿った断面図を図24(A)に、図
22(B)の液晶表示装置の画素のK−K’線に沿った断面図を図24(B)に示す。
【0244】
図22(A)の反射電極501の端部は画素電極106の端部よりも内側に位置するよ
うに形成されている。一方図22(B)の液晶表示装置では、反射電極502の端部が画
素電極106の端部と一致するように形成されている。
【0245】
図23(A)も実施の形態の図1(B)に、反射電極503を形成したものであるが、
反射電極503が透明電極である画素電極106の面積とほぼ半分になるように形成され
ている。すなわち反射部分の面積と透過部分の面積がほぼ等価であるので、図23(A)
の画素構造を有する液晶表示装置は、半透過型液晶表示装置となる。
【0246】
図23(B)は、半透過型液晶表示装置の別の例である。反射電極504は画素電極1
06の縁に沿って、画素電極106の外周をなぞるように形成されている。この形状では
透過領域と反射領域が偏らないので、より見やすい液晶表示装置を得ることができる。
【0247】
すなわち本実施例では、実施例1に記載された効果に加えて、さらに外光を利用するこ
とが可能となり、消費電力を抑えることができるという利点を持つ。
【0248】
なお本実施例は、必要であれば実施の形態及び実施例1〜実施例3の構成全てあるいは
その一部と組み合わせることが可能である。
【実施例5】
【0249】
本実施例では、画素部以外の領域例えば周辺部で、ゲート配線材料からなる配線とソー
ス配線材料からなる配線との接続方法について、図25(A)〜図25(E)、図26(
A)〜図26(C)、図27を用いて説明する。なお特に記載のないものについては、実
施の形態の記載を援用する。
【0250】
図27はゲート配線材料からなる配線とソース配線材料からなる配線との接続構造を上
面図で示したものである。図25(A)〜図25(E)、図26(A)〜図26(C)は
図27の上面図に示す接続構造を形成するための手順を示す断面図であり、図26(C)
は図27中のP−P’で示される部分の断面図である。
【0251】
図27において、ゲート配線材料からなる配線512とソース配線材料からなる配線5
14がそれぞれ透明導電材料からなる導電膜523を介して接続されている。
【0252】
まず図25(A)に示すように、基板511上に、実施の形態に記載された方法に基づ
き、ゲート配線材料からなる配線512を形成する。その後、図25(B)に示すように
、ゲート絶縁膜513を基板511の全面に成膜する。
【0253】
次に図25(B)に示すように、実施の形態で述べた方法に基づき、ソース配線材料か
らなる配線514を形成する。さらに図25(D)に示すように、ゲート絶縁膜513及
び配線514上に保護膜515を成膜する。
【0254】
次に実施の形態で述べた第4のフォトリソグラフィ工程において、ハーフトーンマスク
を用いたハーフトーン露光技術を用いて、段差状のレジストマスク516を形成する(図
25(E)参照)。レジストマスク516を用いてエッチングを行うことで、図26(A
)のようにゲート配線材料からなる配線512の真上の絶縁膜にコンタクトホール525
を形成する。ただしコンタクトホール525が形成される絶縁膜は好ましくは保護膜51
5のみとし、ゲート絶縁膜513は残存するようにエッチングする。このエッチングによ
り保護膜515は、コンタクトホール525が形成された保護膜517となる。
【0255】
次に図26(A)のように、ラジカル状態の酸素などを用いてアッシング処理を行い、
レジストマスク516を一部除去して、レジストマスク516をレジストマスク518の
ように変形させる。
【0256】
変形させたレジストマスク518を用いて、保護膜517を再度エッチングして、保護
膜521とする。図26(B)に示すように、このエッチングによりゲート配線材料から
なる配線512上のコンタクトホール525が形成され、かつ、ゲート配線材料からなる
配線512上のコンタクトホール525とソース配線材料からなる配線514の一部を含
んだ開口部526が形成される。
【0257】
本実施例において、コンタクトホール525はゲート配線材料からなる配線512より
も幅を狭く形成しているが、ゲート配線材料からなる配線512の両端を含んだ広いコン
タクトホールを形成しても良い。
【0258】
次いで図26(C)に示すように、透明導電材料からなる導電膜523を、コンタクト
ホール525および開口部526上に形成することで、透明導電材料からなる導電膜52
3を介して、ゲート配線材料からなる配線512とソース配線材料からなる配線514を
接続することができる。
【0259】
上述した周辺部のゲート配線材料からなる配線512は、実施の形態で述べた画素部に
おけるゲート電極及びゲート配線102と同一の構成であり、同一の材料である。またゲ
ート絶縁膜513は画素部におけるゲート絶縁膜108と同一の構成であり、同一の材料
である。またソース配線材料からなる配線514は、画素部におけるソース電極及びソー
ス配線104、並びにドレイン電極105と同一の構成であり、同一の材料である。また
保護膜521および透明導電材料からなる導電膜523はそれぞれ、画素部における保護
膜109、画素電極106とそれぞれ同一の構成であり、同一の材料である。
【0260】
従って、周辺部での配線の形成も、画素部と同様の方法で、且つ同時に形成することが
できる。従って、TFT基板をマスク数を増やすことなく作製することが可能である。
【0261】
本実施例は、実施の形態で述べられた効果を奏すると共に、マスク数を増やすことなく
周辺の配線も形成することができるという利点を得ることができる。
【0262】
なお本実施例は、必要であれば実施の形態及び実施例1〜実施例4の構成全てあるいは
その一部と組み合わせることが可能である。
【実施例6】
【0263】
本実施例では、IPS(In−Plane Switching)モードの液晶表示装
置について、図28、図29(A)〜図29(C)を用いて説明する。
【0264】
図28は、本実施例のIPSモードの液晶表示装置において、任意の一画素の上面図で
ある。また図29(A)、図29(B)及び図29(C)は、それぞれ図28中のL−L
’線、M−M’線及びN−N’線に沿った断面図である。
【0265】
図28、図29(A)〜図29(C)において、基板600上に、ゲート配線601及
びコモン配線602が形成されている。ゲート配線601及びコモン配線602は、同一
の材料、同一の層及び同一の工程で形成されている。ゲート配線601及びコモン配線6
02上には、ゲート絶縁膜614が形成されている。
【0266】
なお、基板600は実施の形態で述べた基板100と同様の材料を用いればよい。また
ゲート配線601及びコモン配線602は、実施の形態のゲート電極及びゲート配線10
2と同様の材料及び同様の作製工程で形成すればよい。さらにゲート絶縁膜614は、実
施の形態のゲート絶縁膜108と同様の材料及び同様の作製工程で形成すればよい。
【0267】
画素のスイッチング素子となるTFTは、ゲート配線601、ゲート絶縁膜614、島
状半導体膜607、ソース領域621、ドレイン領域622、ソース電極608及びドレ
イン電極606を有している(図29(A)参照)。
【0268】
なおTFTの島状半導体膜607、ソース領域621、ドレイン領域622は、それぞ
れ実施の形態の島状半導体膜203、ソース領域204、ドレイン領域205の形成方法
を基に形成すればよい。
【0269】
ソース電極608とソース配線605は便宜上分けているが、同一の導電膜から形成さ
れ互いに接続されている。またドレイン電極606も、ソース電極608とソース配線6
05と同一の材料及び同じ工程で形成される。
【0270】
保護膜615は、実施の形態で述べた保護膜109と同じ材料及び同じ作製工程で形成
すればよい。また保護膜615は、二点鎖線で示される開口部604では除去されており
、開口部604に形成されている絶縁膜はゲート絶縁膜614のみとなっている。
【0271】
ドレイン電極606と画素電極611は、開口部604において接することにより電気
的にも接続されている(図29(B)参照)。
【0272】
ソース電極608及びソース配線605は、実施の形態のソース電極及びソース配線1
04、またドレイン電極606は、実施の形態のドレイン電極105と同様の材料及び同
じ工程で形成すればよい。
【0273】
画素電極611と、複数のコモン電極612のそれぞれは、同一の材料及び同じ工程で
形成される。コモン電極612は、ゲート絶縁膜614中のコンタクトホール603を介
して、コモン配線602と電気的に接続されている(図29(C)参照)。
【0274】
なお、画素電極611及びコモン電極612は、実施の形態で述べた画素電極106と
同様の材料及び同様の作製工程で形成すればよい。
【0275】
画素電極611とコモン電極612との間で、基板600に平行な横方向電界が発生し
、液晶を制御する。
【0276】
IPSモードの液晶表示装置は、液晶分子が斜めに立ち上がることがないため、見る角
度による光学特性の変化が少なく、広視野特性を得ることができる。本実施例は、実施例
1に記載された効果に加えて、広視野特性をえることができるという利点を有する。
【0277】
なお本実施例は、必要であれば実施の形態、実施例1〜実施例5の構成全てあるいはそ
の一部と組み合わせることが可能である。
【実施例7】
【0278】
本実施例では、MVA(Multi−domain Vertically Alig
ned)モードの液晶表示装置について、図30、図31(A)〜図31(B)、図32
(A)〜図32(B)を用いて説明する。
【0279】
図30は、本実施例のMVAモードの液晶表示装置において、任意の一画素の上面図で
ある。また図31(A)及び図31(B)は、それぞれ図30中のP−P’線及びQ−Q
’線に沿った断面図である。
【0280】
図30、図31(A)〜図31(B)において、基板630上に、ゲート配線631、
及び、ゲート配線631上にゲート絶縁膜632が形成されている。
【0281】
なお、基板630は実施の形態で述べた基板100と同様の材料を用いればよい。また
ゲート配線631は、実施の形態のゲート電極及びゲート配線102と同様の材料及び同
様の作製工程で形成すればよい。さらにゲート絶縁膜632は、実施の形態のゲート絶縁
膜108と同様の材料及び同様の作製工程で形成すればよい。
【0282】
画素のスイッチング素子となるTFTは、ゲート配線631、ゲート絶縁膜632、島
状半導体膜633、ソース領域634、ドレイン領域635、ソース電極637及びドレ
イン電極636を有している(図31(A)参照)。
【0283】
なおTFTの島状半導体膜633、ソース領域634、ドレイン領域635は、それぞ
れ実施の形態の島状半導体膜203、ソース領域204、ドレイン領域205の形成方法
を基に形成すればよい。
【0284】
ソース電極637とソース配線638は便宜上分けているが、同一の導電膜から形成さ
れ互いに接続されている。またドレイン電極636も、ソース電極637とソース配線6
38と同一の材料及び同じ工程で形成される。
【0285】
保護膜651は、実施の形態で述べた保護膜109と同じ材料及び同じ作製工程で形成
すればよい。また保護膜651は、二点鎖線で示される開口部657では除去されており
、開口部657に形成されている絶縁膜はゲート絶縁膜632のみとなっている。
【0286】
ソース電極637及びソース配線638は、実施の形態のソース電極及びソース配線1
04、またドレイン電極636は、実施の形態のドレイン電極105と同様の材料及び同
じ工程で形成すればよい。
【0287】
なお、画素電極639は、実施の形態で述べた画素電極106と同様の材料及び同様の
作製工程で形成すればよい。
【0288】
画素電極639には、複数の溝653が形成されている。
【0289】
またゲート配線631と画素電極639が重なる領域には、ゲート絶縁膜632を誘電
体として、補助容量665が形成される。
【0290】
保護膜651及び画素電極639上には、配向膜652を形成する。配向膜652は、
液滴吐出法やスクリーン印刷法やオフセット印刷法を用いて形成すればよい。
【0291】
また、対向基板641には、着色層642、遮光層(ブラックマトリクス)643、及
びオーバーコート層644からなるカラーフィルタを設け、さらに透明電極からなる対向
電極645と、その上に配向膜646が形成されている。
【0292】
対向電極645上方の配向膜646上には、複数の突起(リブともいう)655が形成
されている。突起655は、アクリル等の樹脂で形成すればよい。突起655は左右対称
、望ましくは四面体であればよい。
【0293】
液晶648は、実施の形態の記載に基づいて、基板630及び対向基板641の間に形
成される。
【0294】
図32(A)〜図32(B)は、図31(B)において、液晶分子661の動きを表し
た図である。
【0295】
MVA方式では、突起655に対して、液晶648中の液晶分子661が左右対称に傾
くように駆動される。これにより左右方向から見た色の差をおさえられる。画素内で液晶
分子661の傾く方向を変えるとどの目線からも色のムラがでない。
【0296】
図32(A)は印加電圧が印加されない状態、すなわち印加電圧0Vであるときの図を
示している。印加電圧が0Vのとき、液晶分子661は基板630及び641に対して垂
直に配向している。このため基板630又は基板641に設けられた偏光板から入った入
射光はそのまま液晶分子661を透過するため、出力側の偏光板の透過軸と入射光の振動
面が直交する。よって光は出力されないことから暗状態となる。
【0297】
図32(B)は印加電圧が印加された状態の図を示している。印加電圧を印加すると、
図32(B)のように電界663がかかることより液晶分子661は突起655の傾斜方
向に倒れる。これにより液晶分子661の長軸が偏光板の吸収軸に交わるので、光が出力
側の偏光板を透過することから、明状態となる。
【0298】
突起655を設けることにより、液晶分子661が突起655の傾斜面に垂直な方向に
倒れるように駆動され、対称性があり視角特性のよい表示を得ることができる。
【0299】
またMVA方式においては、配向膜646及び652にラビングをしなくてよいので、
作製工程を減らすことができる。またラビング工程がないので、ラビングによる液晶64
8への混入物をなくすことができる。これにより配向不良や表示品位の低下を抑制するこ
とが可能となる。
【0300】
以上から、本実施例のMVA方式の液晶表示装置では、実施例1に記載された効果に加
えて、さらに、対称性があり視角特性のよい表示を得ることができる。
【0301】
なお本実施例は、必要であれば実施の形態、実施例1〜実施例6の構成全てあるいはそ
の一部と組み合わせることが可能である。
【実施例8】
【0302】
本実施例では、PVA(Patterned Vertical Alignment
)方式の液晶表示装置について、図33、図34(A)〜図34(B)、図35(A)〜
図35(B)を用いて説明する。
【0303】
図33は、本実施例のPVAモードの液晶表示装置において、任意の一画素の上面図で
ある。また図34(A)及び図34(B)は、それぞれ図33中のS−S’線及びT−T
’線に沿った断面図である。
【0304】
図33、図34(A)〜図34(B)において、基板700上に、ゲート配線701、
及び、ゲート配線701上にゲート絶縁膜702が形成されている。
【0305】
なお、基板700は実施の形態で述べた基板100と同様の材料を用いればよい。また
ゲート配線701は、実施の形態のゲート電極及びゲート配線102と同様の材料及び同
様の作製工程で形成すればよい。さらにゲート絶縁膜702は、実施の形態のゲート絶縁
膜108と同様の材料及び同様の作製工程で形成すればよい。
【0306】
画素のスイッチング素子となるTFTは、ゲート配線701、ゲート絶縁膜702、島
状半導体膜703、ソース領域704、ドレイン領域705、ソース電極707及びドレ
イン電極706を有している(図34(A)参照)。
【0307】
なおTFTの島状半導体膜703、ソース領域704、ドレイン領域705は、それぞ
れ実施の形態の島状半導体膜203、ソース領域204、ドレイン領域205の形成方法
を基に形成すればよい。
【0308】
ソース電極707とソース配線708は便宜上分けているが、同一の導電膜から形成さ
れ互いに接続されている。またドレイン電極706も、ソース電極707とソース配線7
08と同一の材料及び同じ工程で形成される。
【0309】
保護膜731は、実施の形態で述べた保護膜109と同じ材料及び同じ作製工程で形成
すればよい。また保護膜731は、二点鎖線で示される開口部737では除去されており
、開口部737に形成されている絶縁膜はゲート絶縁膜702のみとなっている。
【0310】
ソース電極707及びソース配線708は、実施の形態のソース電極及びソース配線1
04、またドレイン電極706は、実施の形態のドレイン電極105と同様の材料及び同
じ工程で形成すればよい。
【0311】
なお、画素電極709は、実施の形態で述べた画素電極106と同様の材料及び同様の
作製工程で形成すればよい。
【0312】
画素電極709には、複数の溝739が形成されている。
【0313】
また画素電極709とゲート配線701が重なる領域には、ゲート絶縁膜702を挟ん
で、補助容量744が形成される。
【0314】
保護膜731及び画素電極709上には、配向膜732を形成する。配向膜732は、
液滴吐出法やスクリーン印刷法やオフセット印刷法を用いて形成すればよい。
【0315】
また、対向基板711には、着色層712、遮光層(ブラックマトリクス)713、及
びオーバーコート層714からなるカラーフィルタを設け、さらに透明電極からなる対向
電極715と、その上に配向膜716が形成されている。
【0316】
対向電極715には、複数の溝717が形成されている。対向電極715の溝717は
、画素電極709の溝739と重ならないように配置されている(図33参照)。
【0317】
液晶718は、実施の形態の記載に基づいて、基板700及び対向基板711の間に形
成される。
【0318】
図35(A)〜図35(B)は、図34(B)において、液晶分子741の動きを表し
た図である。
【0319】
PVA方式では、対向電極715の溝717と画素電極709の溝739が互いに重な
らないように配置されており、液晶718中の液晶分子741が、お互いに重ならないよ
うに配置された溝717及び739に向かって配向することで、光が透過する。
【0320】
図35(A)は印加電圧が印加されない状態、すなわち印加電圧0Vであるときの図を
示している。印加電圧が0Vのとき、液晶分子741は基板700に対して垂直に配向し
ているため、基板700又は基板711に設けられた偏光板から入った入射光はそのまま
液晶分子741を透過し、入射光の振動方向と出力側の偏光板の透過軸とが直交する。よ
って光は出力されないことから暗状態となる。
【0321】
図35(B)は印加電圧が印加された状態の図を示している。印加電圧を印加すると、
図35(B)のように斜めに電界742がかかることより液晶分子741は斜めに傾くこ
ととなる。これにより液晶分子741の長軸が偏光板の吸収軸に交わるので、光が出力側
の偏光板を透過することから、明状態となる。
【0322】
対向電極715に溝717、及び、画素電極709に溝739を設けることにより、溝
717及び739に向かう斜めの電界742によって、液晶分子741が斜めに駆動され
、上下方向や左右方向だけでなく斜め方向にも対称性があり視角特性のよい表示を得るこ
とができる。
【0323】
またPVA方式においては、配向膜716及び732にラビングをしなくてよいので、
作製工程を減らすことができる。またラビング工程がないので、ラビングによる液晶71
8への混入物をなくすことができる。これにより配向不良や表示品位の低下を抑制するこ
とが可能となる。
【0324】
以上から、本実施例のPVA方式の液晶表示装置では、実施例1に記載された効果に加
えて、さらに、対称性があり視角特性のよい表示を得ることができる。
【0325】
なお本実施例は、必要であれば実施の形態、実施例1〜実施例7の構成全てあるいはそ
の一部と組み合わせることが可能である。
【実施例9】
【0326】
本実施例では、サブピクセル分割駆動方式の液晶表示装置について、図36、図37(
A)〜図37(B)、図38を用いて説明する。
【0327】
サブピクセル分割駆動方式では、一画素を複数のサブピクセルに分割して駆動する。
【0328】
図36は、本実施例のサブピクセル分割駆動方式の液晶表示装置において、任意の一画
素の上面図である。また図37(A)〜図37(B)及び図38は、それぞれ図36中の
U−U’線、V−V’線及びW−W’線に沿った断面図である。
【0329】
図36、図37(A)〜図37(B)、図38において、基板800上に、ゲート配線
801(801a、801b)、及び、ゲート配線801上にゲート絶縁膜802が形成
されている。
【0330】
なお、基板800は実施の形態で述べた基板100と同様の材料を用いればよい。また
ゲート配線801(801a、801b)は、実施の形態のゲート電極及びゲート配線1
02と同様の材料及び同様の作製工程で形成すればよい。さらにゲート絶縁膜802は、
実施の形態のゲート絶縁膜108と同様の材料及び同様の作製工程で形成すればよい。
【0331】
サブピクセル分割駆動方式の液晶表示装置においては、一画素につきスイッチング素子
である画素TFTが複数形成される。本実施例では、一画素につき2つの画素TFTであ
るTFT821aとTFT821bが形成されている。
【0332】
TFT821aには、ゲート配線801a、ゲート絶縁膜802、島状半導体膜803
a、ソース領域804a、ドレイン領域805a、ソース電極807a及びドレイン電極
806aを有している(図37(A)参照)。なおTFT821bはTFT821aと同
じ構造であり、ゲート配線801b、ゲート絶縁膜802、島状半導体膜803b、ソー
ス領域804b(図示せず)、ドレイン領域805b(図示せず)、ソース電極807b
及びドレイン電極806bを有している。
【0333】
なおTFT821aの島状半導体膜803a及びTFT821bの島状半導体膜803
b、ソース領域804a及び804b、ドレイン領域805a及び805bは、それぞれ
実施の形態の島状半導体膜203、ソース領域204、ドレイン領域205の形成方法を
基に形成すればよい。
【0334】
ソース電極807a及び807b、並びにソース配線808は便宜上分けているが、同
一の導電膜から形成され互いに接続されている。またドレイン電極806a及び806b
も、ソース電極807a及び807b並びにソース配線808と同一の材料及び同じ工程
で形成される。
【0335】
保護膜831は、実施の形態で述べた保護膜109と同じ材料及び同じ作製工程で形成
すればよい。また保護膜831は、二点鎖線で示される開口部835では除去されており
、開口部835に形成されている絶縁膜はゲート絶縁膜802のみとなっている。
【0336】
ソース電極807a及び807b、並びにソース配線808は、実施の形態のソース電
極及びソース配線104、またドレイン電極806a及び806bは、実施の形態のドレ
イン電極105と同様の材料及び同じ工程で形成すればよい。
【0337】
TFT821aには画素電極809aが設けられており、画素電極809aはドレイン
電極806aと開口部835において直接接続されている。同様に、TFT821bには
画素電極809bが設けられており、画素電極809bはドレイン電極806bと開口部
835において直接接続されている。
【0338】
なお、画素電極809a及び809bは、実施の形態で述べた画素電極106と同様の
材料及び同様の作製工程で形成すればよい。
【0339】
画素電極809aと画素電極809bの面積は、同じでもよいし、違っていてもよい。
画素電極809aと画素電極809bの面積比は、必要に応じて適宜変更すればよい。例
えば、画素電極809aと画素電極809bの面積比を5:5や、1:9や、3:7や、
6:4や、8:2等にすることが可能である。
【0340】
また画素電極809aと補助容量線837が重なる領域には、ゲート絶縁膜802を挟
んで、補助容量839aが形成される。同様に、画素電極809bと補助容量線837が
重なる領域には、ゲート絶縁膜802を挟んで、補助容量839bが形成される。
【0341】
補助容量線837は、ゲート電極及びゲート配線801a及び801bと同じ材料及び
同じ層に形成すればよい。
【0342】
保護膜831並びに画素電極809a及び809b上には、配向膜832を形成する。
配向膜832は、液滴吐出法やスクリーン印刷法やオフセット印刷法を用いて形成すれば
よい。
【0343】
また、対向基板811には、着色層812、遮光層(ブラックマトリクス)813、及
びオーバーコート層814からなるカラーフィルタを設け、さらに透明電極からなる対向
電極815と、その上に配向膜816が形成されている。
【0344】
液晶818は、実施の形態の記載に基づいて、基板800及び対向基板811の間に形
成される。
【0345】
本実施例に示すように、一画素を複数のサブピクセルに分割することにより、階調表示
の向上が可能となる。
【0346】
以上から、本実施例のサブピクセル分割方式の液晶表示装置では、実施例1に記載され
た効果に加えて、さらに、階調表示が向上した液晶表示装置を得ることができる。
【0347】
なお本実施例は、必要であれば実施の形態、実施例1〜実施例8の構成全てあるいはそ
の一部と組み合わせることが可能である。
【実施例10】
【0348】
本実施例では、液晶滴下に液滴吐出法を用いる例を示す。本実施例では、大面積基板か
らパネルを4枚取る例を、図39(A)〜図39(D)、図40(A)〜図40(B)、
図41(A)〜図41(B)及び図42(A)〜図42(B)
を用いて説明する。
【0349】
図39(A)は、ディスペンサ(またはインクジェット)による液晶層形成の途中の断
面図を示しており、シール材902で囲まれた画素部901を覆うように液晶材料904
を液滴吐出装置906のノズル908から吐出、噴射、または滴下させている。液滴吐出
装置906は、図39(A)中の矢印で示す移動方向903に移動させる。なお、ここで
はノズル908を移動させた例を示したが、ノズルを固定し、基板900を移動させるこ
とによって液晶層を形成してもよい。
【0350】
また、図39(B)には斜視図を示している。シール材902で囲まれた領域のみに選
択的に液晶材料904を吐出、噴射、または滴下させ、ノズル走査方向903に合わせて
滴下面905が移動している様子を示している。
【0351】
また、図39(A)の点線で囲まれた部分909を拡大した断面図が図39(C)及び
図39(D)である。液晶材料904の粘性が高い場合は、連続的に吐出され、図39(
C)のように繋がったまま付着される。一方、液晶材料904の粘性が低い場合には、間
欠的に吐出され、図39(D)に示すようにドット状に液滴が滴下される。
【0352】
なお、図39(C)及び図39(D)中、900は基板、910はTFT、911は画
素電極をそれぞれ指している。画素部901は、マトリクス状に配置された画素電極91
1と、画素電極911と接続されているスイッチング素子、ここでは実施の形態及び実施
例1の記載に基づいて作製されたTFT910と、保持容量とで構成されている。
【0353】
ここで、図40(A)〜図40(B)及び図41(A)〜図41(B)を用いて、パネ
ル作製の流れを以下に説明する。
【0354】
まず、絶縁表面に画素部901が形成された第1の基板900を用意する。第1の基板
900は、予め、配向膜の形成、ラビング処理、球状スペーサ散布、或いは柱状スペーサ
形成、またはカラーフィルタの形成などを行っておく。次いで、図40(A)に示すよう
に、不活性気体雰囲気または減圧下で第1の基板900上にディスペンサ装置またはイン
クジェット装置でシール材902を画素部901を囲む位置に形成する。半透明なシール
材902としてはフィラー(直径6μm〜24μm)を含み、且つ、粘度40〜400P
a・sのものを用いる。なお、後に接する液晶に溶解しないシール材料を選択することが
好ましい。シール材としては、アクリル系光硬化樹脂やアクリル系熱硬化樹脂を用いれば
よい。また、簡単なシールパターンであるのでシール材902は、印刷法で形成すること
もできる。
【0355】
次いで、シール材902に囲まれた領域に液晶材料904をインクジェット法により滴
下する(図40(B))。液晶材料904としては、インクジェット法によって吐出可能
な粘度を有する公知の液晶材料を用いればよい。また、液晶材料904は温度を調節する
ことによって粘度を設定することができるため、インクジェット法に適している。インク
ジェット法により無駄なく必要な量だけの液晶材料904をシール材902に囲まれた領
域に保持することができる。
【0356】
次いで、画素部901が設けられた第1の基板900と、対向電極や配向膜が設けられ
た第2の基板921とを気泡が入らないように減圧下で貼りあわせる(図41(A))。
ここでは、貼りあわせると同時に紫外線照射や熱処理を行って、シール材902を硬化さ
せる。なお、紫外線照射に加えて、熱処理を行ってもよい。
【0357】
また、図42(A)〜図42(B)に貼り合わせ時または貼り合わせ後に紫外線照射や
熱処理が可能な貼り合わせ装置の例を示す。
【0358】
図42(A)〜図42(B)中、931は第1基板支持台、932は第2基板支持台、
934は窓、938は下側定盤、939は光源である。なお、図42(A)〜図42(B
)において、図39(A)〜図39(D)、図40(A)〜図40(B)、図41(A)
〜図41(B)と対応する部分は同一の符号を用いている。
【0359】
下側定盤938は加熱ヒータが内蔵されており、シール材902を硬化させる。また、
第2基板支持台932には窓934が設けられており、光源939からの紫外光などの光
を通過させるようになっている。ここでは図示していないが窓934を通して基板の位置
アライメントを行う。また、対向基板となる第2の基板921は予め、所望のサイズに切
断しておき、第2基板支持台932に真空チャックなどで固定しておく。図42(A)は
貼り合わせ前の状態を示している。
【0360】
貼り合わせ時には、第1基板支持台931と第2基板支持台932とを下降させた後、
圧力をかけて第1の基板900と第2の基板921を貼り合わせ、そのまま紫外光を照射
することによって硬化させる。貼り合わせ後の状態を図42(B)に示す。
【0361】
次いで、スクライバー装置、ブレイカー装置、ロールカッターなどの切断装置を用いて
第1の基板900を切断する(図41(B)参照)。こうして、1枚の基板から4つのパ
ネルを作製することができる。そして、公知の技術を用いてFPCを貼りつける。
【0362】
以上の工程によって大面積基板を用いた液晶表示装置が作製される。
【0363】
また、本実施例は、必要であれば実施の形態、実施例1〜実施例9の構成全てあるいは
その一部と自由に組み合わせることが可能である。
【実施例11】
【0364】
本発明が適用される電子機器として、テレビ、ビデオカメラ、デジタルカメラ、ゴーグ
ル型ディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオコンポ等)
、コンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型
ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigita
l Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示し
うるディスプレイを備えた装置)などが挙げられる。それらの電子機器の具体例を、図4
3、図44、図45(A)〜図45(B)、図46(A)〜図46(B)、図47、図4
8(A)〜図48(E)、図49(A)〜図49(B)に示す。
【0365】
図43は液晶表示パネル2001と、回路基板2011を組み合わせた液晶モジュール
を示している。回路基板2011には、コントロール回路2012や信号分割回路201
3などが形成されており、接続配線2014によって本発明を用いて形成された液晶表示
パネル2001と電気的に接続されている。
【0366】
この液晶表示パネル2001には、複数の画素が設けられた画素部2002と、走査線
駆動回路2003、選択された画素にビデオ信号を供給する信号線駆動回路2004を備
えている。液晶表示パネル2001は、実施の形態及び実施例1〜実施例10に基づいて
作製すればよい。
【0367】
図43に示す液晶モジュールにより液晶テレビ受像器を完成させることができる。図4
4は、液晶テレビ受像機の主要な構成を示すブロック図である。チューナ2101は映像
信号と音声信号を受信する。映像信号は、映像信号増幅回路2102と、そこから出力さ
れる信号を赤、緑、青の各色に対応した色信号に変換する映像信号処理回路2103と、
その映像信号をドライバICの入力仕様に変換するためのコントロール回路2012によ
り処理される。コントロール回路2012は、走査線側と信号線側にそれぞれ信号が出力
する。デジタル駆動する場合には、信号線側に信号分割回路2013を設け、入力デジタ
ル信号をm個に分割して供給する構成としても良い。
【0368】
チューナ2101で受信した信号のうち、音声信号は音声信号増幅回路2105に送ら
れ、その出力は音声信号処理回路2106を経てスピーカ2107に供給される。制御回
路2108は受信局(受信周波数)や音量の制御情報を入力部2109から受け、チュー
ナ2101や音声信号処理回路2106に信号を送出する。
【0369】
図45(A)に示すように、液晶モジュールを筐体2201に組みこんで、テレビ受像
機を完成させることができる。液晶モジュールにより、表示画面2202が形成される。
また、スピーカ2203、操作スイッチ2204などが適宜備えられている。
【0370】
また図45(B)に、ワイヤレスでディスプレイのみを持ち運び可能なテレビ受像器を
示す。筐体2212にはバッテリー及び信号受信器が内蔵されており、そのバッテリーで
表示部2213やスピーカ部2217を駆動させる。バッテリーは充電器2210で繰り
返し充電が可能となっている。また、充電器2210は映像信号を送受信することが可能
で、その映像信号をディスプレイの信号受信器に送信することでができる。筐体2212
は操作キー2216によって制御する。また、図45(B)に示す装置は、操作キー22
16を操作することによって、筐体2212から充電器2210に信号を送ることも可能
であるため映像音声双方向通信装置とも言える。また、操作キー2216を操作すること
によって、筐体2212から充電器2210に信号を送り、さらに充電器2210が送信
できる信号を他の電子機器に受信させることによって、他の電子機器の通信制御も可能で
あり、汎用遠隔制御装置とも言える。本発明は表示部2213に適用することができる。
【0371】
本発明を図43、図44、図45(A)〜図45(B)に示すテレビ受像器使用するこ
とにより、品質のよい表示装置を備えたテレビ受像器を得ることが可能となる。
【0372】
勿論、本発明はテレビ受像機に限定されず、パーソナルコンピュータのモニタをはじめ
、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など特に大面積の
表示媒体として様々な用途に適用することができる。
【0373】
図46(A)は本発明を用いて形成された液晶表示パネル2301とプリント配線基板
2302を組み合わせたモジュールを示している。液晶表示パネル2301は、複数の画
素が設けられた画素部2303と、第1の走査線駆動回路2304、第2の走査線駆動回
路2305と、選択された画素にビデオ信号を供給する信号線駆動回路2306を備えて
いる。
【0374】
プリント配線基板2302には、コントローラ2307、中央処理装置(CPU)23
08、メモリ2309、電源回路2310、音声処理回路2311及び送受信回路231
2などが備えられている。プリント配線基板2302と液晶表示パネル2301は、フレ
キシブル・プリント・サーキット(FPC)2313により接続されている。プリント配
線基板2302には、容量素子、バッファ回路などを設け、電源電圧や信号にノイズがの
ったり、信号の立ち上がりが鈍ったりすることを防ぐ構成としても良い。また、コントロ
ーラ2307、音声処理回路2311、メモリ2309、CPU2308、電源回路23
10などは、COG(Chip On Glass)方式を用いて液晶表示パネル230
1に実装することもできる。COG方式により、プリント配線基板2302の規模を縮小
することができる。
【0375】
プリント配線基板2302に備えられたインターフェース(I/F)2314を介して
、各種制御信号の入出力が行われる。また、アンテナとの間の信号の送受信を行なうため
のアンテナ用ポート2315が、プリント配線基板2302に設けられている。
【0376】
図46(B)は、図46(A)に示したモジュールのブロック図を示す。このモジュー
ルは、メモリ2309としてVRAM2316、DRAM2317、フラッシュメモリ2
318などが含まれている。VRAM2316にはパネルに表示する画像のデータが、D
RAM2317には画像データまたは音声データが、フラッシュメモリには各種プログラ
ムが記憶されている。
【0377】
電源回路2310は、液晶表示パネル2301、コントローラ2307、CPU230
8、音声処理回路2311、メモリ2309、送受信回路2312を動作させる電力を供
給する。またパネルの仕様によっては、電源回路2310に電流源が備えられている場合
もある。
【0378】
CPU2308は、制御信号生成回路2320、デコーダ2321、レジスタ2322
、演算回路2323、RAM2324、CPU2308用のインターフェース2319な
どを有している。インターフェース2319を介してCPU2308に入力された各種信
号は、一旦レジスタ2322に保持された後、演算回路2323、デコーダ2321など
に入力される。演算回路2323では、入力された信号に基づき演算を行ない、各種命令
を送る場所を指定する。一方デコーダ2321に入力された信号はデコードされ、制御信
号生成回路2320に入力される。制御信号生成回路2320は入力された信号に基づき
、各種命令を含む信号を生成し、演算回路2323において指定された場所、具体的には
メモリ2309、送受信回路2312、音声処理回路2311、コントローラ2307な
どに送る。
【0379】
メモリ2309、送受信回路2312、音声処理回路2311、コントローラ2307
は、それぞれ受けた命令に従って動作する。以下その動作について簡単に説明する。
【0380】
入力手段2325から入力された信号は、インターフェース2314を介してプリント
配線基板2302に実装されたCPU2308に送られる。制御信号生成回路2320は
、ポインティングデバイスやキーボードなどの入力手段2325から送られてきた信号に
従い、VRAM2316に格納してある画像データを所定のフォーマットに変換し、コン
トローラ2307に送付する。
【0381】
コントローラ2307は、パネルの仕様に合わせてCPU2308から送られてきた画
像データを含む信号にデータ処理を施し、液晶表示パネル2301に供給する。またコン
トローラ2307は、電源回路2310から入力された電源電圧やCPU2308から入
力された各種信号をもとに、Hsync信号、Vsync信号、クロック信号CLK、交
流電圧(AC Cont)、切り替え信号L/Rを生成し、液晶表示パネル2301に供
給する。
【0382】
送受信回路2312では、アンテナ2328において電波として送受信される信号が処
理されており、具体的にはアイソレータ、バンドパスフィルタ、VCO(Voltage
Controlled Oscillator)、LPF(Low Pass Fil
ter)、カプラ、バランなどの高周波回路を含んでいる。送受信回路2312において
送受信される信号のうち音声情報を含む信号が、CPU2308からの命令に従って、音
声処理回路2311に送られる。
【0383】
CPU2308の命令に従って送られてきた音声情報を含む信号は、音声処理回路23
11において音声信号に復調され、スピーカ2327に送られる。またマイク2326か
ら送られてきた音声信号は、音声処理回路2311において変調され、CPU2308か
らの命令に従って、送受信回路2312に送られる。
【0384】
コントローラ2307、CPU2308、電源回路2310、音声処理回路2311、
メモリ2309を、本実施例のパッケージとして実装することができる。本実施例は、ア
イソレータ、バンドパスフィルタ、VCO(Voltage Controlled O
scillator)、LPF(Low Pass Filter)、カプラ、バランな
どの高周波回路以外であれば、どのような回路にも応用することができる。
【0385】
図47は、図46(A)〜図46(B)に示すモジュールを含む携帯電話機の一態様を
示している。液晶表示パネル2301はハウジング2330に脱着自在に組み込まれる。
ハウジング2330は液晶表示パネル2301のサイズに合わせて、形状や寸法を適宜変
更することができる。液晶表示パネル2301を固定したハウジング2330はプリント
基板2331に嵌着されモジュールとして組み立てられる。
【0386】
液晶表示パネル2301はFPC2313を介してプリント基板2331に接続される
。プリント基板2331には、スピーカ2332、マイクロフォン2333、送受信回路
2334、CPU及びコントローラなどを含む信号処理回路2335が形成されている。
このようなモジュールと、入力手段2336、バッテリ2337、アンテナ2340を組
み合わせ、筐体2339に収納する。液晶表示パネル2301の画素部は筐体2339に
形成された開口窓から視認できように配置する。
【0387】
本実施例に係る携帯電話機は、その機能や用途に応じてさまざまな態様に変容し得る。
例えば、表示パネルを複数備えたり、筐体を適宜複数に分割して蝶番により開閉式とした
構成としても、上記した作用効果を奏することができる。
できる。
【0388】
本発明を図46(A)〜図46(B)、図47に示す携帯電話に使用することにより、
品質のよい表示装置を備えた携帯電話を得ることが可能となる。
【0389】
図48(A)は液晶ディスプレイであり、筐体2401、支持台2402、表示部24
03などによって構成されている。本発明は表示部2403に適用が可能である。
【0390】
本発明を使用することにより、品質のよい表示装置を備えた液晶ディスプレイを得るこ
とが可能となる。
【0391】
図48(B)はコンピュータであり、本体2501、筐体2502、表示部2503、
キーボード2504、外部接続ポート2505、ポインティングマウス2506等を含む
。本発明は表示部2503に適用することができる。
【0392】
本発明を使用することにより、品質のよい表示装置を備えたコンピュータを得ることが
可能となる。
【0393】
図48(C)は携帯可能なコンピュータであり、本体2601、表示部2602、スイ
ッチ2603、操作キー2604、赤外線ポート2605等を含む。本発明は表示部26
02に適用することができる。
【0394】
本発明を使用することにより、品質のよい表示装置を備えたコンピュータを得ることが
可能となる。
【0395】
図48(D)は携帯型のゲーム機であり、筐体2701、表示部2702、スピーカ部
2703、操作キー2704、記録媒体挿入部2705等を含む。本発明は表示部270
2に適用することができる。
【0396】
本発明を使用することにより、品質のよい表示装置を備えたゲーム機を得ることが可能
となる。
【0397】
図48(E)は記録媒体を備えた携帯型の画像再生装置(具体的にはDVD再生装置)
であり、本体2801、筐体2802、表示部A2803、表示部B2804、記録媒体
(DVD等)読込部2805、操作キー2806、スピーカ部2807等を含む。表示部
A2803は主として画像情報を表示し、表示部B2804は主として文字情報を表示す
る。本発明は表示部A2803、表示部B2804及び制御用回路部等に適用することが
できる。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。
【0398】
本発明を使用することにより、品質のよい表示装置を備えた画像再生装置を得ることが
可能となる。
【0399】
図49(A)及び図49(B)は、本発明の液晶表示装置をカメラ、例えばデジタルカ
メラに組み込んだ例を示す図である。図49(A)は、デジタルカメラの前面方向から見
た斜視図、図49(B)は、後面方向から見た斜視図である。図49(A)において、デ
ジタルカメラには、リリースボタン2901、メインスイッチ2902、ファインダ窓2
903、フラッシュ2904、レンズ2905、鏡胴2906、筺体2907が備えられ
ている。
【0400】
また、図49(B)において、ファインダ接眼窓2911、モニタ2912、操作ボタ
ン2913が備えられている。
【0401】
リリースボタン2901は、半分の位置まで押下されると、焦点調整機構および露出調
整機構が作動し、最下部まで押下されるとシャッターが開く。
【0402】
メインスイッチ2902は、押下又は回転によりデジタルカメラの電源のON/OFF
を切り替える。
【0403】
ファインダ窓2903は、デジタルカメラの前面のレンズ2905の上部に配置されて
おり、図49(B)に示すファインダ接眼窓2911から撮影する範囲やピントの位置を
確認するための装置である。
【0404】
フラッシュ2904は、デジタルカメラの前面上部に配置され、被写体輝度が低いとき
に、リリースボタン2901が押下されてシャッターが開くと同時に補助光を照射する。
【0405】
レンズ2905は、デジタルカメラの正面に配置されている。レンズは、フォーカシン
グレンズ、ズームレンズ等により構成され、図示しないシャッター及び絞りと共に撮影光
学系を構成する。また、レンズの後方には、CCD(Charge Coupled D
evice)等の撮像素子が設けられている。
【0406】
鏡胴2906は、フォーカシングレンズ、ズームレンズ等のピントを合わせるためにレ
ンズの位置を移動するものであり、撮影時には、鏡胴を繰り出すことにより、レンズ29
05を手前に移動させる。また、携帯時は、レンズ2905を沈銅させてコンパクトにす
る。なお、本実施例においては、鏡胴を繰り出すことにより被写体をズーム撮影すること
ができる構造としているが、この構造に限定されるものではなく、筺体2907内での撮
影光学系の構成により鏡胴を繰り出さずともズーム撮影が可能なデジタルカメラでもよい

【0407】
ファインダ接眼窓2911は、デジタルカメラの後面上部に設けられており、撮影する
範囲やピントの位置を確認する際に接眼するために設けられた窓である。
【0408】
操作ボタン2913は、デジタルカメラの後面に設けられた各種機能ボタンであり、セ
ットアップボタン、メニューボタン、ディスプレイボタン、機能ボタン、選択ボタン等に
より構成されている。
【0409】
本発明の液晶表示装置は、図49(A)及び図49(B)に示すカメラのモニタ291
2に組み込むことができる。これにより品質のよい表示装置を備えたデジタルカメラを得
ることが可能となる。
【0410】
なお、本実施例に示した例はごく一例であり、これらの用途に限定するものではないこ
を付記する。
【0411】
また本実施例は、実施の形態及び実施例1〜実施例10の構成全てあるいはその一部と
自由に組み合せて実施することが可能である。
【産業上の利用可能性】
【0412】
本発明により、保護膜を開口部になるべく重ならないように形成することで、開口部が
増大した表示装置を得ることができる。さらに本発明では、開口部をソース配線に平行に
列方向に延在させることにより、保護膜形成のための絶縁膜のエッチングの際に発生する
残渣を低減することができ、残渣に由来する画素電極とドレイン電極とのコンタクト不良
を低減することができる。
【0413】
また本発明によって、品質のよい表示装置を備えた電子機器を得ることが可能となる。
【符号の説明】
【0414】
100 基板
101 開口部
102 ゲート電極及びゲート配線
103 島状半導体膜
103a 島状非晶質半導体膜
103b 島状不純物半導体膜
104 ソース電極及びソース配線
105 ドレイン電極
106 画素電極
107 補助容量
108 ゲート絶縁膜
109 保護膜
201 TFT
203 島状半導体膜
204 ソース領域
205 ドレイン領域
206 チャネル形成領域
208 配向膜
211 対向基板
212 着色層
213 遮光層(ブラックマトリクス)
214 オーバーコート層
215 対向電極
216 配向膜
218 液晶
221 シール材
222 FPC(Flexible Printed Circuit)
231 画素部
300 基板
301 開口部
302 ゲート電極及びゲート配線
303 島状半導体膜
304 ソース電極及びソース配線
305 ドレイン電極
306 画素電極
307 補助容量
308 ゲート絶縁膜
309 保護膜
314 ソース領域
315 ドレイン領域
317 レジストマスク
321 非晶質半導体膜
322 一導電型を付与する不純物を含有する半導体膜
323 導電膜
330 基板
331 開口部
332 ゲート電極及びゲート配線
333 島状半導体膜
334 ソース電極及びソース配線
335 ドレイン電極
336 画素電極
337 レジストマスク
338 ゲート絶縁膜
339 保護膜
341 非晶質半導体膜
342 一導電型を付与する不純物を含有する半導体膜
344 ソース領域
345 ドレイン領域
346 導電膜
401 下層ソース電極及びソース配線
402 下層ドレイン電極
403 上層ソース電極及びソース配線
404 電極
406 絶縁膜
407 保護膜
408 上層ドレイン電極
409 電極
411 開口部
414 ソース電極及びソース配線
415 ドレイン電極
416 画素電極
431 下層ソース電極及びソース配線
432 下層ドレイン電極
433 中層ソース電極及びソース配線
434 中層ドレイン電極
435 上層ソース電極及びソース配線
436 上層ドレイン電極
437 保護膜
439 絶縁膜
441 開口部
446 画素電極
454 ソース電極及びソース配線
455 ドレイン電極
501 反射電極
502 反射電極
503 反射電極
504 反射電極
511 基板
512 配線
513 ゲート絶縁膜
514 配線
515 保護膜
516 レジストマスク
517 保護膜
518 レジストマスク
521 保護膜
523 導電膜
525 コンタクトホール
526 開口部
600 基板
601 ゲート配線
602 コモン配線
603 コンタクトホール
604 開口部
605 ソース配線
606 ドレイン電極
607 島状半導体膜
608 ソース電極
611 画素電極
612 コモン電極
614 ゲート絶縁膜
615 保護膜
621 ソース領域
622 ドレイン領域
630 基板
631 ゲート配線
632 ゲート絶縁膜
633 島状半導体膜
634 ソース領域
635 ドレイン領域
636 ドレイン電極
637 ソース電極
638 ソース配線
639 画素電極
641 対向基板
642 着色層
643 遮光層(ブラックマトリクス)
644 オーバーコート層
645 対向電極
646 配向膜
648 液晶
651 保護膜
652 配向膜
653 溝
655 突起
657 開口部
661 液晶分子
663 電界
665 補助容量
700 基板
701 ゲート配線
702 ゲート絶縁膜
703 島状半導体膜
704 ソース領域
705 ドレイン領域
707 ソース電極
706 ドレイン電極
708 ソース配線
709 画素電極
711 対向基板
712 着色層
713 遮光層(ブラックマトリクス)
714 オーバーコート層
715 対向電極
716 配向膜
717 溝
718 液晶
731 保護膜
732 配向膜
737 開口部
739 溝
741 液晶分子
742 電界
744 補助容量
800 基板
801 ゲート配線
801a ゲート配線
801b ゲート配線
802 ゲート絶縁膜
803a 島状半導体膜
803b 島状半導体膜
804a ソース領域
804b ソース領域
805a ドレイン領域
805b ドレイン領域
806a ドレイン電極
806b ドレイン電極
807a ソース電極
807b ソース電極
808 ソース配線
809a 画素電極
809b 画素電極
811 対向基板
812 着色層
813 遮光層(ブラックマトリクス)
814 オーバーコート層
815 対向電極
816 配向膜
818 液晶
821a TFT
821b TFT
831 保護膜
832 配向膜
835 開口部
837 補助容量線
839a 補助容量
839b 補助容量
900 基板
901 画素部
902 シール材
903 移動方向
904 液晶材料
905 滴下面
906 液滴吐出装置
908 ノズル
909 部分
910 TFT
911 画素電極
921 基板
931 第1基板支持台
932 第2基板支持台
934 窓
938 下側定盤
939 光源
1000 基板
1001 コンタクトホール
1002 ゲート電極及びゲート配線
1003 半導体膜
1003a 島状半導体膜
1003bs ソース領域
1003bd ドレイン領域
1004 ソース電極及びソース配線
1005 ドレイン電極
1006 画素電極
1007 補助容量
1011 コンタクトホール
1012 ゲート電極及びゲート配線
1013 半導体膜
1014 ソース電極及びソース配線
1015 ドレイン電極
1016 画素電極
1017 補助容量
1018 補助容量線
1021 第1の導電膜
1022 ゲート絶縁膜
1023 非晶質半導体膜
1024 非晶質半導体膜
1025a 島状半導体膜
1025b 島状不純物半導体膜
1026 第2の導電膜
1027 保護膜
1029 第3の導電膜
1031 コンタクトホール
1032 ゲート電極及びゲート配線
1033 半導体膜
1034 ソース電極及びソース配線
1035 ドレイン電極
1036 画素電極
1037a 補助容量
1037b 補助容量
1038 下層補助容量線
1039a 上層補助容量電極
1039b 上層補助容量電極
2001 液晶表示パネル
2002 画素部
2003 走査線駆動回路
2004 信号線駆動回路
2011 回路基板
2012 コントロール回路
2013 信号分割回路
2014 接続配線
2101 チューナ
2102 映像信号増幅回路
2103 映像信号処理回路
2105 音声信号増幅回路
2106 音声信号処理回路
2107 スピーカ
2108 制御回路
2109 入力部
2201 筐体
2202 表示画面
2203 スピーカ
2204 操作スイッチ
2210 充電器
2212 筐体
2213 表示部
2216 操作キー
2217 スピーカ部
2301 液晶表示パネル
2302 プリント配線基板
2303 画素部
2304 走査線駆動回路
2305 走査線駆動回路
2306 信号線駆動回路
2307 コントローラ
2308 CPU
2309 メモリ
2310 電源回路
2311 音声処理回路
2312 送受信回路
2313 フレキシブル・プリント・サーキット(FPC)
2314 インターフェース(I/F)
2315 アンテナ用ポート
2316 VRAM
2317 DRAM
2318 フラッシュメモリ
2319 インターフェース
2320 制御信号生成回路
2321 デコーダ
2322 レジスタ
2323 演算回路
2324 RAM
2325 入力手段
2326 マイク
2327 スピーカ
2328 アンテナ
2330 ハウジング
2331 プリント基板
2332 スピーカ
2333 マイクロフォン
2334 送受信回路
2335 信号処理回路
2336 入力手段
2337 バッテリ
2339 筐体
2340 アンテナ
2401 筐体
2402 支持台
2403 表示部
2501 本体
2502 筐体
2503 表示部
2504 キーボード
2505 外部接続ポート
2506 ポインティングマウス
2601 本体
2602 表示部
2603 スイッチ
2604 操作キー
2605 赤外線ポート
2701 筐体
2702 表示部
2703 スピーカ部
2704 操作キー
2705 記録媒体挿入部
2801 本体
2802 筐体
2803 表示部A
2804 表示部B
2805 記録媒体(DVD等)読込部
2806 操作キー
2807 スピーカ部
2901 リリースボタン
2902 メインスイッチ
2903 ファインダ窓
2904 フラッシュ
2905 レンズ
2906 鏡胴
2907 筺体
2911 ファインダ接眼窓
2912 モニタ
2913 操作ボタン

【特許請求の範囲】
【請求項1】
基板と、
前記基板上に設けられ、チャネル形成領域、ソース領域、ドレイン領域、ゲート絶縁膜と、ゲート配線を有する薄膜トランジスタと、
前記ソース領域に接続されるソース配線と、
前記ドレイン領域に接続されるドレイン電極と、
前記基板上に設けられた補助容量と、
前記ドレイン電極に接続される画素電極と、
前記薄膜トランジスタ及び前記ソース配線を覆い、前記画素電極の周辺部と重なる保護
膜と、
を有し、
前記保護膜は、前記ゲート配線および前記ソース配線とで囲まれた開口部を有し、
前記補助容量は前記保護膜に覆われていないことを特徴とする半導体装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate

【図48】
image rotate

【図49】
image rotate

【図50】
image rotate


【公開番号】特開2013−80261(P2013−80261A)
【公開日】平成25年5月2日(2013.5.2)
【国際特許分類】
【出願番号】特願2013−5134(P2013−5134)
【出願日】平成25年1月16日(2013.1.16)
【分割の表示】特願2012−63042(P2012−63042)の分割
【原出願日】平成18年12月13日(2006.12.13)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】