説明

反応検出装置

【課題】マイクロポンプの特性バラツキを簡単な方法で補正し、所定の流量で駆動液をマイクロチップに送液する反応検出装置を提供する。
【解決手段】流体をマイクロチップに注入するポンプと、ポンプの性能データを記憶する記憶手段と、ポンプを駆動する駆動手段と、駆動手段を制御する制御手段と、を有し、制御手段は、性能データに基づいて駆動手段を制御することを特徴とする反応検出装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は反応検出装置に関する。
【背景技術】
【0002】
近年、マイクロマシン技術および超微細加工技術を駆使することにより、化学分析、化学合成などを行うための装置、手段(例えばポンプ、バルブ、流路、センサなど)を微細化して1チップ上に集積化したシステムが開発されている(例えば特許文献1参照)。
【0003】
これはμ−TAS(Micro total Analysis System:マイクロ総合分析システム)、バイオリアクタ、ラボ・オン・チップ(Lab−on−chips)、バイオチップとも呼ばれ、医療検査、診断分野、環境測定分野、農産製造分野でその応用が期待されている。現実には遺伝子検査に見られるように、煩雑な工程、熟練した手技、機器類の操作が必要とされる場合には、自動化、高速化および簡便化されたミクロ化分析システムは、コスト、必要試量、所要時間のみならず、時間および場所を選ばない分析を可能とすることによる恩恵は多大と言える。
【0004】
臨床検査を始めとする各種検査を行う現場では、場所を選ばず迅速に結果を出すこれらの検査チップにおける分析の定量性、解析の精度、経済性などが重要視されている。一方、検査チップではそのサイズ、形態からの厳しい制約を受けるため、シンプルな構成で、高い信頼性の送液システムを確立することが要求される。
【0005】
マイクロポンプとしては、アクチュエータを設けた弁室の流出入孔に逆止弁を設けた逆止弁型のポンプなど各種のものが使用できるが、例えば、特許文献1に開示されているように、ピエゾポンプを用いることが好適である。ピエゾポンプによれば、例えば、ポンプの駆動電圧および周波数を変えることによって、液体の送液方向、送液速度を制御できるようになっている。
【0006】
ところで、検体と試薬などが収容された検査チップを、上記のマイクロポンプなどを備えた流体制御検出装置内により検査するマイクロ総合分析システムでは、検体や試薬の必要量をできるだけ少なくすることが求められている。また、これに加えて短時間で適正な分析を終了させることが求められている。
【0007】
このような要求に答えるには、マイクロポンプによる駆動液の送液の安定化を図らなければならない。マイクロ総合分析システムでは、流速、流量などが一定に保持されていないと、分析結果に悪影響を及ぼす虞がある。
【0008】
しかしながら、検査チップ内に、外部のマイクロポンプから駆動液を供給する場合に、マイクロポンプとの間の接続が確実に行われていないと、液漏れが発生して下流に流れる流体が一定速度で流れなかったり、時間当たりの流量に過不足が生じたりする場合があった。このような課題に対応するため、特許文献2では検査チップ本体内の駆動液の流れ方向の上流側に、駆動液の流れ速度などの情報を得るための検出装置を設け、検出した結果に基づいて流量を調整する方法を開示している。
【特許文献1】特開2001−322099号公報
【特許文献2】特開2006−275734号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかしながら、マイクロポンプの性能はバラツキが大きいため、バラツキの上限又は下限レベルの性能のマイクロポンプの場合は駆動液を所望の流量に安定して制御することが難しかった。
【0010】
本発明は、上記課題に鑑みてなされたものであって、マイクロポンプの特性バラツキを簡単な方法で補正し、所定の流量で駆動液をマイクロチップに送液する反応検出装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記の課題を解決するために、本発明は以下の特徴を有するものである。
【0012】
1.
流体をマイクロチップに注入するポンプと、
前記ポンプの性能データを記憶する記憶手段と、
前記ポンプを駆動する駆動手段と、
前記駆動手段を制御する制御手段と、
を有し、
前記制御手段は、前記性能データに基づいて前記駆動手段を制御することを特徴とする反応検出装置。
【0013】
2.
前記ポンプは、
流路抵抗が差圧に応じて変化する第1流路と、
差圧の変化に対する流路抵抗の変化の割合が前記第1流路よりも小さい第2流路と、
前記第1流路および前記第2流路に接続された加圧室と、
前記加圧室の内部の圧力を変化させるためのピエゾアクチュエータと、
を備えていることを特徴とする1に記載の反応検出装置。
【0014】
3.
前記性能データは、前記駆動手段が発生する駆動電圧波形の立ち上がり時間と前記ポンプの吐出する前記流体の流量または圧力との関係を示すデータであることを特徴とする1または2に記載の反応検出装置。
【0015】
4.
前記制御手段は、前記駆動電圧波形の立ち上がり時間を変化させることにより前記流量または前記圧力を制御することを特徴とする3に記載の反応検出装置。
【0016】
5.
前記性能データは、前記駆動手段が発生する駆動電圧波形の立ち下がり時間と前記ポンプの吐出する前記流体の流量または圧力との関係を示すデータであることを特徴とする1または2に記載の反応検出装置。
【0017】
6.
前記制御手段は、前記駆動電圧波形の立ち下がり時間を変化させることにより前記流量または前記圧力を制御することを特徴とする5に記載の反応検出装置。
【発明の効果】
【0018】
本発明によれば、予め記憶手段に記憶した各マイクロポンプの性能データに基づいてマイクロポンプの駆動を制御するので、所定の流量で駆動液をマイクロチップに送液する反応検出装置を提供することができる。
【発明を実施するための最良の形態】
【0019】
以下、図面に基づき本発明の実施形態を説明する。
【0020】
図1は、本発明の実施形態における反応検出装置80の外観図である。
【0021】
反応検出装置80はマイクロチップ1に予め注入された検体と、試薬との反応を自動的に検出し、表示部84に結果を表示する装置である。筐体82には挿入口83があり、マイクロチップ1を挿入口83に差し込んで筐体82の内部にセットするようになっている。
【0022】
なお、挿入口83はマイクロチップ1を挿入時に接触しないように、マイクロチップ1の厚みより十分高さがある。85はメモリカードスロット、86はプリント出力口、87は操作パネル、88は入出力端子である。
【0023】
検査担当者は図1の矢印方向にマイクロチップ1を挿入し、操作パネル87を操作して検査を開始させる。筐体82の内部では、制御手段の指令により図1には図示せぬマイクロポンプユニット5がマイクロチップ1に駆動液等の液体を注入し、マイクロチップ1内の反応の検査が自動的に行われる。検査が終了すると液晶パネルなどで構成される表示部84に結果が表示される。検査結果は操作パネル87の操作により、プリント出力口86よりプリントを出力したり、メモリカードスロット85に挿入されたメモリカードに記憶することができる。また、外部入出力端子88から例えばLANケーブルを使って、パソコンなどにデータを保存することができる。
【0024】
検査担当者は、検査終了後、マイクロチップ1を挿入口83から取り出す。
【0025】
次に、本発明の実施形態に係わるマイクロポンプユニット5の一例について、図2を用いて説明する。
【0026】
図2(a)は本発明に係わるマイクロポンプユニット5の平面図であり、図2(b)は左側面図、図2(c)は右側面図である。また、図2(d)は図2(a)にA−Aで示す部分の断面図である。
【0027】
図2に示すようにマイクロポンプユニット5は、第1の基板11、第2の基板12から成る。なお、図2(a)において、第1の基板11に設けられた溝部を点線で図示している。
【0028】
図2(a)のA−Aで示す部分が一つのマイクロポンプMPを構成しており、後に説明するマイクロポンプ機構によって、例えば入出力口145から吸入した液体を入出力口146から吐出する。あるいは、逆方向に入出力口146から吸入した液体を入出力口145から吐出することもできる。図2(a)の例では、第1の基板11に8つのマイクロポンプMPが形成されている。これらのマイクロポンプMPは互いに同じ構造であるから、以下においては図2(d)を用いてその構造を説明する。
【0029】
第1の基板11は、例えば幅17mm、奥行き35mm、厚み0.2mmの大きさの長方形のシート状である。図2(d)に示すように、第1の基板11に形成された各マイクロポンプMPは、ポンプ室121、ダイヤフラム122、第1絞り流路123、第1流路124、第2絞り流路125、および第2流路126を有する。
【0030】
第1の基板11は、例えばシリコンウエハを公知のフォトリソグラフィー工程で所定の形状に加工して形成する。つまり、パターニングされたシリコン基板をICPドライエッチング装置を用いて所定の深さまでエッチングする。
【0031】
エッチング工程の後、ダイシングを行ってシリコンウエハから所定の外形形状に第1の基板11を切り出す。第1の基板11の厚みは例えば0.2mm程度である。
【0032】
図2(d)に示すように、ダイヤフラム122の外側の面には、圧電素子112が接着されている。圧電素子112の駆動のための2つの電極は、圧電素子112の両側の表面に引き出され、図示せぬフレキシブル配線と接続される。圧電素子112には例えばピエゾアクチュエータなどを用いる。
【0033】
第2の基板12は、第1の基板11に形成された各マイクロポンプMPの流路等を第1の基板11に密着して覆う必要がある。そのため、第2の基板12の熱膨張率は第1の基板11にできるだけ近いことが望ましい。第1の基板11の材料がシリコンの場合、例えば、パイレックス(登録商標)ガラス(Pyrex はCorning Glass Warks社の登録商標)、テンパックスガラス(Tempax は Schott Glaswerk社の登録商標)などが用いられる。これらは熱膨張率がシリコン基板とほぼ同じである。第2の基板12の形状は、例えば、第1の基板11と同じ幅17mm、奥行き35mmであり、厚みは1mmである。
【0034】
次に、超音波加工などの方法を用いて、第2の基板12に入出力口145、入出力口146の孔開け加工を行う。孔開け加工の後、第2の基板12は第1の基板11と2つの辺が一致するように位置合わせを行って、例えば陽極接合により接合する。
【0035】
このようにしてマイクロポンプユニット5を作製することができる。マイクロポンプユニット5は、上に述べたマイクロポンプMPの作動によって、一方の入出力口145から液体を吸い込み、他方の入出力口146から液体を吐出する。また、圧電素子112に印加する駆動電圧を制御することによって、液体の吸入と吐出の方向を逆にすることができる。なお、第1の基板11それ自体の構造については、従来の技術の項で述べた特開2001−322099号を参照することができる。
【0036】
次にマイクロポンプユニット5の動作原理について説明する。
【0037】
第2絞り流路125は、その流入側と流出側との差圧が零に近いときは流路抵抗が低いが、差圧が大きくなると流路抵抗が大きくなる。つまり圧力依存性が大きい。第1絞り流路123は、差圧が零に近いときの流路抵抗は第2絞り流路125の場合よりも大きいが、圧力依存性がほとんどなく、差圧が大きくなっても流路抵抗は余り変化せず、差圧が大きい場合に流路抵抗が第2絞り流路125よりも小さくなる。
【0038】
このような流路抵抗特性は、流路を流れる液体(流体)が、差圧の大きさに応じて乱流となるようにするか、または差圧にかかわりなく常に層流となるようにするか、によって得ることが可能である。具体的には、例えば、第2絞り流路125を流路長の短いオリフィスとし、第1絞り流路123を第2絞り流路125と内径が同じで流路長の長いノズルとすることによって実現することが可能である。
【0039】
第1絞り流路123と第2絞り流路125のこのような流路抵抗特性を利用して、ポンプ室121に圧力を発生させるとともに、その圧力の変化の割合を制御することによって、流路抵抗の低い方に液体を吐出するようなポンプ作用を実現することができる。
【0040】
つまり、ポンプ室121の圧力を上昇させるとともに、その変化の割合を大きくしておけば、差圧が大きくなって第2絞り流路125の流路抵抗の方が第1絞り流路123の流路抵抗よりも大きくなり、ポンプ室121内の液体は第1絞り流路123から吐出する(吐出工程)。そして、ポンプ室121の圧力を下降させるとともに、その変化の割合を小さくすれば、差圧が小さく維持されて第1絞り流路123の流路抵抗の方が第2絞り流路125の流路抵抗よりも大きくなり、第2絞り流路125からポンプ室121内に液体が流入する(吸入工程)。
【0041】
これとは逆に、ポンプ室121の圧力を上昇させるとともに、その変化の割合を小さくすれば、差圧が小さく維持されて第1絞り流路123の流路抵抗の方が第2絞り流路125の流路抵抗よりも大きくなり、ポンプ室121内の液体は第2絞り流路125から吐出する(吐出工程)。そして、ポンプ室121の圧力を下降させるとともに、その変化の割合を大きくすれば、差圧が大きくなって第1絞り流路123の流路抵抗の方が第2絞り流路125の流路抵抗よりも小さくなり、第1絞り流路123からポンプ室121内に液体が流入する(吸入工程)。
【0042】
このようなポンプ室121の圧力制御は、圧電素子112に供給する駆動電圧を制御し、ダイヤフラム122の変形の量およびタイミングを制御することによって実現される。
【0043】
図3は圧電素子112に供給する駆動電圧Eと流量Qの関係を示す説明図である。圧電素子112に高い駆動電圧を印加するとポンプ室121の圧力が高まるものとする。
【0044】
図3(a−1)に示す波形では立ち上がり時間T1<立ち下がり時間T3なので、ポンプ室121の圧力が上昇するときの変化の割合は、ポンプ室121の圧力が下降するときの変化の割合より大きい。したがって、前述の様にポンプ室121内の液体は第1絞り流路123から吐出する。
【0045】
図3(a−2)は流路123から吐出された液体の、流路124における流量Qの一例を示している。立ち上がり時間T1の期間、ポンプ室121の圧力が急に上昇するので流路124を流れる流量Qも急に上昇する。T2の休止期間の後、立ち下がり時間T3の期間はポンプ室121の圧力が緩やかに下降すると、おもに第2絞り流路125からポンプ室121内に液体が流入し、一部が第1絞り流路123からポンプ室121内に流入する。そのため、流量Qは緩やかに減少する。しかし、立ち下がり時間T3の期間に減少する流量Qは立ち上がり時間T1の期間に流入した流量Qより少なく、T4の休止期間においては、初期状態よりも流量Qが増加している。このようにT1からT4のサイクルを繰り返すことにより流量Qは増加していく。
【0046】
一方、図3(b−1)に示す波形では立ち下がり時間T7<立ち上がり時間T5なので、ポンプ室121の圧力が上昇するときの変化の割合は、ポンプ室121の圧力が下降するときの変化の割合より小さい。したがって、前述の様に第1絞り流路123からポンプ室121内に液体が流入する。
【0047】
図3(b−2)は流路123から吸入された液体の、流路124における流量Qの一例を示している。立ち上がり時間T5の期間、ポンプ室121の圧力が緩やかに上昇すると、おもに第2絞り流路125から液体が吐出し、一部が第1絞り流路123から吐出する。そのため、流量Qは緩やかに増加する。一方、T6の休止期間の後、立ち下がり時間T7の期間においてポンプ室121の圧力が急に下降すると、第1絞り流路123からポンプ室121内に液体が流入する。そのため、流量Qは急に減少する。しかし、T5の期間に増加する流量Qは立ち下がり時間T7の期間に吐出した流量Qより少なく、T8の休止期間においては、初期状態よりも流量Qが減少している。このようにT5からT8のサイクルを繰り返すことにより流量Qは減少していく。
【0048】
図3において、圧電素子112に印加する最大電圧e1は、数ボルトから数十ボルト程度、最大で100ボルト程度である。また、時間T1,T7は20μs程度、時間T2,T6は0〜数μs程度、時間T3,T5は60μs程度である。時間T4,T8は0であってもよい。駆動電圧Eの周波数は11kHz程度である。図3(a−1)および図3(b−1)に示す駆動電圧Eによって、流路23には、例えば図3(a−2)および図3(b−2)に示すような流量が得られる。なお、図3(a−2)および図3(b−2)における流量曲線は、ポンプ動作によって得られる流量を模式的に示したもので、実際には流体の慣性振動が重畳する。したがって、これら図に示された流量曲線に振動成分が重畳された曲線が実際に得られる流量を示すこととなる。
【0049】
図4は圧電素子112に供給する駆動電圧波形の立ち上がり時間T1、立ち下がり時間T2と流量Q、圧力Pの関係を示す説明図、図5は圧電素子112に供給する最大電圧e1と流量Q、圧力Pの関係を示す説明図である。圧力Pは入出力口146から液体を吐出する圧力である。
【0050】
最初に図5を用いて、マイクロポンプMPの特性バラツキについて説明する。横軸は図3に示す駆動電圧波形の最大電圧e1(V)、縦軸は流量Qまたは圧力Pである。図5(a)の例では最大電圧e1が40Vのとき流量Qが400nl/sのマイクロポンプMPと、600nl/sのマイクロポンプMPがあることを示している。このように、ピエゾアクチュエータなどの圧電素子112は、特性のバラツキが大きいため所定の流量Qまたは圧力Pを得られる最大電圧e1はマイクロポンプMP毎に異なっている。
【0051】
所定の流量Qまたは圧力Pを得るため各マイクロポンプMP毎に最大電圧e1を変更する方法では、マイクロポンプMP毎に最大電圧e1を設定可能な電源回路を設ける必要があり回路構成が複雑になるという問題がある。
【0052】
図4(a)は図3(a−1)に図示する駆動電圧Eの波形の一周期分を図示している。
【0053】
図4(b)はマイクロポンプMPの性能データの一つである駆動電圧波形の立ち上がり時間T1と流量Q、圧力Pとの関係を示すグラフである。T2〜T4が一定条件のとき、図4(b)のように立ち上がり時間T1の期間を変更することにより流量Qまたは圧力Pを制御することができる。図4(b)では立ち上がり時間T1がT10のとき最大であり、T10を超えても、またT10未満でも流量Q、圧力Pが減少する。
【0054】
図4(b)のグラフは各マイクロポンプ毎に立ち上がり時間T1以外の条件を一定にして流量Q、圧力Pを測定することで得られる。例えば、最大電圧e1が40V、時間T2は2μs、時間T3は60μs、時間T4は1μs、駆動電圧Eの周波数は11kHzという条件で立ち上がり時間T1を変えてマイクロポンプMPを駆動し、流量Q、圧力Pを測定する。
【0055】
このようにして流量Qまたは圧力Pを測定すると図4(b)のような性能データのグラフが得られる。例えば、所定の流量Qが例えば400nl/sのとき、マイクロポンプMP毎に予め取得した性能データからこの流量Qが得られる立ち上がり時間T1の値を求め、そのほかの条件は性能データを取得した時の条件でマイクロポンプMPを駆動する。
【0056】
図4(c)はマイクロポンプMPの性能データの一つである駆動電圧波形の立ち下がり期間T3と流量Q、圧力Pの関係を示すグラフである。同様に、T1、T3、T4を一定条件にして立ち下がり時間T3を変えてマイクロポンプMPを駆動し、流量Q、圧力Pを測定することで得られる。また、性能データから所望の流量Q、圧力Pが得られる立ち下がり時間T3を求めることができる。
【0057】
このように、流量Q、圧力Pは駆動電圧波形の立ち上がり時間T1、立ち下がり期間T3を変更することにより簡単に制御できる。
【0058】
なお、図3に示すマイクロポンプMPの駆動電圧Eの波形の期間立ち上がり時間T5、立ち下がり時間T7についても同様に流量Q、圧力Pの関係を測定し、立ち上がり時間T5、立ち下がり時間T7を可変することにより所望の流量Q、圧力Pを得ることができる。
【0059】
次に、本発明の実施形態に係わるマイクロチップ1の一例について、図6を用いて説明する。
【0060】
図6(a)、図6(b)はマイクロチップ1の外観図である。図6(a)において矢印は、後述する筐体82にマイクロチップ1を挿入する挿入方向であり、図6(a)は挿入時にマイクロチップ1の上面となる面を図示している。図6(b)はマイクロチップ1の側面図である。
【0061】
図6(a)の検出部の窓111aと検出部の流路111bは検体と試薬の反応を光学的に検出するために設けられており、ガラスや樹脂などの透明な部材で構成されている。110a、110b、110c、110d、110eは内部の微細流路に連通する駆動液注入部であり、各駆動液注入部110から駆動液を注入し内部の試薬等を駆動する。213はマイクロチップ1に検体を注入するための検体注入部である。
【0062】
図6(b)に示すように、マイクロチップ1は溝形成基板108と、溝形成基板108を覆う被覆基板109から構成されている。次に、マイクロチップ1を構成する溝形成基板108と被覆基板109に用いる材料について説明する。
【0063】
マイクロチップ1は、加工成形性、非吸水性、耐薬品性、耐候性、コストなどに優れていることが望まれており、マイクロチップ1の構造、用途、検出方法などを考慮して、マイクロチップ1の材料を選択する。その材料としては従来公知の様々なものが使用可能であり、個々の材料特性に応じて通常は1以上の材料を適宜組み合わせて、基板および流路エレメントが成形される。
【0064】
特に、多数の測定検体、とりわけ汚染、感染のリスクのある臨床検体を対象とするチップは、ディスポーサブルタイプであることが望ましい。そのため、量産可能であり、軽量で衝撃に強く、焼却廃棄が容易なプラステック樹脂、例えば、透明性、機械的特性および成型性に優れて微細加工がしやすいポリスチレンが好ましい。また、例えば分析においてチップを100℃近くまで加熱する必要がある場合には、耐熱性に優れる樹脂(例えばポリカーボネートなど)を用いることが好ましい。また、タンパク質の吸着が問題となる場合にはポリプロピレンを用いることが好ましい。樹脂やガラスなどは熱伝導率が小さく、マイクロチップの局所的に加熱される領域に、これらの材料を用いることにより、面方向への熱伝導が抑制され、加熱領域のみ選択的に加熱することができる。
【0065】
検出部111において、呈色反応の生成物や蛍光物質などの検出を光学的に行う場合は、少なくともこの部位の基板は光透過性の材料(例えばアルカリガラス、石英ガラス、透明プラスチック類)を用い、光が透過するようにする必要がある。本実施形態においては、検出部の窓111aと、少なくとも検出部の流路111bを形成する溝形成基板は、光透過性の材料が用いられていて、検出部111を光が透過するようになっている。
【0066】
本発明の実施形態に係わるマイクロチップ1には、検査、試料の処理などを行うための、微小な溝状の流路(微細流路)および機能部品(流路エレメント)が、用途に応じた適当な態様で配設されている。本実施形態では、これらの微細流路および流路エレメントによってマイクロチップ1内で行われる特定の遺伝子の増幅およびその検出を行う処理の一例を図6(c)を用いて説明する。なお、本発明の適用は図6(c)で説明するマイクロチップ1の例に限定されるものでは無く、様々な用途のマイクロチップ1に適用できる。
【0067】
図6(c)はマイクロチップ1内部の微細流路および流路エレメントの機能を説明するための説明図である。
【0068】
微細流路には、例えば検体液を収容する検体収容部221、試薬類を収容する試薬収容部220などが設けられており、場所や時間を問わず迅速に検査ができるよう、試薬収容部220には必要とされる試薬類、洗浄液、変性処理液などがあらかじめ収容されている。図6(c)において、試薬収容部220、検体収容部221および流路エレメントは四角形で表し、その間の微細流路は実線と矢印で表す。
【0069】
マイクロチップ1は、微細流路を形成した溝形成基板108と溝状の流路を覆う被覆基板109から構成されている。微細流路はマイクロメーターオーダーで形成されており、例えば幅は数μm〜数百μm、好ましくは10〜200μmで、深さは25〜500μm程度、好ましくは25〜250μmである。
【0070】
少なくともマイクロチップ1の溝形成基板108には、上記の微細流路が形成されている。被覆基板109は、少なくとも溝形成基板の微細流路を密着して覆う必要があり、溝形成基板の全面を覆っていても良い。なお、マイクロチップ1の微細流路には、例えば、図示せぬ送液制御部、逆流防止部(逆止弁、能動弁など)などの送液を制御するための部位が設けられ、逆流を防止し、所定の手順で送液が行われるようになっている。
【0071】
検体注入部213はマイクロチップ1に検体を注入するための注入部、駆動液注入部110はマイクロチップ1に駆動液を注入するための注入部である。マイクロチップ1による検査を行うに先立って、検査担当者は検体を検体注入部213から注射器などを用いて注入する。図6(c)に示すように、検体注入部213から注入された検体は、連通する微細流路を通って検体収容部221に収容される。
【0072】
次に、駆動液注入部110aから駆動液を注入すると、駆動液は連通する微細流路を通って検体収容部221に収容されている検体を押し出し、増幅部222に検体を送り込む。
【0073】
一方、駆動液注入部110bから注入された駆動液は、連通する微細流路を通って試薬収容部220aに収容されている試薬aを押し出す。試薬収容部220aから押し出された試薬aは増幅部222に駆動液によって送り込まれる。このときの反応条件によっては、増幅部222の部分を所定の温度にする必要があり、後で説明するように筐体82の内部で加熱または吸熱して所定の温度で反応させる。
【0074】
所定の反応時間の後、さらに駆動液により増幅部222から送り出された反応後の検体を含む溶液は、検出部111に注入される。注入された溶液は検出部111の流路壁に担持されている反応物質と反応し流路壁に固定化する。
【0075】
次に、駆動液注入部110cから駆動液を注入すると、駆動液は連通する微細流路を通って試薬収容部220bに収容されている試薬bを押し出し、微細流路から検出部111に注入する。
【0076】
同様に、駆動液注入部110dから駆動液を注入すると、駆動液は連通する微細流路を通って試薬収容部220cに収容されている試薬を押し出し、微細流路から検出部111に注入する。
【0077】
最後に、駆動液注入部110eから駆動液を注入して、洗浄液収容部223から洗浄液を押しだし、検出部111に注入する。洗浄液によって検出部111内に残留している未反応の溶液41を洗浄する。
【0078】
洗浄後、検出部111の流路壁に吸着した反応物の濃度を光学的に測定することによって、増幅した遺伝子など被検出物を検出する。このように、駆動液注入部110から駆動液を順次注入することにより、マイクロチップ1の内部で所定の処理が行われる。
【0079】
図7は、実施形態の反応検出装置80の内部構成の一例を示す断面図である。反応検出装置80は温度調節ユニット152、光検出部150、中間流路部180、マイクロポンプユニット5、パッキン90a、90b、駆動液タンク91などから構成される。以下、これまでに説明した構成要素と同一の構成要素には同番号を付し、説明を省略する。
【0080】
図7は、マイクロチップ1の上面を温度調節ユニット152とマイクロポンプユニット5に密着させている状態である。マイクロチップ1は図示せぬ駆動部材により駆動され、紙面上下方向に移動可能である。
【0081】
初期状態において、マイクロチップ1は図7の紙面左右方向に挿抜可能であり、検査担当者は挿入口83から図示せぬ規制部材に当接するまでマイクロチップ1を挿入する。所定の位置までマイクロチップ1を挿入するとフォトインタラプタなどを用いたチップ検知部95がマイクロチップ1を検知し、オンになる。
【0082】
温度調節ユニット152は、ペルチェ素子、電源装置、温度制御装置などを内蔵し、発熱または吸熱を行ってマイクロチップ1の下面を所定の温度に調整するユニットである。
【0083】
図示せぬ制御部が、チップ検知部95がオンになった信号を受信すると、駆動部材によりマイクロチップ1を下降させて、マイクロチップ1の下面を温度調節ユニット152とパッキン92を介して中間流路部180に押しつけて密着させる。
【0084】
マイクロチップ1の駆動液注入部110は、マイクロチップ1とパッキン92を密着させたときに、中間流路部180に設けられた対応する開口185とそれぞれ連通する位置に設けられている。中間流路部180は、中間流路182の溝を設けた透明な第1基板184と、第1基板184を覆う透明な第2基板183から構成され、中間流路182の両端には開口185と開口186が設けられている。開口186はパッキン90bを介してマイクロポンプユニット5の入出力口146と連通している。
【0085】
マイクロポンプユニット5の吸込側には、パッキン90aを介して駆動液タンク91が接続され、駆動液タンク91に充填された駆動液をパッキン90aを介して吸い込むようになっている。一方、マイクロポンプユニット5の吐出側の端面に設けられた入出力口146は中間流路182を介してマイクロチップ1の駆動液注入部110と連通しているので、マイクロポンプユニット5から送り出された駆動液は、マイクロチップ1の駆動液注入部110からマイクロチップ1内に形成された流路250に注入される。このようにして、マイクロポンプユニット5から駆動液注入部110に駆動液を注入する。
【0086】
液温調節ユニット195は、ペルチェ素子、電源装置、温度制御装置などを内蔵し、発熱または吸熱を行って駆動液タンク91を所定の温度に調整するユニットである。
【0087】
なお、図2に図示したマイクロポンプユニット5の例ではマイクロポンプMPが8つ設けられているが、全てのマイクロポンプMPを使用する必要はない。図6に図示したマイクロチップ1の場合は、5つのマイクロポンプMPが連通するよう駆動液注入部110を配置すれば良い。
【0088】
マイクロチップ1の検出部111では、検体とマイクロチップ1内に貯蔵された試薬が反応して、例えば呈色、発光、蛍光、混濁などをおこす。本実施形態では図6で説明したように、検出部111でおこる試薬の反応結果を光学的に検出する。光検出部150は第2発光部150aと第2受光部150bから成り、マイクロチップ1の検出部111を透過する光を検出できるように配置されている。
【0089】
図8は、本発明の実施形態における反応検出装置80の回路ブロック図である。
【0090】
制御部99は、CPU98(中央処理装置)とRAM97(Random Access Memory),ROM96(Read Only Memory)等から構成され、不揮発性の記憶部であるROM96に記憶されているプログラムをRAM97に読み出し、当該プログラムに従って反応検出装置80の各部を集中制御する。
【0091】
以下、いままでに説明した機能と同一機能を有する機能ブロックには同番号を付し、説明を省略する。
【0092】
CPU98は所定のシーケンスで検査を行い、検査結果をRAM97に記憶する。検査結果は、操作部87の操作によりメモリカード501に記憶したり、プリンタ503によってプリントすることができる。CPU98はポンプ駆動制御部412を有している。
【0093】
ROM96は、マイクロポンプMP毎に流量Q、圧力Pと駆動電圧Eの波形のパラメータとの関係を示す性能データをテーブルにしたポンプ性能テーブル302を備えている。駆動電圧Eの波形のパラメータは図4で説明した立ち上がり時間T1、立ち下がり時間T3の何れかである。
【0094】
ポンプ駆動部500は各マイクロポンプMPの圧電素子112を駆動する本発明の駆動手段である。ポンプ駆動制御部412は、プログラムに基づいて駆動液を注入または吸入するようにポンプ駆動部500を制御する。
【0095】
詳しくは、ポンプ駆動制御部412は、ROM96に記憶されているポンプ性能テーブル302に基づいて、所定の流量Qまたは圧力Pが得られる波形のタイミング(立ち上がり時間T1または立ち下がり時間T3)をポンプ駆動部500に指令する。ポンプ駆動部500はポンプ駆動制御部412の指令を受けて図3に示すような波形の駆動電圧を発生しマイクロポンプMPを駆動する。なお、指令を受けた波形のタイミング以外の波形のタイミングはや最大電圧e1はポンプ駆動部500に予め設定されている。
【0096】
ポンプ駆動制御部412からの指令は、例えば制御部99が備えるD/A変換器により制御電圧としてポンプ駆動部500に入力される。ポンプ駆動部500は入力された制御電圧を積分し図3で説明した駆動電圧を発生する。
【0097】
ポンプ駆動制御部412は本発明の制御手段、ROM96は本発明の記憶手段、ポンプ性能テーブル302は本発明の性能データである。
【0098】
チップ検知部95はマイクロチップ1が規制部材に当接すると検知信号をCPU98に送信する。CPU98は検知信号を受信すると、機構駆動部32に指令し所定の手順でマイクロチップ1を下降または上昇させる。
【0099】
CPU98は所定のシーケンスで検査を行い、検査結果をRAM97に記憶する。検査結果は、操作部87の操作によりメモリカード501に記憶したり、プリンタ503によってプリントすることができる。
【0100】
図9は本発明の実施形態において、反応検出装置80による検査の手順を説明するフローチャートである。
【0101】
なお、CPU98は機構駆動部32を制御し、挿入口83から挿入されたマイクロチップ1をパッキン92と温度調節ユニット152に適当な圧力で密着するまで下降させているものとする。また、温度調節ユニット152は反応検出装置80の電源投入時に通電され、所定の温度になっているものとする。
【0102】
S101:ポンプ性能テーブル302を参照するステップである。
【0103】
ポンプ駆動制御部412は、ポンプ性能テーブル302に記憶されている所定のマイクロポンプMPの性能データから、所定の流速Qまたは圧力Pで駆動するためのパラメータを得る。パラメータは立ち上がり時間T1、立ち下がり時間T3の何れかである。
【0104】
S102:パラメータを設定するステップである。
【0105】
ポンプ駆動制御部412は、ポンプ駆動部500に所定のパラメータを設定する。パラメータは立ち上がり時間T1、立ち下がり時間T3の何れかである。
【0106】
S103:マイクロポンプMPを駆動するステップである。
【0107】
ポンプ駆動制御部412は所定のシーケンスのパラメータに従って、ポンプ駆動部500に指令して所定のマイクロポンプMPを駆動し、マイクロチップ1の駆動液注入部110に駆動液を順次注入する。注入された駆動液は、マイクロチップ1の流路内の検体や試薬を所定のシーケンスで検出部111まで送り込み、反応させる。
【0108】
S104:検出部111の反応結果を検出するステップである。
【0109】
所定の反応時間経過後、CPU98は、発光部150aを発光させてマイクロチップ1の検出部111を照明し、検出部111を透過した透過光を受光した受光部150bからの入力信号をCPU98に内蔵するA/D変換器でデジタル値に変換し、測光値を得る。
【0110】
S105:反応結果を表示するステップである。
【0111】
CPU98は、光検出部150が測光した結果から演算し、反応結果を表示部84に表示する。
【0112】
以上で検査の手順は終了である。
【0113】
なお、本実施形態ではポンプ駆動制御部412がパラメータとして立ち上がり時間T1または立ち下がり時間T3を設定する例を説明したが、特に限定されるものではなく、流量Q、圧力Pと駆動電圧Eの波形のパラメータは最大電圧e1や周波数、駆動電圧波形のデューティ比などでも良い。
【0114】
以上このように、本発明によれば、マイクロポンプの特性バラツキを簡単な方法で補正し、所定の流量または圧力で駆動液をマイクロチップに送液する反応検出装置を提供することができる。
【図面の簡単な説明】
【0115】
【図1】本発明の実施形態における反応検出装置80の外観図である。
【図2】本発明の実施形態に係わるマイクロポンプユニット5の一例についての説明図である。
【図3】圧電素子112に供給する駆動電圧Eと流量Qの関係を示す説明図である。
【図4】圧電素子112に供給する駆動電圧波形の立ち上がり時間T1、立ち下がり時間T2と流量Q、圧力Pの関係を示す説明図である。
【図5】圧電素子112に供給する最大電圧e1と流量Q、圧力Pの関係を示す説明図である。
【図6】本発明の実施形態に係わるマイクロチップ1の一例についての説明図である。
【図7】反応検出装置80の内部構成の一例を示す断面図である。
【図8】本発明の実施形態における反応検出装置80の回路ブロック図である。
【図9】反応検出装置80の検査の手順を説明するフローチャートである。
【符号の説明】
【0116】
1 マイクロチップ
4 駆動液
5 マイクロポンプユニット
80 反応検出装置
83 挿入口
84 表示部
90 パッキン
91 駆動液タンク
110 駆動液注入部
111 検出部
150 光検出部
190 駆動液検知手段
191 第1受光部
193 第1発光部
195 液温調節ユニット
213 検体注入部
302 ポンプ性能テーブル
412 ポンプ駆動制御部
500 ポンプ駆動部
MP マイクロポンプ

【特許請求の範囲】
【請求項1】
流体をマイクロチップに注入するポンプと、
前記ポンプの性能データを記憶する記憶手段と、
前記ポンプを駆動する駆動手段と、
前記駆動手段を制御する制御手段と、
を有し、
前記制御手段は、前記性能データに基づいて前記駆動手段を制御することを特徴とする反応検出装置。
【請求項2】
前記ポンプは、
流路抵抗が差圧に応じて変化する第1流路と、
差圧の変化に対する流路抵抗の変化の割合が前記第1流路よりも小さい第2流路と、
前記第1流路および前記第2流路に接続された加圧室と、
前記加圧室の内部の圧力を変化させるためのピエゾアクチュエータと、
を備えていることを特徴とする請求項1に記載の反応検出装置。
【請求項3】
前記性能データは、前記駆動手段が発生する駆動電圧波形の立ち上がり時間と前記ポンプの吐出する前記流体の流量または圧力との関係を示すデータであることを特徴とする請求項1または2に記載の反応検出装置。
【請求項4】
前記制御手段は、前記駆動電圧波形の立ち上がり時間を変化させることにより前記流量または前記圧力を制御することを特徴とする請求項3に記載の反応検出装置。
【請求項5】
前記性能データは、前記駆動手段が発生する駆動電圧波形の立ち下がり時間と前記ポンプの吐出する前記流体の流量または圧力との関係を示すデータであることを特徴とする請求項1または2に記載の反応検出装置。
【請求項6】
前記制御手段は、前記駆動電圧波形の立ち下がり時間を変化させることにより前記流量または前記圧力を制御することを特徴とする請求項5に記載の反応検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2009−62911(P2009−62911A)
【公開日】平成21年3月26日(2009.3.26)
【国際特許分類】
【出願番号】特願2007−232432(P2007−232432)
【出願日】平成19年9月7日(2007.9.7)
【出願人】(303000420)コニカミノルタエムジー株式会社 (2,950)
【Fターム(参考)】