説明

固体酸化物型燃料電池

【課題】燃料電池モジュールが温度上昇と電流増加のスパイラル状態に陥るのを確実に防止できる燃料電池モジュールを提供する。
【解決手段】固体酸化物型燃料電池であって、所定の電力降下反転温度以下の温度では、温度上昇と共に出力可能な電力が増加し、電力降下反転温度を超えると温度上昇と共に出力可能な電力が低下する特性を備えた燃料電池セルスタックを内蔵した燃料電池モジュールと、燃料供給手段と、発電用酸化剤ガス供給手段と、燃料供給手段及び発電用酸化剤ガス供給手段を制御する制御手段と、を有し、制御手段は、燃料電池セルスタックの温度が電力降下反転温度以上であり、又は、燃料電池セルスタックの温度上昇と共に燃料電池セルスタックの出力電圧が低下する状態においては、燃料電池モジュールからの出力電流を所定の温度低下電流に固定する温度域出力制限手段を備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体酸化物型燃料電池に係わり、特に、需要電力に応じて可変の発電電力をインバータへ出力する固体酸化物型燃料電池に関する。
【背景技術】
【0002】
固体酸化物型燃料電池(Solid Oxide Fuel Cell:以下「SOFC」とも言う)は、電解質として酸化物イオン導電性固体電解質を用い、その両側に電極を取り付け、一方の側に燃料ガスを供給し、他方の側に酸化剤(空気、酸素等)を供給して、比較的高温で動作する燃料電池である。
【0003】
特開2004−265671号公報(特許文献1)には、燃料電池の運転制御方法および装置が記載されている。この燃料電池においては、電池電圧を検出し、この電池電圧が低下した時、燃料電池に対する電力指令値を電流に換算した電流指令値を低下させている。電流制限器は、電池電圧が低下した時の電流指令値を制限値とし、この制限値を電池電圧の低下に応じて低下させる。具体的には、電池電圧が第1の閾値である電圧低下警報レベルに達したとき電池電流が低下し始め、電池電圧が第2の閾値である電圧低下保護レベルに達したとき電池電流が零となるように、電流指令値が制限される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2004−265671号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特開2004−265671号公報記載の燃料電池においては、単に、燃料電池の電圧降下を検出して電流値に制限を加えているので、燃料電池セルを、劣化及び損傷から十分に保護することができないという問題がある。本件発明者は、燃料電池セルスタックから取り出すことのできる電力は、燃料電池セルスタックの温度(燃料電池モジュール内の温度)と深い関係があり、燃料電池セルスタックの温度が、所定の電力降下反転温度Tcを超えると、燃料電池セルスタックから十分な電力が取り出せなくなるばかりでなく、その状態で燃料電池を運転すると、燃料電池セルスタックの損傷に繋がる場合があるという知見を得た。
【0006】
一般に、可変の電力を出力可能な燃料電池においては、出力電力が少ない状態では燃料電池モジュール内の温度は低く、出力電力の増加と共に燃料電池モジュール内の温度が上昇することが知られている。さらに、燃料電池セルスタックの使用可能な温度帯域で電力を取り出す限りにおいては、温度が上昇するほど多くの電力を取り出すことが可能であると考えられていた。図10は、本件発明者が見出した燃料電池モジュール内の温度と、出力可能な発電電力との関係を模式的に示すグラフである。図10に示すように、出力電流を一定にしている状態でも出力電力はこの図のように変化する。具体的には、燃料電池モジュールが電力降下反転温度Tcに到達するまでは、従来から考えられていたように、燃料電池モジュールから出力可能な発電電力は、温度の上昇と共に増加する。
【0007】
しかしながら、燃料電池モジュール内の温度が所定の電力降下反転温度Tcに到達すると、燃料電池モジュールから出力可能な発電電力は、温度の上昇と共に逆に低下し始めるのである。これは、燃料電池モジュールを構成する燃料電池セルが単純なセラミック材料からなるものではなく、各種の金属材料を含有するため、温度の上昇に伴ってセラミックは抵抗が低下するが、金属は反対に抵抗値が増大しこの総和が燃料電池のセルの改良を加えていく中で、取り出せる電力の低下を招く程度に留まらず、反転するような状況にまで至っていると考えられる。従って、近年の高性能な燃料電池セルからなる燃料電池モジュールがこのようなTcを超えるような温度帯域にある場合において、取り出す電力を増加させると、目標とする電力を取り出そうとして燃料電池モジュールから引き出される電流が増加し、これにより燃料電池モジュール内の温度が更に上昇する。燃料電池モジュール内の温度が更に上昇すると、取り出すことができる電力が抵抗値の増大に伴って更に低下するという負のスパイラルのような状況に陥る。よって、発電能力の低下や過昇温が発生した燃料電池モジュールから更に電力を取り出そうとすると、出力電流が増大し、燃料電池モジュール内の温度が益々上昇する。燃料電池モジュールの制御が、一旦、このようなスパイラル状態に陥ると、急速な電流増加と温度上昇が発生し、短時間で燃料電池セルスタックが損傷されてしまうという固体酸化物型燃料電池において特有の課題を招くものである。
【0008】
従って、燃料電池モジュールを電力降下反転温度Tcを超える温度帯域で運転することは絶対に回避する必要がある。しかしながら、燃料電池セルスタック及びこれを内蔵する燃料電池モジュールは極めて熱容量が大きく、温度変化が緩慢である。このため、燃料電池モジュール内の温度が、一旦上昇傾向に入ると、電力降下反転温度Tcに接近していたとしても、温度上昇をくい止めることは容易ではない。また、熱容量の大きな各種材料にて構成された燃料電池モジュールでは温度変化が極めて緩慢であるため、この緩慢な温度変化環境に適合させるためにも温度検出センサの検出時定数を大きくして緩慢にしなければならない。よって、燃料電池モジュール内の温度の上昇傾向、下降傾向を迅速に把握することが困難となる。
【0009】
本発明は、このような問題を解決するためになされたものであり、燃料電池モジュールが温度上昇と電流増加のスパイラル状態に陥るのを確実に防止することができる固体酸化物型燃料電池を提供することを目的としている。
【課題を解決するための手段】
【0010】
上述した課題を解決するために、本発明は、需要電力に応じて可変の発電電力をインバータへ出力する固体酸化物型燃料電池であって、所定の電力降下反転温度以下の温度では、温度上昇と共に出力可能な電力が増加し、電力降下反転温度を超えると温度上昇と共に出力可能な電力が低下する特性を備えた燃料電池セルスタックを内蔵した燃料電池モジュールと、燃料電池セルスタックに燃料を供給する燃料供給手段と、燃料電池セルスタックに発電用の酸化剤ガスを供給する発電用酸化剤ガス供給手段と、需要電力に応じた電力を生成できるように、燃料供給手段、及び発電用酸化剤ガス供給手段を制御する制御手段と、を有し、制御手段は、燃料電池セルスタックの温度が電力降下反転温度より低い温度帯域で通常の出力電力制御を行う一方で、上記電力降下反転温度以上の温度帯域にあると推定される場合では、燃料電池モジュールからの出力電流を制限し、所定の出力電流に固定する温度域出力制限手段を備えたことを特徴としている。
【0011】
このように構成された本発明においては、制御手段が、燃料供給手段、及び発電用酸化剤ガス供給手段を制御して、燃料及び発電用酸化剤ガスを、燃料電池モジュールに内蔵された燃料電池セルスタックに供給し、電力降下反転温度より低い温度帯域では需要電力に応じた出力電力を生成させる。一方で万が一にも一時的な過昇温が発生して電力降下反転温度を超えるような状況になっても、制御手段に備えられた温度域出力制限手段が、燃料電池モジュールからの出力電流を制限し所定の出力電流に固定する。
【0012】
このように構成された本発明によれば、燃料電池モジュールが温度上昇と電流増加のスパイラル状態に陥るのを確実に防止することができる。即ち、燃料電池セルスタックの温度が電力降下反転温度以上であると推定される場合、燃料電池モジュールからの出力電流を増加させようとすると、燃料電池モジュールが温度上昇と電流増加のスパイラル状態に陥ってしまう。しかし本件発明にあっては、このような場合には、出力電流を少量の出力電流に固定することにより、出力電流の増加が規制されるだけでなく、出力電流をゼロにせず少量でも発電を継続させることによって、発電を禁止したことによって生じる残余燃料の増加を防止して残余燃料の増加に伴う、燃料電池モジュール内の更なる温度上昇を抑制して速やかに温度を低下させ電力降下反転温度以下まで低下させることができる。また、出力電流を一定の電流に固定することにより、出力電流の増加、減少を防止できるため、燃料電池セルの保護のために設けられる出力電流より先行して燃料を供給する余剰燃料も減少でき、この点からも速やかに燃料電池モジュール内の電力降下反転温度以下まで低下させることができる。
【0013】
本発明において、好ましくは、温度域出力制限手段は、燃料電池セルスタックの温度が、電力降下反転温度よりも低く設定された所定の出力抑制温度に到達すると、インバータへ出力する電力を抑制する。
【0014】
このように構成された本発明によれば、電力降下反転温度よりも低く設定された出力抑制温度に到達すると、出力される電力が抑制されるので、燃料電池モジュール内の温度変化が捉えにくく、温度上昇の検知が遅れた場合でも、温度検出遅れに対する安全マージンを備えている状況とできるため確実に電力降下反転温度を超えるのを防止することができる。
【0015】
本発明において、好ましくは、制御手段は、燃料電池セルスタックの温度が、電力降下反転温度よりも低く設定された所定の強制冷却温度以上に上昇すると、発電用の酸化剤ガスの供給量を増加させ、燃料電池セルスタックを冷却する。
【0016】
このように構成された本発明によれば、出力の制限と共に、発電用の酸化剤ガスによる冷却を併用するので、効果的に燃料電池モジュール内の温度を低下させることができ、より確実に電力降下反転温度を超えるのを防止することができる。
【0017】
本発明において、好ましくは、制御手段は、さらに、所定の電力をインバータに出力するために必要な出力電流が、電力に応じて定められた所定の電流以上になると、インバータへ出力する電力を抑制する電流域出力制限手段を有する。
【0018】
このように構成された本発明によれば、温度域出力制限手段の他に、電流域出力制限手段による電力の抑制を加えることによって、より確実に燃料電池セルスタックに与える負担を軽減することができる。
【0019】
本発明において、好ましくは、温度域出力制限手段は、燃料電池モジュールからインバータに出力される電流の変化に対する燃料電池モジュールの出力電圧の変化に基づいて、インバータに出力する電力を制限する。
【0020】
このように構成された本発明によれば、出力される電流の変化に対する出力電圧の変化に基づいて電力が制限されるので、燃料電池セルスタックの温度に基づいて、温度上昇と電流増加のスパイラル状態を検知するよりも、よりスパイラル状態に陥るのを確実に防止することができる。
【0021】
本発明において、好ましくは、温度域出力制限手段は、燃料電池モジュールからインバータに出力される電流がほぼ一定の状態において、燃料電池モジュールの出力電圧が所定の電力降下反転温度判断電圧以上低下した場合に、インバータに出力する電力を制限する。
【0022】
このように構成された本発明によれば、出力電流がほぼ一定の状態における出力電圧の低下に基づいて、温度上昇と電流増加のスパイラル状態を検知するので、より正確にスパイラル状態を判断することができる。
【発明の効果】
【0023】
本発明によれば、燃料電池モジュールが温度上昇と電流増加のスパイラル状態に入るのを確実に防止することができる。
【図面の簡単な説明】
【0024】
【図1】本発明の一実施形態による燃料電池装置を示す全体構成図である。
【図2】本発明の一実施形態による燃料電池装置の燃料電池モジュールを示す正面断面図である。
【図3】図2のIII-III線に沿った断面図である。
【図4】本発明の一実施形態による燃料電池装置の燃料電池セルユニットを示す部分断面図である。
【図5】本発明の一実施形態による燃料電池装置の燃料電池セルスタックを示す斜視図である。
【図6】本発明の一実施形態による燃料電池装置を示すブロック図である。
【図7】本発明の一実施形態による燃料電池装置の起動時の動作を示すタイムチャートである。
【図8】本発明の一実施形態による燃料電池装置の停止時の動作を示すタイムチャートである。
【図9】需要電力の変化と、燃料供給量、及び燃料電池モジュールから実際に取り出される電流の関係を模式的に示したグラフである。
【図10】燃料電池モジュール内の温度と発電電力の関係を示すグラフである。
【図11】制御部に内蔵された温度域出力制限手段による制御のフローチャートである。
【図12】制御部に内蔵された電流域出力制限手段による制限を示すグラフである。
【図13】検出温度Tdに基づいて発電用空気供給量、水供給量、及び燃料供給量を決定する手順を示すフローチャートである。
【図14】発電電流に対する適正な燃料電池セルスタックの温度を示すグラフである。
【図15】積算値に応じて決定される燃料利用率を示すグラフである。
【図16】各発電電流に対して決定され得る燃料利用率の値の範囲を示すグラフである。
【図17】積算値に応じて決定される空気利用率を示すグラフである。
【図18】各発電電流に対して決定され得る空気利用率の値の範囲を示すグラフである。
【図19】決定された空気利用率に対して水供給量を決定するためのグラフである。
【発明を実施するための形態】
【0025】
次に、添付図面を参照して、本発明の実施形態による固体酸化物型燃料電池(SOFC)を説明する。
図1は、本発明の一実施形態による固体酸化物型燃料電池(SOFC)を示す全体構成図である。この図1に示すように、本発明の一実施形態による固体酸化物型燃料電池(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
【0026】
燃料電池モジュール2は、ハウジング6を備え、このハウジング6内部には、断熱材7を介して密封空間8が形成されている。この密閉空間8の下方部分である発電室10には、燃料と酸化剤(空気)とにより発電反応を行う燃料電池セル集合体12が配置されている。この燃料電池セル集合体12は、10個の燃料電池セルスタック14(図5参照)を備え、この燃料電池セルスタック14は、16本の燃料電池セルユニット16(図4参照)から構成されている。このように、燃料電池セル集合体12は、160本の燃料電池セルユニット16を有し、これらの燃料電池セルユニット16の全てが直列接続されている。
【0027】
燃料電池モジュール2の密封空間8の上述した発電室10の上方には、燃焼室18が形成され、この燃焼室18で、発電反応に使用されなかった残余の燃料と残余の酸化剤(空気)とが燃焼し、排気ガスを生成するようになっている。
また、この燃焼室18の上方には、燃料を改質する改質器20が配置され、前記残余ガスの燃焼熱によって改質器20を改質反応が可能な温度となるように加熱している。さらに、この改質器20の上方には、改質器20の熱を受けて空気を加熱し、改質器20の温度低下を抑制するための空気用熱交換器22が配置されている。
【0028】
次に、補機ユニット4は、水道等の水供給源24からの水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された燃料を遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38(モータで駆動される「燃料ポンプ」等)を備えている。さらに、補機ユニット4は、空気供給源40から供給される酸化剤である空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45(モータで駆動される「空気ブロア」等)と、改質器20に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。
【0029】
次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。
また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。
さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
【0030】
次に、図2及び図3により、本発明の実施形態による固体酸化物型燃料電池(SOFC)の燃料電池モジュールの内部構造を説明する。図2は、本発明の一実施形態による固体酸化物型燃料電池(SOFC)の燃料電池モジュールを示す側面断面図であり、図3は、図2のIII-III線に沿って断面図である。
図2及び図3に示すように、燃料電池モジュール2のハウジング6内の密閉空間8には、上述したように、下方から順に、燃料電池セル集合体12、改質器20、空気用熱交換器22が配置されている。
【0031】
改質器20は、その上流端側に純水を導入するための純水導入管60と改質される燃料ガスと改質用空気を導入するための被改質ガス導入管62が取り付けられ、また、改質器20の内部には、上流側から順に、蒸発部20aと改質部20bを形成され、これらの蒸発部20aと改質部20bには改質触媒が充填されている。この改質器20に導入された水蒸気(純水)が混合された燃料ガス及び空気は、改質器20内に充填された改質触媒により改質される。改質触媒としては、アルミナの球体表面にニッケルを付与したものや、アルミナの球体表面にルテニウムを付与したものが適宜用いられる。
【0032】
この改質器20の下流端側には、燃料ガス供給管64が接続され、この燃料ガス供給管64は、下方に延び、さらに、燃料電池セル集合体12の下方に形成されたマニホールド66内で水平に延びている。燃料ガス供給管64の水平部64aの下方面には、複数の燃料供給孔64bが形成されており、この燃料供給孔64bから、改質された燃料ガスがマニホールド66内に供給される。
【0033】
このマニホールド66の上方には、上述した燃料電池セルスタック14を支持するための貫通孔を備えた下支持板68が取り付けられており、マニホールド66内の燃料ガスが、燃料電池セルユニット16内に供給される。
【0034】
次に、改質器20の上方には、空気用熱交換器22が設けられている。この空気用熱交換器22は、上流側に空気集約室70、下流側に2つの空気分配室72を備え、これらの空気集約室70と空気分配室72は、6個の空気流路管74により接続されている。ここで、図3に示すように、3個の空気流路管74が一組(74a,74b,74c,74d,74e,74f)となっており、空気集約室70内の空気が各組の空気流路管74からそれぞれの空気分配室72へ流入する。
【0035】
空気用熱交換器22の6個の空気流路管74内を流れる空気は、燃焼室18で燃焼して上昇する排気ガスにより予熱される。
空気分配室72のそれぞれには、空気導入管76が接続され、この空気導入管76は、下方に延び、その下端側が、発電室10の下方空間に連通し、発電室10に余熱された空気を導入する。
【0036】
次に、マニホールド66の下方には、排気ガス室78が形成されている。また、図3に示すように、ハウジング6の長手方向に沿った面である前面6aと後面6bの内側には、上下方向に延びる排気ガス通路80が形成され、この排気ガス室通路80の上端側は、空気用熱交換器22が配置された空間と連通し、下端側は、排気ガス室78と連通している。また、排気ガス室78の下面のほぼ中央には、排気ガス排出管82が接続され、この排気ガス排出管82の下流端は、図1に示す上述した温水製造装置50に接続されている。
図2に示すように、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
【0037】
次に図4により燃料電池セルユニット16について説明する。図4は、本発明の一実施形態による固体酸化物型燃料電池(SOFC)の燃料電池セルユニットを示す部分断面図である。
図4に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の上下方向端部にそれぞれ接続された内側電極端子86とを備えている。
燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の内側電極層90と、円筒形の外側電極層92と、内側電極層90と外側電極層92との間にある電解質層94とを備えている。この内側電極層90は、燃料ガスが通過する燃料極であり、(−)極となり、一方、外側電極層92は、空気と接触する空気極であり、(+)極となっている。
【0038】
燃料電池セル16の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、電解質層94と外側電極層92に対して露出された外周面90bと上端面90cとを備えている。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。内側電極端子86の中心部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路98が形成されている。
【0039】
内側電極層90は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。
【0040】
電解質層94は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
【0041】
外側電極層92は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。
【0042】
次に図5により燃料電池セルスタック14について説明する。図5は、本発明の一実施形態による固体酸化物型燃料電池(SOFC)の燃料電池セルスタックを示す斜視図である。
図5に示すように、燃料電池セルスタック14は、16本の燃料電池セルユニット16を備え、これらの燃料電池セルユニット16の下端側及び上端側が、それぞれ、セラミック製の下支持板68及び上支持板100により支持されている。これらの下支持板68及び上支持板100には、内側電極端子86が貫通可能な貫通穴68a及び100aがそれぞれ形成されている。
【0043】
さらに、燃料電池セルユニット16には、集電体102及び外部端子104が取り付けられている。この集電体102は、燃料極である内側電極層90に取り付けられた内側電極端子86と電気的に接続される燃料極用接続部102aと、空気極である外側電極層92の外周面全体と電気的に接続される空気極用接続部102bとにより一体的に形成されている。空気極用接続部102bは、外側電極層92の表面を上下方向に延びる鉛直部102cと、この鉛直部102cから外側電極層92の表面に沿って水平方向に延びる多数の水平部102dとから形成されている。また、燃料極用接続部102aは、空気極用接続部102bの鉛直部102cから燃料電池セルユニット16の上下方向に位置する内側電極端子86に向って斜め上方又は斜め下方に向って直線的に延びている。
【0044】
さらに、燃料電池セルスタック14の端(図5では左端の奥側及び手前側)に位置する2個の燃料電池セルユニット16の上側端及び下側端の内側電極端子86には、それぞれ外部端子104が接続されている。これらの外部端子104は、隣接する燃料電池セルスタック14の端にある燃料電池セルユニット16の外部端子104(図示せず)に接続され、上述したように、160本の燃料電池セルユニット16の全てが直列接続されるようになっている。
【0045】
次に図6により本実施形態による固体酸化物型燃料電池(SOFC)に取り付けられたセンサ類等について説明する。図6は、本発明の一実施形態による固体酸化物型燃料電池(SOFC)を示すブロック図である。
図6に示すように、固体酸化物型燃料電池1は、制御部110を備え、この制御部110には、使用者が操作するための「ON」や「OFF」等の操作ボタンを備えた操作装置112、発電出力値(ワット数)等の種々のデータを表示するための表示装置114、及び、異常状態のとき等に警報(ワーニング)を発する報知装置116が接続されている。なお、この報知装置116は、遠隔地にある管理センタに接続され、この管理センタに異常状態を通知するようなものであっても良い。
【0046】
次に、制御部110には、以下に説明する種々のセンサからの信号が入力されるようになっている。
先ず、可燃ガス検出センサ120は、ガス漏れを検知するためのもので、燃料電池モジュール2及び補機ユニット4に取り付けられている。
CO検出センサ122は、本来排気ガス通路80等を経て外部に排出される排気ガス中のCOが、燃料電池モジュール2及び補機ユニット4を覆う外部ハウジング(図示せず)へ漏れたかどうかを検知するためのものである。
貯湯状態検出センサ124は、図示しない給湯器におけるお湯の温度や水量を検知するためのものである。
【0047】
電力状態検出センサ126は、インバータ54及び分電盤(図示せず)の電流及び電圧等を検知するためのものである。
発電用空気流量検出センサ128は、発電室10に供給される発電用空気の流量を検出するためのものである。
改質用空気流量センサ130は、改質器20に供給される改質用空気の流量を検出するためのものである。
燃料流量センサ132は、改質器20に供給される燃料ガスの流量を検出するためのものである。
【0048】
水流量センサ134は、改質器20に供給される純水の流量を検出するためのものである。
水位センサ136は、純水タンク26の水位を検出するためのものである。
圧力センサ138は、改質器20の外部の上流側の圧力を検出するためのものである。
排気温度センサ140は、温水製造装置50に流入する排気ガスの温度を検出するためのものである。
【0049】
発電室温度センサ142は、図3に示すように、燃料電池セル集合体12の近傍の前面側と背面側に設けられ、燃料電池セルスタック14の近傍の温度を検出して、燃料電池セルスタック14(即ち燃料電池セル84自体)の温度を推定するためのものである。
燃焼室温度センサ144は、燃焼室18の温度を検出するためのものである。
排気ガス室温度センサ146は、排気ガス室78の排気ガスの温度を検出するためのものである。
改質器温度センサ148は、改質器20の温度を検出するためのものであり、改質器20の入口温度と出口温度から改質器20の温度を算出する。
外気温度センサ150は、固体酸化物型燃料電池(SOFC)が屋外に配置された場合、外気の温度を検出するためのものである。また、外気の湿度等を測定するセンサを設けるようにしても良い。
【0050】
これらのセンサ類からの信号は、制御部110に送られ、制御部110は、これらの信号によるデータに基づき、水流量調整ユニット28、燃料流量調整ユニット38、改質用空気流量調整ユニット44、発電用空気流量調整ユニット45に、制御信号を送り、これらのユニットにおける各流量を制御するようになっている。
【0051】
次に図7により本実施形態による固体酸化物型燃料電池(SOFC)による起動時の動作を説明する。図7は、本発明の一実施形態による固体酸化物型燃料電池(SOFC)の起動時の動作を示すタイムチャートである。
最初は、燃料電池モジュール2を温めるために、無負荷状態で、即ち、燃料電池モジュール2を含む回路を開いた状態で、運転を開始する。このとき、回路に電流が流れないので、燃料電池モジュール2は発電を行わない。
【0052】
先ず、改質用空気流量調整ユニット44から改質用空気を第1ヒータ46を経由して燃料電池モジュール2の改質器20へ供給する。また、同時に、発電用空気流量調整ユニット45から発電用空気を第2ヒータ48を経由して燃料電池モジュール2の空気用熱交換器22へ供給し、この発電用空気が、発電室10及び燃焼室18に到達する。
この直ぐ後、燃料流量調整ユニット38からも燃料ガスが供給され、改質用空気が混合された燃料ガスが、改質器20及び燃料電池セルスタック14、燃料電池セルユニット16を通過して、燃焼室18に到達する。
【0053】
次に、点火装置83により着火して、燃焼室18にある燃料ガスと空気(改質用空気及び発電用空気)とを燃焼させる。この燃料ガスと空気との燃焼により排気ガスが生じ、この排気ガスにより、発電室10が暖められ、また、排気ガスが燃料電池モジュール2の密封空間8内を上昇する際、改質器20内の改質用空気を含む燃料ガスを暖めると共に、空気熱交換器22内の発電用空気も暖める。
【0054】
このとき、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、改質用空気が混合された燃料ガスが改質器20に供給されているので、改質器20において、式(1)に示す部分酸化改質反応POXが進行する。この部分酸化改質反応POXは、発熱反応であるので、起動性が良好となる。また、この昇温した燃料ガスが燃料ガス供給管64により燃料電池セルスタック14の下方に供給され、これにより、燃料電池セルスタック14が下方から加熱され、また、燃焼室18も燃料ガスと空気が燃焼して昇温されているので、燃料電池セルスタック14は、上方からも加熱され、この結果、燃料電池セルスタック14は、上下方向において、ほぼ均等に昇温可能となっている。この部分酸化改質反応POXが進行しても、燃焼室18では継続して燃料ガスと空気との燃焼反応が持続される。
【0055】
mn+xO2 → aCO2+bCO+cH2 (1)
【0056】
部分酸化改質反応POXの開始後、改質器温度センサ148により改質器20が所定温度(例えば、600℃)になったことを検知したとき、水流量調整ユニット28、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、燃料ガスと改質用空気と水蒸気とを予め混合したガスを改質器20に供給する。このとき、改質器20においては、上述した部分酸化改質反応POXと後述する水蒸気改質反応SRとが併用されたオートサーマル改質反応ATRが進行する。このオートサーマル改質反応ATRは、熱的に内部バランスが取れるので、改質器20内では熱的に自立した状態で反応が進行する。即ち、酸素(空気)が多い場合には部分酸化改質反応POXによる発熱が支配的となり、水蒸気が多い場合には水蒸気改質反応SRによる吸熱反応が支配的となる。この段階では、既に起動の初期段階は過ぎており、発電室10内がある程度の温度まで昇温されているので、吸熱反応が支配的であっても大幅な温度低下を引き起こすことはない。また、オートサーマル改質反応ATRが進行中も、燃焼室18では燃焼反応が継続して行われている。
【0057】
式(2)に示すオートサーマル改質反応ATRの開始後、改質器温度センサ146により改質器20が所定温度(例えば、700℃)になったことを検知したとき、改質用空気流量調整ユニット44による改質用空気の供給を停止すると共に、水流量調整ユニット28による水蒸気の供給を増加させる。これにより、改質器20には、空気を含まず燃料ガスと水蒸気のみを含むガスが供給され、改質器20において、式(3)の水蒸気改質反応SRが進行する。
【0058】
mn+xO2+yH2O → aCO2+bCO+cH2 (2)
mn+xH2O → aCO2+bCO+cH2 (3)
【0059】
この水蒸気改質反応SRは吸熱反応であるので、燃焼室18からの燃焼熱と熱バランスをとりながら反応が進行する。この段階では、燃料電池モジュール2の起動の最終段階であるため、発電室10内が十分高温に昇温されているので、吸熱反応が進行しても、発電室10が大幅な温度低下を招くこともない。また、水蒸気改質反応SRが進行しても、燃焼室18では継続して燃焼反応が進行する。
【0060】
このようにして、燃料電池モジュール2は、点火装置83により点火した後、部分酸化改質反応POX、オートサーマル改質反応ATR、水蒸気改質反応SRが、順次進行することにより、発電室10内の温度が徐々に上昇する。次に、発電室10内及び燃料電池セル84の温度が燃料電池モジュール2を安定的に作動させる定格温度よりも低い所定の発電温度に達したら、燃料電池モジュール2を含む回路を閉じ、燃料電池モジュール2による発電を開始し、それにより、回路に電流が流れる。燃料電池モジュール2の発電により、燃料電池セル84自体も発熱し、燃料電池セル84の温度も上昇する。この結果、燃料電池モジュール2を作動させる定格温度、例えば、600℃〜800℃になる。
【0061】
この後、定格温度を維持するために、燃料電池セル84で消費される燃料ガス及び空気の量よりも多い燃料ガス及び空気を供給し、燃焼室18での燃焼を継続させる。なお、発電中は、改質効率の高い水蒸気改質反応SRで発電が進行する。
【0062】
次に、図8により本実施形態による固体酸化物型燃料電池(SOFC)の運転停止時の動作を説明する。図8は、本実施形態により固体酸化物型燃料電池(SOFC)の運転停止時の動作を示すタイムチャートである。
図8に示すように、燃料電池モジュール2の運転停止を行う場合には、先ず、燃料流量調整ユニット38及び水流量調整ユニット28を操作して、燃料ガス及び水蒸気の改質器20への供給量を減少させる。
【0063】
また、燃料電池モジュール2の運転停止を行う場合には、燃料ガス及び水蒸気の改質器20への供給量を減少させると同時に、改質用空気流量調整ユニット44による発電用空気の燃料電池モジュール2内への供給量を増大させて、燃料電池セル集合体12及び改質器20を空気により冷却し、これらの温度を低下させる。その後、改質器20の温度が所定温度、例えば、400℃まで低下したとき、燃料ガス及び水蒸気の改質器20への供給を停止し、改質器20の水蒸気改質反応SRを終了する。この発電用空気の供給は、改質器20の温度が所定温度、例えば、200℃まで低下するまで、継続し、この所定温度となったとき、発電用空気流量調整ユニット45からの発電用空気の供給を停止する。
【0064】
このように、本実施形態においては、燃料電池モジュール2の運転停止を行うとき、改質器20による水蒸気改質反応SRと発電用空気による冷却とを併用しているので、比較的短時間に、燃料電池モジュールの運転を停止させることができる。
【0065】
次に、図9乃至図12を参照して、本発明の実施形態による固体酸化物型燃料電池1の制御を説明する。
図9は、需要電力の変化と、燃料供給量、及び燃料電池モジュールから実際に取り出される電流の関係を模式的に示したグラフである。図10は、燃料電池モジュール内の温度と発電電力の関係を示すグラフである。図11は、制御部に内蔵された温度域出力制限手段による制御のフローチャートである。図12は、制御部に内蔵された電流域出力制限手段による制限を示すグラフである。
【0066】
図9に示すように、燃料電池モジュール2は、図9の最上段に示す需要電力に応じた電力を生成できるように制御される。制御手段である制御部110は、需要電力に基づいて、燃料電池モジュール2が生成すべき目標の電流である燃料供給電流値Ifを、図9の2段目のグラフに示すように設定する。燃料供給電流値Ifは、概ね需要電力の変化に追従するように設定されるが、燃料電池モジュール2の応答速度は需要電力の変化に対して極めて緩慢であるため、需要電力の短周期の急激な変化には追従せず、需要電力に緩やかに追従するように設定される。また、需要電力が固体酸化物型燃料電池の最大定格電力を超えた場合には、燃料供給電流値Ifは最大定格電力に対応する電流値まで追従し、それ以上の電流値に設定されることはない。
【0067】
制御部110は、図9の3段目のグラフに示すように、燃料供給手段である燃料流量調整ユニット38を制御して、燃料供給電流値Ifに対応する電力が生成できる流量の燃料供給量Frを燃料電池モジュール2に供給する。なお、燃料供給量に対する実際に発電に使用される燃料の割合である燃料利用率が一定であるとすれば、燃料供給電流値Ifと燃料供給量Frは比例する。図9のグラフは、燃料供給電流値Ifと燃料供給量Frが比例するものとして描かれているが、実際には、燃料利用率は運転状態に応じて変更される。
【0068】
さらに、図9の最下段のグラフに示すように、制御部110は、燃料電池モジュール2から取り出すことができる電流値である取出可能電流Iinvをインバータ54に対して指示する信号を出力する。インバータ54は、時々刻々急激に変化する需要電力に応じ、取出可能電流Iinvの範囲内で燃料電池モジュール2から電流(電力)を取り出す。需要電力が取出可能電流Iinvを上回る部分については、系統電力から供給される。ここで、図9に示すように、制御部110がインバータ54に指示する取出可能電流Iinvは、電流が増加傾向にある場合、燃料供給量Frの変化に対して所定時間遅れて変化するように設定される。例えば、図9の時刻t10においては、燃料供給電流値If及び燃料供給量Frが上昇を始めた後、遅れて、取出可能電流Iinvの増加が開始される。また、時刻t12においても、燃料供給電流値If及び燃料供給量Frの増加の後、遅れて、取出可能電流Iinvの増加が開始される。このように、燃料供給量Frを増加させた後、実際に燃料電池モジュール2から取り出す電力を増加させるタイミングを遅らせることにより、燃料電池モジュール2に供給された燃料が改質器20等を通って燃料電池セルスタック14に到達するまでの時間遅れや、燃料が電池セルスタック14に到達した後、実際の発電反応が可能になるまでの時間遅れに対処している。これにより、各燃料電池セルユニット16において燃料枯れが発生し、燃料電池セルユニット16が損傷されるのを確実に防止している。
【0069】
図10は、本発明の実施形態における燃料電池セルスタック14の温度と、インバータ54へ出力可能な電力との関係を模式的に示すグラフである。図10に示すように、燃料電池セルスタック14の温度が電力降下反転温度Tcである750℃に到達するまでは、燃料電池モジュール2から出力可能な電力は、温度の上昇と共に増加する。本実施形態における燃料電池モジュール2は、燃料電池セルスタック14の温度が所定の電力降下反転温度Tcに到達すると、燃料電池モジュール2から出力可能な電力は、温度の上昇と共に逆に低下し始めるという特性を有する。なお、図10に示す特性は、燃料電池モジュール2から出力される電流を一定とした状態における出力電力として測定されている。また、本明細書において、燃料電池セルスタック14の温度とは、燃料電池セルスタック14の温度が反映される任意の温度を意味しており、燃料電池モジュール2内に配置された任意の温度検出手段による検出温度を、燃料電池セルスタック14の温度として使用することができる。
【0070】
燃料電池モジュール2は図10のような特性を有するため、燃料電池セルスタック14が電力降下反転温度Tc以上の温度帯域にある場合において、インバータ54へ取り出す電力を増加させると、燃料電池モジュール2から引き出される電流が増加し、これにより燃料電池セルスタック14の温度は上昇する。燃料電池セルスタック14の温度が上昇すると、出力可能な電力が更に低下する。発電能力の低下した燃料電池モジュール2から更に電力を取り出そうとすると、出力電流が増大し、燃料電池セルスタック14の温度が益々上昇する。燃料電池モジュール2の制御が、一旦、このようなスパイラル状態に陥ると、急速な電流増加と温度上昇が発生し、短時間で燃料電池セルスタック14が損傷されてしまう虞がある。
【0071】
制御部110に内蔵されている温度域出力制限手段110a(図6)は、燃料電池モジュール2の制御が上記のようなスパイラル状態に陥るのを防止するために、燃料電池モジュール2内を図10に斜線で示す使用帯域温度である550〜650℃に維持するように作用する。具体的には、温度域出力制限手段110aは図11に示す制御フローを実行する。なお、図11に示す制御フローは、固体酸化物型燃料電池1の運転中において、所定の時間間隔で繰り返し実行される。
【0072】
まず、図11のステップS1において、温度域出力制限手段110aは、温度域出力予備制限フラグF2の値を判断する。温度域出力予備制限フラグF2は、温度域出力制限手段110aによる出力電力の予備的な制限が行われているか否かを表すフラグであり、出力電力の予備的な制限が行われている場合にはF2=1、行われていない場合にはF2=0にされる。ステップS1において、温度域出力予備制限フラグF2=1である場合にはステップS8に進み、F2=0である場合にはステップS2に進む。
【0073】
次に、ステップS2において、温度域出力制限手段110aは、温度域出力制限フラグF1の値を判断する。温度域出力制限フラグF1は、温度域出力制限手段110aによる出力電力の制限が行われているか否かを表すフラグであり、出力電力の制限が行われている場合にはF1=1、行われていない場合にはF1=0にされる。ステップS2において、温度域出力制限フラグF1=1である場合にはステップS13に進み、F1=0である場合にはステップS3に進む。
【0074】
ステップS3においては、温度検出手段である発電室温度センサ142(図6)によって検出された燃料電池セルスタック14の温度が、第2出力抑制温度である650℃以上であるか否かが判断される。第2出力抑制温度以上である場合にはステップS11に進み、第2出力抑制温度以上でない場合には、ステップS4に進む。
【0075】
ステップS4においては、燃料電池モジュール2からインバータ54へ取り出されている電流がほぼ一定であるか否かが判断される。本実施形態においては、温度域出力制限手段110aは、直近の過去3分間においてインバータ54へ取り出されている電流の変動が±100mA以下である場合には、電流がほぼ一定であると判断する。このように、インバータ54へ取り出される電流がほぼ一定となる状態は、例えば、需要電力が固体酸化物型燃料電池1の定格電力よりも大きい値で変動する状態が継続し、燃料電池モジュール2が定格電力を出力するように運転されている場合や、需要電力が一定の状態が所定時間以上連続し、その電力を出力するように燃料電池モジュール2が運転されている場合に発生する。電流がほぼ一定であると判断された場合にはステップS5に進み、一定でない場合には図11のフローチャートの1回の処理を終了する。
【0076】
次に、ステップS5においては、ステップS4において判断された出力電流が一定である期間において、所定の電力降下反転温度判断電圧以上の電圧降下が発生したか否かが判断される。本実施形態においては、温度域出力制限手段110aは、電流がほぼ一定であった3分間で、3V以上電圧が低下した場合、電力降下反転温度判断電圧以上の電圧降下が発生したと判断する。電力降下反転温度判断電圧以上の電圧降下が発生したと判断された場合にはステップS6に進み、電圧降下が発生していない場合には図11のフローチャートの1回の処理を終了する。即ち、燃料電池セルスタック14の温度が、第2出力抑制温度未満であり、電力降下反転温度判断電圧以上の電圧降下が発生していない状況では、燃料電池セルスタック14が電力降下反転温度に達していることは考えられないため、電力の制限を行うことなく、図11のフローチャートの処理を終了する。
【0077】
一方、ステップS6においては、電力降下反転温度判断電圧以上の電圧降下が発生していたため、燃料電池モジュール2からインバータ54へ取り出し可能な電流として、インバータ54へ指示される取出可能電流値Iinvが50%減少される。即ち、図9により説明したように、取出可能電流値Iinvは、燃料電池モジュール2に供給されている燃料の量に対応して、インバータ54が取り出すことができる電流値として、インバータ54に指示されている電流値である。温度域出力制限手段110aは、この取出可能電流値Iinvを50%減少させ、燃料電池モジュール2からインバータ54に取り出される電流を低下させる。
【0078】
なお、50%減少された取出可能電流値Iinvが1Aを下回る場合は、取出可能電流値Iinvは1Aに設定される。また、燃料電池モジュール2に供給される燃料供給量(燃料供給電流値If)も、取出可能電流値Iinvに対応した値に減少される。燃料電池モジュール2から取り出される電流が1A以下に低下すると、発電に使用されずに残り、燃焼室18において燃焼される燃料が増加し、却って燃料電池セルスタック14の温度を上昇させてしまう場合がある。このため、1A程度の電流出力を継続する方が、燃料電池セルスタック14の温度を低下させるために有利である。
【0079】
このように、出力電流がほぼ一定であるにも関わらず電圧降下が発生している場合(ステップS4→S5→S6の経路)には、燃料電池セルスタック14の一部が電力降下反転温度Tcに達している可能性がある。従って、この場合には、燃料電池モジュール2からインバータ54へ取り出す電流を大幅に低下させて、燃料電池モジュール2が電流増加と温度上昇のスパイラル状態に陥るのを確実に防止する。
【0080】
次いで、ステップS7においては、温度域出力予備制限フラグF2の値が1に変更されると共に、出力予備制限タイマーの積算が開始され、図11のフローチャートの処理を終了する。
【0081】
温度域出力予備制限フラグF2の値が1に変更された後、図11のフローチャートが実行されると、ステップS1→S8に処理が進む。ステップS8においては、ステップS7における出力予備制限タイマーの積算開始後15分経過したか否かが判断される。15分経過している場合にはステップS9に進み、経過していない場合には、そのまま図11のフローチャートの処理を終了する。即ち、出力予備制限タイマーの積算開始後15分間は、ステップS6において設定された取出可能電流値Iinvを50%減少させた状態が継続される。
【0082】
なお、本実施形態においては、出力予備制限タイマーの積算開始後15分間は、燃料電池セルスタック14温度の判断を行わず、取出可能電流値Iinv50%減の状態を維持しているが、変形例として、出力予備制限タイマーの積算中(ステップS8の後)、図11のステップS13乃至S18の処理が行われるように、本発明を構成することもできる。
【0083】
出力予備制限タイマーの積算開始後15分経過すると、ステップS9が実行される。ステップS9においては、ステップS6において設定された取出可能電流値Iinvの制限が解除される。次いで、ステップS10においては、温度域出力予備制限フラグF2の値が0に戻される。これらの温度域出力予備制限フラグF2を使用した一連の処理は、検出されている燃料電池セルスタック14の温度は第2出力抑制温度である650℃に到達していない(ステップS3)が、出力電流がほぼ一定の状態で出力電圧が降下している状態(ステップS4、S5)であるため、予備的に出力制限を実行(ステップS6)し、15分間その状態を維持する(ステップS8)ものである。即ち、発電室温度センサ142によって検出される燃料電池セルスタック14の温度は、燃料電池セルスタック14の温度を直接測定したものではなく、また、実際の燃料電池セルスタック14の温度変化に対して遅れて値が変化する。このため、燃料電池セルスタック14の温度(発電室温度センサ142によって検出された温度)が第2出力抑制温度に到達していない状態であっても、出力電圧の降下が発生している場合には、燃料電池セルスタック14の一部が電力降下反転温度Tcに到達していることが疑われるため、予備的な出力制限が行なわれる。予備的な出力制限が所定時間実行された後は、一旦出力制限が解除され、出力制限が必要な状態であるか否か、ステップS3以下において改めて判断される。
【0084】
一方、ステップS3において、燃料電池セルスタック14の温度が第2出力抑制温度以上であると判断された場合にはステップS11に進み、ステップS11においては発電電力の制限が行われる。ステップS11においては、燃料電池モジュール2からインバータ54へ取り出し可能な電流として、インバータ54へ指示される取出可能電流値Iinvが30%減少される。このように、発電室温度センサ142によって検出された代表的な温度が、第2出力抑制温度以上である場合には、燃料電池セルスタック14の一部が電力降下反転温度Tcに達している可能性があるため、発電電力の制限を行うことにより、燃料電池セルスタック14の温度のこれ以上の上昇を抑制する。なお、30%減少された取出可能電流値Iinvが1Aを下回る場合は、取出可能電流値Iinvは1Aに設定される。また、燃料電池モジュール2に供給される燃料供給量(燃料供給電流値If)も、取出可能電流値Iinvに対応した値に減少される。
【0085】
さらに、ステップS12において温度域出力制限フラグF1の値が1に変更され、図11のフローチャートの1回の処理を終了する。即ち、温度域出力制限手段110aは、燃料電池モジュール2が電流増加と温度上昇のスパイラル状態に陥る危険性が高くなったと判断し、温度域出力制限フラグF1を1にする。これにより、以後、図11のフローチャートが実行された場合には、燃料電池セルスタック14の温度が十分低下するまで、ステップS13以下の温度域出力制限制御が実行される。温度域出力制限フラグF1は、温度域出力制限中であることを示すフラグである。
【0086】
一方、温度域出力制限フラグF1が1に変更されると、ステップS1、S2に続いて、ステップS13以下が実行される。
ステップS13においては、燃料電池セルスタック14の温度が電力降下反転温度Tcである750℃以上であるか否かが判断される。燃料電池セルスタック14の温度が電力降下反転温度Tc以上である場合にはステップS14に進み、電力降下反転温度Tc以上でない場合にはステップS15に進む。
【0087】
ステップS14においては、取出可能電流値Iinvが所定の温度低下電流である1Aに固定される。また、燃料電池モジュール2に供給される燃料供給量(燃料供給電流値If)も、取出可能電流値Iinvに対応した値に減少される。さらに、発電用酸化剤ガス供給手段である発電用空気流量調整ユニット45によって燃料電池モジュール2内に供給される発電用の空気が40%増量される。これにより、燃料電池モジュール2内の燃料電池セルスタック14を、発電用の空気の流れによって冷却し、図11のフローチャートの1回の処理を終了する。即ち、燃料電池セルスタック14の温度が電力降下反転温度Tc以上である場合には、取出可能電流値Iinvが燃料電池セルスタック14の温度を最も効率的に低下させることができる低い電流値に固定され、燃料電池モジュール2が電流増加と温度上昇のスパイラル状態に陥るのを防止する。
【0088】
後述するように、本実施形態の固体酸化物型燃料電池1においては、燃料電池モジュール2内の温度が高く、断熱材7等に多量の熱量が蓄積されている場合には、制御部110は燃料利用率を高めた(燃料供給量を少なくした)運転を実行する。燃料利用率を高めた運転が行われると、断熱材7等に蓄積された熱が、燃料電池モジュール2を熱自立させるために消費されるので、燃料電池モジュール2内の温度は低下する。また、燃料電池モジュール2内の温度は、燃料電池セルスタック14から電流が全く取り出されていない状態よりも、1A程度の少量の電流が取り出されている状態の方が、低下されやすい。これは、電流が全く取り出されていない状態では、供給された燃料が全て燃焼室18内で燃焼され、加熱に利用されるのに対して、燃料供給量の少ない状態で少量の電流を取り出した方が、燃焼室18内で燃焼される燃料が減少し、温度が低下されやすい。このため、本実施形態においては、温度低下電流として、1A一定の電流を取り出して、燃料電池モジュール2内の温度を低下させている。
【0089】
さらに、燃料電池モジュール2から取り出される電流を一定とすることにより、燃料電池モジュール2内の温度を効果的に低下させることができる。これは、図9により説明したように、取出可能電流値Iinvを増加させる場合には、前もって燃料供給量を増加させておき、所定時間遅れて取出可能電流値Iinvが増加される。このため、燃料供給量を増加させた後、実際に電流が取り出されるまでの間に供給された燃料は、余剰燃料となり、燃焼室18内において燃焼され、燃料電池モジュール2内の温度が上昇される。従って、取り出される電流を一定とすることにより、余剰燃料が減少し、燃料電池モジュール2内の温度を低下傾向にすることができる。なお、需要電力が著しく減少した場合、燃料電池モジュール2から取り出す必要のある電流は、1A未満になる場合がある。このような場合には、補機ユニット4等を作動させるための電力として、固体酸化物型燃料電池1の内部で電力を消費するように、固体酸化物型燃料電池1を構成することもできる。これにより、燃料電池モジュール2から取り出される電流を、温度低下電流に完全に固定することができる。
【0090】
一方、ステップS15においては、燃料電池セルスタック14の温度が強制冷却温度である740℃以上であるか否かが判断される。燃料電池セルスタック14の温度が強制冷却温度以上、電力降下反転温度Tc未満である場合にはステップS16に進み、強制冷却温度以上でない場合にはステップS17に進む。
【0091】
ステップS16においては、インバータ54へ指示される取出可能電流値Iinvが70%減少される。なお、70%減少された取出可能電流値Iinvが1Aを下回る場合は、取出可能電流値Iinvは1Aに設定される。また、燃料電池モジュール2に供給される燃料供給量(燃料供給電流値If)も、取出可能電流値Iinvに対応した値に減少される。さらに、ステップS16においては、発電用酸化剤ガス供給手段である発電用空気流量調整ユニット45によって燃料電池モジュール2内に供給される発電用の空気が30%増量される。これにより、燃料電池モジュール2内の燃料電池セルスタック14を、発電用の空気の流れによって冷却し、図11のフローチャートの1回の処理を終了する。
【0092】
一方、ステップS17においては、燃料電池セルスタック14の温度が、出力抑制温度である720℃以上であるか否かが判断される。出力抑制温度以上である場合にはステップS18に進み、出力抑制温度以上でない場合にはステップS19に進む。なお、本実施形態においては、出力抑制温度は、電力降下反転温度Tcよりも30℃低く設定されている。
【0093】
ステップS18においては、燃料電池モジュール2からインバータ54へ取り出し可能な電流として、インバータ54へ指示される取出可能電流値Iinvが50%減少され、図11のフローチャートの1回の処理を終了する。なお、50%減少された取出可能電流値Iinvが1Aを下回る場合は、取出可能電流値Iinvは1Aに設定される。また、燃料電池モジュール2に供給される燃料供給量(燃料供給電流値If)も、取出可能電流値Iinvに対応した値に減少される。
【0094】
一方、ステップS19においては、燃料電池セルスタック14の温度が通常使用温度である640℃以下であるか否かが判断される。燃料電池セルスタック14の温度が通常使用温度以下である場合にはステップS20に進み、通常使用温度を超えている場合は、従前の取出可能電流値Iinvを維持したまま図11のフローチャートの1回の処理を終了する。
【0095】
ステップS20では、取出可能電流値Iinvの制限を解除すると共に、温度域出力制限フラグF1を0にし、図11のフローチャートの1回の処理を終了する。即ち、燃料電池セルスタック14の温度が通常使用温度以下まで低下している場合は、電流増加と温度上昇のスパイラル状態に陥る危険性はないと判断され、温度域出力制限フラグF1が0に戻され、温度域出力制限制御を終了する。なお、温度域出力制限フラグF1を1に変更し、温度域出力制限制御を開始させる第2出力抑制温度が650℃に設定され(ステップS3)、温度域出力制限制御を終了させる通常使用温度が640℃に設定されているのは、温度域出力制限制御の開始と解除が繰り返されるハンチング現象を防止するためである。一方、燃料電池セルスタック14の温度が通常使用温度を超えている場合は、温度域出力制限フラグF1は1のまま維持され、温度域出力制限制御が継続される。
【0096】
次に、図12を参照して、制御部110に内蔵された電流域出力制限手段110b(図6)による電力出力の制限を説明する。この電流域出力制限手段110bによる出力の制限は、所定の電力を出力するために必要な電流が所定の電流を超えた場合に、それ以上電流を増加させることなく、出力を制限するというものであり、このような出力制限機能は、従来の固体酸化物型燃料電池にも備えられていたものである。本実施形態の固体酸化物型燃料電池1においては、上述した温度域出力制限手段110aによる出力制限機能と、この電流域出力制限手段110bによる出力制限機能の両方を備えており、これらが必要に応じて出力に制限を加えている。
【0097】
図12における曲線P1、P2は、燃料電池モジュール2の出力電圧と出力電流の関係を表している。また、曲線Q1、Q2は、燃料電池モジュール2から所定の電力を出力するために必要な電圧と電流の関係を示す曲線である。曲線Q1は、固体酸化物型燃料電池1の定格電力である700Wを出力するために必要な電圧と電流の関係を示し、曲線Q2は、590Wを出力するために必要な電圧と電流の関係を示している。
【0098】
固体酸化物型燃料電池1の初期使用時等には、燃料電池モジュール2の出力電圧と出力電流は、ほぼ曲線P1の曲線に従う。従って、590Wを出力する際には、曲線P1と曲線Q2の交点R2の電圧値、電流値となる。ここで、出力電力を700Wに増加させると、出力電流が増加すると共に、出力電圧が低下する。これにより、曲線P1と曲線Q1の交点R1の電圧値、電流値により、700Wの電力が出力される。
【0099】
ここで、燃料電池セルスタック14が劣化した場合等、何らかの原因で燃料電池モジュール2の発電能力が低下すると、燃料電池モジュール2の出力電圧と出力電流は、例えば、曲線P2の曲線に従うようになる。このように、燃料電池モジュール2の発電能力が低下した場合、590Wを出力する際の電圧値、電流値は、曲線P2と曲線Q2の交点R4になる。このように、燃料電池モジュール2の発電能力が低下すると、同一の電力を出力するために必要な電流が増加すると共に、その際の電圧が低下する。この状態においては、燃料電池モジュール2から700Wの電力を得るためには、曲線P2と曲線Q1が交わる交点R3における電流が必要となる。
【0100】
しかしながら、交点R3のように出力電流が増加してしまうと、燃料電池セルスタック14の劣化が急激に進行し、或いは、燃料電池セルスタック14が損傷されてしまう場合がある。そこで、電流域出力制限手段110bは、電流制限ラインL1により出力電流を制限し、電流制限ラインL1よりも右側の電流値、電圧値による電力出力を制限している。なお、燃料電池セルスタック14の劣化の進行度合いにより、電流制限ラインを図12において左側にシフトさせることもできる。
【0101】
次に、図13乃至19を参照して、要求される発電量及び発電室温度センサ142による検出温度Tdに基づいて発電用空気供給量、水供給量、及び燃料供給量を決定する手順を説明する。
図13は、検出温度Tdに基づいて発電用空気供給量、水供給量、及び燃料供給量を決定する手順を示すフローチャートである。図14は発電電流に対する適正な燃料電池セルスタック14の温度を示すグラフである。図15は積算値に応じて決定される燃料利用率を示すグラフである。図16は、各発電電流に対して決定され得る燃料利用率の値の範囲を示すグラフである。図17は積算値に応じて決定される空気利用率を示すグラフである。図18は、各発電電流に対して決定され得る空気利用率の値の範囲を示すグラフである。図19は、決定された空気利用率に対して水供給量を決定するためのグラフである。
【0102】
図14に一点鎖線で示すように、本実施形態においては、燃料電池モジュール2によって生成すべき電流(図9における燃料供給電流値If)に対して、適正な燃料電池セルスタック14の温度Ts(I)が規定されている。制御部110は、燃料電池セルスタック14の温度が、適正な温度Ts(I)に近づくように、燃料供給量等を制御する。即ち、制御部110は、概略的には、発電電流に対して燃料電池セルスタック14の温度が高い場合(燃料電池セルスタック14の温度が図14の一点鎖線よりも上にある場合)には、燃料利用率を高め、断熱材7等に蓄積されている熱量を積極的に消費して、燃料電池モジュール2内の温度を低下させる。逆に、発電電流に対して燃料電池セルスタック14の温度が低い場合には、燃料利用率を低下させ、燃料電池モジュール2内の温度が低下しないようにする。具体的には、燃料利用率は単純な検出温度Tdのみに基づいて決定されるのではなく、検出温度Td等に基づいて決定される加減算値を積算することにより蓄熱を反映した量を計算し、この量に基づいて燃料利用率等が決定される。この加減算値を積算することによる蓄熱量の推定値は、制御部に内蔵された蓄熱量推定手段110c(図6)により計算される。
【0103】
図13に示すフローチャートは、温度検出手段である発電室温度センサ142によって検出された検出温度Td等に基づいて発電用空気供給量、水供給量、及び燃料供給量を決定するものであり、所定の時間間隔で実行される。
【0104】
まず、図13のステップS31においては、検出温度Td及び図14に基づいて、第1加減算値M1が計算される。まず、検出温度Tdが、燃料電池セルスタック14の適正温度Ts(I)に対して、所定の温度範囲内(図14の2本の実線の間)にある場合には、第1加減算値M1は0にされる。
即ち、検出温度Tdが、
Ts(I)−Te≦Td≦Ts(I)+Te
の範囲内にある場合には、第1加減算値M1=0にされる。ここで、Teは第1加減算値閾値温度である。なお、本実施形態においては、第1加減算値閾値温度Teは3℃である。
【0105】
また、検出温度Tdが、適正温度Ts(I)よりも低く、
Td<Ts(I)−Te (4)
の範囲内(図14における下側の実線よりも下)にある場合には、第1加減算値M1は、
M1=Ki×(Td−(Ts(I)−Te)) (5)
によって計算される。この際、第1加減算値M1は、負の値(減算値)となる。なお、Kiは、所定の比例定数である。
【0106】
また、検出温度Tdが、適正温度Ts(I)よりも高く、
Td>Ts(I)+Te (6)
の範囲内(図14における上側の実線よりも上)にある場合には、第1加減算値M1は、
M1=Ki×(Td−(Ts(I)+Te)) (7)
によって計算される。この際、第1加減算値M1は、正の値(加算値)となる。このように、第1加減算値M1は、検出温度Tdの他、発電電流に基づいて決定され、これを積算することにより蓄熱量が推定される。即ち、適正温度Ts(I)は、発電電流(電力)に応じて異なるように設定され、この適正温度Ts(I)に基づいて決定される(Ts(I)+Te)の値、及び(Ts(I)−Te)の値に基づいて、第1加減算値M1が正又は負の値に決定される。
【0107】
なお、検出温度Tdが(Ts(I)+Te)を超えると、第1加減算値M1は正の値となり、後述するように燃料利用率を高くする燃料供給量の変更が行われるので、本明細書においては、各発電電力に対する温度(Ts(I)+Te)を燃料利用率変更温度と称する。また、燃料利用率変更温度(Ts(I)+Te)を超えることにより、燃料利用率を高くした高効率制御に移行した後、高効率制御から蓄積されている熱量の消費を行わない目標温度域制御に復帰するタイミングは、後述するように、第1加減算値M1等の積算値N1idが0まで低下した時点となる。このため、検出温度Tdが燃料利用率変更温度(Ts(I)+Te)よりも低下した後も、暫時、積算値N1idは0よりも大きい値に維持され、高効率制御が行われる。従って、高効率制御から目標温度域制御に復帰する目標温度域制御復帰温度は、燃料利用率変更温度よりも低い温度になる。
【0108】
次に、図13のステップS32においては、最新の検出温度Td、及び1分前に検出された検出温度Tdbに基づいて、第2加減算値M2が計算される。まず、最新の検出温度Tdと1分前の検出温度Tdbの差の絶対値が所定の第2加減算値閾値温度未満である場合には、第2加減算値M2は0にされる。なお、本実施形態においては、第2加減算値閾値温度は1℃である。
【0109】
また、最新の検出温度Tdと1分前の検出温度Tdbの差である変化温度差が所定の第2加減算値閾値温度以上の場合には、第2加減算値M2は、
M2=Kd×(Td−Tdb) (8)
によって計算される。この第2加減算値M2は、検出温度Tdが上昇傾向にある場合には正の値(加算値)となり、検出温度Tdが低下傾向にある場合には負の値(減算値)となる。なお、Kdは、所定の比例定数である。従って、検出温度Tdが上昇している場合において、変化温度差(Td−Tdb)が大きい領域においては、変化温度差が小さい領域よりも、速応推定値である第2加減算値M2が大きく増加される。逆に、検出温度が低下している場合において、変化温度差(Td−Tdb)の絶対値が大きい領域においては、変化温度差の絶対値が小さい領域よりも、第2加減算値M2は大きく減少される。
【0110】
なお、本実施形態においては、比例定数Kdは一定値であるが、変形例として、変化温度差が正の場合と負の場合で、異なる比例定数Kdを使用することもできる。例えば、変化温度差が負である場合に比例定数Kdを大きく設定することもできる。これにより、検出温度が低下している場合には、検出温度が上昇している場合よりも、変化温度差に対して急激に速応推定値が変化される。或いは、変形例として、変化温度差の絶対値が大きい領域において、小さい領域よりも比例定数Kdを大きく設定することもできる。これにより、変化温度差の絶対値が大きい領域においては、変化温度差の絶対値が小さい領域よりも、変化温度差の変化に対して急激に速応推定値が変化される。また、変化温度差の正負に基づく比例定数Kdの変更と、変化温度差の絶対値の大小に基づく比例定数Kdの変更を組み合わせることもできる。
【0111】
次いで、図13のステップS33においては、ステップS31で計算された第1加減算値M1、及びステップS32で計算された第2加減算値M2を、第1積算値N1idに積算する。第1積算値N1idには、第1加減算値M1により、断熱材7等に蓄積された利用可能な蓄熱量が反映され、第2加減算値M2により、直近の検出温度Tdの変化が反映される。即ち、第1積算値N1idは、断熱材7等に蓄積された利用可能な蓄熱量の推定値として利用することができる。また、積算は、固体酸化物型燃料電池の運転開始後継続的に、図13のフローチャートが実行される毎に行われ、前回計算された第1積算値N1idに、第1加減算値M1及び第2加減算値M2が加算又は減算され、新たな第1積算値N1idに更新される。第1積算値N1idは、0〜4の間の値をとるように制限されており、第1積算値N1idが4に到達した場合には、値は次に減算が行われるまで4に保持され、第1積算値N1idが0まで減少した場合には、値は次に加算が行われるまで0に保持される。
【0112】
なお、ステップS33においては、第1積算値N1idに加え、第2積算値N2idの値も計算する。第2積算値N2idは、後述するように、燃料電池モジュール2に劣化が発生するまでは、第1積算値N1idと全く同様に計算され、第1積算値N1idと同一の値を取る。
【0113】
なお、上記のように、本実施形態においては、第1加減算値M1と第2加減算値M2の和を第1積算値N1idに積算することにより、積算値を計算している。即ち、
N1id=N1id+M1+M2 (9)
により、第1積算値N1idを計算している。ここで、変形例として、第1加減算値M1と第2加減算値M2の積を積算することにより、積算値を計算しても良い。即ち、この変形例では、第1積算値N1idは、
N1id=N1id+Km×M1×M2 (10)
により計算される。ここで、Kmは、所定の条件に応じて変更される可変の係数である。また、この変形例においては、最新の検出温度Tdと1分前の検出温度Tdbの差の絶対値が所定の第2加減算値閾値温度未満である場合には、第2加減算値M2は1にされる。
【0114】
さらに、図13のステップS34においては、計算された第1積算値N1idに基づいて、図15及び図16のグラフを使用して、燃料利用率が決定される。
図15は、計算された第1積算値N1idに対する燃料利用率Ufの設定値を示すグラフである。図15に示すように、第1積算値N1idが0である場合には、燃料利用率Ufは最小値である最小燃料利用率Ufminに設定される。また、第1積算値N1idの増加と共に燃料利用率Ufも増加し、第1積算値N1id=1において最大値である最大燃料利用率Ufmaxとなる。この間、燃料利用率Ufは、第1積算値N1idが小さい領域では傾きが小さく、第1積算値N1idが1に近づくほど傾きが大きくなる。即ち、推定蓄熱量が大きい領域においては、推定蓄熱量が小さい領域よりも、推定蓄熱量の変化に対して大幅に燃料利用率Ufが変化される。換言すれば、推定された蓄熱量が大きいほど大幅に燃料利用率Ufを高めるように燃料供給量が減少される。さらに、第1積算値N1idが1よりも大きい場合には、燃料利用率Ufは最大燃料利用率Ufmaxに固定される。これらの最小燃料利用率Ufmin及び最大燃料利用率Ufmaxの具体的な値は、発電電流(図9における燃料供給電流値If)に基づいて、図16に示すグラフにより決定される。このように、断熱材7等に利用可能な熱量が蓄積されていることが推定された場合には、利用可能な熱量が蓄積されていない場合よりも同一の発電電力に対して燃料利用率が高くなるように、燃料供給量が減少される。
【0115】
図16は、各発電電流に対し、燃料利用率Ufがとり得る値の範囲を示すグラフであり、各発電電流について燃料利用率Ufの最大値及び最小値が示されている。図16に示すように、各発電電流に対する最小燃料利用率Ufminは、発電電流の増加と共に大きくなるように設定されている。即ち、発電電力が大きいときは燃料利用率が高く、発電電力が小さいときには燃料利用率が低くなるように設定されている。この最小燃料利用率Ufminの直線上の燃料利用率が設定された場合には、断熱材7等に蓄積された熱量を利用することなく、燃料電池モジュール2は熱的に自立することができる。
【0116】
一方、最大燃料利用率Ufmaxは、各発電電流に対して折れ線状に変化するように設定されている。ここで、各発電電流に対して燃料利用率Ufがとり得る値の範囲(最大燃料利用率Ufmaxと最小燃料利用率Ufminの差)は、最大の発電電流で最も狭く、発電電流が減少するにつれて広くなる。これは、最大の発電電流付近では、熱的に自立可能な最小燃料利用率Ufminが高く、蓄熱を利用しても燃料利用率Ufを高める(燃料供給量を減じる)余地が少ないためである。さらに、発電電流が減少するにつれて熱的に自立可能な最小燃料利用率Ufminは低くなるため、蓄熱を利用することにより燃料供給量を減じる余地が大きくなり、蓄熱量が多い場合には、燃料利用率Ufを大幅に高めることが可能である。このため、発電電力が小さい領域においては、発電電力が大きい領域よりも、広い範囲で燃料利用率が変更される。
【0117】
また、発電電流が非常に小さい、所定の利用率抑制発電量IU以下の領域においては、発電電力が小さくなるほど燃料利用率Ufがとり得る値の範囲が狭くなるように設定されている。これは、発電電流が小さい領域では、熱的に自立可能な最小燃料利用率Ufminが低く、これを改善する余地は大きい。しかしながら、発電電流が小さい領域では、燃料電池モジュール2内の温度が低いため、この状態で大幅に燃料利用率Ufを改善し、断熱材7等に蓄積されている熱量を急激に消費すると、燃料電池モジュール2内の過剰な温度低下を招くリスクがある。このため、発電電流が非常に小さい利用率抑制発電量IU以下の領域においては、発電電力が小さくなるほど燃料利用率Ufを高める変更量が大幅に抑制される。即ち、燃料供給量を減少させる変更量は燃料電池モジュール2の発電量が少ないほど少なくなる。これにより、急激な温度低下のリスクを回避すると共に、蓄積された熱量を長時間に亘って利用することを可能にしている。
【0118】
図13のステップS34においては、発電電流に基づいて、最小燃料利用率Ufmin及び最大燃料利用率Ufmaxの具体値を、図16のグラフを使用して決定する。次に、決定された最小燃料利用率Ufmin及び最大燃料利用率Ufmaxを図15のグラフに適用し、ステップS33において計算された第1積算値N1idに基づいて、燃料利用率Ufを決定する。
【0119】
次に、図13のステップS35においては、第2積算値N2idに基づいて、図17及び図18のグラフを使用して、空気利用率が決定される。
図17は、計算された第2積算値N2idに対する空気利用率Uaの設定値を示すグラフである。図17に示すように、第2積算値N2idが0乃至1である場合には、空気利用率Uaは最大値である最大空気利用率Uamaxに設定される。さらに、第2積算値N2idが1を超えて増加すると共に空気利用率Uaは低下し、第2積算値N2id=4において最小値である最小空気利用率Uaminとなる。このように、空気利用率Uaを低下させることによる増加分の空気は冷却用の流体として作用するので、図17に示す空気利用率Uaの設定は、強制冷却手段として作用する。これらの最小空気利用率Uamin及び最大空気利用率Uamaxの具体的な値は、発電電流に基づいて、図18に示すグラフにより決定される。
【0120】
図18は、各発電電流に対し、空気利用率Uaがとり得る値の範囲を示すグラフであり、各発電電流について燃料利用率Uaの最大値及び最小値が示されている。図18に示すように、各発電電流に対する最大空気利用率Uamaxは、発電電流の増加と共に僅かに大きくなるように設定されている。一方、最小空気利用率Uaminは、発電電流の増加と共に低下する。空気利用率Uaを、最大空気利用率Uamaxよりも低下させる(空気供給量を増大させる)ことは、発電に必要な空気よりも多い空気を燃料電池モジュール2内に導入することになり、これにより、燃料電池モジュール2内の温度は低下される。従って、燃料電池モジュール2内の温度が過剰に上昇し、温度を低下させる必要がある場合には、空気利用率Uaを低下させる。本実施形態においては、発電電流の増加と共に最小空気利用率Uaminを低下(空気供給量を増加)させていくと、所定の発電電流において、最小空気利用率Uaminに対応する空気供給量が発電用空気流量調整ユニット45の最大空気供給量を超えてしまう。このため、最小空気利用率Uaminが図18において破線で示されている所定の発電電流以上の領域では、図17のグラフによって設定された空気利用率Uaを実現することができない場合がある。この場合には、実際に供給される空気供給量は、設定された空気利用率Uaに関わらず、発電用空気流量調整ユニット45の最大空気供給量に固定される。これに伴い、所定の発電電流以上では、実際に実現される最小の空気利用率Uaは増大する。また、最大空気供給量が大きい発電用空気流量調整ユニットを使用した場合には、図18に破線で示された部分の最小空気利用率Uaminを実現することもできる。なお、発電用空気流量調整ユニット45の最大空気供給量に達することにより規定された空気利用率Uaを、限界最小空気利用率ULaminと記載する。
【0121】
図13のステップS35においては、発電電流に基づいて、最小空気利用率Uamin及び最大空気利用率Uamaxの具体値を、図18のグラフを使用して決定する。次に、決定された最小空気利用率Uamin及び最大空気利用率Uamaxを図17のグラフに適用し、ステップS33において計算された第2積算値N2idに基づいて、空気利用率Uaを決定する。
【0122】
次に、図13のステップS36においては、ステップS35において決定された空気利用率Uaに基づき、図19を使用して水蒸気量と炭素量の比であるS/Cを決定する。
図19は、横軸を空気利用率Ua、縦軸を、供給された水蒸気量と、燃料に含まれる炭素量との比S/Cとしたグラフである。
【0123】
まず、ステップS35において設定された空気利用率Uaが、発電用空気流量調整ユニット45の最大空気供給量によって規定されていない発電電流の領域(図19におけるUamax〜ULamin間)では、水蒸気量と炭素量の比S/Cの値は、2.5に固定される。なお、水蒸気量と炭素量の比S/C=1とは、供給された燃料に含まれる炭素の全量が、供給された水(水蒸気)により化学的に過不足なく水蒸気改質される状態を意味する。従って、水蒸気量と炭素量の比S/C=2.5とは、燃料を水蒸気改質するために化学的に必要最小限の水蒸気量の2.5倍の水蒸気(水)が供給されている状態を意味する。実際には、S/C=1となる水蒸気量では改質器20内において炭素析出が発生してしまうため、S/C=2.5程度となる水蒸気量が燃料を水蒸気改質するための適量である。
【0124】
次に、ステップS35において設定される空気利用率Uaが、発電用空気流量調整ユニット45の最大空気供給量によって制限される発電電流の領域では、図19のグラフを使用して水蒸気量と炭素量の比S/Cが決定される。図19において、横軸は空気利用率Uaであり、空気利用率Uaが大きく、最大空気利用率Uamaxに近いほど空気供給量は少なくなる。一方、空気利用率Uaを低下させ、最小空気利用率Uamin(図18における破線)に近づくと、空気供給量が限界に達し、空気利用率Uaは限界最小空気利用率ULaminになる。図19に示すように、空気利用率Uaが限界最小空気利用率ULaminよりも大きい(空気供給量が少ない)場合には、水蒸気量と炭素量の比S/C=2.5に設定される。さらに、ステップS35において決定された空気利用率Uaが、限界最小空気利用率ULaminよりも小さい(空気供給量が多い)場合(図19におけるUamin〜ULamin間)には、空気利用率Uaの減少と共に水蒸気量と炭素量の比S/Cは増大され、最小空気利用率Uaminにおいて、S/C=3.5に設定される。即ち、ステップS35において決定された空気利用率Uaが、限界最小空気利用率ULaminにより実現できない場合(空気利用率Uaが図18の斜線の範囲内に決定された場合)には、水蒸気量と炭素量の比S/Cを増大させ、水供給量を増大させる。これにより、改質器20から流出する改質された燃料ガスの温度を低下させ、燃料電池モジュール2内の温度を低下傾向にする。このように、空気利用率Uaを低下させて空気供給量を増加させた後、水供給量を増大させると、増加分の水(水蒸気)は、冷却用の流体として作用するので、図19に示す水供給量の設定は強制冷却手段として作用する。
【0125】
ステップS37においては、ステップS34、S35、及びS36において決定された燃料利用率Uf、空気利用率Ua、及び水蒸気量と炭素量の比S/Cと、発電電流に基づいて、具体的な燃料供給量、空気供給量、水供給量を決定する。即ち、全量が発電に使用されるとした場合の燃料供給量を、決定された燃料利用率Ufで除することにより実際の燃料供給量を計算し、全量が発電に使用されるとした場合の空気供給量を決定された空気利用率Uaで除することにより実際の空気供給量を計算する。また、計算された燃料供給量及びステップS36において決定された水蒸気量と炭素量の比S/Cに基づいて、水供給量を計算する。
【0126】
次いで、ステップS38において、制御部110は、燃料流量調整ユニット38、発電用空気流量調整ユニット45、及び水供給手段である水流量調整ユニット28に信号を送り、ステップS37において計算された量の燃料、空気、及び水を供給し、図13のフローチャートの1回の処理を終了する。
【0127】
次に、図13のフローチャートを実行する時間間隔を説明する。本実施形態において、図13のフローチャートは、出力電流が大きい場合には、0.5秒毎に実行され、出力電流が低下するにつれて、その2倍の1秒、4倍の2秒、8倍の4秒毎に実行される。これにより、第1及び第2加減算値が一定値である場合には、時間当たりの第1又は第2積算値の変化は、出力電流が少ないほど緩やかになる。即ち、蓄熱量推定手段110cは、出力電流(発電電力)が大きいほど蓄熱量の推定値を時間に対して急激に変化させる。これにより、積算値による蓄熱量の推定が、実際の蓄熱量を良く反映したものとなる。
【0128】
次に、図13のフローチャートによって実現される固体酸化物型燃料電池の作用を説明する。
まず、ステップS33において計算される第1積算値N1idの値が0である場合には、ステップS34において決定される燃料利用率Ufが、その発電電流における最小燃料利用率Ufmin(燃料供給量最大)に設定される。これにより、第1積算値N1idの値が0であり、断熱材7等に蓄積された熱量が少ない状態においても、燃料電池モジュール2が熱的に自立できる十分な燃料が供給される。また、ステップS33において計算される第2積算値N2idの値が、第1積算値N1idと同様に0である場合には、ステップS35において決定される空気利用率Uaが、その発電電流における最大空気利用率Uafmax(空気供給量最小)に設定される。このため、燃料電池モジュール2に導入される発電用の空気により燃料電池セルスタック14が冷却される作用は最小にされ、燃料電池セルスタック14の温度を上昇傾向にすることができる。
【0129】
次に、検出温度Tdが適正温度Ts(I)よりも高く、Td>Ts(I)+Teの状態で燃料電池モジュール2が運転されると、第1加減算値M1の値は正値となり、第1積算値N1idの値が0よりも大きくなる。これにより、図15において、最小燃料利用率Ufminよりも高い燃料利用率Ufが設定されて燃料供給量が減少され、発電に使用されずに残る残余燃料の量が減少される。燃料利用率Ufは、推定蓄熱量に対応した第1積算値N1idの値が大きいほど大幅に高くされる。燃料利用率Ufが高められることにより、燃料供給量は熱自立可能な供給量よりも少なくされ、断熱材7等に蓄積された熱量を利用した高効率制御が実行される。残余燃料の量が減少され、断熱材7等に蓄積された熱量が利用されるので、発電を継続しながら燃料電池モジュール2内の温度上昇が抑制される。Td>Ts(I)+Teの状態で運転が継続されると、正値の第1加減算値M1の積算が繰り返され、第1積算値N1idの値も増大する。第1積算値N1idが1に達すると、燃料利用率Ufは、最大燃料利用率Uafmax(燃料供給量最小)に設定される。このように、燃料電池モジュール2に供給される燃料は、断熱材7等に蓄積された熱量を反映した、検出温度Tdの過去の履歴に基づいて決定される。
【0130】
第1積算値N1idが更に増大し、1を超えた場合においても、図15に示すように、燃料利用率Ufは、最大燃料利用率Uafmax(燃料供給量最小)に維持される。一方、第1積算値N1idと同一の値をとる第2積算値N2idの値(燃料電池モジュール2が劣化していない場合)も1を超えるので、図17に基づいて、空気利用率Uaが低下(空気供給量増加)される。これにより、燃料電池モジュール2内は、供給される空気の増加により冷却傾向となる。
【0131】
これに対して、検出温度Tdが適正温度Ts(I)よりも低く、Td<Ts(I)−Teの状態で燃料電池モジュール2が運転されると、第1加減算値M1の値は負値となり、第1積算値N1idの値は減少される。これにより、燃料利用率Ufは、維持(第1積算値N1id>1)又は低下(第1積算値N1id≦1)される。また、空気利用率Uaは、増大(第2積算値N2id>1)又は維持(第2積算値N2id≦1)される。これにより、燃料電池モジュール2内の温度を上昇傾向にすることができる。
【0132】
以上は、検出温度Tdの履歴に基づいて計算される第1加減算値M1のみに注目した固体酸化物型燃料電池の作用であるが、第1積算値N1id及び第2積算値N2idは、第2加減算値M2によっても影響を受ける。燃料電池モジュール2、特に、燃料電池セルスタック14は、非常に熱容量が大きく、その検出温度Tdの変化は極めて緩慢である。このため、検出温度Tdが一旦上昇傾向に入ると、その温度上昇を短時間で抑制することは困難であり、また、検出温度Tdが低下傾向に入った場合にも、これを上昇傾向に戻すには長い時間を要する。このため、検出温度Tdに上昇又は低下の傾向が現れた場合には、これに迅速に反応して第1、第2積算値を修正する必要がある。
【0133】
即ち、最新の検出温度Tdが、1分前の検出温度Tdbよりも第2加減算値閾値温度以上高い場合には、第2加減算値M2が正の値となり、第1、第2積算値が増大される。これにより、検出温度Tdが上昇傾向に入ったことを第1、第2積算値に反映させることができる。同様に、最新の検出温度Tdが、1分前の検出温度Tdbよりも第2加減算値閾値温度以上低い場合には、第2加減算値M2が負の値となり、第1、第2積算値が減少される。即ち、発電室温度センサ142により検出された最新の検出温度Tdと、過去の検出温度Tdbとの差である変化温度差に基づいて速応推定値である第2加減算値M2が計算される。従って、検出温度Tdが急激に低下している場合には、緩やかに低下している場合よりも、燃料利用率Ufを高める変更量が大幅に抑制され、また、発電電力が利用率抑制発電量IU以下の領域では最大燃料利用率Ufmaxも低く設定されているため、変更量は、より大幅に抑制される。これにより、検出温度Tdが低下傾向に入ったことを第1、第2積算値に反映させることができる。このように、本実施形態においては、検出温度Tdに基づいて決定された第1加減算値M1の積算値、及び新しく検出された検出温度Tdと過去に検出された検出温度Tdbの差に基づく差分値に基づいて蓄熱量が推定される。即ち、本実施形態においては、検出温度Tdの履歴に基づいて計算される基本推定値である第1加減算値M1の積算値、及び基本推定値を計算する履歴よりも短い期間における検出温度Tdの変化率に基づいて計算される速応推定値である第2加減算値M2に基づいて、蓄熱量推定手段110cにより蓄熱量が推定される。このように、本実施形態においては、基本推定値と速応推定値の和に基づいて蓄熱量が推定される。
【0134】
なお、燃料電池モジュール2の温度変化は、検出温度TdとTdbを検出する間隔である1分に比して極めて緩慢であるため、第2加減算値M2は0である場合が多い。このため、第1、第2積算値は、主に第1加減算値M1によって支配され、検出温度Tdの上昇又は低下傾向が現れたとき、第2加減算値M2が、第1、第2積算値の値を修正するように作用する。このように、蓄熱量の推定値には、検出温度の履歴の他に、第2加減算値M2によって直近の検出温度Tdの変化が加味される。このため、直近の検出温度Tdの変化が大きい(第2加減算値閾値温度以上の変化)場合には、第2加減算値M2が値を持つので、蓄熱量の推定値が修正され、燃料利用率Ufが大幅に変更される。
【0135】
本発明の実施形態の固体酸化物型燃料電池1によれば、燃料電池モジュール2が温度上昇と電流増加のスパイラル状態に陥るのを確実に防止することができる。即ち、燃料電池セルスタック14の温度が電力降下反転温度以上である場合や、燃料電池セルスタック14の温度上昇と共に燃料電池セルスタック14の出力電圧が低下する状態では、燃料電池モジュール2からの出力電流を増加させようとすると、燃料電池モジュール2が温度上昇と電流増加のスパイラル状態に陥ってしまう(図10)。従って、このような場合には、出力電流を少量の温度低下電流に固定することにより、発電に使用されずに残る残余燃料を減少させながら、燃料電池モジュール2内に蓄積された熱を消費することができ、効果的に温度を低下させることができる。また、出力電流を一定の温度低下電流に固定することにより、出力電流の増加、減少に伴って発生する余剰燃料を減少させることができ(図9)、確実に燃料電池モジュール2内の温度を低下させることができる。
【0136】
さらに、本実施形態の固体酸化物型燃料電池1によれば、電力降下反転温度Tcよりも低く設定された出力抑制温度、第2出力抑制温度に到達すると、出力される電力が抑制される(図11、ステップS3→S11、ステップS17→S18)ので、燃料電池セルスタック14の温度変化が捉えにくく、温度上昇の検知が困難であるとしても、確実に電力降下反転温度Tcを超えるのを防止することができる。
【0137】
また、本実施形態の固体酸化物型燃料電池1によれば、燃料電池セルスタック14の温度が所定の強制冷却温度以上に上昇すると、発電用空気流量調整ユニット45により供給される発電用空気の供給量が増加される(図11、ステップS15→S16)。このように、本実施形態においては、出力の制限と共に、発電用の空気による冷却を併用するので、効果的に燃料電池セルスタック14の温度を低下させることができ、より確実に電力降下反転温度Tcを超えるのを防止することができる。
【0138】
さらに、本実施形態の固体酸化物型燃料電池1によれば、温度域出力制限手段110aの他に、電流域出力制限手段110bにより電力を抑制している(図12)ので、より確実に燃料電池セルスタック14に与える負担を軽減することができる。
【0139】
また、本実施形態の固体酸化物型燃料電池1によれば、出力電流がほぼ一定の状態における出力電圧の低下に基づいて(図11、ステップS4→S5→S6)、温度上昇と電流増加のスパイラル状態を検知するので、より正確にスパイラル状態を判断することができる。
【0140】
以上、本発明の好ましい実施形態を説明したが、上述した実施形態に種々の変更を加えることができる。特に、上述した実施形態においては、出力電流がほぼ一定の状態における出力電圧の低下に基づいて、温度上昇と電流増加のスパイラル状態を検知していたが、燃料電池モジュールからインバータに出力される電流の変化に対する燃料電池モジュールの出力電圧の変化に基づいて、インバータに出力する電力を制限することもできる。
【符号の説明】
【0141】
1 固体酸化物型燃料電池
2 燃料電池モジュール
4 補機ユニット
7 断熱材(蓄熱材)
8 密封空間
10 発電室
12 燃料電池セル集合体
14 燃料電池セルスタック
16 燃料電池セルユニット(固体酸化物型燃料電池セル)
18 燃焼室(燃焼部)
20 改質器
22 空気用熱交換器
24 水供給源
26 純水タンク
28 水流量調整ユニット(水供給手段)
30 燃料供給源
38 燃料流量調整ユニット(燃料供給手段)
40 空気供給源
44 改質用空気流量調整ユニット
45 発電用空気流量調整ユニット(発電用酸化剤ガス供給手段)
46 第1ヒータ
48 第2ヒータ
50 温水製造装置
52 制御ボックス
54 インバータ
83 点火装置
84 燃料電池セル
110 制御部(制御手段)
110a 温度域出力制限手段
110b 電流域出力制限手段
110c 蓄熱量推定手段
112 操作装置
114 表示装置
116 警報装置
126 電力状態検出センサ(需要電力検出手段)
132 燃料流量センサ(燃料供給量検出センサ)
138 圧力センサ(改質器圧力センサ)
140 排気温度センサ
142 発電室温度センサ(温度検出手段)
148 改質器温度センサ(温度検出手段)
150 外気温度センサ

【特許請求の範囲】
【請求項1】
需要電力に応じて可変の発電電力をインバータへ出力する固体酸化物型燃料電池であって、
所定の電力降下反転温度以下の温度では、温度上昇と共に出力可能な電力が増加し、上記電力降下反転温度を超えると温度上昇と共に出力可能な電力が低下する特性を備えた燃料電池セルスタックを内蔵した燃料電池モジュールと、
上記燃料電池セルスタックに燃料を供給する燃料供給手段と、
上記燃料電池セルスタックに発電用の酸化剤ガスを供給する発電用酸化剤ガス供給手段と、
需要電力に応じた電力を生成できるように、上記燃料供給手段、及び上記発電用酸化剤ガス供給手段を制御する制御手段と、を有し、
上記制御手段は、上記燃料電池セルスタックの温度が上記電力降下反転温度より低い温度帯域で通常の出力電力制御を行う一方で、上記電力降下反転温度以上の温度帯域にあると推定される場合では、上記燃料電池モジュールからの出力電流を制限し、所定の出力電流に固定する温度域出力制限手段を備えたことを特徴とする固体酸化物型燃料電池。
【請求項2】
上記温度域出力制限手段は、上記燃料電池セルスタックの温度が、上記電力降下反転温度よりも低く設定された所定の出力抑制温度に到達すると、インバータへ出力する電力を抑制する請求項1記載の固体酸化物型燃料電池。
【請求項3】
上記制御手段は、上記燃料電池セルスタックの温度が、上記電力降下反転温度よりも低く設定された所定の強制冷却温度以上に上昇すると、発電用の酸化剤ガスの供給量を増加させ、上記燃料電池セルスタックを冷却する請求項2記載の固体酸化物型燃料電池。
【請求項4】
上記制御手段は、さらに、所定の電力を上記インバータに出力するために必要な出力電流が、電力に応じて定められた所定の電流以上になると、インバータへ出力する電力を抑制する電流域出力制限手段を有する請求項3記載の固体酸化物型燃料電池。
【請求項5】
上記温度域出力制限手段は、上記燃料電池モジュールから上記インバータに出力される電流の変化に対する上記燃料電池モジュールの出力電圧の変化に基づいて、上記インバータに出力する電力を制限する請求項4記載の固体酸化物型燃料電池。
【請求項6】
上記温度域出力制限手段は、上記燃料電池モジュールから上記インバータに出力される電流がほぼ一定の状態において、上記燃料電池モジュールの出力電圧が所定の電力降下反転温度判断電圧以上低下した場合に、上記インバータに出力する電力を制限する請求項4記載の固体酸化物型燃料電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2013−73901(P2013−73901A)
【公開日】平成25年4月22日(2013.4.22)
【国際特許分類】
【出願番号】特願2011−214280(P2011−214280)
【出願日】平成23年9月29日(2011.9.29)
【出願人】(000010087)TOTO株式会社 (3,889)
【Fターム(参考)】